
Optimizing Elastic IoT Application Deployments
Michael V€ogler , Johannes Michael Schleicher, Christian Inzinger, and Schahram Dustdar , Fellow, IEEE

Abstract—Applications in the Internet of Things (IoT) domain need to integrate and manage large numbers of heterogenous devices.

Traditionally, such devices are treated as external dependencies that reside at the edge of the infrastructure and mainly transmit

sensed data or react to their environment. Recently however, a fundamental shift in the basic nature of these devices is taking place.

More and more IoT devices emerge that are not only simple sensors or transmitters, but provide limited execution environments. This

opens up an opportunity to utilize this previously untapped processing power in order to offload parts of the application logic directly to

these edge devices. To effectively exploit this new type of device, the design of IoT applications needs to change to explicitly consider

devices that are deployed in the edge of the infrastructure. This will not only increase the overall flexibility and robustness of IoT

applications, but also reduce costs by cutting down expensive communication overhead. Therefore, to allow the flexible provisioning of

applications whose deployment topology evolves over time, a clear separation of independently executable application components is

needed. In this paper, we present a framework for the dynamic generation of optimized deployment topologies for IoT cloud

applications that are tailored to the currently available physical infrastructure. Based on a declarative, constraint-based model of the

desired application deployment, our approach enables flexible provisioning of application components on edge devices deployed in the

field. Using our framework, applications can furthermore evolve their deployment topologies at runtime in order to react on

environmental changes, such as changing request loads. Our framework supports different IoT application topologies and we show

that our solution elastically provisions application deployment topologies using a cloud-based testbed.

Index Terms—Internet of things, cloud computing, application deployment, topology optimization

Ç

1 INTRODUCTION

INTERNET of Things (IoT) applications are expected to man-
age and integrate an ever-increasing number of heteroge-

neous devices to sense and manipulate their environment.
Increasingly, such devices do not only serve as simple sen-
sors or actors, but also provide constrained execution envi-
ronments with limited processing, memory, and storage
capabilities. In the context of our work, we refer to such devi-
ces as IoT gateways. By exploiting this accrued execution
capabilities offered by IoT gateways, applications can offload
parts of their business logic to the edge of the infrastructure
to reduce communication overhead and increase application
robustness [1]. This explicit consideration of edge devices in
IoT application design is especially important for applica-
tions deployed on cloud computing [2] infrastructure. The
cloud provides access to virtually unlimited resources that
can be programmatically provisioned with a pay-as-you-go
pricing model, enabling applications to elastically adjust
their deployment topology to match their current resource
usage and according cost to the actual request load.

In addition to the traditional design considerations for
cloud applications, IoT cloud applications must be designed
to cope with issues arising from geographic distribution of
edge devices, network latency and outages, as well as

regulatory requirements. We argue that edge devices must
be treated as first-class citizens when designing IoT cloud
applications and the traditional notion of cloud resource
elasticity [3] needs to be extended to include such heteroge-
neous IoT gateways deployed at the infrastructure edge,
enabling interaction with the physical world. To allow for
the flexible provisioning of applications whose deployment
topology changes over time due to components being off-
loaded to IoT gateways, applications need to be composed of
clearly separated components that can be independently
deployed. The microservices architecture [4] recently eme-
rged as a pragmatic implementation of the service-oriented
architecture paradigm and provides a natural fit for creating
such IoT cloud applications. We argue that future large-scale
IoT systemswill use this architectural style to copewith their
inherent complexities and allow for seamless adaptation of
their deployment topologies. Uptake of the microservice
architecture will furthermore allow for the creation of IoT
application markets (e.g., [5]) for practitioners to purchase
and sell domain-specific application components.

IoT gateways can be considered an extension of the avail-
able cloud infrastructure, but their constrained execution
environments and the fact that they are deployed at cus-
tomer premises to integrate and connect to local sensors and
actors requires special consideration when provisioning
components on IoT gateways. By carefully deciding when to
deploy certain components on gateways or cloud infrastruc-
ture, IoT cloud applications can effectivelymanage the inher-
ent cost-benefit trade-off of using edge infrastructure,
leveraging cheap communication at the infrastructure edge
while minimizing expensive (and possibly slow or unreli-
able) communication to the cloud, while also considering
processing, memory, and storage capabilities of available

� M. V€ogler, J.M. Schleicher, and S. Dustdar are with the Distributed Sys-
tems Group, TU Wien, Wien 1040, Austria.
E-mail: {voegler, schleicher, dustdar}@dsg.tuwien.ac.at.

� C. Inzinger is with the Software Evolution & Architecture Lab (s.e.a.l.),
University of Zurich, Z€urich 8006, Switzerland. E-mail: inzinger@ifi.uzh.ch.

Manuscript received 27 Dec. 2015; revised 7 Aug. 2016; accepted 7 Oct. 2016.
Date of publication 13 Oct. 2016; date of current version 5 Oct. 2018.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TSC.2016.2617327

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 11, NO. 5, SEPTEMBER/OCTOBER 2018 879

1939-1374� 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0001-9404-3340
https://orcid.org/0000-0001-9404-3340
https://orcid.org/0000-0001-9404-3340
https://orcid.org/0000-0001-9404-3340
https://orcid.org/0000-0001-9404-3340
https://orcid.org/0000-0001-6872-8821
https://orcid.org/0000-0001-6872-8821
https://orcid.org/0000-0001-6872-8821
https://orcid.org/0000-0001-6872-8821
https://orcid.org/0000-0001-6872-8821
mailto:
mailto:

IoT gateways. It is important to note that changes in applica-
tion deployment topologies will not only be necessarywhen-
ever a new application needs to be deployed, but can also be
caused by environmental changes, such as changing request
patterns, changes in the physical edge infrastructure (e.g.,
adding/removing sensors or IoT gateways), evolutionary
changes in application business logic throughout its lifecycle,
or evolving non-functional requirements.

In this paper, we present DIANE, a framework for
dynamically generating optimized deployment topologies
for IoT cloud applications tailored to the available physical
infrastructure. Using a declarative, constraint-based model
of the desired application deployment, our approach enables
flexible provisioning of application components on both,
cloud infrastructure, as well as deployed IoT gateways.
DIANE is furthermore continuously monitoring the avail-
able edge infrastructure and can autonomously optimize
application deployment topologies in reaction to changes in
the application environment, such as significant changes in
request load, network partitions, or device failures.

A preliminary version of this approach was presented
in [6], where we introduce the fundamental concepts of the
DIANE framework, along with a mechanism for a priori
generation and subsequent provisioning of optimized
deployment topologies. In this work, we extend the frame-
work with a two-fold optimization mechanism that enables
the evolution of application deployment topologies at run-
time in reaction to changes in their execution environment.
Furthermore, we provide a detailed discussion of the proto-
type implementation and significantly extend the evalua-
tion of our framework.

The remainder of this paper is structured as follows: In
Section 2 we outline specific requirements that need to be
addressed. In Section 3 we introduce the DIANE framework
to dynamically create application deployment topologies
for large-scale IoT cloud systems, and present our approach
for optimizing deployments at runtime in Section 4. We pro-
vide detailed evaluations in Sections 5 and 6, discuss rele-
vant related research in Section 7, followed by a conclusion
and an outlook on future research in Section 8.

2 REQUIREMENTS

The emergence of the IoT in combinationwith the advent and
rapid adoption of the smart city paradigm give rise to a

domain of edge devices that are pervasively deployed in large
numbers around the globe. As outlined previously, the con-
vergence of cloud computing and IoT paradigms, and espe-
cially the evolution of IoT gateways to include constrained
execution environments, allows for systems with ever chang-
ing deployment topologies due to various evolving factors.
Specifically, vital aspects of the smart city domain, like Build-
ing Management Systems (BMS) that need to deal with bil-
lions of devices, or Traffic Control Systems (TCS) that depend
on optimal resource utilization in order to handle large
amounts of sensor data, need to be able to optimize their
deployment topologies both during deployment and at run-
time in order to enable optimal resource utilization. To allow
for dynamic generation of optimal deployment topologies for
such applications, a solutionmustmeet the following require-
ments: 1) It needs to enable optimal utilization of edge devices
with 2) the ability to dynamically move application logic to these
devices. 3) Furthermore, it shall allow for deployment topologies
to evolve during runtime and 4) needs to respect non-functional
requirements that arise in this context.

3 THE DIANE FRAMEWORK

In order to address the previously identified requirements,
we present DIANE, a framework for the dynamic genera-
tion of deployment topologies for IoT applications and
application components, and the respective provisioning of
these deployment topologies on edge devices in large-scale
IoT deployments. The overall architecture of our approach
is depicted in Fig. 1 and consists of the following top-level
components: (i) DIANE, and (ii) LEONORE. In the follow-
ing, we describe these components in more detail and dis-
cuss the design and implementation of IoT applications.

