
VIDRE – A Distributed Service-Oriented Business Rule Engine based on
RuleML

Christoph Nagl, Florian Rosenberg, Schahram Dustdar
VitaLab, Distributed Systems Group, Information Systems Institute

Vienna University of Technology
1040 Vienna, Argentinierstrasse 8/184-1, Austria
{nagl, florian, dustdar}@infosys.tuwien.ac.at

Abstract

Business rules provide an elegant solution to manage
dynamic business logic by separating business knowledge
from its implementation logic. The drawback of most exist-
ing business rule approaches is the lack of standardization
and interoperability. The lack of service-orientation and re-
mote accessibility of business rule engines makes it hard to
use business rules in distributed environments. This paper
contributes the design and implementation of VIDRE (Vi-
enna Distributed Rules Engine), a service-oriented business
rule engine based on RuleML. VIDRE enables enterprise
applications to access business rules as easy as accessing
a database, by exposing rules as Web services. VIDRE
uses RuleML as an interlingua to represent facts, rules, and
queries. One of the main contributions of the VIDRE ap-
proach is the ability to distribute rules and facts across var-
ious rule engines, therefore, enabling powerful ways of sep-
arating and executing business rules within intra- and in-
terorganizational boundaries.

1. Introduction

Today’s businesses are changing rapidly and organiza-
tions have to deal with the dynamic changes of market eco-
nomics. Such competitive business environments require
business applications being flexible and adaptive enough, to
meet frequent changes in business conditions and business
policies [18]. Software applications have to keep track with
changing requirements, thus, responding to market changes
rapidly and effectively is a key factor for success.

Several industrial domains (e.g., supply-chain manage-
ment) are highly distributed. This organizational structure
is also reflected in the IT infrastructure, where reliable dis-
tributed systems are necessary for running the business.
Many companies use business rule engines as one part of the

IT systems to manage their dynamic business policies and
rules. Business rules technology induces a paradigm shift
in business application development by separating business
logic from the application code. They explicitly specify
policies and knowledge, hence, they facilitate maintenance
and adaption of enterprise applications.

Besides the use of business rules, enterprise applications
increasingly rely on the principles of the service-oriented
architecture (SOA) to realize standardized interfaces for
providing their software services within and across orga-
nizational boundaries. Combining business rules with a
service-oriented architecture can help to develop more flex-
ible and adaptive enterprise applications.

In this paper, we argue that current business rule ap-
proaches lack a sophisticated way to be integrated within
SOAs due to a number of current shortcomings.

The first problem is the lack of a remote interface to al-
low a remote rule invocation from distributed applications.
Most rule engines are currently used as a library which is
linked to the enterprise applications. The rules are typically
invoked via proprietary interfaces provided by the rule en-
gines (e.g., rules for calculating the discount of a customer).
The accessibility and reusabilty of these rules is limited to
local applications (running on the same machine) although
other enterprise applications may need this set of rules for
achieving a task.

The second problem is the lack of standardization of a
rule representation language. Each rule engine vendor pro-
poses a custom format for representing their rules, thus a
number of different dialects have emerged. This diversity
makes it hard to use heterogeneous rule engines in the same
enterprise environment or switch to another rule engine. It
also hampers using rule engines in distributed environments
where other applications and services can use the rule en-
gine as a computational entity.

The third problem concerns the execution of business
rules. A remote communication facility among rule engines

would allow to retrieve data from other rule engines to per-
form the inference process. We refer to such a process as
distributed rule execution. Currently, the lack of such a dis-
tributed rule execution can be seen as a consequence of the
first two problems.

This paper describes the design and implementation of
VIDRE1, a business rule engine with several novel fea-
tures to address the aforementioned drawbacks of existing
approaches: Firstly, we combine the rule-driven approach
with SOA to allow an easy integration into client applica-
tions and make it easy for applications to consume business
rule services (i.e., business rules exposed as Web service).
Secondly, VIDRE tries to overcome the interoperability
problem of current rule engines by providing a lightweight
plug-in mechanism which allows exchanging business rule
engines being completely transparent for client applica-
tions. Furthermore, we use RuleML [13], a current stan-
dardization effort for rule markup, as an interlingua for ex-
changing and representing business among several hetero-
geneous rule engines. Thirdly, we present VIDRE’s op-
portunity to execute distributed business rules which allows
the execution of rules over several rule engines. Such a dis-
tributed execution is highly relevant in environments, where
rules are distributed among several rule engines.

This paper is organized as follows: Section 2 introduces
some basic concepts which are needed for the VIDRE ap-
proach. Section 3 describes the design and implementation
aspects of VIDRE. In Section 4, we evaluate and discuss
our approach by applying it to an example from the supply-
chain management domain. In Section 5 we briefly discuss
the related work in this area and in Section 6 we conclude
this work and highlight some future work.

2. Background

In this section we briefly introduce some concepts tech-
nologies needed for the VIDRE approach.

Business Rules. The Business Rules Group [17] defines a
business rule as a statement that defines or constrains some
aspects of business, and it is intended to assert business
structure or to control or influence the behavior of the busi-
ness. The business rules approach distinguishes between
terms (definitions), facts (connection between terms) and
rules (constraints, derivation or reaction rules). Terms and
facts express business knowledge (e.g., customer age is ≥
18) whereas rules are used to guide the decision making, de-
rive new information (derivation rules) or to trigger actions
based on certain conditions (reaction rules). Additionally,
queries can be formulated to retrieve the desired informa-
tion from the knowledge base.

1A demo is available at http://www.vitalab.tuwien.ac.
at/projects/vidre.

