
FOCUS: MICROSERVICES

50 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIET Y 074 0 -74 5 9 /18 / $ 3 3 . 0 0 © 2 018 I E E E

From Monolithic
to Microservices
An Experience Report from
the Banking Domain

Antonio Bucchiarone, Fondazione Bruno Kessler

Nicola Dragoni, Technical University of Denmark and Örebro
University

Schahram Dustdar, TU Wien

Stephan T. Larsen, Danske Bank

Manuel Mazzara, Innopolis University

// This experience report of a real-world case

study from the banking domain demonstrates

how reimplementing a monolithic architecture

into microservices improves scalability.

The case study is based on Danske Bank’s

FX Core currency conversion system. //

MICROSERVICES1–3 ARE AN ar-
chitectural style that originated
from service-oriented architecture
(SOA),4 with the idea of bringing
into the small (within an application)
those concepts that worked in the

large—i.e., for cross-organization
business-to-business workflow. The
shift toward microservices is a sen-
sitive matter these days, seeing
as how several companies are in-
volved in a major refactoring of their

back-end systems to accommodate
the advantages of the new para-
digm. This is the case for the system
and the institution considered in
this article—i.e., the FX Core of
Danske Bank. (FX stands for foreign
exchange, which is also called forex.
It is the exchange of currencies—i.e.,
the conversion from one currency to
another.)

In monolithic architectures, the
modularization abstractions rely on
the sharing of resources of the same
machine (memory, databases, or
files), and the components are there-
fore not independently executable.
A notable problem of monoliths in-
volves scalability and, in general, all
the aspects related to change.5 In the
microservice paradigm, a system is
structured by composing small inde-
pendent building blocks, each with a
dedicated persistence tool and com-
municating exclusively via message
passing. In this kind of organization,
the complexity is moved to the level
of coordination of services.

Each microservice is expected
to implement a single business
capability—in fact, a very limited
system functionality—bringing ben-
efits in terms of service scalability.
Since each microservice represents
a single business capability, which
is delivered and updated indepen-
dently, discovering bugs or adding
minor improvements does not have
any impact on other services and on
their releases. In common practice, it
is also expected that a single service
can be developed and managed by
a single team.2,6 The idea to have a
team working on a single microser-
vice is rather appealing: to build a
system with a modular and loosely
coupled design, you should pay at-
tention to the organization structure
and its communication patterns be-
cause they, according to Conway’s

 MAY/JUNE 2018 | IEEE SOFTWARE 51

law,7 directly impact the produced
design. So, if you create an organi-
zation with each team working on
a single service, that structure will
make the communication more effi-
cient not only on the team level but
also within the whole organization,
improving the resulting design in
terms of modularity.

Microservices is not just another
name for SOA. Indeed, there are
some notable differences. In SOA,
services are not required to be self-
contained, with data, a user in-
terface, and their own persistence
tools—e.g., a database.

SOA does not focus on inde-
pendent deployment units and re-
lated consequences; it is simply an
approach for business-to-business
inter communication. The idea of
SOA was to enable business-level
programming through business pro-
cess engines and languages such as
WS-BPEL (Web Services Business
Process Execution Language) and
BPMN (Business Process Model and
Notation) that were built on top of
the vast literature on business mod-
eling.8 Furthermore, the empha-
sis was all on service orchestration
rather than on service development
and deployment.

In this article, we report the expe-
rience of migration from monolithic
to microservices of Danske Bank’s
FX Core system. The documentation
of the original system architecture
was sparse, and the vast majority of
technical details were obtained by
direct conversations and interviews
with the FX Core team and by man-
ually inspecting the source code.

Migration Process
The migration process was business-
driven and outside-in; i.e., the sys-
tem was designed and implemented
one business functionality at a time.

The business functionalities were
defined mostly by communicating
with stakeholders (FX traders) and
were iteratively added according to
the level of priority for the business
itself. We considered case by case
whether a functionality should result
in a new service or not. If the busi-
ness functionality seemed isolated
and big enough, or it was shared
among numerous other business
functionalities, then it resulted in
a new service. In some cases, some
functionalities might have been ini-
tially included together in a service
and only later moved into their own
separate services. For example, this
occurred when the functionality was
too big or was equally required by
multiple services.

One of the benefits of this ap-
proach is that it has distanced the
team from the old implementation,
hindering the possibility of reimple-
menting everything as a distributed
monolith.

Danske Bank’s FX Core
System
FX encompasses everything from
private transactions performed in
foreign countries (e.g., Internet shop-
ping from abroad and the use of
credit cards while traveling) to cor-
porations moving their financial

assets from one currency to another
and exporting or importing products
to and from foreign markets.