3.1 IoT Application Design and Implementation

To dynamically generate deployment topologies for IoT
applications, the design and implementation of such appli-
cations have to follow the microservices architecture
approach [4], which enables developers to build flexible
applications whose components can be independently
evolved and managed. Therefore, each component of an
application has to be self-contained, able to run separately,
and facilitate loosely coupled communication for interacting
with other components. In addition to this application
design approach, we are using MADCAT [7] for describing

Fig. 1. DIANE and LEONORE—overview.

880 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 11, NO. 5, SEPTEMBER/OCTOBER 2018

the overall application and its components. MADCAT
allows for the creation of applications by addressing the
complete application lifecycle, from architectural design to
concrete deployment topologies provisioned and executed
on actual infrastructure. For our approach, we focus on
Technical Units (TUs) and Deployment Units (DUs) to
describe applications and their components.

Technical Units are used to describe application com-
ponents by considering abstract architectural concerns and
concrete deployment artifacts to capture technology deci-
sions that depend on the actual implementation. To manage
multiple possible TUs to realize a specific application com-
ponent, MADCAT employs decision trees that assist devel-
opers of such applications in creating TUs. An example of a
TU can be seen in Listing 1. We are using the JSON-LD1 for-
mat to store and transfer MADCAT units.

Listing 1. Technical unit

{

“@context”: “http://madcat.dsg.tuwien.ac.at/”,

“@type”: “TechnicalUnit”,

“name”: “BMS/Unit”,

“artifact-uri”: “. . .”,
“language”: “java”,

“build”: {

“assembly”: {“file”: “unit.jar”},

“steps”: [{“step”: 1, “tool”: “maven”, “cmd”:

“mvn clean install”}]

},

“execute”: [{“step”: 1, “tool”: “java”, “cmd”:

“java -jar @build.assembly.file”}],

“configuration”: [{“key”: “broker.url”, “value”:

“@MGT.broker.url”}],

“dependencies”: [{“name”: “MGT”, “technicalUnit”:

“name” :“BMS/Management”}],

“constraints”: {“type”: “...”,“framework”: “Spring

Boot”,“runtime”: “JRE 1.7”,“memo-

ry”: “...”}

}

A TU starts with a context to specify the structure of
the information and a specific type. The name uniquely
identifies the TU and should refer to the application name
and the specific component that is described by the TU. The
artifact-uri defines the repository that stores the appli-
cation sources and artifacts. The language field describes
the used programming language and an optional version.
In order to create an executable, build specifies an assem-

bly that describes the location within a repository and the
name of the executable. Furthermore, build defines steps
that need to be executed to create the executable. Next,
execute defines the necessary steps for running the exe-
cutable. In addition to the execution steps, configuration
stores a possible runtime configuration (e.g., environment
variables) that is needed for execution. To allow configura-
tion items to map to other application components, depen-
dencies reference TUs of other application components.
Finally, the TU enables developers to provide relevant con-
straints that help users of the application to decide on a
suitable deployment infrastructure.

For each TU an operationsmanager can create one or more
DeploymentUnits. In essence, a DUdescribes how an asso-
ciated TU can be deployed on concrete infrastructure. To cre-
ate a specific DU the provider uses the information contained
in the TU and its knowledge about the owned infrastructure.
Listing 2 shows an exampleDU created for the TU above.

Listing 2. Deployment unit

{

“@context”: “http://madcat.dsg.tuwien.ac.at/”,

“@type”: “DeploymentUnit”,

“name”: “BMS/Unit”,

“technicalUnits”: [{“name”: “BMS/Unit”}],

“constraints”: [{

“hardware”: [{“type”: “...”, “os”: “...”,

“capabilities”: [{“name”: “JRE”,

“version”: “1.7”}], “memory”:

“...”}],

“software”: [{“replication”: [{“min”: “all”}]}]

}],

“steps”: [...]

}

Like a TU, a DU also has a context, type, and name.
Next, technicalUnits allow referencing TUs that are
deployed using this specific DU. Based on the information
provided in the TU (e.g., constraints) the infrastructure pro-
vider defines constraints for hardware and software

that are used to decide on suitable infrastructure resources
for executing an application component. Finally, steps list
the necessary deployment steps.

By using TUs and corresponding DUs it is possible to
completely describe an IoT application. To finally provi-
sion an application deployment, DIANE uses TUs, DUs
and concrete infrastructure knowledge to generate
Deployment Instances (DIs). DIs represent concrete
deployments on actual machines of the infrastructure, by
considering defined software and hardware constraints.
An example of a DI using the DU and TU from above can
be seen in Listing 3.

Listing 3. Deployment instance

{

“@context”: “http://madcat.dsg.tuwien.ac.at/”,

“@type”: “DeploymentInstance”,

“name”: “...”,

“machine”: {“id”: “...”, “ip”: “...”},

“application”: {“name”: “BMS/Unit”, “version”:

“1.0.0”, “environment”: [{“key”: “broker.url”,

“value”: “failover:tcp://10.99.0.40 :

61616”}]}

}

Again, a DI has a context, type, and name. The
machine field stores data about the concrete machine that
is provisioned with an application component. Runtime
information, needed for executing the application compo-
nent, is represented by the application attribute. It con-
tains the name and the version of the application
component. Finally, runtime configurations required by
the component are resolved by the framework and repre-
sented in environment.1. http://json-ld.org

V€OGLER ET AL.: OPTIMIZING ELASTIC IOT APPLICATION DEPLOYMENTS 881

http://json-ld.org

3.2 DIANE Framework

The framework that allows generating IoT application
deployment topologies and deals with the provisioning
of these deployments on edge devices in large-scale IoT
deployments is depicted on the left hand side of Fig. 1.
DIANE is a scalable and flexible cloud-based framework
and its overall design follows the microservices architec-
ture principle. In the following, we introduce the main
components of DIANE and discuss the integration with
LEONORE [1] for provisioning edge devices. Finally, we
describe the concrete process of generating and provi-
sioning application deployment topologies.

To keep track of deployments and their relation to TUs
and DUs, DIANE provides a Deployment Registry. The
registry stores units and deployments using a tree structure
that represents the relations among them. By managing TUs
and corresponding DUs, the framework can provide appli-
cation deployment provisioning at a finer granularity. This
means that it is possible with DIANE to provision an appli-
cation deployment topology in one batch, but also provision
each component separately.

In order to provision an IoT application deployment
topology with DIANE, the user of the framework has to
invoke the User API by providing the following required
information: (i) TUs, (ii) corresponding DUs, and (iii)
optional artifacts that are needed by the deployment (e.g.,
executables) but cannot be resolved automatically by the
framework, such as private repositories that are not publicly
accessible. Since the focus of our work is on generating and
provisioning DIs, a user of the framework is responsible for
creating the required MADCAT units and necessary appli-
cation artifacts. The Deployment Handler is responsible
for handling user interaction and finally triggers the provi-
sioning of application deployments.

In addition to the discussed units, the framework also
requires corresponding application artifacts. Therefore, the
Artifact Management component receives artifacts,
resolves all references, and creates an artifact package that
is transferred to LEONORE. Each created artifact package
contains an executable, a version, and the commands to
start and stop the artifact.

To generate DIs, the Deployment Generator resolves
the dependencies among the provided TUs and DUs by
using the Dependency Management. The management
component returns a tree structure that represents depen-
dencies among units. In addition, the generator handles
possible deployment constraints that are specified in the
DUs by invoking the Constraint Handler. The invoked
handler returns a list of infrastructure resources that comply
with the specified constraints. Before generating DIs, the
generator needs to resolve application runtime configura-
tions (e.g., application properties) in the TUs. This is done
by delegating the configuration resolving process to the con-
straint handler, which provides a temporary configuration.
Finally, the generator creates the actual DIs by mapping
DUs to concrete machines and updating possible links in
the temporary configuration that correspond to infrastruc-
ture properties (e.g., IP address of a machine).

Since units in our approach reference each other, the
Dependency Management is responsible for resolving
these dependencies. For representing the dependencies

among the units the management component creates a tree
structure. The process of dependency resolution first creates
for each TU a new root node. After creating the root nodes
it checks if a TU has a reference to another TU and if so cre-
ates a new leaf node linking to the respective root node.
Next, it checks the provided DUs and appends them to the
respective TU node as a leaf. In case a reference cannot be
resolved based on the provided units, it queries the
Deployment Registry. The final product of this process
is a tree topology, where each root node represents a TU
and the leaves are the corresponding DUs or a reference to
another TU.

