
Submitted 14 January 2017
Accepted 19 April 2017
Published 22 May 2017

Corresponding author
Johannes M. Schleicher,
schleicher@dsg.tuwien.ac.at

Academic editor
Chee Shin Yeo

Additional Information and
Declarations can be found on
page 22

DOI 10.7717/peerj-cs.115

Copyright
2017 Schleicher et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Modeling and management of usage-
aware distributed datasets for global
Smart City Application Ecosystems
Johannes M. Schleicher1, Michael Vögler1, Christian Inzinger2 and
Schahram Dustdar1

1Distributed Systems Group, TUWien, Vienna, Austria
2 Software Evolution & Architecture Lab, University of Zürich, Zürich, Switzerland

ABSTRACT
The ever-growing amount of data produced by and in today’s smart cities offers
significant potential for novel applications created by city stakeholders as well as third
parties. Current smart city application models mostly assume that data is exclusively
managed by and bound to its original application and location.We argue that smart city
datamust not be constrained to such data silos so that future smart city applications can
seamlessly access and integrate data frommultiple sources across multiple cities. In this
paper, we present a methodology and toolset to model available smart city data sources
and enable efficient, distributed data access in smart city environments. We introduce a
modeling abstraction to describe the structure and relevant properties, such as security
and compliance constraints, of smart city data sources along with independently
accessible subsets in a technology-agnostic way. Based on this abstraction, we present
a middleware toolset for efficient and seamless data access through autonomous
relocation of relevant subsets of available data sources to improve Quality of Service for
smart city applications based on a configurable mechanism. We evaluate our approach
using a case study in the context of a distributed city infrastructure decision support
system and show that selective relocation of data subsets can significantly reduce
application response times.

Subjects Distributed and Parallel Computing, Software Engineering
Keywords Smart city application engineering, Data management, Data migration, Quality of
service

INTRODUCTION
Sparked by the rapid adoption of the smart city paradigm and fueled by the rise of the
Internet of Things, today’s metropolises have become data behemoths. With every day that
passes more and more areas of cities around the globe start accumulating and producing
data. These areas cover building management, traffic and mobility systems, energy grids,
water and pollutionmanagement, governance, social media, andmanymore. This plethora
of heterogenous data about various aspects of a city represents a vital foundation for decision
and planning processes in smart cities. The advent of more and more open data initiatives
around the globe, covering cities like London (https://data.london.gov.uk/), Vienna
(https://open.wien.gv.at/site/open-data/), New York (https://nycopendata.socrata.com/),
and many more underlines the importance of opening up data to the public to inspire
and support novel applications. Even though these initiatives are gaining momentum,

How to cite this article Schleicher et al. (2017), Modeling and management of usage-aware distributed datasets for global Smart City Ap-
plication Ecosystems . PeerJ Comput. Sci. 3:e115; DOI 10.7717/peerj-cs.115

https://peerj.com
mailto:schleicher@dsg.tuwien.ac.at
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.115
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://data.london.gov.uk/
https://open.wien.gv.at/site/open-data/
https://nycopendata.socrata.com/
http://dx.doi.org/10.7717/peerj-cs.115

they still only cover a fraction of the available data of a city, missing many vital sources,
especially when it comes to more sensitive areas like building management, energy grids,
or public transport guidance systems. Currently, this data is mostly isolated and restricted
to certain application areas, data centers, organizations, or only accessible in a specific
city. This isolation creates data silos, which lead to transitive restrictions that apply to the
models and applications that build upon them, confining them to their initial application
domains. Today’s smart cities however, represent heterogeneous, dynamic, and complex
environments that rely on emerging interactions in order to operate effectively. These
interactions are an essential element of Smart City Applications (Schleicher et al., 2016a)
and not only important in an intracity context, but also a key element to enable the future
Internet of Cities (Schleicher et al., 2015b), an interconnected system of systems that spans
multiple cities around the globe. To pave the way for such applications we need to break
up the traditional notion of data silos to enable ubiquitous access to the valuable data they
contain. In the context of smart cities, an approach is required that respects the complexities
of this domain, specifically the need to effectively describe a large variety of heterogenous
data sources along with relevant subsets. Additionally, it has to be able to capture important
data set characteristics (e.g., size, update frequency, costs), respect essential security and
compliance constraints, as well as ensure efficient and seamless data access.

In this paper, we present Smart Distributed Datasets (SDD), a methodology and
framework to enable transparent and efficient distributed data access for data sources in
smart city environments. We introduce a system model that provides a simple abstraction
for the technology-agnostic description of data sources and their subsets with the ability
to express varying data granularities and specific characteristics common in the smart city
domain. Based on this abstraction, we present the SDD framework, a middleware toolset
that enables efficient and seamless data access for smart city applications by autonomously
relocating relevant subsets of available data sources to improve Quality of Service (QoS)
based on a configurable mechanism that considers request latency, as well as costs for
data transfer, storage, and updates. We provide a proof of concept implementation of
the SDD framework and evaluate it using a case study in the context of a distributed city
infrastructure decision support system. For this case, we show that selective relocation of
data subsets using the SDD framework can significantly improve QoS by reducing response
times by 66% on average.

The remainder of this paper is structured as follows. In ‘Motivation’ we present a
motivating scenario and identify the associated key requirements. We introduce the system
model underlying SDD in ‘System Model’ and present the SDD framework along with a
detailed discussion of its components in ‘The SDD Framework’. In ‘Evaluation’ we evaluate
our approach using a case study from the smart city domain. Related work is discussed in
‘Related Work’, followed by a conclusion and outlook on future research in ‘Conclusion’.

MOTIVATION
In this paper, we base our discussion on our recent smart city research within URBEM
(http://urbem.tuwien.ac.at), a research initiative of the city of Vienna and TUWien.Within

Schleicher et al. (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.115 2/24

https://peerj.com
http://urbem.tuwien.ac.at
http://dx.doi.org/10.7717/peerj-cs.115

Energy
Management

Vertical

Mobility
Management

Vertical

Asset
Management

Vertical

Energy Mobility Asset

Energy
Management

Transport
Management

Asset
Management

Smart Home

Offices & Retail

Infrastructure

Cloud

Server ! 
"#

$

D
em

and (C
onsum

ers)

Data

Lay
er

Applic
ati

on

Lay
er

Infra
str

uctu
re

Lay
er

Security &
Com

pliance

Design &
Development

Runtime
Environment

Processing & Analysis

Infrastructure
Management

Configuration
Management

Storage & Access

Operations
Management

Lifecycle
Management

Sm
art C

ity O
perating System

Applications
Provider

Tenant
M

anagem
ent

Figure 1 The Smart City Application Ecosystem with the Smart City Operating System at its core.