The usage of business rules is reasonable in knowledge
and decision intensive domains such as insurance, supply-
chain management or finance. They can be used to specify
domain knowledge and manage it independently of the en-
terprise application.

Rule Engine Components. A typical rule engine consists
of several components: a rule base contains all the rules for
execution. The working memory holds the data on which the
rule engine operates. The Pattern Matcher decides which
rules from the rule base apply, given the content of the
working memory. An inference engine works in discrete cy-
cles and is used to find out which rules should be activated
in the current cycle (including the activated ones from previ-
ous cycles) by using the pattern matcher. All activated rules
from the conflict set are ordered to form the agenda (the
list whose right hand side will be executed). The process
of ordering the agenda is called the conflict resolution. To
complete a cycle, the first rule on the agenda is fired and the
entire process is repeated. Typical rule engines either imple-
ment a forward or backward-chaining strategy. Backward
chaining works backward from a conclusion to be proven to
determine if there are facts in the working memory to prove
the truth of the conclusion [16]. Forward chaining takes all
the facts stored in the working memory and attempts to ap-
ply as many rules as possible. The inference engine works
from the initial content of the workspace towards the final
conclusion [16].

Rule Markup Initiative. The Rule Markup Initiative
aims to provide a standard rule language and to provide an
interoperability platform integrating various business rule
languages, inference systems, and knowledge representa-
tion paradigms. It has gained increasing momentum within
the standards, academic, and industrial communities [13].
The RuleML language offers XML syntax for rules knowl-
edge representation, interoperable among major commer-
cial and non-commercial rule systems. We make exten-
sive use of RuleML as rule exchange format among several
heterogeneous business rule engines by using it similar to
SOAP in the Web service domain. Every request and re-
sponse to and from a rule engine at each service provider
is encoded in RuleML. An example is presented in the next
section.

Java Rule Engine API. The Java Rule Engine API –
specified by the Java Specification Request (JSR) 94 – is
a Java community effort defining an API for rule engines in
the Java world [7]. The JSR 94 specification standardizes
a set of fundamental rule engine operations. This opera-
tions include parsing rule sets, adding objects to the infer-
ence process, firing rules and getting objects from the en-
gine as a result. The main goal of the JSR 94 specification

ViDRE Service Provider BViDRE Service Provider A

JESS

JSR 94 API

Service ImplementationWSDL

Rule ML

JDBC

Database
ViDRE Client C

WSDL

RuleML

Service Implementation

JDBC JSR 94 API

Database DROOLS

SOAP −RuleML

WSDL RuleMLGateway

ViDRE Client B

SOAP Request

RuleML Query

ViDRE Admin SOAP Request

SOAP Request

RuleML Query

 publish Rule

ViDRE Client A

SOAP Request

Figure 1. Architecture of VIDRE

is to integrate different rule engines with a simple adapter
into client applications without settling with one rule engine
vendor. The specification provides two main parts, a rule
administration API and a rule runtime API. The adminis-
tration interface is primarily used for loading and managing
rule sets (a collection of rules for solving a specific task).
The runtime API is for executing specific rule sets by using
a rule session, which represents the connection between the
client and a specific rule engine. The main critique of rule
engine vendors is the lack of a standard rule representation
format. In Section 3, we describe how we combine JSR94
with RuleML to achieve the desired interoperability.

3. The VIDRE Approach

The design goal of VIDRE is the ability to access busi-
ness rules in a service-oriented way by hiding the rule im-
plementation and execution. A business rule engine is en-
capsulated in a so-called VIDRE service provider (VSP).

Due to aforementioned heterogeneity of the different
rule engines the architecture of VIDRE is based on the Java
Rule Engine API (JSR 94). As mentioned before, this API
has several drawbacks which makes it hard to provide in-
teroperability with other applications or other business rule
engines. Additionally, it does not allow to access a business
rule engine remotely. Therefore, VIDRE combines the JSR
94 standard with RuleML [13]. In particular the object-
oriented version of the RuleML in version 0.9 is used as
it is expressive enough to represent facts, queries and even
Java objects. Combining these efforts gives us the ability to
plugin different rule engines which support the JSR 94 API
standard without changing the knowledge or rulebase.

Figure 1 depicts the distributed architecture of our ap-
proach. Each VSP offers a generic RuleML interface which
accepts valid RuleML documents as input. These RuleML
documents can contain RuleML queries and RuleML facts
which will be used for the evaluation of the queries. Sim-
ilar to SOAP requests, RuleML documents can be sent via
any arbitrary transport channels such as HTTP, JMS or even
SMTP. The RuleML interface response is also encoded in a
RuleML document. Besides the generic RuleML interface

each service provider publishes two WSDL interfaces for
accessing the client runtime and administration interfaces as
a Web service. These two interface offer the functionality
provided by JSR94 as a Web service to allow the manage-
ment and execution of rule sets.

Two possibilities exist to access a VSP. Firstly, a client
can use the runtime WSDL interface to fire rules for a
given business document and/or to issue queries encoded
in RuleML. The administration WSDL interface is primar-
ily designed for managing and maintaining rule sets. The
separation of the administration and client runtime interface
allows more flexibility in implementing security policies or
access control. The JSR 94 API is used as a standard API
to access the Web service interface on the client side. A
client library implements the JSR 94 API and encapsulates
the underlying implementation details to the programmer.
Therefore, the location and the provider of the used busi-
ness rule engine are transparent to the end-user. Even the
rule representation language is hidden by the client libraries
since the JSR 94 Runtime API supports only Java objects as
input to the rule engine.