To find suitable machines for the deployment of applica-
tion components, DUs allow defining deployment con-
straints. In our approach we distinguish hardware and
software constraints. Hardware constraints deal with actual
infrastructure constraints (e.g., operating system or the
installed capabilities of a machine). Whereas, software con-
straints define requirements that correspond to the applica-
tion component respectively its deployment (e.g., should this
component be replicated and if so on how many machines).
In order to provide a list of suitable machines the
ConstraintHandler retrieves a list of all knownmachines
and their corresponding metadata from LEONORE. Then,
based on the defined constraints in the DU, it filters out the
ones that do not fit or are not needed in case software con-
straints only demand for a certain number ofmachines.

For actually provisioning the final DIs the Provisioner
component is used. The component receives generated DIs
and the respective topology of TUs, DUs, and their depen-
dencies. The provisioner then traverses the topology and for
each TU and DU combination, it deploys the corresponding
DIs by invoking LEONORE, adds the DIs to the respective
DU as leaf node and updates the deployment registry.

3.3 LEONORE

LEONORE [1] is a service-oriented infrastructure and tool-
set for provisioning application packages on edge devices
in large-scale IoT deployments. LEONORE creates instal-
lable application packages, which are fully prepared on the
provisioning server and specifically catered to the device
platform to be provisioned. For our approach, we will facili-
tate and extend LEONORE to provision IoT application
deployment topologies on edge devices managed and pro-
visioned by DIANE. A simplified architecture of LEONORE
and connected IoT deployments is depicted on the right
hand side of Fig. 1. In the following, we describe the most
important components that are involved when provisioning
an IoT application.

The IoT Gateway is a generic representation of an IoT
device that especially considers the resource constrained
nature and limitations of these devices. The IoT gateway
uses a container for executing application packages, a pro-
filer to monitor the status of the system, and an agent to
communicate with LEONORE. To allow for the seamless
integration of DIANE with LEONORE, we extend the pro-
vided APIs and create a general Service API. This inter-
face allows (i) to query LEONORE for currently managed
devices and their corresponding metadata, (ii) to add addi-
tional application artifacts that are needed for building
application packages, and (iii) to provision application

882 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 11, NO. 5, SEPTEMBER/OCTOBER 2018

deployment topologies represented as DIs. To provision
application components along with corresponding artifacts,
DIANE uses LEONORE’s service API to supplement these
artifacts with additional metadata (e.g., name, version, exe-
cutables). The Package Management component stores
the provided information along with the artifacts in a repos-
itory. In order to keep track of connected IoT gateways,
LEONORE uses the following approach: During gateway
startup, the gateway’s local provisioning agent registers the
gateway with LEONORE by providing its device-specific
information. The IoT Gateway Management handles this
information by adding it to a repository and assigning a
handler that is responsible for managing and provisioning
the respective gateway. The Provisioning Handler is
responsible for the actual provisioning of application pack-
ages. The handler decides on an appropriate provisioning
strategy, triggers the building of gateway-specific packages
and executes the provisioning strategy. Since LEONORE
deals with large-scale IoT deployments that potentially gen-
erate significant load, the framework elastically scales using
dynamically provisioned LEONORE nodes. These nodes
comprise all components that are required for managing
IoT gateways. To distribute the gateways evenly on avail-
able nodes a Balancer is used to assign gateways to avail-
able nodes that are then responsible for handling any
further interaction with the respective IoT gateways. This
requires an initial capacity planning step to determine the
number of devices that can be reliably provisioned using
one LEONORE node. The framework then commissions an
initial set of LEONORE nodes using a N þ 1 strategy with
one active node and one hot standby. If all active nodes are
fully loaded, the balancer spins up a new node and queues
incoming requests. Similarly, the balancer will decommis-
sion nodes when load decreases.

3.4 Provisioning of IoT Application Deployment
Topologies

The provisioning of IoT application deployment topologies
is started when DIANE receives a request to deploy a spe-
cific IoT application or application component. The overall
process comprises the following steps: (1) In order to gener-
ate the deployment topology of an application or applica-
tion component with DIANE, the user provides an optional
list of artifacts and a mandatory list of MADCAT units (i.e.,
TUs and DUs). Next, the deployment manager is responsi-
ble for handling deployment requests and forwarding them
to the artifact manager. (2) The artifact manager resolves
artifacts according to the provided information in the TUs
by either loading them from a specified repository or using
the provided artifacts. (3) After resolving the artifacts, the
artifact manager invokes the service API to transfer the arti-
facts to LEONORE. (4) LEONORE receives the artifacts to
subsequently pack and store them in its internal repository.
(5) For each TU and DU the deployment handler does the
following: (6) Forward the list of TUs and DUs to the depen-
dency management component to resolve dependencies
and relations among the units. (7) Resolve possible infra-
structure constraints that are defined in the DUs by using
the constraint handler. (8) The constraint handler gathers all
managed machines and their corresponding context
(e.g., IP, name, runtime) from LEONORE. (9) According to

specified constraints the handler returns a set of machines
that are suitable for deploying a specific DU. (10) Invoke the
constraint handler again to generate runtime configurations
that are specified in the TU, and generate DIs using the
gathered suitable machines and runtime configurations.
(11) Finally, for each DI the handler invokes the provisioner
that stores the DI and corresponding DUs and TU in the
deployment registry, deploys the DI by invoking the service
API of LEONORE, which then takes care of provisioning
the application deployment on the actual infrastructure.

4 APPLICATION DEPLOYMENT OPTIMIZATION

After presenting the overall approach and the respective
realization in the previous section, we now discuss an
extension for optimizing the application deployment topl-
ogy at runtime. In the approach presented so far, we only
consider the initial deployment of application topologies
and its respective components. However, since IoT applica-
tions have to deal with varying loads during operation, we
need a mechanism that allows for adapting application
topologies at runtime in order to provide the necessary per-
formance and flexibility. Furthermore, this would also
enable applications to fully utilize the available processing
power of the edge infrastructure. To address these require-
ments, we extend DIANE to add a two-fold optimization
approach, and apply the introduced notion of offloading
business logic to the infrastructure edge to DIANE itself.

4.1 Elastic Application Deployment

To allow for the optimization of application topologies at
runtime, we introduce the notion of an Elastic Applica-

tion Deployment. In contrast to our initial approach that
only deploys application components on a set of pre-
defined edge devices, we now extend the provisioning
mechanism to allow operators to define a hot pool of devi-
ces. On theses additional devices, application components
are provisioned, but remain idle until they get started.
Therefore, this hot pool will be used for optimizing applica-
tions, e.g., by scaling application components up or down
depending on the application load. In essence, the elastic
application deployment consists of a set of devices, which
host deployed and running application components, and an
additional pool of devices that are provisioned with redun-
dant application components that are initially idle. To man-
age this new form of deployment, we introduce DIANE
Optimizers that get provisioned by DIANE and are running
on actual edge devices.

4.2 MADCAT Unit Extensions

In order to enable DIANE to start adapting the topology of a
running application, we need an approach that allows the
acquisition of runtime information of this application. This
information should comprise both, details about the facili-
tated deployment on the infrastructure (e.g., currently used
number of edge devices), as well as application-specific per-
formance metrics like current request load. Based on this
information, DIANE can then decide on the best optimiza-
tion strategy and how to apply the strategy appropriately.

Therefore, we extend our application description
approach, which is based on the MADCAT methodology.

V€OGLER ET AL.: OPTIMIZING ELASTIC IOT APPLICATION DEPLOYMENTS 883

First, we introduce so called endpoint attributes in a DU.
An endpoint represents a URL where application-specific
performance metrics can be acquired. Since we want to pro-
vide an extensible approach, the defined endpoint can
either be provided by the application itself or by an external
monitoring tool. Furthermore, to support multiple perfor-
mance metrics, an application can have a list of endpoints
that can be used by DIANE for gathering runtime informa-
tion. To identify endpoints, each provided endpoint has a
unique name within a DU.

Next, based on monitoring information, we need a mech-
anism to define certain criteria that allow for deciding if an
application topology needs to be adapted. Consequently,
we extend the overall MADCAT methodology to introduce
Optimization Units. An Optimization Unit (OU) is used
to describe two types of rules that can be used for optimiz-
ing an application deployment. First, application-

rules define criteria for application-specific performance
metrics. Second, infrastructure-rules define criteria
that are targeted towards the used deployment infrastruc-
ture. An example of an OU can be seen in Listing 4.

