
View-Based Reverse Engineering Approach for

Enhancing Model Interoperability and
Reusability in Process-Driven SOAs

Huy Tran, Uwe Zdun, and Schahram Dustdar

Distributed Systems Group, Information Systems Institute
Vienna University of Technology, Austria

{htran,zdun,dustdar}@infosys.tuwien.ac.at

Abstract. In many companies, process-driven SOAs are introduced us-
ing technical process languages, such as BPEL, to orchestrate services.
The process models developed using this approach are often too com-
plex and hard to reuse because all process-related concerns are tangled
in only one type of model. To make the models more understandable for
non-technical stakeholders, many companies additionally introduce high-
level process descriptions, e.g., specified in BPMN or EPCs, to offer a
non-technical view of the processes. This divergence of process languages
often leads to inconsistencies after a few evolution steps. We propose a
novel approach based on architectural views that not only offers models
tailored to the various stakeholders’ concerns but also provides an auto-
mated integration of models at different abstraction levels. In particular,
we propose an extensible reverse-engineering tool-chain to automatically
populate various view models with information from existing process
descriptions and generate executable code from these view models.

1 Introduction

In a process-driven, service-oriented architecture (SOA), business functionality is
accomplished by executing business processes invoking various services. A typical
business process includes a number of activities and a control flow. Each activity
corresponds to a communication task (e.g., it invokes other services or processes)
or a data processing task. The control flow describes how these activities are
orchestrated. A process is typically represented either in an executable language,
such as BPEL [7] or XPDL [24], or in a high-level modeling language such as
BPMN [15], EPC [10], or UML Activity Diagrams [14].

Nowadays, business process developers have to deal with increasing needs for
change, for instance, concerning business requirement changes or IT technol-
ogy changes. Therefore, the process models should enable a quicker reaction on
business changes in the IT by manipulating business process models instead of
code. Unfortunately, most of the existing business processes are developed and
maintained by technical experts (aka the IT experts) in low-level, executable
languages. It is difficult for the business analysts to get involved in process de-
velopment and maintenance because for these tasks an understanding of many

H. Mei (Ed.): ICSR 2008, LNCS 5030, pp. 233–244, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

234 H. Tran, U. Zdun, and S. Dustdar

technical details is required. Hence, technical experts are required for many task
in managing, developing, and maintaining the process models. At the same time,
the process models become too complex and the various process concerns are
hard to reuse. In addition, there is a lack of adaptation of process models to suit
the needs of particular stakeholders, e.g. business analysts or technical experts.

As a solution to these problems, some companies introduce high-level process
descriptions, for instance, specified in BPMN or EPCs, to offer a non-technical
view of the processes. This practice leads to yet another problem, namely, the
divergence of process representations. That is, various more or less abstract
descriptions of each business process are created, which might quickly become
inconsistent as changes occur. As a consequence, neither the information in the
high-level models is reused for defining the technical models, nor vice versa.

The aforementioned challenges have not been resolved in the context of
process-driven SOAs yet. We present in this paper a novel view-based reverse en-
gineering approach for addressing these challenges. Our approach harnesses the
concept of architectural views and the partial interpreter pattern [25] to adapt
process models to suit the requirements of particular stakeholders. Using the par-
tial interpreter pattern, we devise a number of interpreters to extract more and
less abstract views from process descriptions. The relationships between these
views are maintained via our view-based modeling framework (VbMF) [20]. Us-
ing extension and view integration mechanisms, the views can be manipulated
to produce more appropriate representations according to the stakeholders’ re-
quirements, and code in executable languages can be (re-)generated. VbMF not
only supports the reuse of information in process models at different abstrac-
tion levels and in different process concerns, but also the reuse of information in
existing process models, e.g. written in BPEL.

In this paper, first we give a short introduction to VbMF in Section 2. Section 3
describes the view-based reverse engineering approach. In Section 4 we present
the details of using view-based interpreters to analyze existing business processes
and extract various architectural views from the processes. Finally, in Section 5
we discuss related work and conclude in Section 6.