Secondly, the SOAP-RuleML gateway offers a way to
access business rules as well-defined Web services. A VSP
provides the ability to publish several rules and queries as
Web services at runtime via the administration interface.
These rules can be easily accessed by the client application
by just using the corresponding WSDL file published on the
SOAP-RuleML gateway.

VIDRE Client A and B in Figure 1 use the WSDL
interface to send a RuleML query directly to the busi-
ness rule engine. The necessary transformation from Java
objects to RuleML is transparent to the client side be-
cause it is hidden by the JSR 94 library implementation.
VIDRE Client C uses the SOAP-RuleML gateway to in-
voke published business rules directly as Web services.
For example, a ruleset for calculating the discount can be
published as DiscountCalculationService to the
SOAP-RuleML gateway, thus being available for the invo-
cation as Web service.

The main advantage of VIDRE’s service-oriented ap-
proach is, beside the ease of integration, the ability to per-

form distributed rule execution. The common rule and
query representation language enables the rule engine (en-
capsulated in a VSP) to comprise knowledge from other
VSPs with only few extensions to the rule engine. For ex-
ample the prototype implementation uses the Jess [8] rule
engine with minor extensions described later. The dis-
tributed execution is described in detail in Section 3.2.

3.1. VIDRE Service Provider Implementa-
tion

The core tasks of a VSP are i) implementing a plugin-
mechanism by using JSR 94, ii) the transformation of
RuleML requests to the Java object (and vice-versa) for cre-
ating a rule session and executing it by using the plugged-in
rule engine and iii) providing the distributed rule execution
mechanism.

The plugged mechanism for enabling a specific
rule engine is based on the implementation of the
RuleMLTransformer and the ServiceProvider
interfaces. The used interfaces and factories
are specified in service configuration files. The
ServiceProviderFactory interface is used for
retrieving a concrete RuleMLTransformer as well as
the ServiceProvider for the plugged-in rule engine.

The core of the service implementation is the
RuleEngineService class. This class holds a reference
to the service provider API of the registered rule engine.
This API is used to create rule runtime and rule administra-
tion interfaces for the registered rule engine. Additionally,
it handles the RuleML transformations by using a concrete
RuleMLTransformer.

RuleML Transformations

All incoming and outgoing requests to a VIDRE service
provider are encoded in RuleML. The service implemen-
tation has to take care of translating between RuleML and
the target language of the rule engine plugged in. In the
VIDRE implementation transformers for Jess to RuleML
and vice versa are implemented. Java objects are trans-
lated to RuleML with the Java reflection mechanism. These
translators can be composed to achieve incremental transla-
tions. For example, Jess to Drools translation can be eas-
ily achieved by composing the Jess to RuleML translator
and the RuleML to Drools translator. The drawback of this
approach is that we can only use a proper subset given by
the least common denominator of the supported rule-engine
capabilities. These constraint is induced by the different
rule representation languages. Changes to the vendors’ rule
language can be easily introduced by simply writing a new
translator or adopting the old ones.

Java Fact RuleML Fact FactProxy Execution

Client-side Service Provider

transmit

Figure 2. Adding a Java Fact

Transforming Objects to RuleML. In Figure 2 the pro-
cess of adding a new fact to a VIDRE service providers is
depicted. Whenever a client rule session is executed the ob-
jects contained in the session have to be transformed into an
equivalent RuleML representation in order to transmit data
to the service.¨ ¥
p u b l i c c l a s s Order {

p r i v a t e i n t i d ;
p r i v a t e S t r i n g c u s t o m e r I d ;
p r i v a t e S t r i n g p r o d u c t ;
p r i v a t e i n t q u a n t i t y ;
/ / g e t t e r s and s e t t e r s

}§ ¦
Listing 1. Java Fact

When adding a new fact, the first step is the transfor-
mation of a Java fact to a RuleML fact at the client-side.
For example, Listing 1 defines a class Order which rep-
resents an order in our SCM example. Submitting this
fact to a VIDRE service provider can easily be established
by adding the object to a rule session. The client library
uses the Object2RuleML transformer to transform an in-
stance of this class into an equivalent RuleML representa-
tion. The resulting RuleML document is shown in Listing
2.¨ ¥
<Atom>

<Rel>Order</ Rel>
<o i d><Ind>1 ca1a68</ Ind></ o i d>
<s l o t>

<Ind>i d</ Ind>
<Ind>785</ Ind>

</ s l o t>
<s l o t>

<Ind>c u s t o m e r I d</ Ind>
<Ind>154</ Ind>

</ s l o t>
<s l o t>

<Ind>p r o d u c t</ Ind>
<Ind>Mainboard XY</ Ind>

</ s l o t>
<s l o t>

<Ind>q u a n t i t y</ Ind>
<Ind>1</ Ind>

</ s l o t>
</ Atom>§ ¦

Listing 2. RuleML Fact

The fact name is marked up as the relation name, e.g.,
<Rel>Order</Rel>. On the same level, the four object
attributes are marked up using the slotted RuleML syntax.
For each object attribute, a slot is used to group the property
name and the corresponding property value together. Prop-
erty names and values are marked up as individual constants
<Ind>. Accordingly, attribute values which represent vari-
ables are marked up as <Var>. This slotted RuleML syn-
tax is needed to reconstruct the object internals. On the
server-side (see right part of Figure 2) the RuleML repre-

sentation can be transformed back into an object by using
VIDRE’s Object2RuleML transformer. A FactProxy
is necessary because the plugged-in rule-engines can only
operate with Java objects on the server-side. Such Java ob-
ject instances are created on the client-side and, therefore,
are not available on the server-side. The FactProxy is
used to create a transient object representation of the sub-
mitted RuleML in-memory. These generated objects can be
added to the rule-session on the server-side and act as input
for the rule execution cycle.