Listing 4. Optimization unit

{

“@context”: “http://madcat.dsg.tuwien.ac.at/”,

“@type”: “OptimizationUnit”,

“name”: “BMS”,

“technicalUnits”: [{“name”: “BMS/Control”}],

“application-rules”: [

{“name”: “response”, “endpoint”: “@BMS/

Control.endpoints.response”,

“contract”: “UNDER”, “value”: “3”}],

“infrastructure-rules”: [

{“name”: “cpu”, “contract”: “MIN”}],

“action-policies”: [{“name”: “ScalingPolicy”}]

}

Listing 4 describes an application rule that defines that
the response time that can be measured from the given end-
point should be under 3 seconds. Next, an infrastructure
rule is defined that demands that the application deploy-
ment running on the infrastructure should keep the con-
sumed processing power minimal. The difference between
these two types of rules is that the former requires monitor-
ing the application itself by using the defined endpoints,
whereas the latter requires in-depth knowledge about the
used infrastructure resources.

Next, an OU provides an action-policies attribute
that references either pre-defined or custom-built action
policies based on the MONINA language [8], [9]. These poli-
cies define a set of actions to be used for optimizing the
application whenever any application rules are violated.
For example, an action policy can define that in order to
react to increased load, the application deployment needs to
be scaled up by using more available machines, or scale
down if performance metrics indicate that the current load
can be managed with a smaller deployment.

By using the described unit extensions, operators can
now define how a deployed application can be monitored
and under which circumstances its deployment should be
optimized.

4.3 Server-Side Extension

To enable the optimization of deployed application topolo-
gies, we extend DIANE by adding several new components,
which are depicted in Fig. 2a. In the following, we describe
them in more detail.

We extend the User API to allow operators to upload
OUs that define criteria for triggering the optimization of an
application’s deployment. Next, operators can use the user
API to define custom action policies for describing how an
application can be optimized. Since we demand that appli-
cations deployed with DIANE follow the microservice
architecture approach, optimizing the deployment of an
application is relatively easy by evolving the deployment
topology. For example, a simple approach to deal with
increased load that demands more processing power, is to
scale up the application deployment by using additional
resources. Uploaded OUs and defined action policies are
stored in the optimization registry.

We introduce a Monitoring component to collect run-
time measurements from deployed and running applica-
tions that usually reside in the same deployment
infrastructure as our framework (e.g., cloud). Based on the
details defined in an OU, the monitoring component creates
application-specific listeners for the given endpoints to
acquire performance measurements from the application in
a configurable interval. The collected data is then forwarded
to the deployment optimizer, which takes care of further
processing.

To optimize the deployment of an application based on
defined rules, we introduce a separate Deployment Opti-

mizer component. The optimizer receives collected data
from the monitoring component and then analyzes the data

Fig. 2. DIANE extensions—overview.

884 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 11, NO. 5, SEPTEMBER/OCTOBER 2018

based on the defined rules and thresholds in the corre-
sponding OU. When the optimizer detects that the applica-
tion no longer meets the defined criteria it provides the
following two optimization modes:

1) Blackbox Mode: In blackbox mode, DIANE optimizes
the application deployment by treating the deploy-
ment infrastructure as black box, which means that
the deployment optimizer has no specific knowledge
about the used edge devices and their respective
resources. In this mode, the deployment optimizer
can only optimize for application-rules.

2) Whitebox Mode: In whitebox mode, the deployment
optimizer has full knowledge of the used deploy-
ment infrastructure and can therefore also optimize
for infrastructure-rules.

In order to enable these optimization modes, we present
the DIANE Optimizer, which can be deployed in the edge
infrastructure. The DIANE Optimizer monitors and controls
an elastic application deployment that allows for optimizing
the deployment topology of an application by either starting
currently idle application components, or stopping unnec-
essary components.

To allow DIANE to facilitate the DIANE Optimizer, the
optimizer needs to be associated with an application and
then deployed in the edge infrastructure. This is done using
the following approach: (i) When an OU is uploaded by an
operator via the service API, DIANE extracts which applica-
tion and respective components are affected. (ii) Next, the
respective DIs are analyzed to gather the used deployment
in the infrastructure. (iii) To form an elastic application
deployment based on the defined action policies, the deploy-
ment generator is used to generate a fresh set of DIs that is
provisioned, but not yet started to form a pool of idle compo-
nents to allow for the evolution of the application topology.
(iv) Then, the constraint handler is used for finding a suitable
machine for running the DIANE Optimizer, and the provi-
sioner is used for deploying the optimizer on the selected
machine. (v) Finally, once the optimizer registers itself with
DIANE, it is provided with the deployment topology of the
application, as well as the provisioned but not yet started DIs
that can be used for optimizing the application deployment.

To keep track of uploaded OUs, corresponding action
policies, and deployed DIANE Optimizers, we add an
Optimization Registry. In this repository, for each
application that is handled by DIANE, we store defined
OUs and corresponding action polices. In addition, for each
DIANE Optimizer deployment, we store the ID of the opti-
mizer as well as the machine in the infrastructure that is
hosting the optimizer. The combination of optimizer ID,
and machine IP and ID allows DIANE to uniquely identify
the optimizer deployment.

4.4 DIANE Optimizer

The DIANE Optimizer enables the optimization of an
application topology by monitoring the actual deploy-
ment infrastructure, which provides valuable insights on
the infrastructure performance. The DIANE Optimizer is
specifically catered to be lightweight in terms of memory
consumption and CPU usage, so that it can be executed
on machines residing in the edge infrastructure that only

provide a fraction of the processing power of cloud
resources. The architecture of the DIANE Optimizer is
depicted in Fig. 2b. In the following, we outline the basic
components of a DIANE Optimizer.

Once a DIANE Optimizer is deployed in the edge infra-
structure, the Bootstrapper component of the optimizer
is responsible for registering the deployment with DIANE.
Based on this information, the server-side framework can
keep track of deployed optimizers. Furthermore, during the
registration process the optimizer receives the list of
machines representing the current deployment of the appli-
cation, as well as a hot pool of machines where application
components are already provisioned, but not yet started.
These lists are then forwarded to the topology handler for
further processing.

To form an elastic application deployment the Topology
Handler first extracts the devices that represent the current
application deployment based on the provided information
from the bootstrapper. This topology representation is then
enriched with the current hot pool of application compo-
nents and then updated in the Topology Repository.
Based on this stored topology, the DIANE Optimizer knows
which devices are currently used by the application and is
also able to optimize the overall application topology by
starting idle or stopping running components.

To gather valuable insights from the used deployment
infrastructure, the DIANE Optimizer uses a dedicated Mon-

itoring component. According to the stored application
topology, the monitoring extracts the respective machines.
In order to acquire performance measurements from these
machines, the DIANE Optimizer facilitates the LEONORE
profiler that is pre-installed on the machines to extract per-
formance data like used CPU and consumed memory.
Therefore, whenever the application topology is updated
(e.g., new machines are added) the monitoring component
contacts each machine of the deployment to register an end-
point where the machines, respectively their LEONORE
profilers, publish the profiled monitoring information in a
configurable interval. The published performance profiles
of the machines are then grouped by machine and stored
for later analysis in the local Monitoring Repository.
The repository is implemented as a local cache using avail-
able RAM and/or disk resources if available, which allows
for fast read and write access, while still considering the
resource-constrained nature of the underlying infrastruc-
ture. To save memory, the cache only keeps the most recent
profiles. Furthermore, since the collection of data is happen-
ing in the edge infrastructure the overall communication
costs are considerably low.

In the current version, a DIANE Optimizer does not
automatically decide when to optimize its corresponding
elastic application topology. Therefore, it provides a Ser-

vice API that allows DIANE to trigger a deployment evo-
lution. Whenever DIANE decides that based on a defined
application rule the application deployment has to be opti-
mized, it finds the responsible DIANE Optimizer and
invokes the service API by providing infrastructure rules
and action policies that need to be respected. Next, the
request is forwarded to the local optimizer, which is then
responsible for choosing suitable optimization actions and
executing them accordingly.

V€OGLER ET AL.: OPTIMIZING ELASTIC IOT APPLICATION DEPLOYMENTS 885

Once DIANE triggers an optimization by invoking the
DIANE Optimizer, the Local Optimizer performs the fol-
lowing steps in order to process the request: (i) Analyze the
given application policy to identify a set of possible deploy-
ments that need to be updated for optimizing the applica-
tion topology. (ii) If infrastructure rules are defined, the set
of possible deployments is filtered by using gathered moni-
toring information. For example, if an application rule
describes that the used CPU of the deployment has to be
kept minimal, the optimizer will use the performance pro-
files stored in the monitoring repository to choose a small
deployment that can deal with the load while only consum-
ing a fraction of the provided total resources. (iii) If no
application rules are defined, the set is reduced by picking
deployments na€ıvely. (iv) After the set of deployments that
need to be updated is finalized, the application policy is exe-
cuted. This means that the application deployment topology
is optimized by either starting idle or stopping running
application components. (v) Finally, the topology handler is
notified to store the evolved application deployment in the
topology repository.