FX has grown with globalization
and is now the largest financial mar-
ket in the world, averaging a daily
transaction volume of roughly five
trillion dollars. This results in some
transactions reaching hundreds of
millions of dollars. Unlike the stock
exchange, there is no centralized
market. Instead, FX is decentral-
ized and done over the counter; i.e.,
traders negotiate prices and trade
directly between each other. Trad-
ers are typically the largest multi-
national banks, trading on behalf of
their customers or themselves. Ad-
ditionally, due to the decentralized
and global nature of FX, the market
is open 24 hours a day, five days a
week.9

The FX IT system (see Figure 1)
is part of the bank’s Corporates and
Institutions (C&I) department, and
it acts as a gateway between the in-
ternational markets and Danske
Bank’s clients and traders. C&I’s
clients are mainly large financial in-
stitutions and large multinational
corporations. The FX Core system is
part of FX IT; it handles trades and
line checks—i.e., checking whether
a client has the financial collat-
eral (e.g., stocks, bonds, or cash) to

FIGURE 1. The FX IT system. FX stands for foreign exchange.

Danske Bank
FX IT

Danske Bank
clients

External clients

Markets

52 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: MICROSERVICES

perform a trade and how a trade will
affect that collateral. This includes
registration, validation, and post-
trade management.

So that the information can be
publicly available, all the confiden-
tial details such as concrete names
of protocols, external providers, and
specific services have been withheld.
Furthermore, the internal logic of
certain components cannot be de-
scribed in depth.

FX Core Microservice
Architecture
Danske Bank’s new FX Core archi-
tecture is based on the micro service
architectural style and is intended to

completely replace the old monolithic
architecture (see Figure 2).

The experience of migration, ex-
plained next, is an example of how
this kind of architecture can be im-
plemented in an enterprise setting.
Here, we identify major improve-
ments of the migration, regarding
both architectural aspects and com-
pany processes:

• Containerization/Docker. All
services are now hosted in Linux
containers on the Docker Swarm
Cluster. This enables the use of
the suite of tools provided by
Docker. For example, the system
uses Docker Compose to deploy

the whole architecture with a
single command. All these op-
erations had to be done manu-
ally before. Also, all container
images are hosted in an internal
Docker Registry, a central repos-
itory. New images are deployed
to the internal registry when a
new version of a service is suc-
cessfully built and tested by the
continuous-integration system.

• Automation. All the services in
the architecture now have an
automated continuous integra-
tion and continuous deployment
(CICD) pipeline. The tooling
coming with Docker Swarm has
an API enabling automation of

FIGURE 2. The new FX Core microservice architecture.

External-provider APIs

External providers

LinecheckService

TradingService

DataSyncService

FailoverService

ConfigurationService

DB2
(mainframe)

Mainframe

cAdvisor

LoggingService

MonitoringService

lcinga

Kibana

ElasticSearch

Cassandra

PostgreSQL

PostgreSQL

TracingService

AuthService

ResponsibilityService

RabbitMQ

Redis
cache

 MAY/JUNE 2018 | IEEE SOFTWARE 53

several infrastructural tasks—
e.g, rolling updates—that can
be utilized within the CICD
pipeline. Modern DevOps ap-
proaches for CI and CD can now
be applied, bringing full automa-
tion to the process and following
the DevOps corporate philoso-
phy of reducing barriers between
teams. Dockers allows support-
ing such an approach.

• Orchestration. Docker Swarm
allows orchestration. Failed
services can be automatically
restarted, providing self-healing.
The orchestration tooling also
allows service discovery and
load balancing.

• Integration. Services now inte-
grate via message-passing chore-
ography, with RabbitMQ as the
messaging system (see Figure 2).

On the IT department’s roadmap
for the internal datacenters is the
adoption of the Red Hat OpenShift
(www.openshift.com) Iaas/PaaS (in-
frastructure as a service/platform as
a service) platform. However, at the
moment, the infrastructure consists
of virtual machines that are ordered
through a web portal and are set up
manually by the FX Core team.

Solving Monolithic
Problems
Let us now see how the microservice
architecture has improved or solved
some of the problems identified in
the monolithic architecture.

The large components of the
monolithic architecture, which were
highly coupled, had overlapping re-
sponsibilities, and were integrated
in a multitude of ways, have been
substituted with several independent
microservices. Just the names of the
services reveal their responsibility,
and they are generally much smaller

compared to the large monolithic
services. They do not integrate di-
rectly, resulting in looser coupling
and less chance of feature overlap-
ping in the future. For example, in
the monolithic architecture, trade
registration and line checks were
handled by both ForexAPI and
RequestService. In the microservice
architecture, TradingService and
LineCheckService are handling these
tasks individually, instead.