URBEM, we proposed the Smart City Application Ecosystem (SCALE) (Schleicher et al.,
2016a) shown in Fig. 1 as a streamlined way for modeling, engineering, and operating
future smart city applications based on a common abstraction, the Smart City Operating
System (SOS) (Vögler et al., 2016). The aim of SCALE is to enable stakeholders, citizens,
and practitioners in a smart city environment to build novel kinds of applications that
can utilize the newfound capabilities emerging through the IoT, as well as accessing
the massive amounts of data emitted by the city in an efficient way. Using SCALE,
we created the URBEM Smart City Application (USCA) (Schleicher et al., 2016c), a
holistic, interdisciplinary decision support system for the city of Vienna and a number
of key stakeholders. We argue that such applications will evolve to become composable,
interchangeable abstractions of capabilities similar to the applications known from today’s
smart phones, but on a much larger scale. This evolution in turn is an essential step towards
the so-called Internet of Cities (Schleicher et al., 2015b), an open and dynamic market place
where applications can seamlessly interact and be exchanged between cities around the
globe.

To enable these applications as well as this vital open exchange it is essential to provide
means to expose and access data in an efficient, secure, and predictable way. Currently,

Schleicher et al. (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.115 3/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.115

most of the data in a smart city context is confined to certain application areas and
stakeholder data centers within a specific city. Open data initiatives around the globe,
while crucial, still only expose a certain fraction of the available data, missing out on
many important domains, especially when data is stored in legacy systems without openly
accessible interfaces or underlies strict security and compliance constraints. This data lies
dormant beyond its initial use case even though it could provide essential input for a wide
range of smart city applications. The ability to benefit from incorporating new data sources
as they evolve, for example to enhance decision support and planning, or to be applied to
new cities or novel domains, is hindered by the inability of these applications to access the
necessary data. Developers of smart city applications, however, need to be able to utilize
and integrate as much relevant data as possible to generate maximum user benefit as well
as applicability in as many cities as possible. Stakeholders on the other hand, as willing
as they might be to expose this data, are mostly bound by the complex constraints of
their specific environment. The dynamic, emergent nature of interactions in and between
smart city applications means they are not a priori aware that their data sources might
become valuable assets if made accessible. This leads to a problematic stalemate between
practitioners and stakeholders in the smart city domain, hindering essential innovation
and application.

To overcome this impasse, a mechanism is required that enables flexible, stable, and
efficient data access, while providing a simple and tailored way to make data sources
available, which still respects security and compliance constraints. Specifically, we identify
the following requirements in the context of our domain:

• The ability to describe data sources using an evolvable and technology-agnostic
abstraction.
• The ability to describe subsets of these data sources along with relevant characteristics
in the context of security, compliance and costs (e.g., effort to generate, store, query,
and update particular subsets or the underlying data source as a whole).
• An efficient way to access this data in a transparent way, independent of geographic
location while still improving QoS.

SYSTEM MODEL
In order to address the previously outlined requirements, we need an abstraction to model
and describe the relevant data entities in our domain. As foundation for said abstraction
we use MADCAT (Inzinger et al., 2014) and its extensions, which we introduced in Smart
Fabric (Schleicher et al., 2015a). We presented an infrastructure agnostic deployment
model with the following abstract concepts: Technical Units (TUs) to describe applications
as well as application components, Infrastructure Specifications (IS) describe infrastructure
resources, Deployment Units (DUs) to describe how to deploy and TU on an IS and an
Deployment Instance (DI) represented such an actual deployment. In this paper, we extend
this model with the ability to describe and incorporate data entities from the smart city
domain. Specifically, we introduce the additional concepts of Data Units (DAUs) to model
data sources as well as Data Instances (DAIs) to describe specific deployments of DAUs

Schleicher et al. (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.115 4/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.115

Deployment
Unit

Technical
Unit

Infrastructure
Specification

Deployment
Instance

links to 1..n links to 1

links to 1..n

links to 0..n

Data Instance

links to 0..n

Data Unit

links to 0..n

links to 1

links to 1..n

Figure 2 Relations between Technical Unit, Deployment Unit, Infrastructure Specification and De-
ployment Instance including the newly introduced Data Unit and Data Instance.

on certain DIs, along with the ability to link TU to DAUs. Additionally, we provide an
implementation of the abstract concepts along with the proposed methodology extensions
for the SDD Framework. We again choose JSON-LD (http://json-ld.org/) as data format
for our concept description as a simple, both human and machine readable, pragmatic,
and extensible representation that also allows us to interlink the relevant concepts with
each other. Figure 2 shows an overview of all concepts, including the relations of the newly
introduced DAU and DAI (shown in blue) to the previously existing concepts Deployment
Instance (DI) andTechnical Unit (TU). In the following, we discuss the introduced concepts
in more detail.

Data Unit
DAUs describe data sources including its subsets. Listing 1 shows an example of such a
DAU for a buildings data source in the URBEM domain. As JSON-LD document, a DAU
can start with a context to set up common namespaces. This is followed by the type
attribute to identify the corresponding kind of abstraction in our model space. The next
attribute is the name as URN to identify the unit, along with a version attribute enabling
versioning and therefore evolvable DAUs. The creationDate and the lastUpdate define
when the unit description was initially created respectively last updated. The next section
is metainformation about the described data source. It contains a type attribute that
defines the type of the data source, types can be REST, SOAP, any database, streaming data

Schleicher et al. (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.115 5/24

https://peerj.com
http://json-ld.org/
http://dx.doi.org/10.7717/peerj-cs.115

or file based. In our example listing it is used to describe a document oriented MongoDB
(https://www.mongodb.com/) based data source. The schema attribute can link to a
corresponding schema, which based on the type and can be anything of the likes of a
SQL schema, JSON schema, WADL (https://www.w3.org/Submission/wadl/) or WSDL
(https://www.w3.org/TR/wsdl). The next attribute is securityConstraints and in the
context of this section it is used to define who is allowed to access the unit file. A security
constraint can be a link to an OAuth (https://oauth.net/) authority, LDAP distinguished
name (DN) or any other corresponding authentication and authorization scheme. This
is a vital element to ensure the compliance and security constraints of this domain can
be met on any level of detail and is again used when describing specific facets of a data
source. The last element in the metainformation section is the dataUnits attribute, which
allows to link a DAU to other corresponding DAUs enabling the description of linked
data sources. The next section views allows to express multiple facets of the data source
enabling a fined grained level of control about its aspects. Each view has a name attribute
for identification as well a a link to express how to access it. In case of the our example
this is a URL to the corresponding rest resource. The next section within a view is the
updateFrequency. It allows to express how often a view is being updated (period,times),
how long such an update takes (updateTime) as well as how much of the resource this
update represents (fraction). The size attribute gives an indication of the expected size
of the view. This is followed by a securityConstraints attribute that again can be a
set of links to a corresponding authentication or authorization scheme supporting the
previously mentioned methods. In this section it is used to express security and compliance
constraints for specific fractions of a data source, which allows for a fine very grained
level of control. The last attribute in a view is the dataInstances attribute, which links the
view and its corresponding DAU to one or more Data Instance (DAI) by referencing their
names.