In case DIANE detects that a DIANE Optimizer is not
responding anymore, the server-side framework restarts or
redeploys the machine the optimizer is deployed on.

4.5 Optimizing an Elastic Application Deployment

The process of optimizing an elastic application deploy-
ment is initiated by an operator that defines an OU and
corresponding action policies. To describe the overall
process let us consider that we want to scale up an appli-
cation deployment to a maximum of 20 machines (action
policy) whenever the response time of the application is
over a defined threshold (application rule). Furthermore,
during scale up the deployment should be kept minimal
in terms of used CPU (infrastructure rule). After describ-
ing these requirements, the operator uploads the OU and
the action policy to DIANE. Based on the input, DIANE
creates an elastic application deployment and deploys a
DIANE Optimizer. Next, the monitoring component
starts collecting response time measurements from the
defined endpoints of the application. Once DIANE
detects that the response time of the application violates
the defined threshold in the OU, it invokes the respective
DIANE Optimizer by providing the defined scale up
action policy and infrastructure rule. Then, the DIANE
Optimizer decides that based on the provided input and
gathered performance profiles of the machines, it is suffi-
cient to scale up the application deployment by only
using two additional devices and queues further scale up
requests from DIANE until these devices are fully uti-
lized. In case no infrastructure rules are defined by the
operator, the overall approach follows the same steps as
above, except that no infrastructure information is used
by the DIANE Optimizer and the deployment is scaled
up by using a na€ıve approach (e.g., five devices for each
scale up request).

Using explicit infrastructure knowledge (whitebox
mode) allows the DIANE Optimizer to optimize the appli-
cation deployment topology more efficiently compared to
an approach that only uses pre-defined or na€ıve adaptation
steps (blackbox mode).

5 EVALUATION—IOT APPLICATION DEPLOYMENT

AND EXECUTION

To evaluate our approach we implemented a demo IoT
application based on a case study conducted in our lab in
cooperation with a business partner in the building manage-
ment domain. In this case study we identified the require-
ments and basic components of commonly applied
applications in this domain. Based on this knowledge we
developed an IoT application for managing and controlling
air handling units in buildings, where the design and imple-
mentation follows the microservices architecture approach.
Next, we created a test setup in the cloud using CoreOS2 to
virtualize edge devices as Docker3 containers. We reuse
LEONORE’s notion of IoT gateways as representation of
edge device in our experiments.

In the remainder of this section we give an overview of
the developed demo application and the created evaluation
setup, present different evaluation scenarios, and analyze
the gathered results.

5.1 BMS Demo Application

Currently, IoT applications are designed and implemented
as layered architectures [10]. This means that the bottom
layer consists of deployed IoT devices, a middleware that
provides a unified view of the deployed IoT infrastruc-
ture, and an application layer that executes business
logic [11]. According to this layered approach, business
logic only runs in the application layer and the IoT infra-
structure is provisioned with appropriate software, sends
data, and reacts on its environment [12]. However, in
practice more and more IoT devices provide constrained
execution environments that can be used for offloading
parts of the business logic. To compare these two deploy-
ment approaches we develop an application for a build-
ing management system that consists of the following
components: (1) An Air Handling Unit (unit) is
deployed on an IoT device, reads data (e.g., temperature)
from a sensor, transmits the data to and reacts on control
commands received from the upper layer. (2) A Temper-

ature Management (management) represents the proc-
essing component of the application and gathers the
status information of the units. It receives high level
directives from the upper layer and based on the proc-
essed unit data and the received directives, forwards
appropriate control commands to the unit. (3) Finally, the
Building Controller (control) is the top level compo-
nent and decides for each handled management compo-
nent the directive it has to execute. In the traditional
deployment topology that follows the common IoT appli-
cation deployment model, the unit component is
deployed on devices in the IoT infrastructure, and both
the processing and control components are executed on a
platform in the cloud. We refer to this deployment as tra-
ditional application topology. In contrast, in a contemporary
deployment topology, some of the processing logic is off-
loaded onto devices in the IoT infrastructure, which we
refer to as evolved application topology.

2. https://coreos.com
3. https://www.docker.com

886 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 11, NO. 5, SEPTEMBER/OCTOBER 2018

https://coreos.com
https://www.docker.com

5.2 Setup

For the evaluation of our framework we create an IoT testbed
in our private OpenStack4 cloud. We reuse a Docker image
that was created for LEONORE to virtualize and mimic a
physical gateway in our cloud. To run several of these virtual-
ized gateways, we use CoreOS clusters and fleet,5 a distrib-
uted init system, for handling these clusters. Based on fleet’s
service unit files, we dynamically generate according fleet
unit files and use them to automatically create, run, and stop
virtualized gateways. As foundation of our setup, an IoT
Testbed consists of a CoreOS cluster of five virtual machines,
where each VM is based on CoreOS 607.0.0 and uses the m1.
medium flavor (3,750 MB RAM, 2 VCPUs and 40 GB Disk
space). The IoT gateway-specific framework components of
LEONORE are pre-installed in the containers. On top of the
testbed, the LEONORE framework is distributed over 2 VMs
using Ubuntu 14.04. The first VM hosts the balancer and uses
the m1.medium flavor, whereas the second VM uses the m2.
medium flavor (5,760 MB Ram, 3 VCPUs and 40 GB Disk
space) and is deployed with a LEONORE node. On top,
DIANE is hosted in one VM using Ubuntu 14.04 with the m1.
medium flavor. Finally, the platform components of the BMS
demo application are deployed on a separate VM using
Ubuntu 14.04 and the m1.small flavor (1,920 MB Ram,
1 VCPUs and 40 GB Disk space). In order to evaluate and
compare the two presented deployment topologies of the
application, the BMS platform initially comprises controller

and management (traditional application topology), and is
then reduced to only host the controller in the cloud, since
the management component is deployed on the devices
(evolved application topology). In both scenarios the unit
component is deployed and running on the devices in the
IoT infrastructure.

5.3 IoT Application Deployment

In the first experiment we measure the time that is needed
for dynamically creating application deployments for the
two BMS IoT application deployment topologies and provi-
sioning of these deployments on IoT devices. In the second
experiment we compare the device resource utilization
when executing the provisioned application deployments.

5.3.1 Deployment Time

Fig. 3a shows the overall time that is needed for creating and
provisioning of application deployments on an increasing
number of devices. The time measurement begins when
DIANE is invokedand endswhenDIANE reports the success-
ful deployment. To deal with possible outliers and provide
more accurate information we executed each measurement
10 times and calculated both the average and median time. In
Fig. 3a we see that for the traditional application topology the
framework provides a stable and acceptable overall deploy-
ment time. In comparison, the deployment of the evolved
application topology takes in total almost twice as long, but
also provides a stable deployment time. Taking into account
that theevolvedapplicationtopologyrequiresdeployingtwice
as many application components and corresponding artifacts,

Fig. 3. Evaluation results—IoT application deployment & execution.

4. http://www.openstack.org
5. https://github.com/coreos/fleet

V€OGLER ET AL.: OPTIMIZING ELASTIC IOT APPLICATION DEPLOYMENTS 887

http://www.openstack.org
https://github.com/coreos/fleet

however, we argue that this increase is reasonable, since the
limiting factor is theactualprovisioningofdevices aswecreate
applicationpackages thathavemore thandoubled insize.

5.3.2 Gateway Resource Utilization

Fig. 3b depicts the CPU andmemory utilization of one device
when provisioning and executing the two IoT application
deployment topologies. The figure shows that initially there
is no application component running on the device. After 15
seconds we initiate the deployment via our framework,
which provisions the application deployments and starts the
execution. Then, the deployments run for 30 seconds. After-
wards, the framework stops the execution. When provision-
ing the traditional application topology, we clearly see that
the CPU utilization has a short high peak due to the startup
of the deployment. However, after this high peak the overall
utilization of the device is low and leaves room for using this
untapped processing power to offload business logic compo-
nents on the device. To illustrate the feasibility of this claim,
we also provision and execute the evolved application topol-
ogy on the device. We see that in comparison to the tradi-
tional application topology, the load on the device has
almost doubled, and except for the high initial CPU load
peak, the overall utilization of the device is still acceptable
and reasonable.

