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Abstract—Business Process Management is a matter of great importance in different industries and application areas. In many cases,
it involves the execution of resource-intensive tasks in terms of computing power such as CPU and RAM. Due to the emergence of
Cloud computing, theoretically unlimited resources can be used for the enactment of business processes. These Cloud resources
render several challenges for Business Process Management Systems to ensure a predefined Quality of Service level during
Cloud-based process enactment. Therefore, new solutions for process scheduling and resource allocation are required to tackle these
challenges.
Within this paper, we present a novel approach to schedule business processes and optimize the used Cloud-based computational
resources in a cost-efficient way, thus realizing so-called elastic processes. For that, we specify the Service Instance Placement
Problem, i.e., an optimization model which defines the setting of how service instances are scheduled among resources. Through
extensive evaluations we show the benefits of our contributions and compare the novel approach against a baseline which follows an
ad hoc approach.
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1 INTRODUCTION

Despite being a relatively new computing paradigm, Cloud
computing has shown its potential to transform the way
computing power is offered and consumed [1], [2]. With the
market entrance of major players like Amazon or Google,
this transformation is already pretty advanced [3]. Today,
the worldwide public Cloud services market is worth 131
Billion US dollars, with an estimated compound annual
growth rate of about 17% from 2011 to 2017 [4].

However, the impact of Cloud computing on Business
Process Management (BPM) is still quite minor, both with
regard to solutions offered by the software industry and
research conducted in this area. One particular aspect where
Cloud computing could provide several benefits for BPM is
process enactment, i.e., the execution of business processes
[5]: Process landscapes are ever-changing in terms of the
number of process requests arriving. Therefore, the com-
putational resources needed to enact process instances vary
over time. These changes in workloads lead to peak resource
demands as well as utilization gaps, if a fixed amount of
computational resources is provided [6]. There is a risk of
both computational resource underprovisioning, if the process
landscape’s demands cannot be fulfilled by the available
resources, and overprovisioning, if sufficient resources are
available but not utilized most of the time and therefore
leading to unnecessary cost [2].

Leasing and releasing of Cloud-based resources is an
obvious alternative to the provisioning of a fixed amount
of computational resources. Business processes executed
using Cloud resources are also known as elastic processes
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[7]. Elastic processes reflect three major benefits of Cloud
computing [1], [2], [7]: (i) Rapid elasticity of single processes
as well as the process landscape based on the actual demand
for computational resources, (ii) leasing and releasing the
needed computational resources in an on-demand, utility-like
fashion, and (iii) pay-per-use of the resources through metered
service.

In general, elastic processes are related to the idea of
service composition, which is a prominent solution to enact
business processes [8]. However, while in classic service
composition these services are available on the Internet of
Services, for elastic processes, these services are deployed on
Cloud-based computational resources [5]. To realize elastic
processes, it is necessary to enhance a Business Process
Management System (BPMS) with the means to manage
not only the process lifecycle, but also to act as a Cloud
controller [9], i.e., to be able to lease and release Cloud
resources, deploy services onto them (resulting in a service
instance), and invoke the service instances following a pro-
cess schedule. Process scheduling and resource allocation
are based on the expected functionalities and non-functional
demands of a process instance. Usually, constraints on non-
functional attributes like Quality of Service (QoS) aspects,
e.g., an expected deadline for process enactment, are de-
fined in Service Level Agreements (SLAs). SLA violations
may happen, which may lead to penalty cost [10]. There
are several approaches to SLA enactment for single Cloud
applications, e.g., [10], [11], [12], which optimize application
executions with regard to cost minimization. However, there
is a lack of optimization approaches for elastic processes [5].

In our former work, we have presented the Vienna
Platform for Elastic Processes (ViePEP) [13], [14]. ViePEP is
a research BPMS for elastic processes. In addition, we have
provided optimization approaches for sequential elastic pro-
cesses [15], [16]. However, more complex process patterns
like XOR-blocks, AND-blocks or Repeat Loop orchestration
components have not been covered yet, even though these
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process patterns are very common in real-world business
processes [17]. Also, despite being an important cost fac-
tor, penalty cost as well as the Billing Time Unit (BTU),
which expresses the cost per leasing period, have not been
regarded so far.

Hence, in this paper, we substantially extend our former
work on elastic process scheduling and resource allocation.
Our contributions can be summarized as follows:

• We define a system model for elastic process land-
scapes, taking into account complex process patterns,
penalty cost, and BTUs.

• We present the Service Instance Placement Problem
(SIPP), an optimization model which aims at mini-
mizing the total cost arising from enacting an elas-
tic process landscape. Solutions to the SIPP de-
scribe execution plans in terms of process scheduling
and resource allocation. This includes the assign-
ment of service instances to Virtual Machines (VMs),
the scheduling of service invocations, and the leas-
ing/releasing of VMs.

• We implement the SIPP and evaluate it extensively,
showing its advantages compared to existing ad hoc
resource allocation and process scheduling strate-
gies.

The remainder of this paper is organized as following:
While Section 2 introduces an example scenario motivating
our work, Section 3 gives an overview of elastic processes
and defines prerequisites for our approach. Afterwards, Sec-
tion 4 presents the SIPP optimization problem. The results
of the evaluation for the scheduling and resource allocation
algorithm through testbed experiments are described in Sec-
tion 5. While Section 6 discusses the related work, Section 7
concludes this paper and provides a short outlook on our
future work.

2 EXAMPLE SCENARIO

In the following paragraphs, we provide a basic example
scenario to illustrate and motivate the work at hand. We
consider a scenario from the financial industry, since in

banks IT cost account for 15%-20% of the overall administra-
tive expenses [18]. Hence, cost-efficient process enactment
is an important goal in this domain. Notably, the presented
example scenario is illustrative only and should neither be
seen as complete nor exclusively for the applied banking
domain. The work presented in this paper can be easily
used in any domain which features an extensive process
landscape and needs to be able to adjust efficiently to an
ever-changing number of process requests, e.g., the manu-
facturing industry [19] or Smart Grids [20].

Figure 2 shows a graphical representation of our exam-
ple scenario: We consider an international bank featuring
several branches which are worldwide distributed from US
East Coast over Europe to Asia. As each of the branches
provides similar products to their customers, the bank
maintains a private Cloud spanning all data centers of
the distributed branches. This Cloud provides all business
processes which are used within the bank’s products and
service.

Every branch of the bank has access to the business
processes in the Cloud. Notably, the bank’s branches have
a large number of different business processes at their
disposal. These may range from long-running data analytic
processes to short-running trading processes. Especially in
the latter kind of processes, time constraints are critical
as even a short delay can lead to revenue loss or penalty
payments. In order to ensure time constraints, a process is
therefore equipped with a SLA which defines its deadline,
i.e., the point of time at which the process enactment has to
be finished.

Assuming the discussed bank simultaneously serves
several thousands of costumers, a very large number of
business processes with different priorities may be re-
quested at every point of time. This leads to high fluctua-
tions of needed resources during peak- and off-peak times.
Also, the bank’s process landscape is ever-changing – new
orders and therefore process requests arrive, while running
process instances finish or have to be repeated. Thus, the
usage of principles of elastic processes is an obvious ap-
proach [7]. Not surprisingly, elasticity and scalability have
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been named as primary reasons for the usage of Cloud-
based computational resources in the financial industry [21].
For this, approaches to cost-efficient process scheduling and
resource allocation – as discussed in the following – are
needed.