The transformations on the server side are much more
difficult because they include transformations of RuleML
rules to rules for a concrete rule engine, such as Jess in our
implementation.

The RuleML example in Listing 3 matches all Order
objects which have productId equals 5 (the id repre-
sents a PC) and orders the needed parts (mainboard, mem-
ory, etc.) at the suppliers by asserting a new fact called
OrderParts.

¨ ¥
<I m p l i e s>

<o i d><Ind>I f a compute r i s o r d e r e d , t h e n o r d e r
i n d i v i d u a l p a r t s a t s u p p l i e r .</ Ind>

</ o i d>
<head>

<Atom>
<Rel>O r d e r P a r t s</ Rel>
<s l o t>

<Ind>q u a n t i t y</ Ind>
<Var>q u a n t i t y V a r</ Var>

</ s l o t>
<s l o t>

<Ind>o r d e r I d</ Ind>
<Var>o r d e r I d V a r</ Var>

</ s l o t>
</ Atom>

</ head>
<body>

<And>
<Atom>

<Rel>Order</ Rel>
<s l o t>

<Ind>o r d e r I d</ Ind>
<Var>i d</ Var>

</ s l o t>
<s l o t>

<Ind>p r o d u c t I d</ Ind>
<Ind>5</ Ind>

</ s l o t>
<s l o t>

<Ind>c u s t o m e r I d</ Ind>
<Var>c u s t o m e r I d V a r</ Var>

</ s l o t>
<s l o t>

<Ind>q u a n t i t y</ Ind>
<Var>q u a n t i t y V a r</ Var>

</ s l o t>
</ Atom>

</ And>
</ body>

</ I m p l i e s>§ ¦
Listing 3. RuleML Rule

The challenge is to transform this rule represen-
tation into a semantically equivalent representation in
Jess. This transformation is done by VIDRE’s
RuleML2JessTransformer. In Listing 4 the resulting
Jess rule is shown. Jess has a LISP-like syntax. A rule in
Jess consists of two parts, separated by the => symbol. The
first part of the rule (the ”if” part or left-hand-side) consists
of patterns that match facts. The second part consists of ac-
tions which take place when the left hand side of the rule is
satisfied.

The RuleML Initiative proposes to use XSLT transfor-
mations [5] to accomplish this conversions, but this sim-
ple example illustrates that this is a real tough challenge.
Furthermore, with XSLT the translated document has to be
parsed again by the rule-set provider in order to be accessi-
ble by the rule engine. VIDRE translates RuleML to Jess
at runtime, therefore, an efficient and fast translation is in-
evitable. VIDRE uses the Jess Java API to add rules and
facts directly to the rule engine, hence no temporary repre-
sentation is needed. Furthermore, the Jess Java API is easier
to use and one can do more complex translations.

¨ ¥
(d e f r u l e O r d e r P a r t s
"If a computer is ordered, then order individual parts
at supplier."

(Order (c u s t o m e r I d ? c u s t o m e r I d V a r)
(o r d e r I d ? o r d e r I d V a r)
(p r o d u c t I d 5)
(q u a n t i t y ? q u a n t i t y V a r))

=>
(b ind ? o r d e r P a r t s (new O r d e r P a r t s))
(c a l l ? o r d e r P a r t s s e t Q u a n t i t y ? q u a n t i t y V a r)
(c a l l ? o r d e r P a r t s s e t O r d e r I d ? o r d e r I d V a r)
(d e f i n s t a n c e O r d e r P a r t s ? O r d e r P a r t s))§ ¦

Listing 4. Jess Rule

Representing Reaction Rules. One of the main advan-
tages in rule-based systems is the ability to perform specific
actions according to different situations. Reaction rules are
important to picture complex business processes. The cur-
rent RuleML design focuses on derivation rules. Reaction
rules are addressed in a specific working group. The most
promising effort to represent reaction rules is implemented
in OO JDrew [9].

VIDRE encodes reaction rules like derivation rules. The
client makes no difference between them. The differenti-
ation is done on the server side, when the rule engine has
to decide whether to assert a new fact (as done in derivation
rules) or to call a predefined function. All user defined func-
tions, for example an order-product function, are known to
the rule engine, therefore, the rule engine looks up the func-
tion name and gets a handle to the function. If no function is
returned the rule engine assumes that the rule is a derivation
rule.

3.2. Distributed Rules and Knowledge

One of the main advantages of the VIDRE approach is
the ability to distribute rules and facts. This section dis-
cusses the approach adopted in VIDRE to accomplish a
distributed inference process.

Distributed Rule Execution

The distributed rules execution does not really differ from
the normal, location bound, rules execution. The activity
diagram in Figure 3 illustrates both, the distributed, and the
normal rules execution.

Select

rule to

fire

Determine

possible rules

to fire

Conflict

Set

No Rule

found
Exit

Conflict

Resolution

Strategy

Execute

Remotly?

Working

Memory

No remote

Location defined

Rule

found

Create Client

Rule Session

Invoke remote

Service Provider

Remote

location defined

Fire rule

Update

working memory

Update

working memory

Figure 3. Activity Diagram – Rule Execution

Once the rule execution cycle starts, the pattern matcher
determines which rules are activated. The list of activated
rules, together with any other rules activated in previous cy-
cles, form the conflict set. The rule engine uses a conflict
resolution strategy to select the next rule to fire. If no rule
can be fired the rule execution cycle terminates, otherwise
VIDRE’s inference engine has to decide whether this rule
is executed local or remotely. A detailed description how
this is implemented in VIDRE is given in the next section.
For a normal location-bound rule the consequence part of
the rule is executed and newly asserted facts are added to
the working memory. These newly derived facts potentially
activate or block rules in the conflict set, thus the execu-
tion cycle starts all over. If the activated rule is a distributed
rule, so that the consequence of the rule should be executed
at a remote service provider, VIDRE creates a client ses-
sion and invokes the remote service provider. The result of
the remote service invocation is added to the local working
memory and again the rule execution cycle starts.