5.4 IoT Application Execution

In the second experiment we collect runtime information
from the BMS application to compare both deployment
topologies. In order to do that, we deploy both topologies
with our framework on an increasing number of devices.
However, now we measure bandwidth consumption and
execution time when invoking the application’s business
logic. The measurement begins by invoking the control
component of the application to specify a virtual set-point
temperature on each device, where each unit component on
the device has the same initial temperature reading. To pro-
vide reliable results, we execute each measurement 10 times
and freshly provision the devices after each measurement
with DIANE. Depending on the BMS application deploy-
ment topology, the management component is either exe-
cuted in the platform (i.e., the cloud) or on each device.

5.4.1 Bandwidth Consumption

Fig. 3c shows the average bandwidth consumption that
results from invoking the business logic of the two application
deployment topologies. We see that the traditional applica-
tion topology causes a significant amount of data transmis-
sion between platform and IoT infrastructure. As a result the
transmitted data produces a high load on the network and
consumes a lot of bandwidth. This behavior is obvious, since
the complete business logic is executed on the platform and
devices are only sending measurements and reacting to con-
trol messages. In contrast, the evolved application topology
produces less traffic and therefore consumes on average only
13 percent of the bandwidth. This is due to the offloading of
the processing (management) component to each device,
which therefore drastically reduces the transmitted data
between platform and IoT infrastructure.

5.4.2 Execution Time

Fig. 3d shows the time that is needed for executing the previ-
ously described business operation of the BMS application for
the two application deployment topologies. We see that for
both topologies the application scales well and provides rea-
sonably fast results. However, we notice that the offloading of
the processing components on the devices reduces the execu-
tion time by 7 percent, since application component interac-
tion within a device is faster than the interaction between
device and platform.

After presenting and evaluating the gathered experiment
results, we can deduce the following: DIANE is capable of
dealing with different application topologies and changes
in the IoT infrastructure. The framework scales well with
increasing size of application deployment topologies and
does not add additional overhead to the overall time that is
needed for provisioning the IoT infrastructure. Note that for
very large deployments the use of multiple coordinated
LEONORE nodes is required. Furthermore, depending on
the scenario, it is feasible to offload application components
from a cloud platform to devices in the IoT infrastructure.
Examples of such scenarios are applications that generate a
significant amount of traffic between the platform and the
IoT infrastructure and therefore justify the additional
deployment overhead.

6 EVALUATION—ELASTIC APPLICATION

DEPLOYMENT

To evaluate our application deployment optimization mech-
anism we implemented a smart city demo application and
reused the test setup presented in Section 5.2. In the remain-
der of this section we give an overview of the developed
smart city demo application, discuss the concrete evaluation
setup, present different evaluation scenarios, and analyze
the gathered results.

6.1 Smart City Demo Application

For this experiments we use a demo application that imple-
ments the concept of Autonomous Intersection Manage-
ment,6 which enables autonomous cars in a smart city
environment. In our scenario we want to handle large num-
bers of cars, which requires smart city operators to optimize
the deployment topology of such intelligent control systems
by using any kind of available processing power. To analyze
this approach, we develop a simple traffic control applica-
tion that manages incoming requests sent from autonomous
cars. The incoming requests need to be processed by the
application to calculate if a car’s intended path is valid (i.e.,
safe to use). Since the autonomous cars generate a huge
load, the application supports scaling the computational
logic across infrastructure boundaries. Therefore, the appli-
cation is separated into two components. A possibly repli-
cated processing component that provides the calculation
logic. On top, a central platform component that receives
requests by autonomous cars and forwards them to the
underlying processing components. Furthermore, to ana-
lyze application performance, it provides specific endpoints
to acquire metrics like request load and response time.

6. http://www.cs.utexas.edu/�aim/

888 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 11, NO. 5, SEPTEMBER/OCTOBER 2018

http://www.cs.utexas.edu/~aim/
http://www.cs.utexas.edu/~aim/

6.2 Setup

In order to evaluate the introduced application deployment
optimization using the DIANE Optimizer, we reuse the
setup presented in Section 5.2. However, for this evaluation,
we exchange the VM hosting the components of the BMS
IoT application, with a new VM using Ubuntu 14.04 and the
m1.small flavor to host the platform component of the smart
city demo application. In order to evaluate and compare the
different optimization modes, the processing component of
the smart city demo application is deployed and executed
on the devices in the IoT infrastructure.

6.3 IoT Application Topology Optimization

In the following experiments we use DIANE to optimize the
deployment topology of the smart city demo application by
scaling it across the available IoT infrastructure. We create
an OU that defines the allowed threshold for the response
time of the application and that the used application
deployment should keep the CPU usage across the infra-
structure to a minimum. Furthermore, we also define a pol-
icy for scaling up the deployment when the response time is
over the defined threshold, as well as a policy for scaling
down the application by stopping unused infrastructure
devices. Additionally, for the experiments we assume that
an elastic application deployment was already formed by
using a total of 40 machines, plus one additional machine
for hosting the DIANE Optimizer.

Next, for comparing the two different optimization
modes (blackbox and whitebox) we use different patterns
for generating load on the application. In the first scenario,
we use a load pattern that simulates a stepwise increase and
decrease in requests. In the second scenario, we use a pyra-
mid-like load pattern for sending requests to the applica-
tion. For the blackbox optimization mode, the deployment
topology of the application is scaled without using the pro-
vided infrastructure rule, whereas for the whitebox mode
we facilitate gathered knowledge about the infrastructure to
provide an optimized scaling approach according to the
infrastructure rule.

6.3.1 Scenario 1: Step Load Pattern

Fig. 4 illustrates the evaluation results for the first scenario.
The x-axis shows the temporal course of the evaluation in sec-
onds. In the ‘requests per second’ section we see that we
begin the evaluation by sending four concurrent requests per

second to the application and increase the load stepwise
every 30 seconds to see if DIANE is able to scale up the appli-
cation. Finally, at 120 seconds we reduce the load to four
requests per second to see if DIANE is also able to scale down
the application. In the ‘response time’ section we see the
response time for each incoming request. The ‘deployment’
section illustrates the number of facilitated edge devices by
the deployment. Finally, the ‘total CPU’ section represents
how much of the total available CPU is used by the applica-
tion deployment at the given time.

By comparing Fig. 4a, which represents the blackbox
optimization mode, and Fig. 4b, which shows the result for
using the whitebox optimization mode, we notice that for
the first interval of requests the response time of the applica-
tion is almost constant for both approaches. At 30 seconds,
when the request load doubles we notice that in both cases
the response time rises. For both modes, at approximately
34 seconds DIANE starts scaling up the application by
invoking the DIANE Optimizer, since the response time of
the application violates the provided threshold. However,
by looking at the results, we notice several differences dur-
ing the deployment optimization process. The blackbox
mode uses a na€ıve approach that scales up the deployment
until the response time is no longer violated. This, in combi-
nation with a lot of queued up requests, leads to the fact
that the blackbox mode uses a lot of infrastructure resources
for a relatively long time before they are released again. In
comparison, in the whitebox mode the DIANE Optimizer
uses gathered monitoring information from the deployment
infrastructure and only scales up the application when the
currently used resources are fully utilized. This allows the
application to handle the queued up requests with a smaller
deployment in shorter time. For the following two increases
in requests per second at 60 and 90 seconds, we see that the
framework is also able to detect and analogously handle
them. Finally, at 120 seconds, we notice that the load drops,
which is detected by the whitebox mode almost immedi-
ately, due to the fact that DIANE Optimizer constantly
receives information about the used resources. In compari-
son, the blackbox mode needs significantly more time to
detect the changed load by monitoring the application and
therefore uses resources for a longer period. After compar-
ing both modes using the stepwise load pattern, we can con-
clude that both approaches allow for optimizing the
application deployment according to the provided OU.

Fig. 4. Evaluation results—IoT application topology optimization (step load pattern).

V€OGLER ET AL.: OPTIMIZING ELASTIC IOT APPLICATION DEPLOYMENTS 889

However, by using gathered knowledge of the infrastruc-
ture deployment, the whitebox mode is able to evolve the
application topology by using less resources and therefore
reduces the total overall CPU utilization by approximately
15 percent. In addition, we also notice that in total the white-
box mode produces approximately 25 percent less response
time violations compared to the blackbox approach.