2 The View-Based Modeling Framework

2.1 Overview of the View-Based Modeling Framework

The view-based modeling framework [20] is based on the concept of architectural
views. An architectural view is a representation of a system from the perspec-
tive of a related set of concerns [8]. Each particular concern is (semi-)formalized
by a respective meta-model. VbMF defines a number of meta-models (see
Figure 1(a)), one for each architectural view. A meta-model at a lower abstrac-
tion level is defined as an extension of the meta-models at higher levels. VbMF’s
meta-models are either directly or indirectly derived a Core meta-model (see
Figure 1(b)). The relationships between meta-models are used to bridge the gaps
between meta-models at different abstraction levels and to propagate changes.

View-Based Reverse Engineering Approach 235

Extension
View

Extension
View

Core
meta-model

Meta-
meta-model

Control Flow
View

meta-model

Collaboration
View

meta-model

Information
View

meta-model

Transaction
View

meta-model

M3

New-Concern
View

meta-model

M2

Extension
View

meta-model

Extension
View

Extension
View

Extension
ViewView

M1

M0
Extension

View
Extension

View
Executable

Code

Extension
View

Configuration
files

View-level operations:
- design (view)
- integrate
- generate (code)

Meta-level operations:
- design (meta-model)
- extend

Code-level operations:
- deploy
- code

(a) View-based model-driven framework

ExtensibleElement
NamedElement

-name : String

NameSpace

-uri : String

-prefix : String

View

-ID : String

ServiceProcess

consumer

*

required

*

provider

*

provided

*

element

*

view

*

(b) The core meta-model

Fig. 1. The VbMF modeling framework and the Core meta-model

Activity

Switch

-otherwise : Activity [0..1]

StructuredActivity

-link : Link [*]

Case

-condition : String

-activity : Activity [1]

View

(core)

ControlFlowView

Link

SimpleActivity

SequenceFlow

activity
1..*

activity

1

source 1

outgoing 1

target 1

incoming 1

cases1..*

(a) Control Flow Meta-model

PartnerLink

-name : String

-myRole : Role [0..1]

-partnerRole : Role [0..1]

CollaborationView

View

(core)

PartnerLinkType

Service

(core)

Interaction

OperationChannel

RoleInterface

Service

Message

interaction

*

message* role*

partnerLinkType

1
out

*

in

*

interaction *

partnerLink 1

interface

1

message1

channel* operation*

role 1..*

partnerLinkType*

service *

interface 1..*

service *

(b) Collaboration View Meta-model

ComplexBusinessObjectSimpleBusinessObject

BusinessObjectPool

ObjectReference

ObjectType

BusinessObject

DataHandling

Transformation

Element

(core)

Types

object *

pool

object

1reference

*target

1

source

1

type 1

transformation1..*

owner

types

*

element1..*

owner

(c) Information View Meta-model

Receive

-createInstance : Boolean

PropertyAlias

-messageType : String

-part : String

-query : String

AbstractInteraction
CorrelationSet

-properties : Property

BPELCollaboration
View

CollaborationView

(collaboration)

Correlation

-isInitiate : Boolean

CorrelationSets

Interaction

(collaboration)

Interface

(collaboration)

Property

-type : String

Variable

ReplyInvoke

variable

0..1

correlationSets0..1

correlationSet

1..*
correlation

*

propertyAlias
*

variable

*

correlation

0..1

variable

0..1

property

1

interface

1

in
0..1

out
0..1

property

*

correlationSet1..*

(d) BPEL extension of the Collaboration View

Fig. 2. Three basic concern meta-models and a BPEL extension meta-model example

236 H. Tran, U. Zdun, and S. Dustdar

Example meta-models that we have derived from the Core meta-model are:
Control Flow, Collaboration and Information View (see Figures 2(a), 2(b) and
2(c)). For particular technologies, e.g. BPEL/WSDL, the extension mechanisms
can be used to enrich the abstract meta-models with the specifics of those tech-
nologies. To illustrate the extension mechanisms, we present a BPEL-specific
collaboration view meta-model in Figure 2(d), which is defined by extending
the elements from Figures 1(b) and 2(b). We use the distinction of the Core
meta-model, generic view meta-models, and extension meta-models to represent
different abstraction levels, such as business level and technical level.