Distribution with Meta-Rules

Meta rules are distinguished from ordinary rules by their
role which is to instrument the reasoning required to solve
the problem, rather than to actually perform that reasoning
[6]. Meta rules are often used in rule-based systems to en-
code preferences concerning the behavior of the inference
process or they influence the conflict resolution strategy.

The following examples are based on the prototype im-
plementation which currently only supports Jess, therefore,
the examples are illustrated in the Jess rule language. The
described methods can be applied to arbitrary rule engines.
Jess does not provide any mechanism for defining meta-
rules explicitly, therefore, VIDRE uses the salience prop-
erty of Jess. In the conflict resolution Jess favors activated
rules with a higher salience. This property ensures that meta
rules are always evaluated before the business rules, hence,
we can influence the inference process.

The question arises, how meta rules can be used for dis-

tributed rule execution? First, we have to distinguish be-
tween two types of distributed rules. The first type is char-
acterized in that the consequence part of the rule is remote.
This means that the assertion of a derived fact or the enabled
action should be performed on a remote machine. Here,
meta-rules play an important role. We have to encode that
the consequence of the activated rule is a remote-rule and
we have to encode the location where the action should take
place.

VIDRE adds, for each remote rule, a meta-rule and
a meta-fact. Listing 5 depicts such a meta-rule in the
Jess language, which orders a mainboard remotely at a
supplier for each newly placed PC order. The meta-fact
META LOCATION associates to each OrderMainboard
object a URI. The URI encodes the target location where
the consequence should be executed. The prototype imple-
mentation uses the prefix META for meta-information.¨ ¥
(d e f r u l e OrderMainboard
"On reception of a new computer order, order a
mainboard remotely at the supplier"

(O r d e r P a r t s (o r d e r I d ? o r d e r I d V a r)
(q u a n t i t y ? q u a n t i t y V a r))

=>
(b ind ? OrderMainboard (new OrderMainboard))
(c a l l ? OrderMainboard s e t Q u a n t i t y ? q u a n t i t y V a r)
(c a l l ? OrderMainboard s e t O r d e r I d ? o r d e r I d V a r)
(d e f i n s t a n c e OrderMainboard ? OrderMainboard))

(a s s e r t (META LOCATION (name "OrderMainboard")
(u r i "rules://madrid.vitalab.tuwien.ac.at/supplier")))

(d e f r u l e META REMOTE OrderMainboard
"if a remote location is defined call
defRemoteInstance"

? o b j <− (OrderMainboard)
(META LOCATION (name "OrderMainboard") (u r i ? u r i))
=>
(d e f R e m o t e I n s t a n c e ? o b j ? u r i))§ ¦

Listing 5. Remote Jess Rule

The meta-rule REMOTE OrderMainboard matches
all newly instantiated OrderMainboard objects if the
object is a remote fact and, therefore, a META LOCATION
fact is defined. The function defRemoteInstance is a
user defined Jess function which is responsible to define the
fact at the remote location.

The second type is characterized in that the premises
contain remote-facts. This is the more complicated case.
A remote premise is only reasonable in combination with
backward chaining. In order to perform backward chain-
ing in Jess the remote fact has to be declared as backward
chaining reactive. With backward chaining it is possible to
incorporate data from outside the knowledge base, e.g., a
relational database. Jess reasoning engine is strictly a for-
ward chaining engine; backward chaining is simulated in
terms of forward chaining rules.

VIDRE uses the backward chaining reactive facts in
order to pull required data needed for the inference pro-
cess from other VIDRE service providers. In Listing 6,
all customers where the order quantity is larger than 10
are updated to premium customers. The required data
can be pulled from a remote service provider (as de-
fined by the META LOCATION fact). To accomplish this,

VIDRE hooks into the backward chaining mechanism of
Jess. For each backward chaining reactive pattern on the
left-hand side of the rule, Jess automatically asserts a fact
named after the desired fact with prefix "need-", e.g.,
(need-Order nil nil).

This fact can be used to trigger a forward chaining rule,
with the premise (need-Order nil nil).

Listing 6 demonstrates a remote backward chaining
fact. The function do-backward-chaining declares
the Order fact as backward chaining reactive fact. Like
in the remote-rule example the location of the remote ser-
vice provider is encoded in the META LOCATION fact. The
meta-rule META REMOTE Order is activated as soon as
the do-backward-chaining function was called and
a remote location for the remote fact was specified. The
function runRemoteQuery is a another user defined Jess
function, which issues a query to VIDRE’s service provider
with the given URI.