6.3.2 Scenario 2: Pyramid Load Pattern

Fig. 5 illustrates the evaluation results for the second
scenario. We compare the blackbox optimization mode
(Fig. 5a) and the whitebox approach (Fig. 5b) using a
pyramid-like load pattern. We notice that for the first 20 sec-
onds the response time of the application for both modes is
stable. At 20 seconds the first pyramid load pattern starts
increasing the load on the application. We see that it takes a
considerable amount of time until DIANE triggers the scale
up of the application deployment. Compared to the first sce-
nario, we see that both optimization modes are struggling
with this type of load pattern and provide almost identical
results. However, by comparing both results, we notice that
for the first pyramid-like increase and drop in load, the
blackbox mode performs better in terms of violated
response times compared to the whitebox approach. This
can be explained by the fact that the extremely fast load
change does not allow the whitebox mode to utilize gath-
ered infrastructure information. In addition, by looking at
the deployment size we see that the whitebox mode uses a
smaller deployment for a longer time, compared to the
blackbox mode. For the next load increase at 75 seconds we
see that the blackbox mode uses one small and one big scale
up, in terms of deployment size, to compensate for the
response time violations, which leads to a high deployment
utilization. In contrast, the whitebox mode is able to use the
infrastructure resources more efficiently by using more
machines for the first scale up, and an additional scale up
for a shorter period of time. Therefore, for the second
pyramid-like load change, the whitebox mode uses in total
less resources, but again generates more response time vio-
lations. After comparing both modes when using the
pyramid-like load pattern, we can conclude that on the one
hand the whitebox mode in total uses approximately 5 per-
cent less resources in terms of utilized total CPU. However,
on the other hand the blackbox mode produces approxi-
mately 30 percent less response time violations.

To summarize the results, we see that both proposed
optimization approaches allow for evolving the application
deployment topology at runtime. However, by comparing
the results of both scenarios we see that choosing an optimal
optimization approach depends on various factors, such as
the expected load on the application, and the tradeoff
between application performance violations (i.e., response
time) and cost benefit by using less infrastructure resources.

7 RELATED WORK

In the literature the overall terminology of IoT is well-
defined [11], [12]. However, the characterization of IoT appli-
cations is not that clear. First, IoT applications can be defined
as applications that hide the underlying IoT infrastructure
by introducing an abstraction layer [13], [14], [15] and on top
of that layer execute business logic in the cloud [16]. Second,
there are distributed applications that consist of an enter-
prise application for managing underlying devices, and sim-
ple application parts that reside in components that are
deployed in the edge infrastructure and allow for sensing as
well as reacting to their environment [17], [18]. Both
approaches have in common that devices, which are
deployed in the IoT infrastructure, are defined as external
dependencies. Hence, these devices are not considered as an
integral part when designing and developing an application.
In order to address this issue, recent approaches explicitly
respect IoT devices as part of the application that require effi-
cientmanagement in order to provide scalable aswell as flex-
ible IoT applications [19], [20]. However, none of the
approaches discussed so far consider provisioning and
deploying parts of the application on resource-constrained
devices that provide limited execution environments [21],
which would help facilitating this untapped processing
power for building robust and adaptable applications. For
the actual deployment of applications, there exists only a
limited amount of prior work (e.g., [22], [23], [24], [25]) in the
literature that deal with the location-aware placement of
cloud application components. In contrast to our approach,
these approaches do not support placing application compo-
nents on constrained edge infrastructures in order to allow
for improving the deployment topology of an application.

Additionally, since our approach also allows for optimiz-
ing an application deployment topology, we also have to
consider relevant work in this research topic. There is a sig-
nificant body of work on optimization algorithms for

Fig. 5. Evaluation results—IoT application topology optimization (pyramid load pattern).

890 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 11, NO. 5, SEPTEMBER/OCTOBER 2018

adapting deployments of cloud applications. Among others
(e.g., [26], [27], [28]), Emeakaroha et al. [29] present a sched-
uling heuristic for cloud applications that considers several
SLA objectives. The approach provides a mechanism for
load balancing the execution of an application across avail-
able cloud resources, as well as a feature for automatically
leasing additional cloud resources on demand. Wada
et al. [30] propose an evolutionary deployment optimization
for cloud applications. By introducing a multi objective
genetic algorithm, the authors are able to optimize the
application deployment to satisfy SLAs under conflicting
quality of service objectives. Frey et al. [31] introduce
CDOXplorer, a simulation-based genetic algorithm for opti-
mizing the deployment architecture and corresponding run-
time configurations of cloud applications. By applying
techniques of the search-based software engineering field,
CDOXplorer analyzes the fitness of a simulated set of possi-
ble application configurations, in order to allow for optimiz-
ing the overall application. In contrast to our work, none of
the approaches presented so far, considers application
topologies that are deployed on edge devices, and therefore
can be seen as supplemental approaches to DIANE’s notion
of IoT deployments.

Next to algorithms, several approaches emerged in the lit-
erature that are specifically targeted at adapting application
deployments in the cloud. For example, CloudScale [32] is a
middleware for building applications that are deployed on
and running in the cloud. By using a transparent approach,
CloudScale enables the development of cloud applications
like regular programs without the need for explicitly dealing
with the provisioning of cloud resources. In order to scale
applications, CloudScale provides a declarative deployment
model that enables operators to define requirements and cor-
responding policies. Menasce et al. [33] present Sassy, a
framework that enables applications to be self-adaptive and
self-optimizing. Based on a self-architecting approach, Sassy
provides a near-optimal application deployment by consid-
ering both quality of service and functional requirements.
Compared to our approach, all these platforms have in com-
mon that they transparently adapt the application topology
by optimizing the underlying cloud deployment. However,
by only focussing on one specific type of infrastructure (i.e.,
the cloud), these platforms do not provide a generic approach
that can also be used for optimizing application deployments
on edge infrastructures as proposed in this paper.

8 CONCLUSION

In order to sense and manipulate their environment, applica-
tions in the Internet of Things are required to integrate and
manage a large number of heterogenous devices, which tradi-
tionally serve as simple sensors and actuators. Recently, how-
ever, devices emerged that in addition to basic sensing and
actuating features, also provide constrained execution
environments with limited processing, memory, and storage
capabilities. To exploit this untapped processing power,
applications can offload parts of their business logic onto
edge devices. This offloading of application components not
only increases the robustness of the overall application
deployment, but also allows for cutting down costs by reduc-
ing expensive cloud to edge communication overhead. The
consideration of edge devices is especially important for IoT

applications that are deployed in the cloud, as the cloud
allows applications to react to changing requirements by elas-
tically adapting their overall deployment topology. Therefore,
in addition to the traditional design considerations for cloud
applications, specific issues like the geographical distribution
of edge devices and the resulting network latencies need to be
explicitly considered in the design of IoT cloud applications.
Furthermore, applications need to be designed as clearly
separated components that can be deployed independently.
This application design approach enables the flexible provi-
sioning of applications whose deployment topology evolves
by dynamically offloading components to edge devices. To
support this, we introduced DIANE, an approach that
dynamically generates optimized deployment topologies for
IoT cloud applications, which are tailored to the currently
available physical infrastructure. DIANE uses a declarative,
constraint-based model of the desired application deploy-
ment to allow for flexible provisioning of application compo-
nents on both, cloud infrastructure, as well as edge devices
deployed in the IoT infrastructure. In addition, DIANE pro-
vides an optimization approach that allows for evolving
application deployment topologies at runtime to enable appli-
cations to autonomously react to environmental changes (e.g.,
changing request patterns).

In our ongoing work, we plan to extend DIANE to
address further challenges. We plan to further adapt our
MADCAT unit methodology to allow for more detailed
descriptions of application topologies and enable local
coordination of topology changes among edge devices.
We will further investigate ideal intervals for data collec-
tion as well as fault tolerance and mitigation strategies
for all DIANE components. Furthermore, we will inte-
grate our framework with our overall efforts in designing,
deploying, and managing complex, large-scale IoT appli-
cations to provide a comprehensive tool set for research-
ers and practitioners [34].

REFERENCES

[1] M. V€ogler, J. M. Schleicher, C. Inzinger, S. Nastic, S. Sehic, and
S. Dustdar, “LEONORE-large-scale provisioning of resource-
constrained IoT deployments,” in Proc. Int. Symp. Service-Oriented
Syst. Eng., 2015, pp. 78–87.

[2] M. Armbrust, et al., “A view of cloud computing,” Commun. ACM,
vol. 53, no. 4, pp. 50–58, 2010.

[3] S. Dustdar, Y. Guo, R. Han, B. Satzger, and H.-L. Truong,
“Programming directives for elastic computing,” IEEE Internet
Comput., vol. 16, no. 6, pp. 72–77, Nov./Dec. 2012.

[4] S. Newman, Building Microservices. Sebastopol, CA, USA: O’Reilly
Media, 2015.

[5] M. V€ogler, F. Li, M. Claeßens, J. M. Schleicher, S. Nastic, and
S. Sehic, “COLT collaborative delivery of lightweight IoT
applications,” in Proc. 1st Int. Conf. IoT Service, 2014, pp. 265–272.