3 BACKGROUND

3.1 Elastic Processes

As mentioned above, for companies which feature an exten-
sive and varying process landscape, moving their process
enactments into the Cloud is an obvious choice. This is
especially the case if a very large number of processes with
time-critical priorities have to be handled simultaneously to
adhere to SLAs and further to prevent penalties. For these
situations, the advantage of Cloud computing provides a so-
lution as it allows a higher throughput and reduces the risk
of delays. This can be achieved through resource elasticity,
which allows scaling computational resources up or down
based on the current demand.

Although elasticity is usually regarded from the re-
sources’ point of view, two other main dimensions do also
play an important role, namely cost and quality elasticity
[22]. The former describes that the same Cloud service
might be offered at different price levels, e.g., since these
services are offered on spot markets, based on the amount
of resources leased by a particular consumer, or because
Cloud providers adapt their prices in relation to the current
overall demand. Quality elasticity refers to the trade-off
between QoS and cost. For example, SLA violations might
be avoided by adding further Cloud-based computational
resources, leading to better QoS as well as higher cost. In
the work at hand, we will focus on resource and quality
elasticity. We determine that Cloud services are available at
fixed prices and therefore cost elasticity is not given.

With regard to our example scenario for the achievement
of elastic processes (see Section 2), we assume that such
processes can be composed from single software services
running on VMs in the Cloud, each service representing
a particular process step. In our example, these elastic
processes represent the services provided by the bank. To
enact elastic processes, a middleware layer is need, which
provides Platform-as-a-Service (PaaS) functionalities to pro-
cess requesters. Notably, the middleware needs to provide
the functionalities of both, a Cloud controller and a BPMS.
Hence, the middleware enacts elastic processes by control-
ling the Infrastructure-as-a-Service (IaaS) and the Software-
as-a-Service (SaaS) levels [23]: At the IaaS level, it acts as a
resource allocator, taking into account the current and future
resource demand. At the SaaS level, it schedules and enacts
service invocations, which together enact a process.

Resource allocation and scheduling affect each other in
a way that service invocations may be assigned to resources
which are not leased during the allocation planning, and
therefore have to be leased in the near future (i.e., right be-
fore the actual invocation) in order to ensure flawless service
invocations. Therefore, resource allocation and scheduling
have to be considered equally during the planning phase
for elastic process execution [7]. In this paper, we focus
on scheduling (and implicitly on resource allocation) and

provide a solution based on a Mixed Integer Linear Pro-
gramming (MILP) problem.

3.2 Preliminaries
Having an example scenario discussed and the idea of
elastic processes introduced, we define further preliminaries
before modeling the SIPP: We assume that a middleware is
deployed in the Cloud and serves as a BPMS and Cloud
controller in an intra- or inter-organizational process land-
scape. Process owners (e.g., employees of the bank, see
Section 2) may define process models and request their enact-
ment, resulting in single process instances. Process models are
composed of process steps. To execute a process step, a service
is deployed on a particular VM resulting in a certain service
instance and will then be invoked (service invocation). In the
process landscape, we distinguish between several different
services, i.e., each service instance is of a particular service
type. The execution time of a service invocation, i.e., the time
span from starting the invocation until it is finished, may
take from a few seconds to several minutes. For practical
reasons, a VM may only run a single service instance.
However, this service instance may be invoked several times
simultaneously and a service type may be deployed several
times on different VMs. Along with the process request,
process owners define deadlines, which are part of a SLA
and therefore an important constraint for the SIPP. Penalties
accrue if a certain process instance does not meet its SLA
[10]. It is the general goal to minimize the cost of process
enactments, taking into account VM leasing cost and penalty
cost.

There might be several process owners in the process
landscape, requesting different process instances at different
points of time. As a result, the process landscape is volatile
and ever-changing, which needs to be taken into account
when solving the SIPP. Process landscapes could become
very large, since the Cloud offers theoretically unlimited
resources [24].

During scheduling, the middleware needs to take into
account process requests, running process instances, leased
VMs, service instances, the current and planned workloads
of the leased VMs, as well as the execution times and work-
loads of different service types on different VMs. Impor-
tantly, the middleware is aware of future service invocations,
since it knows the next steps of requested process instances.

We do not only consider simple, sequential processes,
but also address more complex process patterns. Referring
to [17], our scheduling approach accounts for structured
processes comprising parallel invocations, i.e., AND-blocks
(AND-splits with corresponding joins), as well as exclusive
invocations, i.e., XOR-blocks (XOR-splits with corresponding
joins). Also Repeat Loops that allow a repeated execution
of sub-processes are covered. Considering these complex
process patterns aggravates the scheduling problem sub-
stantially, since the next step is not always straight forward
in XOR-blocks or Repeat Loops. For these, and for AND-
blocks, several different possibilities have to be considered
during resource allocation and scheduling. Applying the
recursive pattern interlacing approach presented in our
former work in [25], the scheduling approach proposed in
this work is also capable of considering interlaced struc-
tures. Depending on the openness to risk, a worst-, best-
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or average-case has to be performed prior scheduling, i.e.,
taking the longest, the shortest or the average path through a
process structure. In the work at hand, we consider a worst-
case scenario.

4 COMPLEX PROCESS SCHEDULING

For the enactment of elastic processes, Cloud-based compu-
tational resources in terms of VMs are used. In this respect,
we aim at achieving an optimal scheduling and placing of
service instances, realizing corresponding process instances.
For this reason, leasing and releasing of Cloud resources has
to be realized so that the cost for leasing aforementioned
Cloud resources is minimized. Furthermore, we need to
make sure that given constraints on QoS attributes such
as deadlines for the process instances are satisfied. In the
work at hand, we exclusively focus on execution time as
QoS attribute. Other QoS attributes from the field of service
composition, e.g., availability, reliability or throughput [26],
are not explicitly covered. It should be noted that availability
and reliability are partially regarded in our optimization
model, since process requests are carried out as long as
there are computational resources from a Cloud provider
available. Since Clouds (in theory) offer unlimited resources,
the limiting factor for throughput is the missing capability of
the middleware to handle an unlimited number of processes
at the same time. Scalability of the middleware is however
a research topic on its own.

If a violation of QoS constraints and therefore a SLA
breach takes place, penalties accrue. Thus, the closer the
deadline for a certain process instance is, the higher is
the importance for scheduling and invoking corresponding
service instances to enact the particular process instance
in time. If not carefully considered and scheduled, the
middleware provider will either have to lease and pay for
additional VMs to host service invocations that cannot be
delayed any further, or to pay the aforementioned penalties.
To avoid such situations where extra resources have to be
leased or penalties have to be paid due to an inefficient
scheduling strategy, the scheduling of service invocations
along with the leasing and releasing of Cloud resources
has to be optimized. Hence, we formulate the problem of
scheduling and placing service instances on VMs for realiz-
ing process instances – the SIPP – as a MILP optimization
problem.

The applied system model is described in the subsequent
Section 4.1. Afterwards, whereas a formal specification of
the corresponding optimization model is provided in Sec-
tion 4.2, the model is extended in Section 4.3 to enable
multiperiod scheduling.

4.1 System Model
It has to be noted that the optimization problem described
in this paper per se refers to a certain time period. For
considering different time periods, we use the parameter t
as index which indicates the start of a period1. The concrete
time period is indicated by the parameter τt and is given by
a concrete point in time (e.g., Tuesday, May 4th, 13:37 CET)

1. For a concise overview of the parameters used in this paper, see
the provided supplemental material.

that corresponds to the beginning of that (optimization) time
period. In order to account for different types of process
instances, we consider multiple process models. The set of
process models is labeled with P , where p ∈ P = {1, ..., p#}
indicates a certain process model. The set of process in-
stances that have to be considered during a certain period
t according to a certain process model p is indicated by
Ip, where ip ∈ Ip = {1, ..., i#p } refers to a certain process
instance. In this respect, it has to be noted that considering a
certain process instance ip in period t does not necessarily
result in invoking corresponding service instances in this
period. It rather ensures that respective service invocations
are acknowledged as potential candidates for scheduling.
Thus, they may be scheduled in period t or not.