In our implementation of these concepts, we exploit the model-driven soft-
ware development (MDSD) paradigm [22] to separate the platform-neutral views
from the platform-specific views. Code can be generated from the views by
using model-to-code transformations. We have realized VbMF in openArchitec-
tureWare (oAW) [16], a model-driven software development tool, and all meta-
models are defined using the Eclipse Modeling Framework [5]. To demonstrate
our approach, we have exemplified it using BPEL and WSDL, which are likely
the most popular process/service modeling descriptions used by numerous com-
panies today. Nevertheless, in general, the same approach can be taken for any
other process-driven SOA technologies by defining respective meta-models.

2.2 View-Based Reverse Engineering Tool-Chain

VbMF mainly consists of a forward engineering tool-chain (see Figure 3) in which
the stakeholders can develop process-driven view models, can generate process
code from these views, or can extend the modeling framework with other process
concerns by adding new meta-models or by enhancing existing meta-models.

Forward Engineering
Tool-chain

View
Development

Transform

Integrate

Design

Reverse Engineering
Tool-chain

Interpreters

Process description
(BPEL,WSDL,etc.)

Meta-level
Development

Extend

Framework
Meta-models

Architectural
View

Repository

Executable
Code

defines

Fig. 3. The extended VbMF including the view-based reverse-engineering

View-Based Reverse Engineering Approach 237

Companies today have built up a vast amount of legacy process representa-
tions, either high-level or low-level, but there is no proper integration of these
process descriptions, and no appropriate adaptation of process models to the
stakeholders’ needs and focus. Typically off-the-shelf process modeling tools,
such as BPEL or BPMN tools, are used, and hence it is required to integrate them
into VbMF. For these reasons, we extended VbMF with a reverse-engineering
tool-chain for adapting process models and integrating various modeling rep-
resentations. The outcome are tailored views that can be put into a common
repository, and then be re-used in other processes or manipulated to re-generate
new executable code, which corresponds to changes in the corresponding views
(see Figure 3).

3 View-Based Reverse Engineering Approach

In the context of process-driven SOAs, many existing systems have built up an
enormous repository of existing process code in executable languages, such as
BPEL and WSDL. There are two important issues that have not been solved
yet. Firstly, such process code integrates many tangled concerns such as message
exchanges, data processing, service invocations, fault handling, transactions, and
so forth. Secondly, these languages are rather technology-specific and therefore
the abstract representations are not explicitly available at the code level. As a
result, the process models become too complex for stakeholders to understand
and maintain, to integrate, to cooperate with other processes, or to re-use process
models from existing modeling tools.

Our view-based approach can potentially resolve these issues. However, for
budgetary reasons, developing the view models, required in our approach, from
scratch is a costly option. The alternative is an (automated) re-engineering
approach comprising two activities: reverse-engineering for building more appro-
priate and relevant representations of the legacy code; forward-engineering for
manipulating the process models and for re-generating certain parts of the process
code. During the reverse engineering process, high-level, abstract and low-level,
technology-specific views on the process models are recovered from the existing
code. This way, the reverse engineering approach helps stakeholders to get in-
volved in process re-development and maintenance at different abstraction levels.
Reverse engineering of business processes should not only help to adapt process
models to stakeholder needs but also offer the ability to integrate various process
models to enhance the interoperability of process models. The view-based reverse
engineering approach we propose in this paper aims at achieving these goals.

3.1 The Reverse Engineering Tool-Chain

The reverse engineering tool-chain (see Figure 4) consists of a number of view-
based interpreters, such as control flow interpreter, collaboration view inter-
preter, and so forth. Each interpreter is used for interpreting and extracting
the corresponding view from the process descriptions. An interpreter of a cer-
tain view must be defined based on the meta-model which that view conforms

238 H. Tran, U. Zdun, and S. Dustdar

Framework
meta-models

High-level
Views

View-based
intepreters

Low-level
Views

Process descriptions
(BPEL,WSDL,etc.)