The monolithic architecture had
many shared components, but in
the microservice architecture, this
has been reduced to only one shared
component—the Lambda frame-
work. Lambda is very minimal and
is only meant to be a framework to
connect to the infrastructure and
provide standard formatting meth-
ods for, e.g., messages, logs, and
health checks.

Due to the criticality of the infor-
mation involved and the clearance
necessary to take action, the main-
frame will still be attached to the
micro service architecture for some
time to come. But, over time, the func-
tionalities from the mainframe will be
implemented as new services. This will
in the future result in all FX function-
ality being extracted, totally decou-
pling the mainframe from the system.
For now, the impact of the mainframe
has been reduced by caching.

Since the microservices are in-
dependent, loosely coupled, and
isolated components, they can be
deployed individually, without af-
fecting the other components. This
makes deployment very simple, and
the usage of Docker and Linux con-
tainers ensures that services run in
the same environment during lo-
cal testing, on test servers, and in
production.

The whole reimplementation al-
lows the team to kill all paths into

the system that they do not control.
Since the team controls the whole
infrastructure with Docker, includ-
ing databases and ports open to out-
side clients, the team can eliminate
all unwanted access. This allows the
team to develop open APIs for cli-
ents and traders in the bank to use,
thus eliminating direct database que-
ries and the like. This gives the team
full ownership and control of inter-
nal implementation details.

Internally, the microservices
integrate only via messaging on
RabbitMQ. Due to using message-
based choreography, the services
do not call each other directly, thus
resulting in very low coupling and
no interfaces to violate. The system
does communicate to external sys-
tems via other paradigms, such as
proprietary protocols to external
providers and, in the future, REST
APIs. (REST stands for Representa-
tional State Transfer.)

The team aimed for a polyglot
architecture, meaning that it is not
technology dependent. The team is
no longer dependent on the .NET
platform or MS SQL databases and
can implement the services in what-
ever language it likes. You might ar-
gue that the team is just becoming
dependent on other technologies,
such as Docker, but Linux contain-
ers are becoming a standard through
the Open Container Initiative (www
.opencontainers.org).

The microservice architecture has
centralized logging in the form of
LoggingService, ElasticSearch, and
Kibana, allowing for the aggregation
of logs from all services. The same
applies to monitoring implemented
with MonitoringService, Icinga, and
cAdvisor, allowing for aggregated
monitoring of metrics. Centralizing
and aggregating both logs and moni-
toring gives the team a complete

54 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: MICROSERVICES
A

B
O

U
T
 T

H
E

 A
U

T
H

O
R

S

ANTONIO BUCCHIARONE is a senior

researcher in the Distributed Adaptive

Systems research unit at the Bruno Kessler

Foundation. His main research interests

are self-adaptive (collective) systems,

applied formal methods, runtime service

composition and adaptation, AI planning

techniques, and dynamic software archi-

tectures. Bucchiarone received a PhD in

computer science and engineering from the

IMT School for Advanced Studies Lucca.

Contact him at bucchiarone@fbk.eu.

STEPHAN T. LARSEN is a software

engineer at Danske Bank Copenhagen. He

has been the key actor in the transition of

Danske Banks’ FX Core system to a mi-

croservice architecture. Larsen received an

MSc in computer science and engineering

from the Technical University of Denmark.

Contact him at stephantl@gmail.com.

NICOLA DRAGONI is an associate

professor of distributed systems and

security at DTU Compute at the Technical

University of Denmark and a professor

of computer engineering at Örebro Uni-

versity’s Centre for Applied Autonomous

Sensor Systems. His research interests

primarily include pervasive computing and

cybersecurity, focusing on the Internet of

Things, fog computing, mobile systems,

and microservices. Dragoni received a PhD

in computer science from the University of

Bologna. Contact him at ndra@dtu.dk.

MANUEL MAZZARA is a professor of

computer science at Innopolis University.

His research interests include software

engineering, service-oriented architecture

and programming, concurrency theory,

formal methods, and software verifica-

tion. Mazzara received a PhD in computing

science from the University of Bologna.

Contact him at m.mazzara@innopolis.ru.

SCHAHRAM DUSTDAR is a full professor

of computer science and heads TU Wien’s

Distributed Systems Group. His research

interests include distributed systems,

the Internet of Things, and complex and

autonomic software systems. He’s the editor

in chief of Computing; a co-editor in chief of

ACM Transactions on the Internet of Things;

and an associate editor of ACM Transactions
on the Web, ACM Transactions on Internet
Technology, IEEE Transactions on Cloud Com-
puting, and IEEE Transactions on Services
Computing. He’s also on the editorial boards

of IEEE Internet Computing and Computer. He

has received the ACM Distinguished Scientist

award and the IBM Faculty Award. He is an

elected member of Academia Europaea,

where he’s the Informatics Section chair-

man, and is an IEEE Fellow. Contact him at

dustdar@dsg.tuwien.ac.at.