Service instances that have to be invoked for accomplish-
ing a process instance ip are covered in the set Jip , where
jip ∈ Jip = {1, ..., j#ip} refers to a certain service invocation
for accomplishing a specific step in process instance ip.
Service invocations that have already been scheduled in
previous optimization periods are referred to as jip

run. They
are covered in the set Jip

run. Since the steps within a certain
process instance have to be invoked in a certain order, we
may only schedule service invocations for the next step(s)
in optimization period t. We label the corresponding service
invocations accomplishing the next step(s) with j∗ip ∈ Jip .
The execution time of service invocation jip , i.e., the duration
of the service invocation, is indicated by ejip .

In order to schedule jip , the corresponding service type
has to be instantiated on a VM. In the work at hand, we
account for different VM types. The set of VM types is
indicated by the parameter V , where v ∈ V = {1, ..., v#}
refers to VM type v. The corresponding resource supply
of a VM of type v in terms of processing units (CPU) and
main memory (RAM) is indicated by sCv and sRv . The unit
of CPU resources is percent, i.e., a single core VM has 100%
CPU, a dual core VM has 200% CPU, and so on, and the
unit for RAM is Mega Bytes (MB). Analogously, the resource
demand of a certain service invocation jip with respect to
CPU in percent and RAM in MB is indicated by rC(jip ,kv)
and rR(jip ,kv)

. An instance k of a VM of type v is referred to
as kv . Although in theory unlimited, we assume the number
k#v of leasable VMs of type v to be limited in a certain time
period t and specify the set of VM instances of type v as
Kv = {1, ..., k#v }, where kv ∈ Kv . The cost for leasing one
VM instance of type v is indicated by cv . The remaining,
free resource capacity of VM instance kv regarding CPU and
RAM after scheduling and placing of service invocations is
referred to as fCkv and fRkv .

As previously stated, a service has to be deployed on
a VM in order to be invoked (resulting in a particular ser-
vice instance). The corresponding deployment time depends
on the type of the service, i.e., the service type which is
referred to as stj . The service deployment time is indi-
cated by ∆stj and expressed in milliseconds. Parameter
z(stj ,kv,t) ∈ {0, 1} indicates if a service of type stj is already
deployed (z(stj ,kv,t) = 1) at VM instance kv in the time
period starting at t. In addition, the respective VM needs to
be up and running in order to enable service deployment
and invocation. The corresponding VM start-up time (in
milliseconds) for a VM instance of type v is labeled with ∆v ,
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TABLE 1: Worst-Case Aggregation Specifications

Pattern Execution time (e)
Sequence eseq =

∑
j∈Jseq

(ej + ∆stj + ∆)

AND-block eAND = max
l∈La

(
∑

j∈Jl

(ej + ∆stj + ∆))

XOR-block eXOR = max
l∈Lx

(
∑

j∈Jl

(ej + ∆stj + ∆))

Repeat Loop eRL = re · eseq

whereas ∆ = maxv∈V (∆v) refers to the maximum start-up
time. Whether the VM instance kv is already up and running
in period t is indicated by the parameter β(kv,t) ∈ {0, 1} –
similar to z(stj ,kv,t).

The remaining execution time in milliseconds for a pro-
cess instance ip is indicated by eip . It can be computed by
aggregating the execution times ejip of service invocations
jip according to the structure of process instance ip. As
previously stated, we account for XOR-blocks, AND-blocks,
and Repeat Loops in addition to Sequences. Correspond-
ing aggregation specifications accounting for a worst-case
analysis are provided in Table 1 – without an index for a
specific process instance ip. For the sake of simplicity, we
assume the services’ execution times not to be dependent on
the concrete VM instance kv . Accounting for VM-dependent
service execution times could be achieved straightforwardly,
since it does not affect our approach for computing optimal
solutions to the SIPP. Only the way of computing the execu-
tion times would have to be adapted. Instead, we account
for VM resources in terms of CPU and RAM as previously
stated.

For a Sequence, the execution times of the respective
service invocations have to be added up. In order to account
for a worst-case analysis, we need to additionally consider
the corresponding service deployment times ∆stj and the
worst VM start-up time ∆, each expressed in milliseconds.
With respect to an AND-block, it is necessary to account
for the different paths l within the AND-block. The set of
all paths is indicated by L = {1, ..., l#}, where l refers
to a certain path. In order to separate the set of paths for
AND-blocks from the set of paths for XOR-blocks, we use
additional indices a (for AND) and x (for XOR). In order
to obtain the execution time for an AND-block, we need to
compute the execution times for each of the paths l ∈ La
separately and then take the maximum, which is indicated
in Table 1. We thereby implicitly assume the steps within
a path of the AND-block to be arranged sequentially, so
that the corresponding execution time can be computed
according to the aggregation specification for a Sequence. In
order to account for interlaced structures, we apply a tech-
nique for recursively combining the provided aggregation
specifications, which is described in our former work [25].

The aggregation specification for computing the execu-
tion time for an XOR-block is basically the same as for an
AND-block – at least in terms of a worst-case analysis since
we need to consider the worst path in terms of execution
time. But in contrast to an AND-block, only one of the paths
within an XOR-block will finally be invoked. With respect
to Repeat Loops, the structure that has to be repeated is
invoked multiple times. For a worst-case analysis, we as-
sume a maximum number re of repeated invocations. With

respect to Table 1, we consider a Sequence, indicated by eseq ,
as the structure to be repeatedly invoked. However, also
single process steps or whole processes comprising AND-
/XOR-blocks could be subject for repeated invocations and,
thus, for Repeat Loops.

The deadline DLip indicates at which point in time
the enactment of process instance ip has to be finished. If
DLip is violated, penalty cost will accrue. The penalty cost
depends on time and duration, respectively, the invocation
of process instance ip took longer than restricted by the
deadline, indicated by epip , and on the penalty cost per time
unit, referred to as cpip .

For finally deciding whether to schedule a certain ser-
vice invocation jip in optimization period t, we use binary
decision variables x(jip ,kv,t) ∈ {0, 1}. A value x(jip ,kv,t) = 1
indicates that the service invocation jip of process instance
ip should be scheduled in period t on the k-th VM of type v
(and invoked afterwards), whereas a value x(jip ,kv,t) = 0 in-
dicates that the scheduling and invocations can be delayed.
For indicating if we need to lease a certain VM instance
kv of type v in period t, the decision variable y(kv,t) ∈ N0 is
used. In contrast to x(jip ,kv,t), y(kv,t) may take values greater
than 1 indicating that VM instance kv should be leased in
period t for y(kv,t) BTUs. The BTU is the minimum leasing
duration. Thus, releasing a VM before the end of the BTU
corresponds to wasting paid resources. The actual leasing
duration of a particular VM is always a multiple of the BTU.
The remaining leasing duration for a specific VM instance kv
in period t is labeled with d(kv,t). The total number of VMs
of type v to lease in period t is indicated by γ(v,t).

Having described the underlying system model in this
section, the subsequent sections present the optimization
problem. As described, the optimization problem takes as
input a set of process instances Ip including their process
steps and corresponding service invocations Jip . In addition
to that, a set of computational resources is needed (V ).