Listing 1: Data Unit—Structure
{

"@context": "http:// smartfabric.dsg.tuwien.ac.at",
"@type": "DataUnit",
"name": "urn:buildings:vienna",
"version": "1.0"
"creationDate": " 2017-01-07 13:04:03 +0100 ",
"lastUpdate": " 2017-01-07 13:04:03 +0100"

"metainformation": {
"type":"nosql:mongodb",
"schema": "http://sdd.dsg.tuwien.ac.at/urbem/vienna/buildings",
"securityConstraints":[{

"type":"ldap"
"url":"10.2.0.112"
"dn":"CN=buildings -vienna",
...
}],

"dataUnits":[...]
}

"views":[{
"name":"urn:buildings:vienna:buildingblocks",

Schleicher et al. (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.115 6/24

https://peerj.com
https://www.mongodb.com/
https://www.w3.org/Submission/wadl/
https://www.w3.org/TR/wsdl
https://oauth.net/
http://dx.doi.org/10.7717/peerj-cs.115

"link":"/ buildingblocks /",
"updateFrequency":{

"period":"yearly",
"times": "1",
"fraction": "10"
"updateTime" : "2300"
},

"size":"10000303",
"securityConstraints":[...]
"dataInstances":[...]

},
"name":"urn:buildings:vienna:buildings",
"link":"/ buildings /",
...]

}

Data Instance
A DAI represents a specific deployment of a DAU on a DI. There can be multiple DAIs for
a DAU representing different deployed views, where a specific DAI contains a subset of
the views specified in the DAU, i.e., DAI ∈P(DAU). A DAI specifies context, type, name
and version, as well as a dataUnit to reference the corresponding DAU. This if followed
by creationDate and updateDate to define when the instance was created as well as last
updated. The next attribute is deploymentInstance, which contains a DI name and is
used to link the DAI to a corresponding DI. Finally, the metainformation element allows
to store additional information about the specific data instance in an open key value format
that can later be used by the framework components to support transfer decisions, examples
would be accessFrequency of this specific DAI or other non functional characteristics.

Listing 2: Data Instance—Structure
{

"@context": "http:// smartfabric.dsg.tuwien.ac.at",
"@type": "DataInstance",
"dataUnit":"urn:buildings:vienna"
"name": "urn:buildings:vienna:buildingblocks",
"version":"1.0",
"creationDate":"2017-01-07 13:04:03 +0100"
"lastUpdate":"2017-01-07 13:04:03 +0100"
"deploymentInstance":"CitizenInformationSystem/DedicatedServer"
"metainformation":{...}

}

For further information regarding the elements of a TU, DU, DI, IS as well as DAU
and DAI, we provide detailed example representations of all of them in the corresponding
Bitbucket repository (https://bitbucket.org/jomis/smartdata).

THE SDD FRAMEWORK
In this section, we introduce the SDD framework for enabling usage-aware distributed
datasets, to address the previously introduced requirements. We begin with a framework
overview, followed by a detailed description of all framework components and conclude
with a comprehensive description of our proof of concept implementation.

Schleicher et al. (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.115 7/24

https://peerj.com
https://bitbucket.org/jomis/smartdata
http://dx.doi.org/10.7717/peerj-cs.115

Repository API

SDD API

SDD Manager

Repository Manager

Data Unit
Repository

Data Instance
Repository

Migration API

Migration
Manager

SDD Proxy

Update API

Update
Manager

SDD Proxy API

Analyzer API

Analyzer
Manager

Dependency API

Dependency Manager

Security API

Security Manager

Figure 3 SDD framework overview.

Framework rationales
The Framework with an overview of its main components shown in Fig. 3 follows the
microservice (Newman, 2015) architecture paradigm. It consists of eight main components
where each of these components represents a microservice. The components utilize
both service based as well as message-oriented communication to exchange information.
Specifically, we distinguish three different queue types: an Analyzer Queue, a Handler
Queue as well as an Update Queue, which will be explained in more detail in the context of
the corresponding components.

Additionally, the framework utilizes the principle of Confidence Elasticity a concept we
introduced and successfully applied in our previous work (Schleicher et al. 2016b; Schleicher
et al. 2015a). In this framework we use the concept in the Update Manager and Migration
Manager component to select a suitable Migration respectively Update Strategy for a
specific data source. Each strategy is associated with a confidence value (c ∈R,0≤ c ≤ 1),
with 0 representing no certainty and 1 representing absolute certainty about the produced
result. This convention allows the framework to configure certain confidence intervals
to augment the process of choosing an applicable strategy within these two components.
These confidence intervals are provided as configuration elements for the framework. If

Schleicher et al. (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.115 8/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.115

the confidence thresholds are not met, the framework follows an escalation model to find
the next strategy that is able to provide results with higher confidence until it reaches the
point where human interaction is necessary to produce a satisfactory result. In the context
of the Migration and Update Manager components, this means if an migration or update
of a data source cannot be performed with a satisfactory confidence the escalation model
will prompt for human interaction to perform said migration or update.

SDD Proxy
The SDD Proxy acts as a transparent Proxy between clients and data sources (DAIs). The
proxy itself has two main responsibilities. First, it submits all incoming requests to a
Analyzer Message Queue before forwarding them to the requested data source. Second, it
listens to the Handler Message Queue for potential redirections to be taken for a specific
request. If the Handler Message Queue contains a message for the current request, it is
processed by the SDD Proxy, the request in question is redirected to the new data source
and the message gets removed from the Handler Queue. To avoid bottlenecks, there can be
multiple proxies where each of them is being managed via the SDD Proxy APIs by the SDD
Manager.

SDD Manager
The SDD Manager acts as the central management component of the framework and
provides the SDD API for overall framework control. To activate the framework a user
invokes the SDD API with the following parameters: (i) a set of Triggers as well as a (ii)
Confidence Interval to configure the Confidence Elasticity of the Framework. The SDD
Manager then starts the first SDD Proxy and starts monitoring the average request rates
as well as the utilization of the proxy via the SDD Proxy API. If the SDD Manager detects
a potential bottleneck, it starts another proxy (additional ones if necessary based on the
average request rate). The next task of the SDD Manager is to submit the provided Triggers
to theAnalyzer Manager, which uses them to invoke the corresponding request monitoring.
A Trigger is used in the analyzer to decide whether a request needs to be handled or not.
Triggers can, for example, be time based, size based or follow a customizable cost function
and provide a threshold for triggering a handling action. The Analyzer Manager uses
different pluggable Analyzer Strategies in correspondence with these submitted Triggers
to determine if a request needs to be processed. If this is the case, the Analyzer Manager
invokes the Migration Manager via the Migration API and provides the corresponding
request including the results of its analysis. The Migration Manager is responsible for
determining the potential Migration Strategies for the data resource in question. To
achieve this it first contacts the Dependency Manager, which uses a dependency resolution
mechanism to determine the corresponding DAU for the DAI being requested by the
current request. The Dependency Manager in turn is tightly integrated with the Security
Manager, which ensures all security constraints that are defined in the DAUs are satisfied
before returning the results of the resolution. Once the dependency resolution has provided
theDAU, it is analyzed by theMigration Manager. Specifically, it checks the results provided
by the Analyzer Manager like request time, data size or a respective cost function against

Schleicher et al. (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.115 9/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.115

