
Internet of Things 5 (2019) 130–139

Contents lists available at ScienceDirect

Internet of Things

journal homepage: www.elsevier.com/locate/iot

Research article

Osmotic computing as a distributed multi-agent system: The

Body Area Network scenario

Lorenzo Carnevale

a , b , ∗, Antonio Celesti a , b , Antonino Galletta

a , b ,
Schahram Dustdar c , Massimo Villari a , b

a MIFT Department, University of Messina, Via F. Stagno D’Alcontres 31, S. Agata, Messina 98166, Italy
b IRCCS Centro Neurolesi “Bonino-Pulejo”, S.S.113 C/da Casazza, Messina, Italy
c Distributed Systems Group TU Wien, Argentinierstrasse 8, A-1040, Vienna, Austria

a r t i c l e i n f o

Article history:

Received 29 September 2018

Revised 4 January 2019

Accepted 6 January 2019

Available online 8 January 2019

Keywords:

Osmotic computing

Edge computing

Cloud computing

IoT

Orchestration

Elasticity

Artificial intelligence

a b s t r a c t

Nowadays, the latest technological advancements have changed the centralized Cloud

Computing model, going through Edge and Internet of Things (IoT), which are closer to

end users. In particular, current Cloud Computing programming models deal with the re-

cent evolution of the IoT phenomenon because smart devices are becoming more and more

pervasive, powerful and inexpensive. Therefore, services need to be placed near such de-

vices and resource orchestration techniques need to be redesigned. In this regard, Osmotic

Computing aims at providing a new computing paradigm based on the deployment and

migration strategies related to the infrastructures and applications requirements across

Cloud, Edge, and IoT layers. The objective of this scientific work is to propose an Osmotic

Computing architecture, based on a multi-agent system, according to a new software ab-

straction called MicroELement (MEL), that encapsulates resources, services and data nec-

essary to run IoT applications. A Body Area Network (BAN) scenario is proposed in order

to explore the Osmotic Computing potentiality and explain the reasons behind this new

paradigm.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

In the last ten years, we observed an unstoppable growth of complementary technologies, such as Cloud Computing, Big

Data, and Internet of Things (IoT). The latter has increased the connected devices number up to an estimate of 36 billion

in 2021, 1 thanks to the miniaturization and low cost of these devices. Among these, almost a billion will be the wearable, 2

whereas about 3 billion will be the smartphone users. 3 Therefore, the amount of global IP data traffic in the same year is

estimated at 280,0 0 0 petabytes per month

4 with the inevitable need to handle huge data amount from both migratory and
∗ Corresponding author at: MIFT Department, University of Messina, Via F. Stagno D’Alcontres 31, S. Agata, Messina 98166, Italy.

E-mail addresses: lcarnevale@unime.it , lcarnevale@irccsme.it (L. Carnevale), acelesti@unime.it (A. Celesti), angalletta@unime.it ,

antonino.galletta@irccsme.it (A. Galletta), dustdar@infosys.tuwien.ac.at (S. Dustdar), mvillari@unime.it , mvillari@irccsme.it (M. Villari).
1 https://www.statista.com/statistics/471264/iot- number- of- connected- devices- worldwide/ .
2 https://www.statista.com/statistics/487291/global- connected- wearable- devices/ .
3 https://www.statista.com/statistics/330695/number- of- smartphone- users- worldwide/ .
4 https://www.statista.com/statistics/499431/global- ip- data- traffic- forecast/ .

https://doi.org/10.1016/j.iot.2019.01.001

2542-6605/© 2019 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.iot.2019.01.001
http://www.ScienceDirect.com
http://www.elsevier.com/locate/iot
http://crossmark.crossref.org/dialog/?doi=10.1016/j.iot.2019.01.001&domain=pdf
mailto:lcarnevale@unime.it
mailto:lcarnevale@irccsme.it
mailto:acelesti@unime.it
mailto:angalletta@unime.it
mailto:antonino.galletta@irccsme.it
mailto:dustdar@infosys.tuwien.ac.at
mailto:mvillari@unime.it
mailto:mvillari@irccsme.it
https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/
https://www.statista.com/statistics/487291/global-connected-wearable-devices/
https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/
https://www.statista.com/statistics/499431/global-ip-data-traffic-forecast/
https://doi.org/10.1016/j.iot.2019.01.001

L. Carnevale, A. Celesti and A. Galletta et al. / Internet of Things 5 (2019) 130–139 131

computational point of view. Thus, the IoT model has become both a Big Data and a computation problem for each Cloud

and Edge layer.

One of the sectors with the most growth and involvement in the Cloud, IoT, Big Data trinomial, is healthcare. Indeed, this

industry is going further traditional storage and processing approaches, addressing new technological trends, such as Data

Analytics [1] . A study of the McKinsey Global Institute [2] highlighted the Big Data penetration for healthcare, focusing on

the potential to achieve insights.

Specifically, considering the Body Area Network (BAN) phenomenon, in which tens of sensors generate data streams con-

cerning a patient not only for real time analysis of the health status, but also to fill electronic medical records. Indeed, the

BAN is one of the best solution for matching telemedicine needs. Patients could be monitored in their familiar environment,

limiting the home-hospital movement and the hospital bed reservation; involving doctors in an offline diagnosis system

[3–5] . BAN involves the three technologies above mentioned. However, considering a complex environment in which the

amount of patients’ data streams grows up, receiving a real time alarm, about the health status, becomes a really Big Data

challenge.

On the other hand, the 2017 saw these three technologies converge towards a single point of contact, called Osmotic

Computing. It aims to identify, design, and implement a paradigm for managing data, resources and processes’ software

across IoT, Edge and Cloud systems, satisfying the end users’ Quality of Service (QoS). The Cloud-Edge Computing integration

[6] benefits have also been acknowledged by academic and industry initiatives, such as Cisco, Amazon AWS and the Open

Fog Consortium.