4.2 Optimization Problem

In this section, we model the scheduling and placement
of service invocations for enacting corresponding process
instances – the SIPP – as an optimization problem. Using the
system model provided in Section 4.1, we gradually develop
the corresponding optimization model for the current opti-
mization period t in this section. A multiperiod extension of
the optimization problem is discussed in Section 4.3.

min
∑
v∈V

cv · γ(v,t) +
∑
p∈P

∑
ip∈Ip

cpip · e
p
ip

+
∑
v∈V

∑
kv∈Kv

(ωCf · fCkv + ωRf · fRkv )

−
∑
p∈P

∑
ip∈Ip

∑
jip∈J∗

ip

1

DLip − τt
x(jip ,kv,t)

(1)

In (1), the objective function, which is subject for minimiza-
tion, is depicted. It comprises four terms. In the first term,
i.e.,

∑
v∈V cv · γ(v,t), we compute the total cost accruing

due to leasing γ(v,t) VM instances of type v at a cost of
cv per VM instance in period t. The second term, i.e.,∑
p∈P

∑
ip∈Ip c

p
ip
· epip , accounts for penalties arising due to
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violating deadlines. For computing these penalties, a linear
penalty function is applied [10]: We multiply the durations
epip , i.e., the time units the invocations of process instances ip
took longer than restricted by the corresponding deadline,
with the cost per time unit, represented by cpip . The third
term, i.e.,

∑
v∈V

∑
kv∈Kv

(ωCf · fCkv + ωRf · fRkv ), regards the
sum of free resource capacities fCkv (CPU) and fRkv (RAM) for
all (leased) VM instances – weighted with corresponding
weights ωCf and ωRf . Finally, in the fourth term, we cal-
culate the difference between the deadlines DLip for all
process instances and the current period τt and compute
the corresponding reciprocal value. This way, we deduce
a measure for the urgency and importance, respectively, for
each process instance, since the closer the deadline is for a
process instance ip, the larger is 1

DLip−τt
.

With the first term, we aim at minimizing the total
cost. With the second term, we aim at minimizing penalty
cost. With the third term, we aim at minimizing leased but
unused Cloud resource capacities. With the fourth term, we
aim at maximizing (note the minus in front of the term) the
relative importance of the scheduled service invocations.
Since the minimization of the leasing cost and the penalty
cost should have highest priority, we set the weights ωCf and
ωRf to a very low value such as 0.000001. Since the actual
values for the deadlines DLip and the current period τt are
quite large (as they are represented as the time elapsed since
01/01/1970 in milliseconds), their difference remains large,
so that the reciprocal value becomes rather small. Thus, the
minimization of leasing cost and penalty cost receives the
highest (relative) weights and thereby priorities within the
objective function.

The constraints in (2) demand the deadlines DLip not
to be violated for all p ∈ P , ip ∈ Ip, jip ∈ Jrunip

. For
this, the sum of the remaining execution time eip and the
next optimization period starting at τt+1 has to be lower
or equal with respect to the deadline. The length of the
current optimization period, consequently, the start of the
next optimization is defined by τt+1 and is restricted in (3).
τt+1 has to be greater or equal to the current optimization
period at τt plus a small value ε > 0. ε is needed to
avoid optimization deadlocks resulting from a too small or
negative value for τt+1.

(2) τt+1 + eip + erunjip
≤ DLip + epip

(3) τt+1 ≥ τt + ε

The remaining execution time eip is computed in (4)
for all p ∈ P , ip ∈ Ip. Depending on the structures of
the process instances, different remaining execution times
apply, i.e., for sequences using (5), for AND-blocks (6), for
XOR-blocks (7) and for Repeat Loops (8). Notably, a process
instance may consist of a combination of different process
patterns, which have to be summed up (see (4)).

As indicated in (5)-(8), the remaining execution time eip
can be reduced if a service invocation jip is scheduled on
a VM instance kv . The helper variables esip and elip are
defined in (10) and (11). As described in (9), in this case, the
corresponding execution time ej∗ip along with the service de-
ployment time ∆j∗ip

and VM start-up time ∆ will be added
up, resulting in the variable exj∗ip and subtracted from the

remaining execution time eip . Note that execution times ejip
for service invocations that have already been scheduled in
previous optimization periods will be set to zero. Further,
since steps within AND-blocks may be invoked in parallel,
it is possible to schedule multiple next service invocations –
one next service invocation per branch of the AND-block.

(4) eip = eseqip + eLa
ip

+ eLx
ip

+ eRLip

(5) eseqip =

{
êsip − exj∗ip , if x(j∗ip ,kv,t) = 1

êsip , else

(6) eLa
ip

=

max
l∈La

(êlip − exj∗ip ) , if x(j∗ip ,kv,t)

max
l∈La

(êlip) , else

(7) eLx
ip

=

max
l∈Lx

(êlip − exj∗ip ) , if x(j∗ip ,kv,t)

max
l∈Lx

(êlip) , else

(8) eRLip =

{
re · êsip − exj∗ip , if x(j∗ip ,kv,t)
re · êsip , else

(9) exj∗ip =
∑
v∈V

∑
k∈Kv

((ej∗ip + ∆j∗ip
+ ∆)x(j∗ip ,kv,t)

)

(10) êsip =
∑

jip∈J
seq
ip

(ejip + ∆jip
+ ∆)

(11) êlip =
∑

jip∈Jl
ip

(ejip + ∆jip
+ ∆)

Since it might be the case that in an optimization period
t certain service invocations jip are currently running, we
need to add the corresponding remaining execution times,
indicated by erunjip

, in (2). If the deadlines DLip were vio-
lated, the corresponding durations epip would increase which
in turn would lead to higher penalty cost (see (1)).

The constraints in (12) make sure that for all v ∈ V ,
k ∈ Kv , VM instances kv will be leased if service invocations
jip are to be scheduled on them. This is indicated by a
value of 1 for the corresponding decision variables, i.e.,
x(jip ,kv,t) = 1. The corresponding VM instance kv has al-
ready been leased (and paid for) in a previous optimization
period, which is indicated by a value of 1 for the parameter
βkv , i.e., β(kv,t) = 1. Or we need to set the corresponding
decision variable y(kv,t) accordingly, i.e., y(kv,t) ≥ 1. Since
it may be the case that multiple service invocations are
intended to be scheduled on VM instance kv , the sum of the
left-hand side of (12) might exceed a value of 1. Thus, in or-
der to satisfy these constraints, we multiply (β(kv,t)+y(kv,t))
with a sufficiently large value M , i.e., 1,000,000. We chose
this value since it is unlikely that there is a VM which is able
to host more than 1,000,000 parallel service invocations.

(12)
∑
p∈P

∑
ip∈Ip

∑
jip∈Jip

x(jip ,kv,t) ≤ (β(kv,t) + y(kv,t)) ·M

With respect to scheduling service invocations on a VM
instance kv , we demand the corresponding service types stj
in (13) to be the same. This way, we aim at achieving that a
VM instance only invokes service instances of the same type.
Differently stated, service instances with different service
types may not be invoked at the same VM instance.
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(13) x(j1
i1
p1

,kv,t) + x(j2
i2
p2

,kv,t) ≤ 1

The constraints in (14) and (16) make sure that for all
v ∈ V , k ∈ Kv the resources (with respect to CPU and RAM)
required by the service invocations that either already run
on VM instance kv or are scheduled to run on it, do not
exceed the respective capacity of a VM of the type v. The
remaining free capacities fCkv and fRkv are determined in (15)
and (17). Note that we consider free capacities fCkv and fRkv
for VMs that are either already running or leased in period
t. For this, we use an additional variable g(kv,t) ∈ {0, 1},
which takes a value of 1 only if VM kv is either running
(βkv = 1) or leased (y(kv,t) ≥ 1) in period t. This is indicated
in (18)-(20) for all v ∈ V , k ∈ Kv .