SDD Manager
invoke(triggers,confidence interval)

SDD Proxy Analyzer
Manager

response

Analyzer
Facet

response

[no bottlenecks]

start

response

Compensation
Facet

response

[confidence satisfied]

response

storeAnalyzerResults
(containers,results)

createCompensationTopic(container ids)

response

[confidence satisfied]

response

storeCompensationResults
(containers,results)

autoAssembly()

autoAssembly()

alt
startAnalyzer(triggers)

createAnalyzerTopic(container ids)

Figure 4 SDDManager sequence diagram.

the attributes of the specific view being requested. It analyzes the update frequency as well
as update sizes to determine if a migration should be performed as well as to to determine
the fittingMigration Strategy and to execute it if applicable. Once the migration is finished
the Migration Manager executes two tasks. First, it adds the request to the migrated data
source to the Handler Queue including the new target (DAI) after the migration. This in
turn triggers the corresponding SDD proxies to execute a redirection. Second, it registers
the resource at the Update Manager, which in turn determines the fitting Update Strategy
for the migrated data source to ensure that the data stays up to date. Once these steps are
successfully finished, the Migration Manager updates the DAIs and DAUs to reflect the
changes caused by the migration via the Repository Manager. A corresponding sequence
diagram illustrating this process is shown in Fig. 4.

Analyzer Manager
The role of the Analyzer Manager is to determine if a request is a potential candidate for
a migration. It watches the Analyzer Queue for requests that correspond to any of the
previously provided Triggers. A Trigger is a threshold that matches an attribute that is
the result of an Analyzer Strategy. Analyzer Strategies in turn are pluggable mechanisms
that analyze a specific request based on the type of the request in question. Basically,
we distinguish three different types of strategies: Time Analyzers, which determine the
response time for a specific request; Size Analyzers, which determine the size of a request
and response; as well as Frequency Analyzers, which determine the frequency of a request to
a certain source. Additionally, there is also the ability to provide Cost Function Analyzers,
which allow to integrate arbitrary cost functions and enable a much greater analytical

Schleicher et al. (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.115 10/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.115

flexibility. Once a threshold is met, the Analyzer Manager submits the request in question
including the results of the specific strategy to theMigration Manager.

Migration Manager
The Migration Manager is responsible for deciding if a data resource should be migrated
based on the results of the Analyzer Manager. It is invoked via the Migration API with
a specific request augmented with the results from the corresponding Analyzer Strategy.
The Migration Manager then forwards this request to the Dependency Manager, which
first determines the DAI that belongs to the requested data resource. Based on this DAI
the DAU is determined only if all security constraints are being met, which in turn is
ensured by the Security Manager. The retrieved DAU provides the foundation for deciding
if a data source can and should be migrated. To achieve this, the Migration Manager
relies on pluggable strategies that determine if a migration is feasible and possible. Such
a Migration Strategy receives the retrieved DAU as well as the results from the Analyzer
Manager. Based on this it does two things: first, it determines if a migration is possible by
checking the results of the Analyzer Manager (e.g., response time, average transfer size)
against the updateFrequency elements of the DAU as well as the constraints of the current
infrastructure. If the result of this analysis leads to the conclusion that amigration is possible
and feasible the Migration Strategy returns according results augmented with a confidence
value. Second, the Migration Strategy provides a method to execute the actual migration.
The framework is flexible regarding the specific migration mechanism and regards this as
the responsibility of the strategy itself. One possible variant is the utilization of the Smart
Fabric Framework (Schleicher et al., 2015a) since its provides an optimal foundation for
infrastructure agnostic deployments (hence migrations) and supports the extended system
model. In case of a Smart Fabric Strategy the Infrastructure Specifications (IS) are taken into
account when deciding if a migration is feasible. This means the Migration Strategy can
check which non functional characteristics apply and can incorporate them in the decision
to migrate. Additionally, the execution of said migration is started by issuing a transfer
requests to the Smart Fabric Framework. Based on the previously introduced confidence
elasticity mechanism the Migration Manager then executes the corresponding Migration
Strategy or in case none is found relies on a human interaction to perform the migration.
Once the migration is finished, the Migration Manager creates new corresponding DAIs
to reflect the migrations and updates the corresponding DAUs. Futhermore, it publishes
a message to the Handler Queue and by doings so prompts the SDD Proxy to execute a
redirection to the migrated data source. Once this is done the Migration Manager ensures
the migrated data source is updated by registering the DAIs at the Update Manager.

Update Manager
The role of the Update Manager is to ensure that migrated data sources stay up to date if
the original source is changed. To enable this it relies on pluggableUpdate Strategies and we
basically distinguish the following different types: Simple Copy Strategies, which copy either
a fraction or the entire data source; Script Update Strategies, which apply a more complex
update strategy based on a script (e.g., rsync, sql scripts); as well as Streaming Replication

Schleicher et al. (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.115 11/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.115

Strategies for continuous updates. These strategies again utilize the Confidence Elasticity
mechanism by providing a confidence value. Based on the initially provided confidence
interval of the framework the escalation mechanism selects an applicable Update Strategy
or in the case none is found relies on a human interaction to perform the update. Once the
update is finished the Update Manager updates the corresponding DAI via the Repository
Manager.

Dependency Manager
The Dependency Manager is responsible for resolving unit dependencies between the
modeled data entities, as described in the system model above. To achieve this, the
dependencies between data entities in the system model are represented as a tree structure.
Based on this tree structure the Dependency Manager creates a root node for each DAU. It
then creates a corresponding leaf node for each DAI that is referenced in the dependency
section of the DAU. After this it checks the related DIs and adds them as leaves. For
every step the Dependency Manager also ensures that all security constraints are being met
by checking the specific DAU with the Security Manager. If access is not permitted, the
resolution is not successful.

Security Manager
The Security Manager is responsible for ensuring that all security constraints that apply
to a given DAU are being met. To do so it checks to facets of a DAU. First, it ensures
that a DAU description can be accessed by checking the securityConstraints element
in the metainformation section. Second, it ensures that each view can be accessed as
well as migrated by checking the corresponding securityConstraints element in the
view sections of the DAU. To enable an open and evolvable security system, the Security
Manager relies on pluggable Security Strategies. Examples of such strategies are LDAP or
OAuth or other approaches like RBAC (Hummer et al., 2013), but can be extended to any
other suitable security mechanism.

Repository Manager
The Repository Manager provides repositories for DAUs and DAIs and acts as a distributed
registry keeping track of specific deployments and participating entities. It is responsible for
storing and retrieving the system model. It manages two distinct system model repositories
utilizing distributed key value stores, which store the JSON-LD files that represent DAUs
and DAIs in a structured way. The Repository Manager provides a service interface to
access these files as well as a search interface to query DAUs and DAIs based on specific
elements. Additionally, it is responsible for managing dependencies between DAUs as well
as DAIs and it seamlessly integrates with Repository Managers of other SDD Framework
deployments ensuring a complete DAU and DAI lookup.