Purpose of this scientific work is to present the progresses regarding the Osmotic Computing architecture, considering

what discussed in our previous work [7] . Indeed, focusing on the microservices deployment aspect, the design of a dis-

tributed Osmotic orchestrator was investigated. In order to do that, we took advantage from the BAN issues, addressing its

problems through our proposal. Therefore, the core of the orchestration process will be an Artificial Intelligence (AI) mod-

ule that will learn through the monitoring of the Osmotic resources deployed on Cloud, Edge and/or IoT. Specifically, we

investigated a multi-agent based approach for orchestrating microservices from the Cloud to Edge and IoT environments.

With this work, we aim to further move the discussion around the Osmotic Computing to the next level. Here, we lay

the foundations to develop the heart of the topic, its orchestrator.

The rest of the paper is organized as follows. The section contains the related works. Section 3 presents the materials

useful for dealing with the discussion about the Osmotic architecture: the BAN scenario and its problems are presented in

Section 3.1 , the nomenclature used in this paper is in Section 3.2 and an overview about Osmotic Computing is reported in

Section 3.3 . Section 4 is the discussion about the architecture; whereas conclusion are reported in Section 5

2. Related work

Osmotic Computing was introduced in 2016 as a new promising paradigm for the integration between a centralized

Cloud layer and Edge, IoT layers [8] , whereas its basic principles and enabling technologies were presented in [9] . Such a

new paradigm, it could be used in different application scenarios requiring an intensive interaction between centralized

Cloud systems and Edge devices. In [10] it was considered to design a Hospital Information System (HIS) interconnecting

medical devices and patients’ personal body networks with Hospital Cloud systems; other recent application fields regarded

the efficient trust management in pervasive online social networks [11] and the management of IoT workflows [12] .

One of the major issue of Osmotic Computing is the service orchestration management considering hybrid Cloud, Edge,

and IoT systems. Up to now, service orchestration has been indipendently discussed considering both Cloud Computing

[13–15] , Edge Computing [16–18] and IoT [19] . For example, architecture for the dynamic management of end-to-end

connections in a Cloud environment considering Software Defined Networking (SDN) technologies were investigated in

[17,20–23] . An end-to-end SDN/NFV orchestration for video analytic using Edge and Cloud Computing over programmable

optical networks is described in [24,25] . A piece of framework and novel computing models for Grid and Cloud service

orchestration aimed at supporting scientists and business analysts at large scale were discussed in [26] . Dynamic resource

orchestration for multi-task applications in heterogeneous mobile Cloud Computing are discussed in [27] . Here, the resource

orchestration was formulated as multi-objective optimization problem considering energy consumption, cost, and availabil-

ity metrics. A distributed framework for Cloud Computing orchestration able to manage the migration of Virtual Machines

(VMs) was discussed in [28] . Platforms able to control high performance scientific workflow by means of Cloud applications

were discussed in [29–31] . An orchestration engine based on a temporal reconfiguration approach that partitions the

amount resources of Cloud servers proportionally between BPEL processes, applying a temporal partitioning algorithm, was

discussed [32] . A SLA (Service Level Agreement) driven orchestration based methodology for Cloud Computing services was

presented in [33] . The problem of security and privacy governance in Cloud Computing via SLAs and a policy orchestration

service were investigated in [34] . The state of the art of container-based orchestration in Cloud, even considering future

challenges, was discussed in [35] .

Regarding service orchestration in IoT, the distributed orchestration in large-scale systems was discussed in [36] ; whereas

the requirements of a semantic based service orchestration were investigated in [37] . Intent-based management and orches-

tration of heterogeneous openflow/IoT SDN domains was discussed in [38] , whereas testbed set-up for SDN orchestration

across network Cloud and IoT domains was presented in [39] . The opportunities of applying an orchestration model in

cognitive IoT solutions interconnecting instrumented worlds were discussed in [40] . An object-oriented model for object

132 L. Carnevale, A. Celesti and A. Galletta et al. / Internet of Things 5 (2019) 130–139

orchestration in smart environments able to extend and customize smartphones was described in [41] . A model for trust-

worthy orchestration in IoT using a public/subscribe approach and MQTT was presented in [42] . A scalable piece of frame-

work for the provisioning large-scale IoT deployments was discussed in [43] . The orchestration in distributed web-of-objects

for creation of user-centered IoT services was discussed in [44–46] .

Service orchestration in Edge Computing is a rather new topic. The deployment orchestration of microservices with ge-

ographical constraints using OpenStack Heat components was discussed in [47] ; whereas an end-to-end SDN/NFV orches-

tration for video analytic using Edge and Cloud Computing over programmable optical networks was discussed in [24] . An

adaptive orchestration platform called ECHO for hybrid dataflows across Cloud and Edge was described in [48] . In particu-

lar, the ECHO’s hybrid dataflow composition is able to operate on diverse data models such as streams, micro-batches and

files, and interface with native run-time engines like TensorFlow and Storm to execute them. An architecture able to move

IoT applications on Edge Computing layers was described in [49] . A SDN/NFV orchestration of 5G services in hybrid Cloud

multi-domain networks was discussed in [50] . A preliminary discussion about the use of container virtualization to orches-

trate Edge Computing environments was discussed in [51] . A method to enable ubiquitous Mobile Edge Computing (MEC)

has been considered in [52] ; Mobile Edge servers are located at the edge of the mobile network, removing the need to use

Cloud Computing for intensive computation and storage tasks.

On the other hand, focusing on the use case developed in this scientific work, the BAN necessity for looking through

Cloud platforms are several. The first challenge is accessing the data, capturing the sensors’ streams; therefore, data integra-

tion is required to address the variety of structures and formats; instead, for a reliable analysis, a cleaned dataset is really

important; as well the security rules; finally, data can be analyzed and organized in user friendly views. Any aspect above

mentioned falls in the Big Data domain and therefore, working with BAN means defining the typical Data Analytics work-

flow. Indeed, each of these is part of the Big Data workflow, as explained in [53] . Therefore, the execution does not matter

where is performed, but only that the output of a step is the input of the next one.

Clearly, solutions have been presented about the idea to improve the BAN quality using Cloud platforms for managing

streams. Among these, Fortino et al. compared in [54] the ECGaaS, Cloud BAN e-Health and BodyCloud platforms. The first

one [55] provides an ECG Data Analytics service, in which patients’ records are collected in order to perform a real time

ECG beat analysis. The Cloud Ban e-Health [56] supports data streams collection from hospitalized and at home patients

in order to monitor the health status. Finally, BodyCloud [57,58] is a SaaS solution which support management processing

and analysis of body sensor data streams. The interesting innovation regards a workflow-oriented decision support to take

actions according to the analyzed data.