¨ ¥
(d e f r u l e PremiumCustomer

(Order (c u s t o m e r I d ? c u s t o m e r I d V a r)
(o r d e r I d ? o r d e r I d V a r)
(p r o d u c t I d ? p r o d u c t I d V a r)
(q u a n t i t y ? q u a n t i t y))

(t e s t (> ? q u a n t i t y 1 0))
=>
(b ind ? PremiumCustomer (new PremiumCustomer))
(c a l l ? PremiumCustomer s e t C u s t o m e r I d ? c u s t o m e r I d V a r)
(d e f i n s t a n c e PremiumCustomer ? PremiumCustomer))

(do−backward−chaining Order)

(a s s e r t (META LOCATION (name "Order")
(u r i "rules://rome.vitalab.tuwien.ac.at/retailer")))

(d e f r u l e META REMOTE Order
"pull facts from remote location"
? o b j <− (need−Order (c u s t o m e r I d ? c u s t o m e r I d)

(o r d e r I d ? o r d e r I d)
(p r o d u c t I d ? p r o d u c t I d)
(q u a n t i t y ? q u a n t i t y))

(META LOCATION (name "Order") (u r i ? u r i))
=>
(runRemoteQuery ? o b j ? u r i))§ ¦

Listing 6. Remote Jess Fact

Managing the Rules Writing (distributed) facts and rules
hand-crafted is a cumbersome and error-prone task. It is
even getting worse if they have to be written in RuleML
on the client-side. Therefore, we implemented the VIDRE
administration client, a Java Swing GUI, which provides
support for authoring distributed rule-sets. The client sup-
ports all management tasks of VIDRE and allows a rapid
development of rule-based applications. The administration
client allows to connect to each service provider via its Web
service interface. Some demo videos can be found on the
project Web page.

4. Evaluation and Discussion

This section presents a case study implementation based
on VIDRE, where a built to order scenario from the com-
puter manufacturing domain is implemented in terms of
business rules. At first we describe the setup for our case

study. Afterwards, we analyze the case study based on well-
known software quality attributes and compare the VIDRE
based solution with a pure Web service based solution with-
out using rules. This version uses Web services to imple-
ment the business logic of the participants (supplier, manu-
facturer, retailer) without using a rule engine, thus, it hard-
codes the rules for stock management, order processing, etc.

4.1 Case Study Scenario

In Figure 4, we have depicted a simplified version of
our supply chain example. This illustrated setup consists
of three companies: a computer retailer, a supplier and a
manufacturer. In a real world example, the computer re-
tailer would not only rely on one supplier. It would be a
better strategy to order the parts at the supplier offering the
best price. In our case study we have only one supplier, thus
we need no rules for price comparison, although this could
be easily represented in terms of business rules.

Location A - Computer Retailer. The computer retailer,
deploys a Web application, the SOAP-RuleML gateway and
a VSP. The Web server and application server do not need
to be deployed at one location, thus they communicate us-
ing VIDRE’s Web service interface. All the business logic
needed by our computer retailer is implemented in terms of
business rules and executed with VIDRE. The Web applica-
tion provides two essential functions to customers. Firstly,
an order page, where customers can place orders for dif-
ferent computer configurations. After submitting an order
the Web client uses VIDRE’s client library to assert a new
order fact at the service provider. The Web client calls
VIDRE the same way as a standalone client. Secondly, a
query form is deployed where customers can track their or-
ders. With this form the customers can track their orders
and query VIDRE’s working memory. Beside the Web ap-
plication, our SOAP-RuleML gateway is deployed at the
Web server. As aforementioned, VIDRE enables accessing
business rules as Web services. For our computer retailer
example the order business rules and the query to track the
order status are exposed as Web services.

VIDRE’s service provider is deployed to an application
server. The available computer configurations are stored in
terms of rules. Each computer configuration, consists of
different parts. The computer retailer has no stock, thus,
each order is decomposed in multiple orders to a supplier
company. This part is solved with distributed business rules.
Beside the order rules, the VSP manages rules to keep track
of his own orders at the supplier. Furthermore, we need a
rule which is activated when all parts are available. This rule
is responsible for initiating the assembly of the computer.
Another rule matches assembled computers and initiates the
shipping procedure. The complete business order logic is

Location B - Supplier

Client - Customer

Browser

Location A - Computer Retailer

Webserver

Order

Web app

SOAP-

RuleML GW

Applicationserver

ViDRE

Service Provider

Applicationserver

ViDRE

Service Provider

Location C - Manufacturer

Applicationserver

ViDRE

Service Provider

(4) assert

delivery

(3) order

parts

(2a) assert

order fact

(1a) place order

(5) order

 parts
(2b) assert

order fact
Corporate client

Client

App
(1b) place order

Figure 4. Deployment View

represented with business rules.

Location B - Supplier. At this location, a VSP is de-
ployed to an application server. The supplier acts as an
intermediary company and provides the computer retailer
with all the needed parts. Efficient inventory management is
inevitable for companies to save costs associated with stor-
ing inventory. The supplier uses business rules to keep track
of the inventory. For each part, a rule is responsible for re-
ordering the part at the manufacturer, if it runs out. This
rule is implemented with distributed business rules and is
very similar to the order rules of the computer retailer. The
only difference is the type of triggering.

Each order is represented by one fact associated with a
unique order identification and is retracted on order com-
pletion. If an order fact is added to the working memory, a
rule is fired. This rule examines the inventory and initiates
the shipping of the ordered parts. If the part is not available,
the rule issues an order to the manufacturer, but only if no
order exists. On completion of an order a distributed rule
informs the computer retailer, that the ordered part has been
shipped successfully. This, rule is implemented the same
way as an order rule, but this time it triggers the assembling
at the computer retailer.

Location C - Manufacturer. The manufacturer also de-
ploys a VIDRE’s service provider. The manufacturer is im-
plemented in a similar way as the supplier. The main task
of the VSP is to keep track of the orders and to manage the
inventory. The orders are also represented by facts.

The implementation of the case study is done in terms of
a number of different business rules. Some example rules
are depicted in Section 3.