Implementation
For evaluation purposes we created a proof of concept prototype of our framework
based on a set of RESTful microservices implemented in Ruby and packaged as Docker
(https://www.docker.com/) containers. Every component that exposes a service interface

Schleicher et al. (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.115 12/24

https://peerj.com
https://www.docker.com/
http://dx.doi.org/10.7717/peerj-cs.115

relies relies on the Sinatra (http://www.sinatrarb.com/) web framework. To enable the
message-based communication for the Analyzer, Handler and Update queues we used
RabbitMQ (https://www.rabbitmq.com/) as message-oriented middleware.

The Repository Manager utilize MongoDB (https://www.mongodb.org/) as its
storage backend, which enables a distributed, open, and extendable key value store
for the DAU and DAI repositories and provides the foundation for the distributed
registry. The SDD Proxy was implemented as WEBrick (https://ruby-doc.org/stdlib-
2.0.0/libdoc/webrick/rdoc/WEBrick.html) proxy server. Additionally, we patched the
default Ruby http class in our prototype implementation to enable the transparent proxy
behavior.

We implemented the Analyzer Manager with two Analyzer Strategies. Specifically, we
implemented a Web Request Response Time Analyzer as well as Web Request Response Size
Analyzer, which allowed us to analyze response times as well as average sizes of requests
and responses. The Migration Manager was implemented with two Migration Strategies.
The first strategy was a MongoDB Strategy supports the migration of MongoDB databases
and collections, the second one was aDocker Strategy that enables a docker based container
migration. For theUpdate Manager we reused theMongoDB Strategy asMondoDB Database
Copy Strategy and MondoDB Collection Copy Strategy and additionally implemented a file
based SCP Full Copy Strategy, which transfers files via Secure Copy (scp).

The prototype implementation is available online and can be found at https:
//bitbucket.org/jomis/smartdata.

EVALUATION
Setup
As basis for our evaluation we used the URBEM Smart City Application (USCA) (Schleicher
et al., 2016c), a holistic interdisciplinary decision support system, which has been used for
city infrastructure planning tasks especially in the context of energy and mobility systems.
We choose the USCA, because it represents an optimal candidate for our evaluation due to
the following characteristics: (i) It heavily relies on a diverse set of data sources, where most
of them belong to stakeholders and are under strict security and compliance regulations;
(ii) It is an application that has to deal with changing requirements that make it necessary
to incorporate new data sources dynamically; (iii) Due to the nature of the application as
a planning tool for energy and mobility systems it is a common case to incorporate data
sources from other cities around the globe.

Due to the strict data security regulations, we were not allowed to use the original data
from the URBEM domain for our evaluation scenario. To overcome this limitation, we
created anonymized random samples of the most common data sources that are being
used in the USCA. The specific datasets we used included building data with different
granularity levels, thermal and electrical network data as well as mobility data. Based on
these data sources we created Data Units (DAUs) for each of them as well as exemplary
data services as Technical Units (TUs). As a next step we looked at the common request
patterns for these types of data based on the request history of the USCA. Since the USCA

Schleicher et al. (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.115 13/24

https://peerj.com
http://www.sinatrarb.com/
https://www.rabbitmq.com/
https://www.mongodb.org/
https://ruby-doc.org/stdlib-2.0.0/libdoc/webrick/rdoc/WEBrick.html
https://ruby-doc.org/stdlib-2.0.0/libdoc/webrick/rdoc/WEBrick.html
https://bitbucket.org/jomis/smartdata
https://bitbucket.org/jomis/smartdata
http://dx.doi.org/10.7717/peerj-cs.115

relies on user input via its graphical user interface, we created sample clients, which tested
these request patterns in order to enable automated testing. Based on these foundations we
created two different evaluation scenarios.

For the first scenario, we provisioned two VM instances in our private OpenStack cloud,
each with 7.5GB of RAM and 4 virtual CPUs. These two instances represented Data Centers
in the cities of Vienna and Melbourne. In order to simulate realistic transfer times between
these two different regions we used Linux Advanced Traffic and Routing (tc) to simulate
the average delay between these regions including common instabilities. Each of these
instances was running Ubuntu 16.04 LTS with Docker.

For the second scenario we provisioned three VM instances in the Google Cloud
Platform. We used n1-standard-2 instance types each with 7.5GB of RAM and 2 virtual
CPUs. In order to get a realistic geographic distribution, we started each of these instances
in different cloud regions. Specifically, we started one in the us-central representing the
city of Berkeley, one in the europe-west region representing the city of Vienna and one
in the asia-east region representing the city of Hong Kong. Each of these instances was
again running Ubuntu 16.04 LTS with Docker.

For monitoring purposes we used Datadog (https://www.datadoghq.com/) as
monitoring platform. We submitted custom metrics for request and response times,
and monitored systemmetrics for bytes sent as well as overall instance utilization to ensure
over utilization had no impacts on our results.

Experiments
In this section we give a detailed overview of the conducted experiments within the two
scenarios.

Scenario One
In the first scenario we wanted to evaluate the impact of SDD in the context of a simple
scenario using USCA for analytics of two cities. We simulated a case in which stakeholders
use USCA to compare the impact of city planning scenarios on the building stock, thermal
network and public transport between the city of Vienna and Melbourne.

To achieve this we generated 10 data services based on theDAU we defined for buildings,
networks and mobility as well as the corresponding DAIs and deployed them as docker
containers on the instance representing Melbourne. We did the same for the instance in
Vienna. In the next step we deployed 5 clients simulating the previously mentioned request
patterns on the Vienna instance. This setup of clients and sources represented a common
sample size of clients and services used in the current USCA context. As a last step, we
deployed the SDD framework, specifically three containers: one for the SDD proxy, one
for the Repository Manager and one for the other components of the SDD Framework. An
overview of this evaluation scenario can be seen in Fig. 5.

In the context of this scenario we distinguished 4 different request types to three different
kinds of DAUs. The first DAU, buildings represented a larger data source (158.000 entities)
with low update frequency (once a year). For this resource, we had two request types on
two views of this resource; specifically, /buildings and /blocks representing two different

Schleicher et al. (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.115 14/24

https://peerj.com
https://www.datadoghq.com/
http://dx.doi.org/10.7717/peerj-cs.115

Data Service SDD Framework Container Client Service

Vienna Melbourne

Figure 5 Evaluation setup for Scenario One.

levels of detail. The second DAU was networks again representing a larger data source
(68.000 entities) with low update frequency (once quarterly). For this resource we had
one request type on the only view of this resource, namely /networks. The last DAU was
mobility representing a smaller data source (4.000 entities) with high update frequency in
the public transport context.

To establish a baseline, we started our evaluation with the SDD Framework deactivated
and monitored the response times of each of these four request types, as well as the
transferred bytes from the Melbourne instance through custom Datadog monitors. After
5 min we started the SDD Framework by submitting a request to the SDD Manager on
the Vienna instance via the SDD API with Triggers for response times longer than 3 s and
a confidence value that matched our automated Migrations Strategies since we wanted to
test the automated capabilities of the SDD Framework. After submitting the request, we
continued to monitor the results of the Datadog monitors over a course of additional
5 min.