High-level
Languages

Low-level
Languages

described
in

defines

"virtual"
integration of
high-level and

low-level
representations

in various
languages

"virtually"
refines

interpretes

produces

produces

conforms

conforms

corresponds to

corresponds to

described in

refines
into

Fig. 4. The view-based reverse engineering tool-chain

to. For instance, the control flow view consists of elements such as Activity,
Flow, Sequence, Switch, Case according to the control flow view meta-model (see
Figure 2(a)). In order to extract the control flow view from process descriptions,
the interpreter walks through the input descriptions to pick the above-mentioned
elements. Other elements are ignored.

3.2 General Approach for View Extraction

The process descriptions comprise the specification of business functionality in
a modeling language, for instance, as we exemplify in this paper, BPEL [7].
Moreover, the process functionality also exposes service interfaces, for instance,
expressed in WSDL [23]. To demonstrate the extraction of appropriate views
from process descriptions, we developed a number of interpreters such as con-
trol flow interpreter, collaboration view interpreter, as well as a BPEL-specific
extension view interpreter.

Our general approach to define view interpreters is based on the Partial In-
terpreter pattern [25]. This pattern is typically applied when the relevant infor-
mation to be interpreted from a language is only a (small) sub-set of the source
document’s language, and thus, the complexity of the whole language should be
avoided in the subsequent interpretation. The approach based on Partial Inter-
preter enables us to define modular, pluggable interpreters, and the framework
to be easily extensible with new views and view extraction interpreters. The
solution is to provide a Partial Interpreter for view extraction, which only un-
derstands the specific language elements required for one view. There is a generic
parser that is responsible for parsing the process descriptions. The parsing events
generated by this generic parser are interpreted by the Partial Interpreters, which
only interprets the language elements relevant for a particular view.

The Partial Interpreter’s mapping specification and view-specific interpre-
tation specification are both defined generically on basis of the meta-models.
Hence, they can be reused for many concrete view models. In the subsequent
sections, we present the details of the realization of the mapping specifications for
basic process concerns, i.e., control flow interpreter, information view interpreter

View-Based Reverse Engineering Approach 239

and collaboration view interpreter to illustrate our general approach. Other view
interpreters can be implemented following the same approach.

4 Details of the View-Based Reverse Engineering
Approach: Three Empirical Analyses

In this section, we empirically analyze the capabilities of the view-based reverse
engineering approach, such as the adaptation of process models to stakeholders’
needs and the integration of models at different levels of abstraction, by investi-
gating three typical cases in which the view-based reverse engineering approach
can get applied. In doing so, we also introduce the details of our approach for
applying it to BPEL/WSDL as an exemplary process-driven SOA technology.

These empirical analyses have been carried out on an industrial case study,
namely, customer care, billing and provisioning systems of an Austrian Internet
Service Provider (see [6] for more details). In the following, we use the Billing
Renewal process as an example. The billing platform includes a wide variety of
services provided by various partners such as financial services, domain services,
physical hosting services, retail/wholesale services, and so on. These services are
exposed in WSDL interfaces and integrated by using BPEL processes.

4.1 Extracting Relevant Views

The basic analysis, we performed, was to deal with the extraction of the con-
trol flow view from BPEL code. The control flow interpreter walks through the
process description in BPEL and collects necessary information of atomic and
structured activities. Then, it creates the elements in the Control Flow View and
assigns their attributes with relevant values as specified by the Control Flow
View meta-model (see Figure 2(a)). We demonstrate the mapping of Billing
Renewal specification in BPEL onto the Control Flow View in Figure 5.