(14)
∑
p∈P

∑
ip∈Ip

∑
jip∈(J∗

ip
∪Jrun

ip
)

rC(jip,kv )
x(jip ,kv,t) ≤ s

C
v

g(kv,t) · s
C
v −∑

p∈P

∑
ip∈Ip

∑
jip∈(J∗

ip
∪Jrun

ip
)

rC(jip,kv )
x(jip ,kv,t) ≤ f

C
kv

(15)

(16)
∑
p∈P

∑
ip∈Ip

∑
jip∈(J∗

ip
∪Jrun

ip
)

rR(jip,kv )
x(jip ,kv,t) ≤ s

R
v

g(kv,t) · s
R
v −∑

p∈P

∑
ip∈Ip

∑
jip∈(J∗

ip
∪Jrun

ip
)

rR(jip,kv )
x(jip ,kv,t) ≤ f

R
kv

(17)

(18) g(kv,t) ≥ β(kv,t)

(19) g(kv,t) ≥ y(kv,t)

(20) g(kv,t) ≤ β(kv,t) + y(kv,t)

The constraints in (21) demand that the remaining leas-
ing duration dkv plus the number y(kv,t) of BTUs for VM
kv (for all v ∈ V , k ∈ Kv) is larger or equal to the sum
of remaining execution time ejip , the deployment time ∆jip
(if the corresponding service type is not yet deployed, i.e.,
z(jip ,kv,t) = 0), and the VM start-up time ∆, provided
the VM is not yet running (β(kv,t) = 0). As we conduct a
worst-case analysis, this remaining leasing duration has to
be greater or equal to the service execution times of all next
service invocations (for all p ∈ P , ip ∈ Ip, jip ∈ J∗ip ) that
should be scheduled on this VM including the correspond-
ing service deployment and VM start-up time.

This way, we make sure that service invocations sched-
uled on a VM instance will not be moved to another VM
instance during their invocation. The same restriction is
provided by the constraints in (22) for all currently running
service invocations. In order to make sure that the running
service invocations can be finished on the concrete VM kv
where they have previously been assigned to, we explicitly
consider this VM kv by using an additional index kv for
e
runkv
jip

in (22). Since these service invocations are already
running, we do not need to consider service deployment
and VM start-up times.

(ejip + ∆jip
· (1− z(jip ,kv,t))

+ ∆ · (1− β(kv,t)))x(jip ,kv,t)
≤ d(kv,t) + y(kv,t) ·BTU

(21)

(22) e
runkv
jip

≤ d(kv,t) + y(kv,t) ·BTU

The sum of the y(kv,t) ≥ 1 (for v ∈ V ) values indicates
the total number of VM instances and for how many BTUs
they have to be leased. This sum determines γ(v,t) in (23).
In this respect, it has to be noted that y(kv,t) includes both,
the decision, which concrete VM instance kv to lease and for
how many BTUs.

(23)
∑
k∈Kv

y(kv,t) ≤ γ(v,t)

Finally, in (24), we make sure that for all p ∈ P , ip ∈ Ip,
jip ∈ J∗ip each service invocation can be scheduled only on
one VM instance. In (25), we set the decision variables for all
service invocations already running (for all p ∈ P , ip ∈ Ip,
jip ∈ Jrunip

, v ∈ V, k ∈ Kv) in period t to 1. The constraints
in (26)-(29) restrict the decision variables x(jip ,kv,t) (for all
p ∈ P , ip ∈ Ip, jip ∈ J∗ip , v ∈ V, k ∈ Kv), y(kv,t) (for all
v ∈ V , k ∈ Kv), and epip (for all p ∈ P , ip ∈ Ip) to take
values from {0, 1}, N0, and R+, respectively.

(24)
∑
v∈V

∑
k∈Kv

x(jip ,kv,t) ≤ 1

(25) x(jip ,kv,t) = 1

(26) x(jip ,kv,t) ∈ {0, 1}

(27) g(kv,t) ∈ {0, 1}

(28) y(kv,t) ∈ N0

(29) epip ∈ R+

The optimization model for the current optimization
period t is obtained by assembling (1)-(29).

Having defined the optimization model used for com-
puting an optimal solution to the SIPP in period t, we are
now able to realize a multiperiod scheduling as described in
the next section.

4.3 Multiperiod Scheduling Approach

Applying the approach for computing an optimal solution
to the SIPP as presented in the previous Section 4.2, we
obtain a scheduling plan, i.e., which service invocation to
schedule in period τt. But as new requests for the invocation
of further process instances ip may arise during the sched-
uled service invocations, the previously computed optimal
solution might no longer be optimal. Thus, we may not
only account for one single optimization period but need
to conduct multiple optimization steps.

In each optimization step, we only schedule the next
service invocations for the process instances ip which cannot
be delayed any further according to (2). For this, we extract
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the decision variables x(jip ,kv,t), lease and start correspond-
ing VMs kv (if they have not been leased and started yet),
deploy respective service invocations jip on aforementioned
VMs (if they have not been deployed yet), and initiate and
monitor their invocation in terms of success and execution
time.

The next optimization period in time, i.e., where the
next optimization step will be carried out, is indicated by
the variable τt+1 – as a result of the optimization. If the
invocation of a process instance ip is finished until τt+1,
we determine whether a QoS violation occurred, i.e., we
compute epip . In case of a QoS violation, i.e., if epip > 0,
corresponding penalties accrue.

Immediately prior to the next optimization step, i.e., for
the next optimization period at τt+1, which then becomes
the new current optimization period at τt in (3), we need
to update certain parameters as described subsequently. We
set:

• β(kv,t) = 1 if VM kv runs in τt; 0 otherwise.
• z(jip ,kv,t) = 1 if service invocation jip with the same

service type stj = stjip is already deployed at VM
kv in τt; 0 otherwise.

• d(kv,t) = d(kv,t−1) + y(kv,t) · BTU − (τt − τt−1) to
account for the time elapsed between the previous
(τt−1) and the current (τt) optimization period when
computing the remaining leasing duration of VM kv
in optimization period τt.

Service invocations that have already been scheduled in
previous periods are referred to as jrunip

. For such service
invocations, we determine the remaining execution times
erunjip

as follows: We subtract the time elapsed since the point
in time where the corresponding service invocations have
been scheduled (τts ) from the sum of the services’ execution
times, the VM start-up times, and the services’ deployment
times. This is shown in (31) whereas êjip is defined in (30).
Optimization period τts refers to the period where service
invocation jip has been scheduled.

(30) êjip = ejip + ∆jip
+ ∆

(31) erunjip
=


0 , if jip is

finished

max
(

0, êjip − (τt − τts)
)

, else

Referring to (31), the remaining execution times are
considered as 0 if the corresponding service instances (jip )
have already been invoked, i.e., the service invocation is
finished. Further, by taking the maximum in (31), we make
sure not to consider negative remaining execution times.
This means, if an invocation lasts longer than expected, the
SIPP has to include this information in the next optimization
period, i.e., the corresponding process instance will have a
higher priority as it may get delayed otherwise.