The results of our evaluation can be seen in Fig. 6. In the figure, we see the different
characteristics of the response times for the 4 request types. Buildings, blocks as well as
networks with longer response times, mobility with a rather short response time. Given the
submitted Triggers as well as the implemented Migration Strategy in context with size and
update characteristics of the DAUs, Buildings, blocks and networks qualified for migration.
We see that the framework correctly identified these requests and starts migrating the

Schleicher et al. (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.115 15/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.115

�

�

�

����� ����� ����� ����� ����� ����� ����� ����� ����� ����� �����
���� �������

������ ����� ���� ������ ���������

�
�
�
� �������� ���� ���� ��������

�
�
�
�� �������� ���� ���� ��������

�
�
�
� �������� ���� ���� ������

�
��
��
�� �������� ���� ���� ���������

Figure 6 Evaluation results for Scenario One.

corresponding DAIs, around minute 5. The total migration time for all three resources was
59.3 seconds during this time the SDD proxy keeps forwarding the requests to the original
DAI. After the migration has finished and the SDD Proxy successfully started redirecting
to the new DAIs, we see a significant reduction in the average response times for all three
request types. The mobility source was not migrated since it didn’t qualify due to the fact
that this resource had response times below the trigger. We also see that the response time
for this resource shows an increase, which is due to the specific proxy implementation and
caused by the overhead of redirection checks after the framework has been activated and is
present for all request types. The efficiency of the specific proxy implementation was not
focus of this work and does not influence the validity of the presented results, since the
introduced overhead affects all requests equally. Additionally, we see that in this scenario
the network transfer from the instance representing Melbourne was reduced by 97% after
the migrations finished. This is due to the fact that only the DAI for mobility remains
active on this instance and no other clients or framework components are actively sending
data from Melbourne. The aggregated overview in Table 1 shows that average and median
response times along with variance in response times for all migrated DAIs were reduced
significantly.

Scenario Two
In the second scenario we wanted to evaluate the impact of SDD in the context of a larger
and more complex scenario using USCA for analytics in an internet of cities setup with
cities in different regions. We again simulated a case in which stakeholders use USCA to
compare the impact of city planning scenarios on the building stock, thermal network and
public transport. This time between the cities of Berkeley, Vienna and Hong Kong, which

Schleicher et al. (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.115 16/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.115

Data Service SDD Framework Container Client Service

Vienna Hong KongBerkeley

Figure 7 Evaluation setup for Scenario Two.

Table 1 Average, median and standard deviation for response times per request type in Scenario One.

Request type Status Average response
time

Median response
time

Standard deviation
response time

Buildings Inactive 14.561 s 14.272 s 1.857 s
Active 5.94 s 5.848 s 0.354 s

Blocks Inactive 3.833 s 3.425 s 1.316 s
Active 1.122 s 1.154 s 0.102 s

Networks Inactive 7.21 s 6.843 s 1.928 s
Active 2.298 s 2.268 s 0.257 s

Mobility Inactive 2.196 s 1.982 s 0.504 s
Active 2.727 s 2.677 s 0.212 s

were placed in the respective regions of the Google Cloud platform as described in the
setup section.

To achieve this, we again generated 10 data services based on the DAU we defined for
buildings, networks and mobility as well as the corresponding DAIs and deployed them
as Docker containers on all three instances. In the next step, we deployed 5 clients per
city simulating the previously mentioned request patterns. We then deployed the SDD
framework, specifically three containers: one for the SDD proxy, one for the Repository
Manager and one for the other components of the SDD Framework on every instance. An
overview of this evaluation scenario is depicted in Fig. 7.

Schleicher et al. (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.115 17/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.115

�

�

�

����� ����� ����� ����� ����� ����� ����� ����� ����� ����� �����
���� �������

������ ����� ���� ������ �������

�
�
�
� �������� ���� ���� ��������

�
�
�
�� �������� ���� ���� ��������

�

�

� �������� ���� ���� ������

�
��
��
�� �������� ���� ���� ���������

Figure 8 Evaluation results for Scenario Two.

In this scenario we distinguished the same 4 request types as before. To establish a
baseline, we started our evaluation with the SDD Framework deactivated and monitored
the response times of each of these four request types, as well as the transferred bytes from
all participating instances through custom Datadog monitors. After 5 min we started the
SDD Framework by submitting a request to the SDD Manager on each of the three instances
via the SDD API with Triggers for response times longer than 3 s and a confidence value
that matched our automatedMigrations Strategies since our focus was again on testing the
automated capabilities of the SDD Framework. After submitting the requests we continued
to monitor the results of the Datadog monitors over a course of additional 5 min.

The results of our evaluation can be seen in Fig. 8. By investigating the Figure, we notice
that the framework again correctly identified the three request types to buildings, blocks and
networks as candidates for migrations. The framework starts migrating the corresponding
DAIs around minute 5. In this more complex case the total migration time for all three
resources over all three instances was 112.32 seconds. After the migration has finished and
the SDD Proxy successfully started redirecting to the new DAIs we again see a significant
reduction in the average response times for all three request types. In terms of network
transfer we don’t see a significant reduction as opposed to Scenario One since in this
setup there are active clients, as well as framework components deployed on all instances
that continue to issue requests, hence sending data. The aggregated overview in Table 2
shows that average and median response times for all migrated DAIs again were reduced
significantly. In contrast to the lab environment of Scenario One, a significant reduction

Schleicher et al. (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.115 18/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.115

Table 2 Average, median and standard deviation for response times per request type in Scenario Two.

Request type Status Average response
time

Median response
time

Standard deviation
response time

Buildings Inactive 14.214 s 14.266 s 0.98 s
Active 7.825 s 7.613 s 1.335 s

Blocks Inactive 3.203 s 3.142 s 0.246 s
Active 1.273 s 1.161 s 0.37 s

Networks Inactive 5.571 s 5.548 s 0.582 s
Active 2.594 s 2.489 s 0.578 s

Mobility Inactive 2.089 s 2.088 s 0.162 s
Active 2.562 s 2.514 s 0.156 s

in response time variance was not observed, which can be attributed to the performance
variability of cloud instances as well as the distribution over the chosen regions.

Our experiments showed that we could significantly reduce the response times and
hence the QoS for the URBEM Smart City Application. Specifically, we showed a reduction
of the response times by 66% on average over all three migrated request types. We also
demonstrated that the framework was able to correctly identify the DAIs to be migrated
utilizing the views specified in the corresponding DAUs. Finally, we showed that we could
produce these results both in a laboratory setting as well as in a geographically dispersed
cloud setup.

Threats to applicability
While the presented system model and framework fulfill the requirements set forth in the
context of the previously introduced URBEM Smart City Application, certain threats to
the general applicability of SDD remain. The initial evaluation setup for Scenario One used
tc to introduce the delays between the two instances representing Vienna and Melbourne.
It could be argued that this simulated setup was not representative for the evaluation. The
fact that the experiments showed similar results in a globally distributed deployment refute
this claim. Beyond this, the current evaluation relied on simulated clients and data sources
for the experiments. To ensure that the used workloads and data sources are realistic and
representative, we gathered workload patterns and anonymized example records from the
URBEM smart city application used by domain experts.