[6] M. V€ogler, J. M. Schleicher, C. Inzinger, and S. Dustdar, “DIANE-
dynamic IoT application deployment,” in Proc. Int. Conf. Mobile
Services Special Track-Services Ubiquitous Web, 2015, pp. 298–305.

[7] C. Inzinger, S. Nastic, S. Sehic, M. V€ogler, F. Li, and S. Dustdar,
“MADCAT-A methodology for architecture and deployment of
cloud application topologies,” in Proc. Int. Symp. Service-Oriented
Syst. Eng., 2014, pp. 13–22.

[8] C. Inzinger, W. Hummer, B. Satzger, P. Leitner, and S. Dustdar,
“Generic event-based monitoring and adaptation methodology
for heterogeneous distributed systems,” Softw.: Practice Experience,
vol. 44, no. 7, pp. 805–822, 2014.

[9] M. V€ogler, J. M. Schleicher, C. Inzinger, and S. Dustdar, “Ahab:
A cloud-based distributed big data analytics framework for the
Internet of Things,” Softw.: Practice Experience, 2016, http://dx.
doi.org/10.1002/spe.2424

V€OGLER ET AL.: OPTIMIZING ELASTIC IOT APPLICATION DEPLOYMENTS 891

http://dx.doi.org/10.1002/spe.2424
http://dx.doi.org/10.1002/spe.2424

[10] D. Agrawal, S. Das, and A. El Abbadi, “Big data and cloud com-
puting: New wine or just new bottles?” Proc. VLDB Endowment,
vol. 3, no. 1/2, pp. 1647–1648, Sep. 2010.

[11] S. Li, L. D. Xu, and S. Zhao, “The internet of things: A survey,” Inf.
Syst. Frontiers, vol. 17, no. 2, pp. 243–259, Apr. 2015.

[12] L. Da Xu, W. He, and S. Li, “Internet of things in industries: A
survey,” IEEE Trans. Ind. Informat., vol. 10, no. 4, pp. 2233–2243,
Nov. 2014.

[13] D. Guinard, I. Ion, and S. Mayer, “In search of an internet of things
service architecture: REST or WS-*? A developers perspective,” in
Mobile and Ubiquitous Systems: Computing, Networking, and Services,
vol. 104. Berlin, Germany: Springer, 2012, pp. 326–337.

[14] P. Patel, A. Pathak, T. Teixeira, and V. Issarny, “Towards applica-
tion development for the internet of things,” in Proc. Middleware
Doctoral Symp., 2011, pp. 5:1–5:6.

[15] H. Ning and Z. Wang, “Future internet of things architecture: Like
mankind neural system or social organization framework?” IEEE
Commun. Lett., vol. 15, no. 4, pp. 461–463, Apr. 2011.

[16] F. Li, et al., “Web-scale service delivery for smart cities,” IEEE
Internet Comput., vol. 17, no. 4, pp. 78–83, Jul./Aug. 2013.

[17] W. Colitti, K. Steenhaut, N. De Caro, B. Buta, and V. Dobrota,
“REST enabled wireless sensor networks for seamless integration
with Web applications,” in Proc. Int. Conf. Mobile Ad-Hoc Sensor
Syst., 2011, pp. 867–872.

[18] Q. Zhu, R. Wang, Q. Chen, Y. Liu, and W. Qin, “IOT gateway:
Bridging wireless sensor networks into internet of things,” in
Proc. Int. Conf. Embedded Ubiquitous Comput., 2010, pp. 347–352.

[19] S. S. Yau and A. B. Buduru, “Intelligent planning for developing
mobile IoT applications using cloud systems,” in Proc. Int. Conf.
Mobile Services, 2014, pp. 55–62.

[20] F. Li, M. V€ogler, M. Claessens, and S. Dustdar, “Towards auto-
mated IoT application deployment by a cloud-based approach,”
in Proc. Int. Conf. Service-Oriented Comput. Appl., 2013, pp. 61–68.

[21] A. Sehgal, V. Perelman, S. Kuryla, and J. Schonwalder,
“Management of resource constrained devices in the internet of
things,” IEEE Commun. Mag., vol. 50, no. 12, pp. 144–149,
Dec. 2012.

[22] R. Buyya, R. N. Calheiros, and X. Li, “Autonomic cloud comput-
ing: Open challenges and architectural elements,” in Proc. Int.
Conf. Emerg. Appl. Inf. Technol., 2012, pp. 3–10.

[23] S. Radovanovic, N. Nemet, M. Cetkovic, M. Z. Bjelica, and
N. Teslic, “Cloud-based framework for QoS monitoring and pro-
visioning in consumer devices,” in Proc. Int. Conf. Consumer Elec-
tron., 2013, pp. 1–3.

[24] H. Qian and M. Rabinovich, “Application placement and demand
distribution in a global elastic cloud: A unified approach,” in Proc.
Int. Conf. Autonomic Comput., 2013, pp. 1–12.

[25] P. Mayer, et al., “The autonomic cloud,” in Software Engineering for
Collective Autonomic Systems. Berlin, Germany: Springer, 2015,
pp. 495–512.

[26] J. Z. W. Li, M. Woodside, J. Chinneck, and M. Litoiu, “CloudOpt:
Multi-goal optimization of application deployments across a
cloud,” in Proc. Int. Conf. Netw. Service Manage., 2011, pp. 1–9.

[27] P. Leitner, W. Hummer, B. Satzger, C. Inzinger, and S. Dustdar,
“Cost-efficient and application SLA-aware client side request
scheduling in an infrastructure-as-a-service cloud,” in Proc. Int.
Conf. Cloud Comput., 2012, pp. 213–220.

[28] W. Yuan, H. Sun, X. Wang, and X. Liu, “Towards efficient deploy-
ment of cloud applications through dynamic reverse proxy opti-
mization,” in Proc. Int. Conf. High Performance Comput. Commun.
Int. Conf. Embedded Ubiquitous Comput., 2013, pp. 651–658.

[29] V. C. Emeakaroha, I. Brandic, M. Maurer, and I. Breskovic, “SLA-
aware application deployment and resource allocation in clouds,”
in Proc. Comput. Softw. Appl. Conf. Workshops, 2011, pp. 298–303.

[30] H. Wada, J. Suzuki, Y. Yamano, and K. Oba, “Evolutionary
deployment optimization for service-oriented clouds,” Softw.
Practice Experience, vol. 41, no. 5, pp. 469–493, 2011.

[31] S. Frey, F. Fittkau, and W. Hasselbring, “Search-based genetic
optimization for deployment and reconfiguration of software in
the cloud,” in Proc. Int. Conf. Softw. Eng., 2013, pp. 512–521.

[32] P. Leitner, B. Satzger, W. Hummer, C. Inzinger, and S. Dustdar,
“CloudScale-a novel middleware for building transparently scal-
ing cloud applications,” in Proc. Symp. Appl. Comput., 2012,
pp. 434–440.

[33] D. a. Menasc�e, H. Gomaa, S. Malek, and J. P. Sousa, “SASSY: A
framework for self-architecting service-oriented systems,” IEEE
Softw., vol. 28, no. 6, pp. 78–85, Nov./Dec. 2011.

[34] J. M. Schleicher, M. V€ogler, C. Inzinger, and S. Dustdar, “Towards
the internet of cities: A research roadmap for next-generation
smart cities,” in Proc. Int. Workshop Understanding City Urban Infor-
mat., 2015, pp. 3–6.

Michael V€ogler is a postdoctoral researcher with
the Distributed System Group, TU Wien. His
research interests include cloud computing, ser-
vice-oriented architectures, distributed systems,
and IoT.

Johannes Michael Schleicher is working
towards the PhD degree at the Distributed
System Group, TU Wien. His research interests
include cloud computing, distributed systems,
and smart cities.

Christian Inzinger is a postdoctoral researcher
with the Software Evolution and Architecture Lab
(s.e.a.l.), University of Zurich. His main research
focus is on helping developers write better cloud
applications and his work is mainly concerned
with architectures for cloud applications, software
evolution, and fault management in distributed
elastic systems.

Schahram Dustdar is a full professor of com-
puter science with a focus on Internet technolo-
gies and heads the Distributed Systems Group,
TU Wien. He is an ACM distinguished scientist
and received the IBM Faculty award. He is an
associate editor of the IEEE Transactions on
Services Computing, the ACM Transactions on
the Web, and the ACM Transactions on Internet
Technology and on the editorial board of the
IEEE Internet Computing. He is the editor-in-chief
of the Computing (Springer). He is a fellow of the
IEEE.

892 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 11, NO. 5, SEPTEMBER/OCTOBER 2018

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