4.2 Extracting Views at Different Abstraction Levels

To illustrate the ability of adapting views at different levels of abstraction, we de-
vise two interpreters to extract the Collaboration View and the BPEL-specific
extension of the Collaboration view. These interpreters are realized using the
same approach as used for the control flow interpreter. However, these views
comprise not only elements from the BPEL descriptions but also elements of
the process interfaces specified in WSDL files. That is, the interpreters firstly
collect information from WSDL descriptions, then walk through the BPEL spec-
ifications to the extract relevant elements, and finally create relevant elements
on the views according to the Collaboration View meta-model in Figure 2(b).
Figures 5 and 6 illustrate the extraction of the Collaboration View from BPEL
descriptions of the Billing Renewal process.

The Collaboration View is a high-level representation compared to the BPEL
extension of the Collaboration View, which is at a lower level of abstraction.

240 H. Tran, U. Zdun, and S. Dustdar

<process name="BillingRenewal">
 <partnerLinks>
 <partnerLink name="CRMPartnerPL"
 partnerLinkType="CRMPartnerPLT" partnerRole="CRMPartner"/>
 <partnerLink name="PostalPartnerPL"
 partnerLinkType="PostalPartnerPLT" partnerRole="PostalPartner"/>
 <partnerLink myRole="BillingRenewal" name="BillingRenewalPL"/>
 <partnerLink name="BankingPartnerPL"
 partnerLinkType="BankingPartnerPLT" partnerRole="BankingPartner"/>
 </partnerLinks>
 <variables>
 <variable messageType="ProfileRequest" name="profile_request"/>
 <variable messageType="ProfileResponse" name="profile_response"/>
 <variable messageType="billingservice:RenewBillingRequest" name="renew_request"/>
 </variables>
 <sequence>
 <receive createInstance="true" name="RequestBillingRenewal"
 operation="renewBilling" partnerLink="BillingRenewalPL"
 portType="BillingRenewal" variable="renew_request"/>
 <invoke inputVariable="profile_request" name="GetCustomerProfile"
 operation="retrieveProfile" outputVariable="profile_response"
 partnerLink="CRMPartnerPL" portType="CustomerManagement"/>
 <invoke inputVariable="invoicesend_request" name="SendFistInvoice"
 operation="sendPostal" outputVariable="invoicesend_response"
 partnerLink="PostalPartnerPL" portType="PostalDeliver"/>
 <switch>
 <case condition="customer_paid=true">
 <sequence>
 <invoke inputVariable="extend_request" name="ExtendDomain"
 operation="extendDomain" outputVariable="extend_response"
 partnerLink="DomainPartnerPL" portType="DomainManagement"/>
 <invoke inputVariable="confirmation_request"
 name="SendConfirmationLetter" operation="sendPostal"
 outputVariable="confirmation_response"
 partnerLink="PostalPartnerPL" portType="postalDeliver"/>
 </sequence>
 </case>
 </switch>
 </sequence>
</process>

Fig. 5. Mapping the Billing Renewal process (left-hand side) onto the VbMF’s views
including the Collaboration View (top-right) and the Control Flow View (bottom-right)

Therefore, the BPEL extension view consists of additional elements and some
of these elements have extra properties compared to those of the Collaboration
View. This way, other process-driven modeling languages, either high-level or
low-level, can be handled and integrated by using the view-based reverse engi-
neering tool-chain and VbMF.

4.3 Enhancing the Adaptability of the Process Models

The adaptability of process models to the requirements of a certain stakeholder
can be enhanced using two methods developed in VbMF: extension mechanisms
and view integration. View extension mechanisms [20] allow us to enrich existing
meta-models with additional elements and/or extra attributes for the existing
elements of the original meta-models. This way, the abstract views can be grad-
ually refined into less abstract views by increasing their granularity with added
technology-specific features until the resulting views are well suited for a partic-
ular stakeholder’s needs. Next, we define respective interpreters for these views
and use the interpreters to extract the corresponding views from the existing
process code. An example of view extension is the BPEL-specific extension of
the Collaboration View shown in the previous analysis.