Differently from the aforementioned scientific works, in this paper we focus on the Osmotic Computing solution for

addressing the Cloud, Edge and IoT integration issue. The idea is to propose a possible solution to the BAN problem regarding

the integration with Cloud Computing. Specifically, we have investigated a multi-agent based approach for orchestrating

microservices from the Cloud to Edge and IoT environments. Therefore, we aimed to improve the literature about that topic,

moving the discussion even closer to the practical vision. Thus, in the next pages a discussion about how to design an

Osmotic orchestrator is faced.

Regarding security, it is absolutely a main topic considering Cloud, Edge and IoT communication, mostly for our solution.

However, this subject is not focus of this scientific work. For sure, before to start the implementation of the proposed

architecture, it will be extended with all the security needed knowledge. On our side, we already started the study of a

solution to securely manage hybrid Cloud-Edge environments in [6] , based on an instant-message communication solution;

further, we defined the Software Defined Membrane [59] as the main component responsible to orchestrate the osmotic

transfer of MicroELements, basing on Private Blockchain technologies. On the other hand, the scientific community is rich of

valuable works. In [60] , a survey of IoT and Cloud Computing security issues has been presented. Instead, a location privacy-

preserving algorithm with good advantages in term of lower probability of re-leaving the user’s location has been presented

in [61] .

3. Material

3.1. Scenario

This Section explains why the Osmotic Computing could become an important research point for the next years, going

through the BAN scenario issues. Referring to Fig. 1 , our scenario involves several Body Sensor Units (BSU), such as IoT de-

vices, applied on the patients’ body; in addition, a single Body Control Unit (BCU) gathers data produced by the devices,

with the purpose of forwarding to the remote nodes. Indeed, about the latter, a distributed hospital system has the tech-

nologies to collect and analyze these data; specifically, this scenario considers any building as a Edge node. Our research

background about the matter comes from the experience matured at the IRCCS Centro Neurolesi “Bonino Pulejo” (Messina,

Italy). It is a Scientific Institute for Recovery and Care with the mission in the field of neuroscience for the prevention, re-

covery and treatment of individuals with severe acquired brain injury, besides spinal cord and neurodegenerative diseases,

by integrating highly specialized healthcare, technological innovation and higher education. The IRCCS Institute is spread

among a couple of buildings and, as shown in Fig. 1 , these are the remote computing nodes involved in our scenario.

As said in Section 1 , this scenario requires the definition of an Analytic workflow [62] . Referring to a real use case

encountered during our research at the IRCCS Institute, the patients have been dressed with a set of BSU such as

L. Carnevale, A. Celesti and A. Galletta et al. / Internet of Things 5 (2019) 130–139 133

Fig. 1. Body Area Network traditional scenario.

electrocardiography (ECG), blood pressure (BP), body temperature (BT), heart rate (HR) and breathing rate (RR). Data pro-

duced by those are collected by a BCU, which is a Microprocess unit-like device, and forwarded to the hospital Edge Com-

puting system. Thus, data need to be integrated going over the different formats. Perhaps, sensors generate XML and JSON

data, that are parsed according with the database structure in which should be stored. For helping the data scientists’ work,

parsed data are cleaned by inconsistent entries; as well cleaned by not meaningful values. Therefore, data are organized in

the database in order to be ready for a comparison with those coming from other sources. Finally, analysis and visualization

phases are useful for triggering the real time alarm about the patient’s health status.

What is really important, regarding the described scenario, is the microservice nature of each above mentioned step.

This means that the phases are independent from platform and network, small in size development and short in time

deployment. Moreover, the questions are: what about a huge scenario with many BANs? What if an intensification of the

reading raises a health status alarm? It should increase in terms of patients and data streams and, therefore, overload the

communications from/to the Edge nodes, causing a not well timed behavior.

3.2. Osmotic MELs

The convergence between Cloud Computing, Edge, and IoT requires an Osmotic management of resources, services, and

data, whose elements can move across different heterogeneous infrastructures. More specifically, referring to Fig. 2 , IoT

applications deployed in distributed environments can be viewed as a graph of MicroELementS (MELs), composed of:

• MicroServices (MS) for implementing specific functionalities, which can be deployed and migrated across the virtualized

infrastructures;

• MicroData (MD) for representing information flows from/to IoT devices, which can have in different data formats.

The MELs graph needs to be orchestrated across Cloud, Edge, and IoT according to specific QoS requirements. Let us re-

mark that MELs are not physical resources, but represent software and data abstractions. According to Fig. 2 , the leaf node

is represented by MicroUserService (MUS, i.e., an IoT application) and MicroOperationalService (MOS, i.e., an Operating Sys-

tem) along with MicroUserData (MUD, i.e., User Data) and MicroOperationalData (MOD, i.e., MS configuration). The MELs are

smartly deployed on Cloud and Edge in virtual components, such as lightweight containers (e.g., Docker, Google Container,

Amazon Compute Cloud Container, etc.); whereas uPython-VM, uLUA-VM, Javascript on IoT have emerged as a lightweight

134 L. Carnevale, A. Celesti and A. Galletta et al. / Internet of Things 5 (2019) 130–139

Fig. 2. MicroElementS hierarchy.

Fig. 3. Osmotic computing scenario.

alternative to the hypervisor-based approach used in the Cloud Data Center. A container encapsulates only well-defined

software components (e.g., database servers), reducing the deployment overhead and increasing instance density on a single

device. For instance, an example of MS could be a Docker Container and a MD contains JSON-based metadata. Moreover,

MD can be both passive data (can be read or updated on devices) and active (can be queried), e.g., MD stored in NoSQL DBs

as MongoDB, Cassandra, etc.