Having set up and updated the necessary parameters for
the next period, we conduct another optimization step. Ac-
cording to the results of this newly conducted optimization
step, i.e., according to the values of the decision variables
x(jip ,kv,t), we schedule and invoke corresponding service in-
stances. Continuing this optimization and scheduling proce-
dure results in an efficient scheduling strategy, which takes

optimal scheduling decisions (at the optimization periods
τt) into account and minimizes unused, free VM capacities
(see the usage of fCkv and fRkv in (1)).

5 EVALUATION

As a proof of concept, the proposed SIPP model has been
thoroughly evaluated. We apply our prototype and testbed
framework ViePEP as presented in [13], [16]. ViePEP is a
BPMS and Cloud controller which acts as a middleware
between process owners and the Cloud-based computa-
tional resources. Clients can model processes and request
their enactments by ViePEP. The core ViePEP functionalities
are provided in a BPMS VM which is capable of receiving
requests and leasing as well as releasing computational
Cloud resources. Further, the BPMS VM is responsible for
computing how many resources are really needed, and
where to deploy the single service instances. For this, an
optimization model like the SIPP is needed.

The leased VMs are called Backend VMs and host the
actual software services, which have to be invoked in order
to process a single process step. Next to the services, a
monitoring component is deployed which monitors the
underlying VM in terms of CPU load and RAM usage.
Backend VMs are connected by a message queue to the
BPMS VM thus the monitored data can be transferred. In
addition, a Service Registry is provided, which hosts the
actual services in form of deployable Web ARchives (WAR-)
files.

The Backend VMs are based on an OSGi 4.3-based
framework2, i.e., Apache Karaf 2.3.23. As a communication
engine between the Backend VMs and the BPMS VM we
apply a JMS-based message queue, i.e., Apache ActiveMQ
5.7.04. ViePEP itself is implemented using Java. Both the
BPMS VM and the Backend VMs are running in a private
Cloud testbed running OpenStack (OpenStack Folsom5). To
solve the optimization problem, CPLEX6 is applied.

In the following subsections, we present the evaluation
setting (Section 5.1), the applied metrics (Section 5.2), and
discuss the quantitative evaluation results (Section 5.3).

5.1 Setting

5.1.1 Test Collection
To evaluate the proposed optimization approach, we choose
a subset of the SAP reference model [27], [28]. The SAP
reference model has been analyzed and exploited in various
scientific papers and provides a well-known and widely
accepted foundation for our evaluation [29]. Out of the 604
process models in the SAP reference model, we choose 10
exemplary process models which feature different degrees
of complexity in terms of process patterns.

Table 2 shows the basic characteristics of the 10 different
models, i.e., if a model includes AND-blocks, XOR-blocks,
Repeat Loops or a combination of them. Notably, each

2. http://www.osgi.org/Main/HomePage
3. http://karaf.apache.org/
4. http://activemq.apache.org
5. http://www.openstack.org/software/folsom/
6. http://www-01.ibm.com/software/commerce/optimization/

cplex-optimizer/

http://www.osgi.org/Main/HomePage
http://karaf.apache.org/
http://activemq.apache.org
http://www.openstack.org/software/folsom/
http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
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TABLE 2: Evaluation Process Models

Name |Steps| |XOR| |AND| |loops|
1 3 0 0 0
2 2 1 0 0
3 3 0 1 0
4 8 0 2 0
5 3 0 1 0
6 9 1 1 0
7 8 0 0 0
8 3 0 1 0
9 4 1 1 1
10 20 0 4 0

split (AND, XOR) also includes a join. Figure 2 shows two
example process models, namely No. 5, which contains an
XOR-block, and No. 9, which contains an AND leading to
two new branches. No. 9 also contains a Repeat Loop.

Start GoalStep 1

Step 2'

Step 2 Step 3

Start

Step 2B

Goal

Step 2A

Step 1

Result 1 > 0

Result 1 < 0

Fig. 2: Process No. 5 (top), Process No. 9 (bottom)

While process models in the SAP reference model usu-
ally contain some human-provided services, we are focusing
on software services. Hence, for all services in the pro-
cess models, we deploy services with differing degrees of
computational complexity, resource demands, and duration.
For this, we apply the lookbusy load generator7, which is a
configurable tool able to generate a particular CPU load for
a particular time span.

Following our assumption that services are shared
among processes, we generate 10 different software ser-
vices as described in Table 3. Duration and CPU Load
are mean values µcpu and µdur of normal distributions as
described in (32) and (33). We assume that the services’
actual resource consumption varies to some extent for each
service invocation. We assume σcpu = µcpu/10 respectively
σdur = µdur/10 and we only select values between 95% and
105% of the provided mean value to conduct a reproducible
evaluation.

(32) f(x, µcpu, σcpu) =
1

σcpu
φ

(
x− µcpu
σcpu

)

(33) f(x, µdur, σdur) =
1

σdur
φ

(
x− µdur
σdur

)
To estimate the need for computational resources for

a service invocation on different VMs, we assume that

7. http://devin.com/lookbusy/

each service invocation can be fully parallelized among the
available CPUs. This means, while the mean execution time
stays the same, the amount of required CPU load is divided
by the number of available cores. E.g., if a service invocation
needs 100% of a single core VM, only a quarter of it will be
used on a quad core VM, i.e., 25% for each core. This enables
4 times more simultaneous invocations of that particular
service instance on a quad core VM compared to a single
core VM.

TABLE 3: Evaluation Services

Service
No.

CPU Load
in% (µcpu)

Service Makespan
in sec. (µdur)

1 5 30
2 10 80
3 15 120
4 30 100
5 45 10
6 55 20
7 70 40
8 125 20
9 125 60
10 190 30

5.1.2 Applied SLAs
SLAs are defined on process level and contain the deadline
for the complete process enactment. To evaluate our opti-
mization approach under different settings, two different
SLAs are linked to each process model and evaluated in
separate runs. The first set of SLAs provides rather “lenient”
values, i.e., the SLAs are defined with significant leeway for
delays, while the second set provides more strict values.
For the lenient SLAs, the average violation threshold is set
to 2.5 ∗ EDIp , while for the strict SLAs, the threshold is
1.5 ∗ EDIp , where EDIp is the mean execution time of a
process model. Those values were chosen with having in
mind the start-up time for VMs ∆ and the time which is
needed to deploy the respective service onto them, i.e., the
service deployment time ∆stj .

5.1.3 Process Request Arrival Patterns
We apply different process request arrival patterns. The first
scenario follows a Constant arrival pattern, i.e., in regular
intervals (120 seconds), we choose 5 instances of different
process models, i.e., in the first round we request process
model No. 1 to 5, in the second round No. 6 to 10, the third
round again No. 1 to 5 etc. This is repeated until a total of
50 process instance requests are sent to ViePEP.

The second arrival pattern follows a Pyramid-like func-
tion and the process instances requested at particular points
of time are randomly chosen: A total of 100 process instances
are put in a randomly shuffled queue and a different amount
of process instance requests is sent simultaneously. We start
with a low number, e.g., with 1 instance a time, increase
it to a peak, and decrease it again to 1 instance request.
After a few iterations, the amount increases again slowly to
a peak until all 100 instance requests are sent to ViePEP. The
detailed function can be found in (34).