View integration [20] is another method to produce new richer views by merg-
ing existing views. For instance, in [20], we have developed a simple name-based

View-Based Reverse Engineering Approach 241

<definitions>
 <types>
 <portType name="BillingRenewal">
 <operation name="renewBilling">
 <input message="RenewBillingRequest" />
 <output message="RenewBillingResponse" />
 </operation>
 </portType>
 <partnerLinkType name="CRMPartnerPLT">
 <role name="CRMPartner">
 <portType name="crm:CustomerManagement"/>
 </role>
 </partnerLinkType>
 <partnerLinkType name="PostalPartnerPLT">
 <role name="PostalPartner">
 <portType name="PostalDeliver"/>
 </role>
 </partnerLinkType>
 <partnerLinkType name="BillingRenewalPLT">
 <role name="BillingRenewal">
 <portType name="BillingRenewal"/>
 </role>
 </partnerLinkType>
 <partnerLinkType name="BankingPartnerPLT">
 <role name="BankingPartner">
 <portType name="CreditCardManagement"/>
 </role>
 </partnerLinkType>
</definitions>

Fig. 6. Mapping the Billing Renewal process (left-hand side) onto the Collaboration
View (right-hand side)

matching algorithm and presented an example of integrating the control flow
view and the collaboration view. The matching algorithm searches the input
views for integration points, which are, in this case, the conformable elements
with the same name. Afterward, the two views are merged together at these
integration points. The resulting view inherits the control flow that defines the
execution order of activities. In addition, the activities in the resulting view that
are responsible for invoking services inherit a number of additional attributes
from the corresponding activities defined in the collaboration view.

5 Related Work

Our work presented in this paper is a reverse engineering approach [3] based
on the concept of architectural views [8]. The whole VbMF tool-chain provides
support for reengineering [17] as well. That is, in addition to the reverse engineer-
ing parts of the tool chain, means for re-structuring, modification, and forward
engineering are provided to yield new system structures and functionality.

In the context of reverse engineering, view-based approaches are an emerg-
ing area of interest. For instance, the approaches reported in [2, 4, 19] focus on
inter-organizational processes (in term of cross-organizational workflows) and
use views to separate the abstract process representations (aka public processes)
from the internal processes (aka private processes). Bobrik et al. [1] present an
approach to process visualization using personalized views and a number of oper-
ations to customize the views. Zou et al. [27] propose an approach for extracting
business logic, also in terms of workflows, from existing e-commerce applica-
tions. All these approaches aim at providing perspectives on business processes

242 H. Tran, U. Zdun, and S. Dustdar

at a high level of abstraction and maintaining the relationships among different
abstraction levels to quickly re-act to changes in business requirements. These
approaches have in common that only the control flow of process activities (aka
the workflows) is considered. Other process concerns, such as service/process
interaction, data processing, etc. have only been partially exploited or not tar-
geted. In addition, these approaches do not support enhancing process views or
propagating changes as supported in our approach, for instance, through view
integration, view extension and code generation.

Kazman et al. [9] describe the Dali workbench, an approach for understand-
ing and analysis the system architecture. The extraction process begins with
extracting views from source code using lexical analyzers, parsers or profilers.
Next, the relationships among views are established by view fusion to improve
the quality and the correctness of views. However, because of the complexity of
typical process models, this approach is hardly applicable to capture the whole
process description in a unique view.

In the context of process-driven modeling, there are a number of standard lan-
guages in which some provide high-level descriptions, for instance, BPMN [15],
EPC [21, 10] and Abstract BPEL in WS-BPEL 2.0 [13]. There is no explicit
link between these languages and the executable languages. This has led to a
number of recent research approaches. For instance, Mendling et al. [12] dis-
cuss the transformation of BPEL to EPCs. Ziemann et al. [26] present an ap-
proach to model BPEL processes using EPC-based models. Recker et al. [18]
translate between BPMN and BPEL. Mendling et al. [11] report on efforts in
X-to-BPEL and BPEL-to-Y transformations. These transformation-based ap-
proaches mostly focus on one concern of the process models, namely, the control
flow, which describes the execution order of process activities. They offer no
support for extension of process models or integrating other concerns of process
models, such as service interactions, data processing, transaction handling, etc.
Hence, during the transformation from process code to abstract representations,
necessary information required to re-generate executable code gets lost.