3.3. Osmotic computing platform

Borrowing the term from chemistry, “osmosis” represents the MELs spread across the Cloud Data Center (CDC) and the

Edge micro Data Center (EmDC). The Osmotic Computing overcomes the MELs elastic management concept, since the de-

ployment and migration strategies are related to the requirements of both infrastructures (i.e., load balancing, reliability,

availability) and applications (i.e., detection, implementation, awareness of the context, proximity, QoS). Moreover, in order

to overcome the heterogeneity of IoT resources, the MEL abstraction allows us to support a virtual environment that can

be adapted according to the available hardware equipment. Looking at Fig. 3 , the Layer 3 (L3), the one closest to end users

and/or physical entities, shows how MELs are deployed in embedded devices. L3 IoT devices communicate according to

standardized protocols, such as CoAP (Constrained Application Protocol), supported by the RESTful interface.

L. Carnevale, A. Celesti and A. Galletta et al. / Internet of Things 5 (2019) 130–139 135

Furthermore, Fig. 3 shows MELs (at L2) deployed in different embedded devices (i.e., IoT Gateway such as Raspberry Pi

3). Gateway nodes perform operations (mean, min, max, filtering, aggregation, etc.) on the data flow acquired from L3. More

often, these devices acquire data with a predefined frequency, depending on specific system requirements and the device

ability to gather data.

In Fig. 3 , a more complex computational and storage capability is available to MELs at L1, allowing to perform simulations

and/or analyses on data.

The Cloud, Edge and IoT infrastructure also has its own target function which influences the performed operations. For

example, Edge (L2 in Fig. 3) generally includes devices with limited resources (i.e., limited battery power, network range,

etc.) which must perform operations by these constraints. Therefore, the storage and compute capacity in the Edge must be

shared among multiple concurrent data streams (probably from L3 in Fig. 3), limiting the analysis to the streams number

and time constraints. Cloud operations (L1 in Fig. 3) are based on pre-agreed goals between a client and a data center

provider, such as throughput, response times, costs, etc. It is a key research challenge for real-time streaming applications

understanding how an application hosted on a Cloud in L1 can interact and coordinate with the IoT (in L3) and the Edge (in

L2). Driven by QoS requirements, the MELs can be distributed among Cloud, Edge and IoT. The distribution of data analysis

through these different infrastructures can improve the overall performance of the IoT application and reduce the load on

the main network.

Orchestration in the Osmotic environment smartly configures the movement and deployment of MELs in response to

QoS, security/privacy requirements and runtime requests. Indeed, static and fixed approaches are not able to provide IoT

solutions. The Osmotic Computing aims to abstract the services (MELs) and the infrastructure (IoT, Cloud, Edge) to decouple

the applications from the hardware and enable the possibility to flow the services from Cloud to Edge and/or IoT and

viceversa.

For example, considering a situation in which there are many IoT devices, which in particular situations are collecting

large volumes of data on L3. Furthermore, considering that given the stability and capacity of the network, the amount of

data produced and their subsequent transmission to a Cloud (L1) are unsustainable from the network point of view. If these

data were to be analyzed in the Cloud, this would be unrealistic and the current system may not be able to continue. Using

the Osmotic approach, when a bottleneck of this type is detected, a Smart Orchestrator moves the processing of some data

to the Edge (L2).

4. Osmotic agents

The Sections already developed provide a background about the Osmotic Computing and the reasons behind the intro-

duction of that.

Our aim is to use the Osmotic Computing for resolving the problem highlighted in the BAN scenario. First of all, we would

like to redesign the scenario implementing the Osmotic concepts; therefore, we discuss how to design an architecture that

enables what has been wrote so far.

The question we want to answer now is: may Osmotic Computing improves the BAN scenario, explained in Section 3.1 ?

In order to give an answer, let us assume the following points:

• the Hospital System is an Edge layer composed by several physical machines. It means the IRCCS Institute’s buildings

are federated for creating an Edge layer. It represents the big computation node of the Osmotic architecture; and is

responsible for the support execution;

• the BCU is another Edge layer composed by one physical machine. It is a lightweight computation node that manages

the BAN, allowing the in-local execution of the BSUs’ generated data;

• each physical machine is an agent. Therefore, the architecture is a distributed multi-agent system spread in two Edge

layers, just considering the point-to-point ideal case. On the other hand, in the complex case, in which more BANs

communicates with the Hospital System, the communication is only between each BSU agent and the Hospital System

agents. For privacy reasons, the communication among BCUs is not allowed.

Thus, from a general point of view, we assume the workflow starts inside the BCU agents. Consequently, the BCU Edge

layers could perform each operation required by the scenario, without the Hospital Edge layer support. However, if a step

is overloaded, than the BCU moves that to the Hospital System agents. In this context, the microservices choice is clear

because of the lightweight migration nature of these.

4.1. Characteristics

The architecture has been proposed in this scientific work is a distributed multi-agent system. It is a set of agents dis-

tributed among the Edge and Cloud layers, that is the environment, interacting through a specific arrangement (i.e., BCU

agents to Hospital agents). The agent independently works in the environment, monitoring the latter about the microser-

vices overloading. In this context, a prompt awareness of the necessity to migrate a microservice is provided by means of

artificial intelligence algorithms for relocating the process, perhaps through a microservice redeployment.

Each agent is self-orchestrated, which means the agents are able to manage the workflow as a set of microservices. The

agent could use containers or vms manager for deploying the microservices. Moreover, it monitors each agent about the

136 L. Carnevale, A. Celesti and A. Galletta et al. / Internet of Things 5 (2019) 130–139

Fig. 4. Osmotic structure referred to the BAN scenario.

Fig. 5. High level design of the Osmotic Agent.

overloading for allowing the microservice migration to another agent. In this context, an opened question regards which is

the owner of the migrated microservice. Is it the agent in which the microservice will migrate or the agent which ask for

that? What happened when a microservice needs to migrate again to a third agent? In order to give an explanation and

simplify this problem, let us now considering the logical structure in Fig. 4 .

Up the line, there are the 1st level agents, designed as the nearest ones to the data sources. Considering the scenario in

Section 3.1 , these are the BCUs; that are set one by one in Fig. 4 . Under the line, there are the 2nd level agents, which are the

remote nodes with high performance, designed for supporting the 1st level agents. In our scenario, these are the Hospital

System agents, collected together in a federated environment. In this new context, we aim to assign the management of

the workflow to the 1st level agents, in which the microservices has been deployed the first time. In this way, these agents

could track the microservices life cycle and maintain their ownership.