(34) f(n) = a


(n+ 1)/(n+ 1) if 0 ≤ n ≤ 3
d(n+ 1)/4e if 5 ≤ n ≤ 17
0 if 18 ≤ n ≤ 19
(n/n) if 20 ≤ n ≤ 35
d(n− 9)/20e if 36 ≤ n ≤ 51

http://devin.com/lookbusy/
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TABLE 4: Evaluation Results

Arrival Pattern Constant Arrival Pyramid Arrival
SIPP Baseline SIPP Baseline

SLA Level Strict Lenient Strict Lenient Strict Lenient Strict Lenient
Number of total
Process Requests 50 100

Interval between the
Process Request 120 seconds 60 seconds

Number of parallel
Process Requests y = 5

f(n)
(see (34))

SLA Adherence in %
(Standard Deviation)

94.0
(σ=2.0)

96.0
(σ=2.0)

68.66
(σ=18.33)

92.66
(σ=1.55)

100.0
(σ=0.0)

99.67
(σ=0.58)

67.33
(σ=3.06)

96.33
(σ=0.58)

Total Makespan in
Minutes
(Standard Deviation)

23.33
(σ=0.58)

31.33
(σ=4.51)

22.67
(σ=1.15)

25.67
(σ=2.89)

58.67
(σ=2.52)

57.67
(σ=0.58)

57.0
(σ=0.0)

53.33
(σ=1.15)

Leasing Cost
(Standard Deviation)

1136.0
(σ=80.88)

780.0
(σ=78.0)

1738.33
(σ=20.21)

1493.33
(σ=40.41)

2339.33
(σ=226.89)

2176.33
(σ=268.59)

3628.33
(σ=40.41)

3430.0
(σ=121.24)

Penalty Cost
(Standard Deviation)

10.0
(σ=3.61)

5.33
(σ=4.93)

42.67
(σ=15.31)

7.0
(σ=4.36)

0.0
(σ=0.0)

0.33
(σ=0.58)

88.0
(σ=18.36)

7.33
(σ=3.21)

Total Cost
(Standard Deviation)

1146.0
(σ=82.66)

785.33
(σ=81.13)

1781.0
(σ=18.74)

1500.33
(σ=38.89)

2339.33
(σ=226.89)

2176.67
(σ=268.78)

3716.33
(σ=37.55)

3437.33
(σ=124.42)

In this function, n represents the time in minutes, which
is used to calculate a and a represents the amount of process
instance requests which will be sent to ViePEP. Between
each bunch of a requests we assign a waiting period of 60
seconds. It remains to mention that for repeated evaluation
runs, the same order of process models in the queue is
applied in order to generate reproducible results.

The arrival patterns are depicted in Table 4 and Figures 3
and 4.

5.1.4 Baseline

To compare our optimization approach against a baseline,
we apply a basic strategy for resource provisioning and
scheduling which is based on existing work on process
scheduling [10], [30], [31]. It should be noted that we
adapted the strategy slightly to fit our basic assumption
that service instances may be shared simultaneously among
process instances and that Backend VMs host only one
particular service instance but there might be several con-
current service invocations.

Applying the baseline strategy (X VM for Each), ViePEP
leases a new quad-core Backend VM for a particular service
type once the workload on a particular VM is above an
upper threshold of 80%. The VM is released again once
the workload is below a lower threshold of 20%. These
values have been chosen based on experiences collected in
our former work [14], [15], [16]: The 20% lower threshold
was chosen due the fact that the operating system needs
up to 15%, which means, a overall system load of less
than 20% means that there are only few service invocations
running, and the VM is not needed anymore. The 80% upper
threshold has been chosen to be able to handle unexpected
deviations of needed resources for running service invoca-
tions. However, this does not mean that a VM will not be
used 100%.

Hence, there might be several VMs for the same service
type. This approach applies a basic scheduling of process
instances and in addition takes into account the near future,
i.e., VMs are leased for a fixed period which allows to pre-
pone future steps in order to use leased resources more
efficient. Further, the baseline also considers the deadline,

i.e., processes with an earlier deadline have to be enacted
before processes with a later deadline.

5.2 Metrics

To assess the quality of our optimization approach, we use
different metrics. For all numbers, we also calculate the
standard deviation σ. Since our optimization problem aims
at cost minimization, comparing the total cost arising from
VM leasing and penalties is an obvious option. For this,
we apply the following cost model: We assume that it is
cheaper to lease a quad-core VM than 4 single-core VMs
(respectively a dual-core VM is cheaper than 2 single-cores,
etc.). We also apply a linear penalty cost model based on
[10]: We assign 1 unit of penalty cost per 10% of time units of
delay. Penalty cost and VM leasing cost over the runtime of
all process instances result in the Total Cost metric. Second,
we measure the SLA Adherence, i.e., the percentage of pro-
cess requests which have been fulfilled on time. Third, we
measure the overall duration to process all requests (Total
Makespan), starting with the point of time when the first
request arrives and stopping once all service invocations
have been finished.

5.3 Results and Discussion

In order to get representative numbers, each scenario (with
the SIPP model and the baseline, with lenient and strict
SLAs) was executed 3 times over a time span of 7 days.
This has been done to avoid corruption of results due to
differing base loads in the OpenStack-based Cloud testbed.
While Table 4 presents the average of the conducted eval-
uation runs including their standard deviation as numbers,
Figures 3 and 4 show the results as charts. For each chart, on
the horizontal axis, the time in minutes is presented, on the
left vertical axis the number of leased CPU cores is shown
and on the right vertical axis, the number of parallel process
requests is presented. It remains to mention that while the
metric Total Makespan in Minutes in Table 4 represents the
time of executing all process requests, the Time in Minutes in
Figures 3 and 4 shows the time span of leasing the first VM
until releasing the last one.
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Fig. 3: Evaluation Results – Constant Scenario

First, we discuss the Constant Arrival scenario for both
SLA levels, lenient and strict. As it can be seen in Table 4, the
SLA adherence using our optimization approach is always
above 94% (with a rather small standard deviation of 2.00%).
This means, our optimization approach was capable of
detecting potential shortcomings in time, and rescheduled
the service invocations. However, the few SLA violations
can be reduced to the fact that it may be cheaper in some
situations to accept a short delay than leasing additional
VMs.

The SLA adherence for the baseline is much lower: As
the numbers show, almost a third of the process requests
were delayed resulting in four times higher penalty cost
(42.67) than using our SIPP model (10.0) for the strict SLA
level. The low amount of penalty cost for SIPP can be
explained by our leasing and releasing policy, i.e., we try
to lease exactly as many resources as needed, while the
baseline leases additional resources ad hoc, i.e., when a
specific threshold has been reached.

The fact that by applying the baseline each time a new
quad-core VM was leased, resulted in much higher cost,
namely almost 55% higher than applying the SIPP model.
Comparing the overall makespans, we see that the differ-
ence between lenient and strict SLA levels for the baseline
can be neglected, i.e., 22.67 vs. 25.67 minutes. Comparing
these numbers with SIPP, we see that the baseline was even
faster than our approach. This is due to the fact that leasing
a quad-core VM allows much more service invocations at a
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Fig. 4: Evaluation Results – Pyramid Scenario

certain point of time. However, due to the limited amount
of requested process instances, the leased resources were
not fully utilized, but have to be paid for the full BTU. This
can be seen in Figures 3a and 3b around minute 25, i.e., the
amount of leased CPUs literally falls from 40 to 0, compared
to our approach, where the releasing follows more a step-
like function.

Second, we discuss the Pyramid Arrival scenario. Again,
using our approach, we achieve a close to 100% SLA adher-
ence, thus we can assume that the scheduling plan created
by the SIPP model considered all given SLAs and assigned
the service invocations accordingly. The fact that the base-
line with strict SLA level ended up in more than 30% SLA
violations, can be linked to its leasing and releasing policy
of Cloud resources, i.e., it leases and releases the resources
based on a threshold. Comparing the baseline with our
approach with regard to time, the overall makespan for our
approach is slower in every case, however, less resources are
needed as our SIPP is able to distinguish what kind of VMs
are needed, i.e., whether a single-, dual-, triple-, or quad-
core Backend VM should be leased.