WS-BPEL 2.0, the newly revised standard, provides the concept of an Ab-
stract BPEL process, which is represented by the same structures as an Exe-
cutable BPEL process. Developers can explicitly hide some syntactic constructs
in an Abstract BPEL process using predefined opaque tokens as explicit place-
holders for the omitted details. An abstract process is often associated with
a profile which specifies the semantics of the opaque tokens. Hence, one could
use an approach akin to our approach where the high-level view is the abstract
process profile, and low-level representations are respective profiles. Then our
reverse engineering tool-chain could be used to extract the relevant views.

All the above-mentioned approaches and standards have difficulties in han-
dling the complexity of process models: Because the business process integrates
numerous concerns, the complexity of process model increases as the number
of process elements, such as message exchanges, service invocations, data pro-
cessing tasks, etc. grows. Hence, these approaches are less efficient than our

View-Based Reverse Engineering Approach 243

approach in dealing with pretty huge existing process repositories, developed in
other languages or dialects, or integrating arbitrary process modeling tools.

6 Conclusion

The view-based reverse engineering approach, presented in this paper, can help
the various stakeholders of a process-driven SOA to overcome two important
issues. Firstly, it exploits the concept of architectural view to deal with the com-
plexity of existing process repositories and to adapt the process representations
to the stakeholders’ needs and focus. Secondly, it provides the ability of integrat-
ing diverse process models and offers explicit relationships for understanding and
maintaining process models and for propagating changes. Hence, process models
at different abstraction levels and different process concerns can be reused to
populate the other. This has been achieved by developing a novel concept for
a reverse engineering tool chain, based on partial interpreters and view models,
and by seamlessly integrating this reverse engineering tool chain into our view-
based modeling framework, which also supports means for forward engineering,
such as view integration, view extension and code generation. The reverse en-
gineering tool chain enables the reuse of existing process code, e.g. written in
BPEL/WSDL, in the view-based modeling framework.

References

1. Bobrik, R., Reichert, M., Bauer, T.: View-based process visualization. In: Alonso,
G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 88–95.
Springer, Heidelberg (2007)

2. Chebbi, I., Dustdar, S., Tata, S.: The view-based approach to dynamic inter-
organizational workflow cooperation. Data Knowl. Eng. 56(2), 139–173 (2006)

3. Chikofsky, E.J., Cross, J.H.I.: Reverse engineering and design recovery: A taxon-
omy. IEEE Software 7(1), 13–17 (1990)

4. Chiu, D.K.W., Cheung, S.C., Till, S., Karlapalem, K., Li, Q., Kafeza, E.: Workflow
view driven cross-organizational interoperability in a web service environment. Inf.
Tech. and Management 5(3-4), 221–250 (2004)

5. Eclipse. Eclipse Modeling Framework (2006), http://www.eclipse.org/emf/
6. Evenson, M., Schreder, B.: D4.1 Use Case Definition and Functional Requirements

Analysis. SemBiz Deliverable (August 2007)

7. IBM, B. Systems, Microsoft, SAP AG, and Siebel Systems. Business process exe-
cution language for web services (May 2003),
ftp://www6.software.ibm.com/software/developer/library/ws-bpel.eps

8. IEEE. Recommended Practice for Architectural Description of Software Intensive
Systems. Technical Report IEEE-std-1471-2000, IEEE (2000)

9. Kazman, R., Carriere, S.J.: View Extraction and View Fusion in Architectural
Understanding. In: ICSR 1998. Proc. of the 5th Int. Conference on Software Reuse,
Washington, DC, USA, p. 290. IEEE Computer Society, Los Alamitos (1998)

10. Kindler, E.: On the semantics of EPCs: A framework for resolving the vicious circle.
In: Business Process Management, pp. 82–97 (2004)

http://www.eclipse.org/emf/
ftp://www6.software.ibm.com/software/developer/library/ws-bpel.eps

244 H. Tran, U. Zdun, and S. Dustdar

11. Mendling, J., Lassen, K.B., Zdun, U.: Transformation strategies between block-
oriented and graph-oriented process modelling languages. Technical Report JM-
200510 -10, WU Vienna (2005)