Considering the microservices as lightweight processes embedded in containers, the flow management over the network

is handled through an overlay network driver. Docker is one of the service provider; and it is able to automatically route

packets to/from hosts.

4.2. Agent orbit

What has been discussed so far clarifies the hierarchy of the agents distributed among the layers; and provides key points

in the evolution design. However, the most important question, regarding the migration trigger, is still opened. Considering

the scenario discussed in this paper, the prompt response in the health status alarm generation is the main Key Performance

Indicator (KPI). Translating it in functionalities our agents could perform, the migration exists according to the microservice’s

response time. Moreover, considering a Service Level Agreement (SLA), if the analyzed (i.e., predicted) response time affects

the SLA, then the microservices has to be migrated.

Thus, the response time is the barycenter of the agent design, which we propose driven by a Monitor, Analyze, Plan and

Execute (MAPE) loop. Agent monitors the microservices; it analyses (i.e, predict next) the microservices’ monitored data; 1st

level agent plans to migrate or not a microservice to another 2nd level agent; 2nd level agent plans to communicate to 1st

level agent the microservice overloaded; finally, agent executes the plan.

4.3. Agent design

According to the characteristics discussed so far, the first design tentative is showed in Fig. 5 . This represents the first

ever designed Osmotic Agent, which task is to mark devices (i.e. microprocessors, vms or physical machines) through the

installation of a software that enables communication from/to other agents. From a practical point of view, this component

L. Carnevale, A. Celesti and A. Galletta et al. / Internet of Things 5 (2019) 130–139 137

Fig. 6. Logical architecture of the Osmotic Agent.

Table 1

How the Executor runs microservices and microservices

workflow.

Run microservice Run microservices workflow

It receives and downloads the MS Repository URL

It receives and downloads the MUD

It composes and runs the MEL

It composes and runs the workflow

should be a lightweight vm, that interacts with the host operating system in order to enable the MAPE loop; i.e., it monitors

itself and other vm and deploys MELs on the same level.

Referring to Fig. 6 , the Osmotic Agent is designed on three layers. The Interface layer includes the RESTful APIs for using

the MAPE functionalities. Specifically, it is a HTTP interface useful for enabling the MELs creation and migration; and a

bidirectional communication among the agents. The Storage layer includes an In-Memory database that implements the

Publish/Subscribe messaging paradigm. It works as message broker, in which the MAPE components, in the Service layer,

are publisher and/or subscriber. Finally, the Service layer includes the MAPE loop features, that are explained in detail in the

following.

The Execute component is the starting point of our orbit. Considering the workflow discussed in the scenario, it has

two ways: the Executor could run independent microservices, which not affect others if migrated; otherwise, it could run

microservices’ workflow, in which the migration generates a reconfiguration of the microservice located one step before. In

order to enable that, let us assume:

• MS as MUS + MOS, a container with application;

• MUD as a JSON configuration file;

• MEL as MS+ MUD;

• workflow as MELs composition.

The operations to complete the execution of both ways are summarized in Table 1 , in which the microservice only

running is a special case of the microservices’ workflow. Indeed, firstly, the Executor receives the MS Repository URL and

downloads the MS from there. The idea is to limit the network load during the migration, moving inside a message just

an URL, that is a string; therefore, the Executor can independently downloads the right container version. In the same way,

it receives and downloads the MUD; and, next, the Executor composes the MEL as a container with its configuration file.

Finally, considering the workflow requirements, the Executor composes the MELs in a pipeline before to run it.

The Monitor component has an important task in the MAPE loop and mostly in the dynamic migration. How already

discussed in Section 4.2 , we aim to use the response time as KPI of our loop, considering the scenario. This component

has to monitor the response time of each microservice, in order to study the past and present values, according with the

environment. The hard part of the response time monitoring is the necessity to query the microservices by means of a tool

not already present in those. Our idea is to inject a serverless-like application. More specifically, for each microservice, we

aim to inject a lightweight one-shot web service, which performs a HTTP GET. Therefore, the response time of that will be

calculated and collected. Thanks to it the Monitor component collects the response times, which values are mandatory to

build a dataset useful to the Analysis component.

138 L. Carnevale, A. Celesti and A. Galletta et al. / Internet of Things 5 (2019) 130–139

For the Analysis component, we propose two Machine Learning techniques that could cover our analytic need. A deeper

discussion about it will be deal with the future works, but now let us talk just about the concept. One of the techniques is

the Reinforcement Learning. It is a sub area of Machine Learning, which aims to learn through the environment’s observa-

tions, in order to adapt itself by means of a long term reward. The latter is just a performance evaluation, which, considering

our scenario, regards the response time evaluation in the future. Thus, according to SLA, it generates or not the migration.

The most common Reinforcement Learning algorithm is the Q-learning, but Deep Reinforcement Learning techniques have

been developed in the last years. On the other hand, a Time Series Analysis could be another solution for our purpose. It is

a discrete time sequence used to create model able to predict future value based on the observed values. Also in this case,

considering our scenario, this method could help us to predict the future value of the response time that, according to SLA,

generates or not the migration.

Finally, the Plan component uses the analysis results for performing two tasks:

• nothing if the migration is not necessary;

• asks for 2nd level agents available for the microservice hosting and then invokes the Execute component for enabling

the migration.

5. Conclusion

This paper investigated how to design an Osmotic Computing architecture through a distributed multi-agent system. We

demonstrate a scenario such as the Body Area Network (BAN) to prove the potentiality of the new computational paradigm.

We focused primarily on the Osmotic Computing concepts in order to provide the base of the paradigm; then a new Osmotic

Computing BAN scenario has been proposed for describing the components of the architecture. Specifically, a MAPE loop is

how we have designed a multi-agent able to enable the new paradigm.

As future work, we aim at validating our architecture through an implementation and a comparison with the existing

others.