4.2 Analysis

For comparing the VIDRE approach with a state of the
art architecture, we have implemented the same function-
ality by using a pure Web service based solution. Each

supply chain participant is implemented as a single Web
service which hard codes the rules in the service imple-
mentation. We want to analyze and compare the different
approaches with respect to the following software quality
attributes: maintainability, extensibility, reusability, scala-
bility and performance.

Maintainability. The business rules approach uses
declarative programming techniques to allow separation
between business data and business logic. Business rules
describe what to do, not how to do it, thus making it
easier to manage and maintain complex business processes.
VIDRE’s administration client facilitates the creation and
maintenance of rule sets to a number of VSPs. For example,
the customer policies of our supply chain can be edited
within the administration client and can be redeployed
without changing a line of source code. Furthermore, the
administration client allows testing changes to rule sets
immediately through a VSP’s runtime interface.

Extensibility. Extensions can be deployed without stop-
ping a VSP. In large production systems the number of busi-
ness policies can reach up to thousands of business rules.
Extensions to these systems pose though challenges to de-
velopers. An appraisal of side effects is very difficult. In
rule based systems, new business policies can be added to
rule sets with less concerns about side effects. The rule en-
gine is responsible for activating and firing the rules. Con-
flicting rules are resolved by the conflict resolution strat-
egy of the rule engine. In our supply chain context, a new
policy for inventory management can be easily added with
VIDRE’s administration client to existing rule sets.

Reusability. Business rules make the business logic ex-
plicit. Conventional implementations mix up the business
logic with the code necessary to execute the logic. Hence,
the reuse of business logic is very hard to accomplish and is
often not very efficient. Usually only components and tech-

Transition VIDRE Pure Web service Solution
(1a) place order 32 ms 34 ms
(1b) place order 55 ms -
(2a) assert order fact 54 ms 37 ms
(2b) assert order fact 42 ms -
(3) order parts 32 ms 27 ms
(4) order parts 38 ms 29 ms
(5) assert delivery 31 ms 31 ms

Table 1. Performance Metrics

nical assets, such as logging and tracing are reused. With
business rules, one can address the reuse of business logic.
For example, stock policies or registration validation rules
can be reused within intra or even inter-organizational ap-
plications.

Scalability. Scalability is not the main focus of VIDRE,
nevertheless, it is an important issue to large scale dis-
tributed systems. The distribution of rules gives us the abil-
ity to distribute the load on different machines. Here, meta
rules can be used to specify alternate service providers with
the same rule set registered. The system can grow smoothly
and economically as long as the entry point of the clients
does not become an bottleneck.

Performance. Performance is a main issue in most en-
terprise systems, thus, it is important to analyze the timing
behavior of our approach compared to a pure SOA imple-
mentation. Table 1 summarizes the observed performance
metrics of a VIDRE service invocation. The measured val-
ues refer to our supply chain example depicted in Figure 4.
We have added measuring points to each transition in our
VIDRE based, as well as to our pure Web service imple-
mentation.

The performance of our VIDRE approach does not differ
significantly from the pure Web service based implementa-
tion. The entry point of our application is in both imple-
mentations the order Web page. Both implementations start
the order workflow by invoking the servlet of the Web ap-
plication. By now, the implementations are nearly equal.
From that point on, the implementations starts to diverge.
The VIDRE implementation creates a new rule session and
initializes the session with an order fact. Behind the scenes
this fact is encoded in RuleML. When the rule session is ex-
ecuted, the RuleML document is packaged in a SOAP enve-
lope and is sent to VIDRE’s service provider endpoint (2a).
In our case study implementation the overhead of encoding
the document in RuleML does not carry authority. In a real
world application this possibly results in some performance
overhead.

Beside the Web page, the VIDRE implementation has a
second entry point, the SOAP-RuleML gateway. The per-
formance value (2a) includes the invocation of our SOAP-

RuleML Gateway and the translation of the SOAP docu-
ment to an equivalent RuleML representation. The invoca-
tion of the service provider(2b) is done through the native
RuleML interface, thus, there is no overhead in creating a
SOAP envelope.

The distributed rules execution (3, 4, 5) also use the na-
tive RuleML execution to avoid RuleML encoding twice.
Compared to the other implementation, the overhead of in-
voking the rule engine and the encoding of RuleML is neg-
ligible in our scenario.

Compared to this little tradeoff in performance (for en-
coding RuleML documents), the plus gained through the
higher maintainability and reusability increases the overall
benefit of the VIDRE based solution, in case many business
rules are involved.

5. Related Work

Recently, business rules get a lot of attention from
academia as well as from industry. A number of business
rules bases approaches for realizing service-oriented solu-
tions are proposed (e.g., [2, 10]).

The work presented in [1] comes closest to ours w.r.t.
the distributed execution of business rules. It proposes an
extension to the Jess rule engine to allow a distributed rule
execution. Their distributed inference mechanism uses a
shared working memory (SWM) to store the facts and each
rule engine uses this memory to access the facts. We do not
use a shared memory, instead, we propose to use meta-rules
to handle the distribution. Furthermore, we use RuleML
as interlingua and provide translators from RuleML to the
corresponding rule engines, thus our approach is not limited
to a concrete rule engine.

Schmidt [15] proposes a distributed rule execution ap-
proach by encoding RuleML rules in the SOAP header
which are processed by different SOAP intermediaries.
Based on some conditions in one of the business rules a dif-
ferent execution path can be chosen. The focus of this work
is on rule execution but it is not discussed how distributed
rules can be specified and executed.