12. Mendling, J., Ziemann, J.: Transformation of BPEL processes to EPCs. In: Proc.
of the 4th GI Workshop on Event-Driven Process Chains (EPK 2005), December
2005, vol. 167, pp. 41–53 (2005)

13. OASIS. Business Process Execution Language (WSBPEL) 2.0 (May 2007),
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.eps

14. OMG. Unified Modelling Language 2.0 (UML) (2004), http://www.uml.org
15. OMG. Business Process Modeling Notation (February 2006),

http://www.bpmn.org/Documents/OMG-02-01.eps

16. openArchitectureWare.org (August 2002),
http://www.openarchitectureware.org

17. Antonini, P., Canfora, G., Cimitile, A.: Reengineering legacy systems to meet qual-
ity requirements: An experience report. In: ICSM 1994. Proceedings of the Interna-
tional Conference on Software Maintenance, Washington, DC, USA, pp. 146–153.
IEEE Computer Society, Los Alamitos (1994)

18. Recker, J., Mendling, J.: On the translation between BPMN and BPEL: Conceptual
mismatch between process modeling languages. In: Eleventh Int. Workshop on
Exploring Modeling Methods in Systems Analysis and Design (EMMSAD 2006),
June 2006, pp. 521–532 (2006)

19. Schulz, K.A., Orlowska, M.E.: Facilitating cross-organisational workflows with a
workflow view approach. Data Knowl. Eng. 51(1), 109–147 (2004)

20. Tran, H., Zdun, U., Dustdar, S.: View-based and Model-driven Approach for Re-
ducing the Development Complexity in Process-Driven SOA. In: Intl. Working
Conf. on Business Process and Services Computing (BPSC 2007), September 2007.
Lecture Notes in Informatics, vol. 116, pp. 105–124. Springer, Heidelberg (2007)

21. van der Aalst, W.: On the verification of interorganizational workflows. Computing
Science Reports 97/16, Eindhoven University of Technology (1997)

22. Völter, M., Stahl, T.: Model-Driven Software Development: Technology, Engineer-
ing, Management. Wiley, Chichester (2006)

23. W3C. Web Services Description Language 1.1 (March 2001)
24. WfMC. XML Process Definition Language (XPDL) (April 2005),

http://www.wfmc.org/standards/XPDL.htm

25. Zdun, U.: Patterns of tracing software structures and dependencies. In: Proc. of
8th European Conference on Pattern Languages of Programs (EuroPLoP 2003),
Irsee, Germany, June 2003, pp. 581–616 (2003)

26. Ziemann, J., Mendling, J.: EPC-based modelling of BPEL processes: a pragmatic
transformation approach. In: Proc. of the 7th Int. Conference Modern Information
Technology in the Innovation Processes of the Industrial Enterprises (MITIP 2005)
(2005)

27. Zou, Y., Hung, M.: An approach for extracting workflows from e-commerce applica-
tions. In: ICPC 2006. Proc. of the 14th IEEE Int. Conf. on Program Comprehension
(ICPC 2006), Washington, DC, USA, pp. 127–136. IEEE Computer Society, Los
Alamitos (2006)

http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.eps
http://www.uml.org
http://www.bpmn.org/Documents/OMG-02-01.eps
http://www.openarchitectureware.org
http://www.wfmc.org/standards/XPDL.htm

	View-Based Reverse Engineering Approach for Enhancing Model Interoperability and Reusability in Process-Driven SOAs
	Introduction
	The View-Based Modeling Framework
	Overview of the View-Based Modeling Framework
	View-Based Reverse Engineering Tool-Chain

	View-Based Reverse Engineering Approach
	The Reverse Engineering Tool-Chain
	General Approach for View Extraction

	Details of the View-Based Reverse Engineering Approach: Three Empirical Analyses
	Extracting Relevant Views
	Extracting Views at Different Abstraction Levels
	Enhancing the Adaptability of the Process Models

	Related Work
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /MTEX
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