Acknowledgments

This work has been supported by Cloud for Europe (C4E) Tender: REALIZATION OF A RESEARCH AND DEVELOPMENT

PROJECT (PRE-COMMERCIAL PROCUREMENT) ON “CLOUD FOR EUROPE”, Italy-Rome: Research and development services and

related consultancy services Contract notice: 2014/S 241-424518. Directive: 2004/18/EC. (http://www.cloudforeurope.eu/).

References

[1] L. Carnevale, R.S. Calabr, A. Celesti, A. Leo, M. Fazio, P. Bramanti, M. Villari, Towards improving robotic-assisted gait training: can big data analysis help

us? IEEE Internet Things J. (2018) 1, doi: 10.1109/JIOT.2018.2855937 .

[2] McKinsey Global Institute, Big Data: The Next Frontier for Innovation, Competition, and Productivity, June 2011. McKinsey Global Institute.
[3] A. Celesti, M. Fazio, A. Romano, A. Bramanti, P. Bramanti, M. Villari, An oais-based hospital information system on the cloud: analysis of a NoSQL

column-oriented approach, IEEE J. Biomed. Health Inf. 22 (3) (2018) 912–918, doi: 10.1109/JBHI.2017.2681126 .
[4] D. Mulfari, A. Celesti, A. Puliafito, M. Villari, How cloud computing can support on-demand assistive services, in: Proceedings of the 10th International

Cross-Disciplinary Conference on Web Accessibility, in: W4A ’13, ACM, New York, NY, USA, 2013, pp. 27:1–27:4, doi: 10.1145/2461121.2461140 .
[5] M. Fazio, A. Celesti, F.G. Mrquez, A. Glikson, M. Villari, Exploiting the FIWARE cloud platform to develop a remote patient monitoring system, in:

Proceedings of the IEEE Symposium on Computers and Communication (ISCC), 2015, pp. 264–270, doi: 10.1109/ISCC.2015.7405526 .

[6] A. Celesti, M. Fazio, A. Galletta, L. Carnevale, J. Wan, M. Villari, An approach for the secure management of hybrid CloudEdge environments, Fut. Gen.
Comput. Syst. 90 (2019) 1–19, doi: 10.1016/j.future.2018.06.043 .

[7] L. Carnevale, A. Celesti, A. Galletta, S. Dustdar, M. Villari, From the cloud to edge and IoT: a smart orchestration architecture for enabling osmotic
computing, in: Proceedings of the 32nd International Conference on Advanced Information Networking and Applications Workshops (WAINA), IEEE,

2018, doi: 10.1109/waina.2018.00122 .
[8] M. Villari , M. Fazio , S. Dustdar , O. Rana , R. Ranjan , Osmotic computing: a new paradigm for edge/cloud integration, IEEE Cloud Comput. 3 (6) (2016)

76–83 .

[9] M. Villari , A. Celesti , M. Fazio , Towards osmotic computing: looking at basic principles and technologies, Adv. Intell. Syst. Comput. 611 (2018) 906–915 .
[10] L. Carnevale , A. Galletta , A. Celesti , M. Fazio , M. Paone , P. Bramanti , M. Villari , in: Big data his of the IRCCS-ME future: the osmotic computing

infrastructure, 189, 2018, pp. 199–207 .
[11] V. Sharma , I. You , R. Kumar , P. Kim , Computational offloading for efficient trust management in pervasive online social networks using osmotic com-

puting, IEEE Access 5 (2017) 5084–5103 .
[12] M. Nardelli , S. Nastic , S. Dustdar , M. Villari , R. Ranjan , in: Osmotic flow: osmotic computing + IoT workflow, 4, 2017, pp. 68–75 .

[13] F. Mrmol , M. Kuhnen , Reputation-based web service orchestration in cloud computing: a survey, Concurr. Comput. 27 (9) (2015) 2390–2412 .

[14] R. Ranjan , R. Buyya , S. Nepal , D. Georgakopulos , A note on resource orchestration for cloud computing, Concurr. Comput. 27 (9) (2015) 2370–2372 .
[15] M. Katyal , A. Mishra , in: Orchestration of cloud computing virtual resources, 2014, pp. 833–838 .

[16] Y. Jiang , Z. Huang , D. Tsang , Challenges and solutions in fog computing orchestration, IEEE Netw. (2017) .
[17] T. Taleb , K. Samdanis , B. Mada , H. Flinck , S. Dutta , D. Sabella , On multi-access edge computing: a survey of the emerging 5g network edge cloud

architecture and orchestration, IEEE Commun. Surv. Tutor. 19 (3) (2017) 1657–1681 .
[18] Z. Wen , R. Yang , P. Garraghan , T. Lin , J. Xu , M. Rovatsos , Fog orchestration for internet of things services, IEEE Internet Comput. 21 (2) (2017) 16–24 .

[19] C. Consel , M. Kabac , in: Internet of things: from small-to large-scale orchestration, 2017, pp. 1748–1755 .

[20] A. Mayoral , R. Vilalta , R. Muoz , R. Casellas , R. Martnez , SDN orchestration architectures and their integration with cloud computing applications, Opt.
Switch. Netw. 26 (2017) 2–13 .

[21] R. Bonafiglia , G. Castellano , I. Cerrato , F. Risso , in: End-to-end service orchestration across SDN and cloud computing domains, 2017 .
[22] Y. Kim , S. Kang , C. Cho , S. Pahk , in: SDN-based orchestration for interworking cloud and transport networks, 2016, pp. 303–307 .