RELATED WORK
The recent trend in smart city research towards the introduction of smart city platforms
and reference models has been further fanned by the rise of the Internet of Things (IoT).
While all of these approaches mention the importance of data management in the context
of the massive amount of data, its heterogeneity and multitude of security and compliance
constraints, it currently either is not a framework element or they do not provide specific
solutions for this problem. Chourabi et al. (2012) present a framework to understand
the concepts of a smart citie on a more abstract level. The authors introduce a conceptual
framework to comprehend the vital elements in a smart city by identifying critical factors. In

Schleicher et al. (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.115 19/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.115

the context of ICT, they identify security, privacy as well as accessibility as central elements
for smart city applications. In a similar way, Naphade et al. (2011) present innovation
challenges for smarter cities. The authors identify the management of information across
all cities’ information systems including the need for privacy and security as a central
challenge in the success of smart cities underlining the importance of a data management
approach like ours. On a more concrete level Bonino, Pastrone & Spirito (2015) present
ALMANAC, a smart city platform with a focus on the integration of heterogenous services.
They identify challenges smart city applications face, also in terms of infrastructure and
specifically mention the importance of taking data ownership and exchange between the
different smart city stakeholders into account. Compared to our approach, however, they
do not provide a specific solution to address these challenges, especially none applicable to
legacy data.

In the context of IoT where more and more data sources emerge, data management
plays a central role. Jin et al. (2014) introduce a smart city IoT infrastructure blueprint. The
authors focus on the urban information system starting from the sensory level up to issues of
data management and cloud-based integrations. They identify key IoT building blocks for
a smart city infrastructure, one of them being the so called Data-centric IoT, in which data
management is a central factor. In a similar high level manner, Petrolo, Loscrì & Mitton
(2017) introduce the VITAL platform as an IoT integration platform to overcome the
fragmentation issue in smart cities. They mention data challenges that arise by introducing
IoT and specifically underline the importance of privacy and security in this context. The
need for data management in order to integrate the produced results also applies to a
lot of other IoT platforms in order to make their results accessible for further analytics.
Examples of such frameworks are Chen & Chen (2012), who present a data acquisition
and integration platform for IoT. A central element in their architecture is a contextual
data platform that needs to integrate with multiple heterogenous data sources. Cheng et
al. (2015) present CiDAP a city and data analytics platform based on SmartSantander
(Sanchez et al., 2014) a large-scale testbed that helps with issues arising from connecting
and managing IoT infrastructure. They name data management, especially the exchange
of data as well as attached semantics as one central challenge. Finally, in the context of
specific IoT smart city applications, Kyriazis et al. (2013) present two sustainable smart
city applications in the transportation and energy domain. They clearly identify security
in the context of data as a specific challenge in enabling these applications emphasizing
the importance of approaches like ours. In the context of IoT platforms and IoT smart
city applications our approach provides the missing link for both security aware data
management within frameworks, tackling many of the identified challenges as well as
providing an ideal way to expose the collected data in a usage-aware distributed way.

A vital element to enable this kind of data management in an efficient way is the ability to
migrate data resources. In the context of saidmigration there are several approaches relevant
in the context of our work.Amoretti et al. (2010) propose an approach that facilitates a code
mobility mechanism in the cloud. Based on this mechanism, services can be replicated
to provide a highly dynamic platform and increase the overall service availability. In a
similar way, Hao, Yen & Thuraisingham (2009) discus a cost model and a genetic decision

Schleicher et al. (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.115 20/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.115

algorithm that addresses the tradeoff on both service selection and migration in terms
of costs, to find an optimal service migration solution. They introduce a framework for
service migration based on this adaptive cost model. Opposed to our approach, they focus
on the service migration aspect without explicitly addressing the data aspect and do not
provide means for incorporating security and other characteristics on a more fine grained
data level. In the context of potential migration strategies there are several interesting
approaches. Agarwal et al. (2010) presents Volley, an automated placement approach for
distributed cloud services. Their approach uses logs to derive access patterns and client
locations as input for optimization and hence migration. Ksentini, Taleb & Chen (2014)
introduce a service migration approach for follow me clouds based on a Markov Decision
Process (MDP). In a similar way, Wang et al. (2015) demonstrate a MDP as a framework
to design optimal service migration policies. All these approaches can be integrated as
potential migration strategies in our approach.

CONCLUSION
Current smart city applicationmodels assume that produced data is managed by and bound
to its original application. Such data silos have emerged, in part due to the complex security
and compliance constraints governing the potentially sensitive information produced by
current smart city applications. While it is essential to enforce security and privacy
constraints, we have observed that smart city data sources can often provide aggregated or
anonymized data that can be released for use by other stakeholders or third parties. This
is especially promising, as such data sources are not only relevant for other stakeholders
in the same city, but also other smart cities around the globe. We argue that future smart
city applications will use integrated data from multiple sources, gathered from different
cities to significantly improve efficiency and effectiveness of city operations, as well as
citizen wellbeing. To allow for the creation of such applications, a seamless and efficient
mechanism for description and access of available smart city data is required.

In this paper, we presented Smart Distributed Datasets (SDD), a methodology and
framework to enable transparent and efficient distributed data access for data sources
in smart city environments. A system model that provides a simple abstraction for the
technology-agnostic description of available data sources and their subsets was introduced.
Subsets can represent different aspects and granularities of the original data source, along
with relevant characteristics common in the smart city domain. Based on this abstraction,
we presented the SDD framework, a middleware toolset that enables efficient and seamless
data access for smart city applications by autonomously relocating relevant subsets of
available data sources to improve Quality of Service (QoS) based on a configurable
mechanism that considers request latency, as well as costs for data transfer, storage, and
updates. We evaluate the presented framework using a case study in the context of a
distributed city infrastructure decision support system and show that selective relocation
of data subsets using the SDD framework can improve QoS through significantly reducing
response times by 66% on average.

In our ongoing work, we will integrate additional optimization mechanisms in the
data migration process to further improve framework performance. We also plan to more

Schleicher et al. (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.115 21/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.115

closely integrate the SDD framework with our overall efforts in designing, engineering,
and operating smart city applications (Schleicher et al., 2015b). Furthermore we will create
additional smart city applications, covering different application areas in collaboration
with domains experts from URBEM, as well as other smart city initiatives. In the context of
our research on the future Internet of Cities, we will extend the SDD framework to support
autonomous, ad-hoc coordination of globally distributed SDD proxies to further optimize
DAI placement in smart city application ecosystems.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
The research leading to these results has received funding from the URBEM doctoral
college. The funders had no role in study design, data collection and analysis, decision to
publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
URBEM doctoral college.

Competing Interests
Schahram Dustdar is an Academic Editor for PeerJ.