 MAY/JUNE 2018 | IEEE SOFTWARE 55

system status overview, allowing it
to act proactively on suspicious and
faulty behavior.

W e have all learned
that introducing this
amount of distribution

to a system results in a whole new
range of problems to solve. Scal-
ability,10 loose coupling, and high
coherence (and other microservice
benefits) were almost given from
the get-go, as we can simply repli-
cate services to scale, and they are
split up nicely according to domain
boundaries. Now, aspects like fault-
tolerance mechanisms, concurrency
handling, and monitoring are of
increasing importance. This situa-
tion has been valuable, as these as-
pects, when solved, create value in
the system. With the monolith, these
problems never occurred; the prob-
lems there were mostly about solv-
ing object-oriented complexity and
deploying such a monster. We have
also experienced how important in-
frastructure and automation is, since
there are so many moving parts we
need to both manage and connect.

The future will see growing atten-
tion regarding the matters discussed
here and the development of new
programming languages intended
to address the microservice para-
digm.11 Languages for microservices
should be able to model micro-
services in a uniform way and at a
level of abstraction that also allows
for their easy interconnection.12 In a
system like the one described in this
article, the remodeling of part of the
system would be significantly sim-
pler if the programming language
used natively offers microservice as
a first-class entity (just think about
the existence of large, highly coupled
components).

Microservice composition tech-
niques are needed; they have to be
used when

• frequent revision of micro-
services is needed,

• changes occur in existing offered
functionalities (i.e., microservice
behavior), and

• adjustment of business policies
and objectives (i.e., composition
requirements) is required.13

This is a typical situation in a dy-
namic market such as FX, with con-
tinuously changing policies.

References
 1. A. Balalaie, A. Heydarnoori, and P.

Jamshidi, “Microservices Architecture

Enables DevOps: Migration to a Cloud-

Native Architecture,” IEEE Software,

vol. 33, no. 3, 2016, pp. 42–52.

 2. N. Dragoni et al., “Microservices:

Yesterday, Today, and Tomorrow,”

Present and Ulterior Software Engi-

neering, B. Meyer and M. Mazzara,

eds., Springer, 2017, pp. 195–216.

 3. C. Pahl and P. Jamshidi, “Micro-

services: A Systematic Mapping Study,”

Proc. 6th Int’l Conf. Cloud Comput-

ing and Services Science (CLOSER 16),

vol. 1, 2016, pp. 137–146.

 4. M.C. MacKenzie et al., Reference

Model for Service Oriented Architec-

ture 1.0, OASIS, 12 Oct. 2006.

 5. N. Kratzke and P.-C. Quint, “Under-

standing Cloud-Native Applications

after 10 Years of Cloud Computing—

a Systematic Mapping Study,” J.

Systems and Software, Apr. 2017,

pp. 1–16.

 6. D.L. Parnas, “On the Criteria to Be

Used in Decomposing Systems into

Modules,” Comm. ACM, vol. 15,

no. 12, 1972, pp. 1053–1058.

 7. M.E. Conway, “How Do Committees

Invent?,” Datamation, vol. 14, no. 4,

1968, pp. 28–31.

 8. Z. Yan et al., “Business Process

Modeling: Classifications and Per-

spectives,” Proc. 1st Int’l Working

Conf. Business Process and Services

Computing (BPSC 07), 2007, pp.

222–227.

 9. A. MacEachern, “How Are Interna-

tional Exchange Rates Set?,” Investo-

pedia; www.investopedia.com

/ask/answers/forex/how-forex

-exchange-rates-set.asp.

 10. N. Dragoni et al., “Microservices:

How to Make Your Application

Scale,” Perspectives of System Infor-

matics, LNCS 10742, Springer, 2017,

pp. 95–104.

 11. C. Guidi et al., “Microservices: A

Language-Based Approach,” Present

and Ulterior Software Engineer-

ing, B. Meyer and M. Mazzara, eds.,

Springer, 2017, pp. 217–225.

 12. K. Mikhail et al., “Domain Objects

and Microservices for Systems De-

velopment: A Roadmap,” Proc. 5th

Int’l Conf. Software Eng. for Defence

Applications, Springer, 2016, pp.

97–107.

 13. A. Bucchiarone et al., “A Context-

Aware Framework for Dynamic

Composition of Process Fragments in

the Internet of Services,” J. Internet

Services and Applications, vol. 8,

no. 1, 2017, pp. 6:1–6:23.

Read your subscriptions
through the myCS
publications portal at

http://mycs.computer.org