[23] A. Mayoral , R. Vilalta , R. Muoz , R. Casellas , R. Martnez , in: Performance analysis of SDN orchestration in the cloud computing platform and transport
network of the adrenaline testbed, 2015 . 2015-August

http://www.cloudforeurope.eu/
https://doi.org/10.1109/JIOT.2018.2855937
https://doi.org/10.1109/JBHI.2017.2681126
https://doi.org/10.1145/2461121.2461140
https://doi.org/10.1109/ISCC.2015.7405526
https://doi.org/10.1016/j.future.2018.06.043
https://doi.org/10.1109/waina.2018.00122
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0007
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0007
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0007
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0007
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0007
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0007
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0008
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0008
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0008
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0008
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0009
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0009
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0009
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0009
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0009
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0009
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0009
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0009
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0010
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0010
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0010
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0010
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0010
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0011
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0011
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0011
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0011
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0011
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0011
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0012
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0012
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0012
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0013
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0013
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0013
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0013
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0013
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0014
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0014
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0014
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0015
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0015
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0015
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0015
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0016
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0016
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0016
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0016
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0016
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0016
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0016
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0017
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0017
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0017
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0017
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0017
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0017
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0017
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0018
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0018
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0018
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0019
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0019
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0019
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0019
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0019
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0019
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0020
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0020
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0020
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0020
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0020
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0021
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0021
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0021
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0021
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0021
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0022
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0022
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0022
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0022
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0022
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0022
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0022

L. Carnevale, A. Celesti and A. Galletta et al. / Internet of Things 5 (2019) 130–139 139

[24] R. Vilalta , I. Popescu , A. Mayoral , X. Cao , R. Casellas , N. Yoshikane , R. Martnez , T. Tsuritani , I. Morita , R. Muoz , in: End-to-end SDN/NFV orchestration
of video analytics using edge and cloud computing over programmable optical networks, 2017 .

[25] A . Galletta, A . Cuzzocrea, A . Celesti, M. Fazio, M. Villari, A scalable cloud-edge computing framework for supporting device-adaptive big media
provisioning, in: Proceedings of the 18th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID), 2018, pp. 669–674,

doi: 10.1109/CCGRID.2018.0 0 099 .
[26] F. Messina , R. Mikkilineni , G. Morana , Middleware, framework and novel computing models for grid and cloud service orchestration, Int. J. Grid Util.

Comput. 8 (2) (2017) 71–73 .

[27] Q. Qi , J. Liao , J. Wang , Q. Li , Y. Cao , in: Dynamic resource orchestration for multi-task application in heterogeneous mobile cloud computing, 2016,
pp. 221–226 . 2016-September

[28] R. Weingartner , G. Brascher , C. Westphall , in: A distributed autonomic management framework for cloud computing orchestration, 2016, pp. 9–17 .
[29] J. de Carvalho Silva , F. de Carvalho Junior , A platform of scientific workflows for orchestration of parallel components in a cloud of high performance

computing applications, Lect. Notes Comput. Sci. (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 9889
LNCS (2016) 156–170 .

[30] L. Miroslaw , M. Pantic , H. Nordborg , in: Unified cloud orchestration framework for elastic high performance computing in the cloud, 2016, pp. 291–298 .
[31] K. Shams , M. Powell , T. Crockett , J. Norris , R. Rossi , T. Soderstrom , in: Polyphony: a workflow orchestration framework for cloud computing, 2010,

pp. 606–611 .

[32] Z. Brahmi , C. Gharbi , Temporal reconfiguration-based orchestration engine in the cloud computing, Lect. Notes Bus. Inf. Process. 176 LNBIP (2014)
73–85 .

[33] M. Irfan , Z. Hong , N. Aimaier , L. Zhuguo , SLA (service level agreement) driven orchestration based new methodology for cloud computing services,
Adv. Mater. Res. 660 (2013) 196–200 .

[34] M. Mont , K. McCorry , N. Papanikolaou , S. Pearson , in: Security and privacy governance in cloud computing via SLAs and a policy orchestration service,
2012, pp. 670–674 .

[35] A. Tosatto , P. Ruiu , A. Attanasio , in: Container-based orchestration in cloud: state of the art and challenges, 2015, pp. 70–75 .

[36] E. Yigitoglu , L. Liu , M. Looper , C. Pu , in: Distributed orchestration in large-scale IoT systems, 2017, pp. 58–65 .
[37] E. Chindenga , M. Scott , C. Gurajena , in: Semantics based service orchestration in IoT, Part F130806, 2017 .

[38] W. Cerroni , C. Buratti , S. Cerboni , G. Davoli , C. Contoli , F. Foresta , F. Callegati , R. Verdone , in: Intent-based management and orchestration of heteroge-
neous openflow/ioT SDN domains, 2017 .

[39] S. Fichera , M. Gharbaoui , P. Castoldi , B. Martini , A. Manzalini , in: On experimenting 5g: testbed set-up for SDN orchestration across network cloud and
IoT domains, 2017 .

[40] C. Li , F. Darema , V. Chang , Distributed behavior model orchestration in cognitive internet of things solution, Enter. Inf. Syst. (2017) 1–21 .

[41] L. Bergesio , A. Bernardos , J. Casar , in: An object-oriented model for object orchestration in smart environments, 109, 2017, pp. 4 40–4 47 .
[42] M. Bottone , G. Primiero , F. Raimondi , V. De Florio , in: A model for trustworthy orchestration in the internet of things, 2016, pp. 171–174 .

[43] M. Vögler , J.M. Schleicher , C. Inzinger , S. Dustdar , A scalable framework for provisioning large-scale IoT deployments, ACM Trans. Internet Technol. 16
(2) (2016) 11:1–11:20 .

[44] N. Lee , H. Lee , W. Ryu , K. Heo , in: Web of object service architecture for device orchestration and composition, 2014 .
[45] Y. Kim , S. Lee , Y. Jeon , I. Chong , S. Lee , in: Orchestration in distributed web-of-objects for creation of user-centered IoT service capability, 2013,

pp. 750–755 .

[46] Y. Kim , S. Lee , I. Chong , Orchestration in distributed web-of-objects for creation of user-centered IOT service capability, Wirel. Pers. Commun. 78 (4)
(2014) 1965–1980 .

[47] M. Villari , A. Celesti , G. Tricomi , A. Galletta , M. Fazio , in: Deployment orchestration of microservices with geographical constraints for edge computing,
2017, pp. 633–638 .

[48] P. Ravindra , A. Khochare , S. Reddy , S. Sharma , P. Varshney , Y. Simmhan , Echo: an adaptive orchestration platform for hybrid dataflows across cloud
and edge, Lect. Notes Comput. Sci. (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 10601 LNCS (2017)

395–410 .

[49] A. Hegyi , H. Flinck , I. Ketyko , P. Kuure , C. Nemes , L. Pinter , in: Application orchestration in mobile edge cloud : Placing of IOT applications to the edge,
2016, pp. 230–235 .