Notably, the SLA adherence for the strict and lenient
SLA levels differ for the SIPP. The evaluation shows that
applying stricter SLAs requires more resources in less time.
This can perfectly be seen in Figures 4a and 4b. Since a
higher-cored VM is comparably cheaper than several lower-
cored ones, they are more likely to be leased when a strict
SLA is applied (see Figure 4a) as more invocations have
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to be processed in shorter time. Since this enables a faster
invocation of the process instances, we observe a smaller
number of SLA violations. Comparing this to the lenient
SLAs (see Figure 4b), we see that less resources are acquired
at the beginning. Due to that, and since our services mirror
real-world services where the CPU load and execution time
is not deterministic, we experience a few SLA violations
(∼1%), which is acceptable by the definition of our SIPP
model.

As the numbers reveal, by using the SIPP approach,
we were able to reduce the overall cost by 41.66% for the
constant arrival pattern and 38.86% for the pyramid arrival
pattern. Further, we achieved a shorter total makespan
compared to the baseline. Therefore, it can be deducted that
leasing of additional resources in an ad hoc manner may
end up in faster process enactments, but will also result in
higher cost, since resources are always leased for a defined
BTU. Thus, the resources have to be paid, but may not be
needed later on.

Our evaluations have shown that using an optimization
model for creating a scheduling plan for complex process
patterns will create much lower cost than using an ad hoc
approach. Although a MILP solver is used to find an op-
timal solution to such problems, having real-world factors
in the evaluation, such as a fluctuation of resource usage,
the overall outcome will always be affected. However, the
fact that we experienced less than 5% of SLA violations
and an average cost improvement of almost 40% definitely
shows that using an optimization model for scheduling
service instances and their invocations among Cloud-based
computational resources should always be preferred over
an ad hoc approach.

6 RELATED WORK

Resource allocation and service scheduling in an automated
way is a major research challenge in the field of Cloud
computing [1], [11], and several approaches have observed
the problem with regard to single services or Scientific
Workflows (SWFs) [5]. Resource allocation approaches for
single services do not take into account the process perspec-
tive, i.e., resources are scaled rather in an ad hoc manner.
While resource allocation and scheduling for SWFs offers
interesting insights, there are certain differences between
business processes and SWFs in terms of QoS requirements,
dataflow- vs. control flow-orientation, or process instantia-
tion. These prevent a direct adaptation for the use in the
work at hand [32].

To the best of our knowledge, relatively little effort has
been invested into resource optimization and scheduling
for elastic processes. In general, resource constraints for
business processes are a relatively neglected topic [33]. Xu et
al. propose business processes scheduling considering time
and resource availability constraints. Doing so, a greedy
algorithm and two holistic algorithms are proposed [34]. Pla
et al. propose an approach to assign resources to process
tasks during runtime using an auction-based mechanism
[35]. However, in both cases only one task is assigned to
a particular resource. Cloud resources are not regarded and
scalability is also not taken into account.

In the field of elastic processes, Juhnke et al. provide an
extension to a standard BPEL engine which allows the usage
of Cloud-based computational resources leased in an on-
demand fashion in order to execute business processes [36].
Within their scheduling, the authors consider cost for VMs
as well as data transfer cost. Bessai et al. aim at cost or time
optimization or a pareto-optimal solution covering both
aspects [37]. Wei et al. allow generic QoS constraints, but do
not explicitly discuss deadline-constrained scheduling [38].
Instead, the goal is to optimize overall resource utilization.
Amziani et al. discuss the modeling of single elastic pro-
cesses using Petri nets and simulate elasticity strategies, but
do not take into account scheduling [39]. In contrast to our
work, none of these approaches takes into account any user-
specific SLAs, e.g., a deadline which defines the latest point
of time at which the process enactment has to be finished.

Euting et al. propose an approach for BPM-aware Cloud
computing which exploits the knowledge about scheduled
processes ensuring timeliness and improves the quality of
resource allocations [40]. In order to do so, they introduce
an IaaS resource controller based on fuzzy theory. The
solution monitors process executions and is able to predict
and control resource requirements for future steps. Other
researchers provide resource allocation approaches which
lease further public Cloud resources if a process cannot be
carried out in time in a private Cloud [41], [42]. The goal is
to enact a process cost-effectively given the deadline. In [41],
only single process instances are regarded. Contrary to that,
[42] allows resource sharing between processes. In contrast
to our work, both approaches do not regard service-based
processes, where services may be shared between different
process instances.

Wu et al. present a scheduling algorithm for service-
based processes [43]. Similar to our work, the goal is to
minimize the cost for a Cloud-based process landscape. In
the first stage, services which could fulfill a process step are
located. Services which are not available are deployed in a
private Cloud, while existing services could be located any-
where in the public Cloud. This scheduling is only carried
out for individual process instances. In the second step, a
local scheduler optimizes the task-to-VM assignment in the
local Cloud. For this, different metaheuristics are applied.
While this approach applies heuristics, it nevertheless comes
closest to our work.

Cai et al. also model the scheduling problem as a MILP
problem [44]. Similar to our work, their goal is to minimize
the cost under given time constraints. However, only single
processes are taken into account and consequently, resources
may not be shared among processes. The authors propose
a heuristic which is based on critical path optimization to
solve the problem. An optimal solution is also provided.

Klein et al. extend the “classic” service composition
problem to the Cloud [45] . The authors do not regard
service instantiation and invocations, but analyze QoS of
services distributed in the Cloud. While this topic is only
indirectly related to the work at hand, the approach could
be an interesting aspect for future research regarding elastic
process enactment in public Clouds.

None of the abovementioned approaches provides opti-
mal scheduling and resource allocation for complex process
patterns on a global level. Also, penalties are not taken
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into account during scheduling. Apart from Cai et al. [44]
and our own former work [16], none of the discussed
related work models the problem using MILP. However,
as mentioned in Section 1, our former work is restricted
in terms of penalties, recognition of BTUs, and complex
process patterns. Also, we have only applied a heuristic
solution to the optimization problem, while in the work at
hand, we facilitate an optimal solution.

7 CONCLUSION & FUTURE WORK

Using Cloud-based computational resources to enact busi-
ness processes seems to be an obvious choice. However,
there is still a lack of BPMS frameworks which are able
to lease and release resources for process enactment in
a cost- and time-efficient manner. Within this paper, we
presented a novel solution for scheduling complex elastic
processes. We defined the SIPP by considering a worst-case
scenario of the process structures. We used MILP to solve
the optimization model. Our solution has been thoroughly
evaluated and compared against an ad hoc baseline solution
to scheduling. The evaluation has shown that using such an
optimization model can heavily reduce leasing and penalty
cost compared to the baseline: In our evaluations the BPMS
issued on average 41.66% less cost for the constant arrival
pattern and 36.86% less cost for the pyramid arrival pattern.

In our future research, we want to extend the optimiza-
tion model and combine several Cloud providers resulting
in a hybrid Cloud environment. While this allows accessing
more Cloud-based computational resources and enables us
to enact more processes simultaneously, it also leads to more
complex research topics such as privacy aspects, i.e., some
services may only be invoked in private Clouds, data transfer
cost, i.e., transferring service instances and data from and
to different Cloud providers, and data storage cost, which
arise if a large amount of data has to be stored for a certain
amount of time.
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