In [11, 12], we have shown a loosely-coupled integration
of business rules into the well-known WS-BPEL [19] lan-
guage, a standard for describing Web service business pro-
cesses. The approach uses an enterprise service bus (ESB)
and business rules by using an interceptor pattern [14] to
Web service invocations (e.g., WS-BPEL invoke activity)
from a WS-BPEL engine. In contrast to the approach pre-
sented in this paper, our previous work focused on access-
ing different rule engines with the same API and generating
Web service for it. In this paper we focus on using a com-
mon rule representation language and enabling a distributed
rule execution by using meta rules.

In the area of business rule engines, a number of different

tools are available. Drools [3] is one of the most popular
open source Java business rule engines. The Drools rule
engine uses an enhanced version of the Rete algorithm [4]
called the Rete-OO algorithm. Drools is a purely forward
chaining system.

Jess [8] (Java Expert System Shell) is a robust and ma-
ture expert system shell for developing rule-based applica-
tions in Java. Jess has many unique features including back-
ward chaining and working memory queries, and can di-
rectly manipulate and reason about Java objects. Both rule
engines do not allow a distributed rule execution and can be
used only as library which is linked to the application.

6. Conclusions

In this paper the design and implementation of VIDRE,
a distributed service-oriented rule engine, is presented.
VIDRE offers several novel features: Firstly, we combine
the rule-based approach with service-oriented computing to
allow an easy integration into client applications and make it
easy for applications to consume business rule services (i.e.,
business rules exposed as Web service). Secondly, VIDRE
overcomes the interoperability problem of current rule en-
gines by providing a lightweight plug-in mechanism allow-
ing to exchange business rule engines being completely
transparent for client applications. Thirdly, we introduce
distributed business rules which allow the execution of rules
over several distributed rule engines.

Currently, VIDRE is in a stable state, nevertheless, there
are several issues which need to be addressed in future
work. VIDRE offers two different interfaces for managing
business rules, a runtime and an administration interface but
it lacks a role-based authentication and authorization mech-
anism for rule management to secure the knowledge from
unwanted changes. We plan to add this feature by using
WS-Security mechanisms.

VIDRE currently uses Jess as the only plugged-in rule
engine, nevertheless, the API support for other popular rule
engines is already included. Thus, we plan to add support
for the Drools rule engine, a mature open-source project.

References

[1] F. Cabitza, M. Sarini, and B. D. Seno. Djess - a context-
sharing middleware to deploy distributed inference systems
in pervasive computing domains. In Proceedings of the
International Conference on Pervasive Services (ICPS’05),
pages 229–238, July 2005.

[2] A. Charfi and M. Mezini. Hybrid Web Service Composition:
Business Processes Meet Business Rules. In Proceedings of
the 2nd International Conference on Service Oriented Com-
puting (ICSOC’04), November 2004.

[3] Drools. Java Rule Engine, 2005. http://drools.org/
(accessed March 2006).

[4] C. L. Forgy. Rete: A fast algorithm for the many pattern/-
many object pattern match problem. Artificial Intelligence,
19(1):17–37, 1982.

[5] B. N. Grosof, M. D. Gandhe, and T. W. Finin. Sweetjess:
Translating DAMLRuleML to JESS. In RuleML, 2002.

[6] P. Jackson. Introduction to Expert Systems, 3rd Edn. Harlow,
England: Addison Wesley Longman., Boston, MA, USA,
1999.

[7] Java Community Process. JSR 94 Java Rule Engine API,
2005. http://www.jcp.org/en/jsr/detail?
id=94.

[8] JESS. Java rule engine, 2005.
http://herzberg.ca.sandia.gov/jess/ (accessed December
2005).

[9] OO jDREW. Java Rule Engine, 2005.
http://www.jdrew.org/oojdrew/ (accessed December
2005).

[10] B. Orriëns, J. Yang, and M. Papazoglou. A Rule Driven Ap-
proach for Developing Adaptive Service Oriented Business
Collaboration. In Proceedings of the the 3rd International
Conference on Service Oriented Computing (ICSOC’05),
Amsterdam, The Netherlands, Dec. 2005.

[11] F. Rosenberg and S. Dustdar. Business Rules Integration
in BPEL – A Service-Oriented Apporach. In Proceedings
of the 7th International IEEE Conference on E-Commerce
Technology (CEC’05), 2005.

[12] F. Rosenberg and S. Dustdar. Design and Implementa-
tion of a Service-Oriented Business Rules Broker. In
Proceedings of the 1st IEEE International Workshop on
Service-oriented Solutions for Cooperative Organizations
(SoS4CO’05), 2005.

[13] RuleML. The Rule Markup Initiative, 2005. http://
www.ruleml.org/ (accessed March 2006).

[14] D. Schmidt, M. Stal, H. Rohnert, and F. Buschmann.
Pattern-Oriented Software Architecture, Volume 2, Patterns
for Concurrent and Networked Objects. John Wiley & Sons,
1 edition, 2000.

[15] R. Schmidt. Web services based execution of business rules.
In International Workshop on Rule Markup Languages for
Business Rules on the Semantic Web, 14 June 2002, Sardinia
(Italy), 2002.

[16] S.Petrovic. Rule-Based Expert Systems, 2006. http://
www.cs.nott.ac.uk/∼sxp/ES3/index.htm (ac-
cessed March 2006).

[17] The Business Rules Group. Defining Business
Rules - What Are They Really? July 2000.
http://www.businessrulesgroup.org/
first paper/br01c0.htm.

[18] B. von Halle. Business Rules Applied: Building Better Sys-
tems Using the Business Rules Approach. Wiley, 1st edition,
2001.

[19] WS-BPEL. Business Process Execution Language for
Web Services Version 1.1. http://www.ibm.com/
developerworks/library/ws-bpel/, May 2003.