[50] R. Vilalta , A. Mayoral , R. Casellas , R. Martinez , R. Munoz , in: SDN/NFV orchestration of multi-technology and multi-domain networks in cloud/fog
architectures for 5g services, 2016 .

[51] S. Hoque , M. Brito , A. Willner , O. Keil , T. Magedanz , in: Towards container orchestration in fog computing infrastructures, 2, 2017, pp. 294–299 .
[52] Y. Jararweh, M. Alsmirat, M. Al-Ayyoub, E. Benkhelifa, A. Darabseh, B. Gupta, A. Doulat, Software-defined system support for enabling ubiquitous

mobile edge computing, Comput. J. 60 (10) (2017) 1443–1457, doi: 10.1093/comjnl/bxx019 .

[53] Informatica, The Big Big Data Workbook, Informatica.
[54] G. Fortino, G.D. Fatta, M. Pathan, A.V. Vasilakos, Cloud-assisted body area networks: state-of-the-art and future challenges, Wirel. Netw. 20 (7) (2014)

1925–1938, doi: 10.1007/s11276- 014- 0714- 1 .
[55] S. Pandey, W. Voorsluys, S. Niu, A. Khandoker, R. Buyya, An autonomic cloud environment for hosting ECG data analysis services, Fut. Gen. Comput.

Syst. 28 (1) (2012) 147–154, doi: 10.1016/j.future.2011.04.022 .
[56] A . Lounis , A . Hadjidj , A . Bouabdallah , Y. Challal , Secure and scalable cloud-based architecture for e-health wireless sensor networks, in: Proceedings of

the International Conference on Computer Communication Networks (ICCCN), Munich, Germany, 2012, p. 1 .
[57] G. Fortino, G.D. Fatta, S.F. Ochoa, C.E. Palau, Engineering future interoperable and open IoT systems, J. Netw. Comput. Appl. 81 (2017) 59–61, doi: 10.

1016/j.jnca.2017.01.017 .

[58] G. Fortino, D. Parisi, V. Pirrone, G.D. Fatta, BodyCloud: a SaaS approach for community body sensor networks, Fut. Gen. Comput. Syst. 35 (2014) 62–79,
doi: 10.1016/j.future.2013.12.015 .

[59] M. Villari, A. Galletta, A. Celesti, L. Carnevale, M. Fazio, Osmotic computing: software defined membranes meet private/federated blockchains, in:
Proceedings of the IEEE Symposium on Computers and Communications (ISCC), IEEE, 2018, doi: 10.1109/iscc.2018.8538546 .

[60] C. Stergiou, K.E. Psannis, B.-G. Kim, B. Gupta, Secure integration of IoT and cloud computing, Fut. Gen. Comput. Syst. 78 (2018) 964–975, doi: 10.1016/
j.future.2016.11.031 .

[61] G. Sun, V. Chang, M. Ramachandran, Z. Sun, G. Li, H. Yu, D. Liao, Efficient location privacy algorithm for internet of things (IoT) services and applica-

tions, J. Netw. Comput. Appl. 89 (2017) 3–13, doi: 10.1016/j.jnca.2016.10.011 .
[62] L. Carnevale , A. Galletta , A. Celesti , M. Fazio , M. Paone , P. Bramanti , M. Villari , Big data his of the IRCCS-me future: the osmotic computing infrastruc-

ture, in: A. Longo, M. Zappatore, M. Villari, O. Rana, D. Bruneo, R. Ranjan, M. Fazio, P. Massonet (Eds.), Cloud Infrastructures, Services, and IoT Systems
for Smart Cities, Springer International Publishing, Cham, 2018, pp. 199–207 .

http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0023
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0023
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0023
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0023
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0023
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0023
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0023
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0023
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0023
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0023
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0023
https://doi.org/10.1109/CCGRID.2018.00099
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0025
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0025
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0025
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0025
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0026
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0026
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0026
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0026
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0026
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0026
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0026
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0027
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0027
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0027
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0027
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0028
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0028
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0028
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0029
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0029
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0029
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0029
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0030
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0030
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0030
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0030
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0030
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0030
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0030
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0031
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0031
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0031
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0032
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0032
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0032
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0032
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0032
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0033
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0033
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0033
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0033
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0033
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0034
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0034
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0034
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0034
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0035
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0035
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0035
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0035
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0035
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0036
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0036
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0036
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0036
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0037
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0037
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0037
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0037
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0037
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0037
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0037
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0037
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0037
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0038
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0038
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0038
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0038
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0038
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0038
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0039
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0039
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0039
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0039
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0040
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0040
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0040
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0040
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0041
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0041
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0041
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0041
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0041
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0042
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0042
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0042
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0042
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0042
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0043
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0043
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0043
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0043
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0043
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0044
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0044
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0044
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0044
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0044
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0044
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0045
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0045
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0045
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0045
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0046
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0046
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0046
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0046
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0046
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0046
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0047
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0047
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0047
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0047
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0047
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0047
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0047
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0048
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0048
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0048
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0048
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0048
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0048
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0048
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0049
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0049
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0049
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0049
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0049
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0049
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0050
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0050
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0050
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0050
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0050
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0050
https://doi.org/10.1093/comjnl/bxx019
https://doi.org/10.1007/s11276-014-0714-1
https://doi.org/10.1016/j.future.2011.04.022
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0054
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0054
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0054
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0054
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0054
https://doi.org/10.1016/j.jnca.2017.01.017
https://doi.org/10.1016/j.future.2013.12.015
https://doi.org/10.1109/iscc.2018.8538546
https://doi.org/10.1016/j.future.2016.11.031
https://doi.org/10.1016/j.jnca.2016.10.011
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0060
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0060
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0060
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0060
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0060
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0060
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0060
http://refhub.elsevier.com/S2542-6605(18)30075-1/sbref0060

	Osmotic computing as a distributed multi-agent system: The Body Area Network scenario
	1 Introduction
	2 Related work
	3 Material
	3.1 Scenario
	3.2 Osmotic MELs
	3.3 Osmotic computing platform

	4 Osmotic agents
	4.1 Characteristics
	4.2 Agent orbit
	4.3 Agent design

	5 Conclusion
	Acknowledgments
	References