Author Contributions
• Johannes M. Schleicher conceived and designed the experiments, performed the
experiments, analyzed the data, wrote the paper, prepared figures and/or tables,
performed the computation work, reviewed drafts of the paper.
• Michael Vögler andChristian Inzinger conceived and designed the experiments, analyzed
the data, wrote the paper, prepared figures and/or tables, reviewed drafts of the paper.
• Schahram Dustdar reviewed drafts of the paper.

Data Availability
The following information was supplied regarding data availability:

Source Code Repository for the Prototype Implementation: https://bitbucket.org/jomis/
smartdata.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.115#supplemental-information.

REFERENCES
Agarwal S, Dunagan J, Jain N, Saroiu S, Wolman A, Bhogan H. 2010. Volley: automated

data placement for geo-distributed cloud services. In: Proceedings of the 7th USENIX
conference on Networked systems design and implementation, 2–2.

Schleicher et al. (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.115 22/24

https://peerj.com
https://bitbucket.org/jomis/smartdata
https://bitbucket.org/jomis/smartdata
http://dx.doi.org/10.7717/peerj-cs.115#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.115#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.115

Amoretti M, Laghi MC, Tassoni F, Zanichelli F. 2010. Service migration within the
cloud: code mobility in SP2A. In: Proceedings of the international conference on high
performance computing & simulation. Piscataway: IEEE, 196–202
DOI 10.1109/HPCS.2010.5547130.

Bonino D, Pastrone C, Spirito M. 2015. Towards a federation of smart city services. In:
Proceedings of the international conference on recent advances in computer systems,
163–168.

Chen YS, Chen YR. 2012. Context-oriented data acquisition and integration platform for
Internet of Things. In: Proceedings of the conference on technologies and applications of
artificial intelligence. Piscataway: IEEE, 103–108.

Cheng B, Longo S, Cirillo F, Bauer M, Kovacs E. 2015. Building a big data platform
for smart cities: experience and lessons from Santander. In: Proceedings of the
international congress on big data. Piscataway: IEEE, 592–599.

Chourabi H, Nam T,Walker S, Gil-Garcia JR, Mellouli S, Nahon K, Pardo TA, Scholl
HJ. 2012. Understanding smart cities: an integrative framework. In: Proceedings
of the 45th Hawaii international conference on system sciences. Piscataway: IEEE,
2289–2297.

HaoW, Yen I-L, Thuraisingham B. 2009. Dynamic service and data migration in
the clouds. In: Proceedings of the 33rd IEEE international computer software and
applications conference. Piscataway: IEEE, 134–139.

HummerW, Gaubatz P, StrembeckM, Zdun U, Dustdar S. 2013. Enforcement of
entailment constraints in distributed service-based business processes. Information
and Software Technology 55(11):1884–1903 DOI 10.1016/j.infsof.2013.05.001.

Inzinger C, Nastic S, Sehic S, Vögler M, Li F, Dustdar S. 2014.MADCAT—a methodol-
ogy for architecture and deployment of cloud application topologies. In: Proceedings
of the international symposium on service-oriented system engineering. Piscataway:
IEEE, 13–22.

Jin J, Gubbi J, Marusic S, PalaniswamiM. 2014. An information framework for creating
a smart city through internet of things. IEEE Internet of Things Journal 1(2):112–121
DOI 10.1109/JIOT.2013.2296516.

Ksentini A, Taleb T, ChenM. 2014. AMarkov Decision Process-based service migration
procedure for follow me cloud. In: Proceedings of the international conference on
communications. Piscataway: IEEE, 1350–1354.

Kyriazis D, Varvarigou T,White D, Rossi A, Cooper J. 2013. Sustainable smart city IoT
applications: heat and electricity management amp; eco-conscious cruise control
for public transportation. In: Proceedings of the 14th international symposium on
‘‘A World of Wireless, Mobile and Multimedia Networks’’. Piscataway: IEEE, 1–5
DOI 10.1109/WoWMoM.2013.6583500.

NaphadeM, Banavar G, Harrison C, Paraszczak J, Morris R. 2011. Smarter cities and
their innovation challenges. Computer 44(6):32–39 DOI 10.1109/MC.2011.187.

Newman S. 2015. Building microservices. Sebastopool: O’Reilly Media, Inc.

Schleicher et al. (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.115 23/24

https://peerj.com
http://dx.doi.org/10.1109/HPCS.2010.5547130
http://dx.doi.org/10.1016/j.infsof.2013.05.001
http://dx.doi.org/10.1109/JIOT.2013.2296516
http://dx.doi.org/10.1109/WoWMoM.2013.6583500
http://dx.doi.org/10.1109/MC.2011.187
http://dx.doi.org/10.7717/peerj-cs.115

Petrolo R, Loscrì V, Mitton N. 2017. Towards a smart city based on cloud of things, a
survey on the smart city vision and paradigms. Transactions on Emerging Telecommu-
nications Technologies 28:e2931 DOI 10.1002/ett.2931.

Sanchez L, Muñoz L, Galache JA, Sotres P, Santana JR, Gutierrez V, Ramdhany R,
Gluhak A, Krco S, Theodoridis E, Pfisterer D. 2014. SmartSantander: IoT experi-
mentation over a smart city testbed. Computer Networks 61(November):217–238
DOI 10.1016/j.bjp.2013.12.020.

Schleicher JM, Vögler M, Dustdar S, Inzinger C. 2016a. Enabling a smart city applica-
tion ecosystem: requirements and architectural aspects. IEEE Internet Computing
20(2):58–65.

Schleicher JM, Vögler M, Inzinger C, Dustdar S. 2015a. Smart fabric–an infrastructure-
agnostic artifact topology deployment framework. In: Proceedings of the international
conference on mobile services. Piscataway: IEEE, 320–327.

Schleicher JM, Vögler M, Inzinger C, Dustdar S. 2015b. Towards the internet of cities: a
research roadmap for next-generation smart cities. In: Proceedings of the international
workshop on understanding the city with urban informatics. New York: ACM, 3–6.

Schleicher JM, Vögler M, Inzinger C, Dustdar S. 2016b. Smart brix—a continuous
evolution framework for container application deployments. PeerJ Computer Science
2:e66 DOI 10.7717/peerj-cs.66.

Schleicher JM, Vögler M, Inzinger C, Fritz S, Ziegler M, Kaufmann T, Bothe D,
Forster J, Dustdar S. 2016c. A holistic, interdisciplinary decision support system for
sustainable smart city design. In: Proceedings of the international conference on smart
cities. Cham: Springer, 1–10.

Vögler M, Schleicher JM, Inzinger C, Dustdar S, Ranjan R. 2016.Migrating smart city
applications to the cloud. IEEE Cloud Computing 3(2):72–79.

Wang S, Urgaonkar R, Zafer M, He T, Chan K, Leung KK. 2015. Dynamic service mi-
gration in mobile edge-clouds. In: Proceedings of the 14th IFIP networking conference,
1–9.

Schleicher et al. (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.115 24/24

https://peerj.com
http://dx.doi.org/10.1002/ett.2931
http://dx.doi.org/10.1016/j.bjp.2013.12.020
http://dx.doi.org/10.7717/peerj-cs.66
http://dx.doi.org/10.7717/peerj-cs.115

