
Submitted 7 March 2016
Accepted 12 May 2016
Published 13 June 2016

Corresponding author
Johannes M. Schleicher,
schleicher@dsg.tuwien.ac.at

Academic editor
Elisabetta Di Nitto

Additional Information and
Declarations can be found on
page 22

DOI 10.7717/peerj-cs.66

Copyright
2016 Schleicher et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Smart Brix—a continuous evolution
framework for container application
deployments
Johannes M. Schleicher1, Michael Vögler1, Christian Inzinger2 and
Schahram Dustdar1

1Distributed Systems Group, TUWien, Vienna, Austria
2 S.E.A.L—Software Evolution & Architecture Lab, University of Zürich, Zürich, Switzerland

ABSTRACT
Container-based application deployments have received significant attention in recent
years. Operating system virtualization based on containers as a mechanism to deploy
and manage complex, large-scale software systems has become a popular mechanism
for application deployment and operation. Packaging application components into self-
contained artifacts has brought substantial flexibility to developers and operation teams
alike. However, this flexibility comes at a price. Practitioners need to respect numerous
constraints ranging from security and compliance requirements, to specific regulatory
conditions. Fulfilling these requirements is especially challenging in specialized domains
with large numbers of stakeholders.Moreover, the rapidly growing number of container
images to be managed due to the introduction of new or updated applications and
respective components, leads to significant challenges for container management and
adaptation. In this paper, we introduce Smart Brix, a framework for continuous
evolution of container application deployments that tackles these challenges. Smart
Brix integrates andunifies concepts of continuous integration, runtimemonitoring, and
operational analytics. Furthermore, it allows practitioners to define generic analytics
and compensation pipelines composed of self-assembling processing components to
autonomously validate and verify containers to be deployed.We illustrate the feasibility
of our approach by evaluating our framework using a case study from the smart
city domain. We show that Smart Brix is horizontally scalable and runtime of the
implemented analysis and compensation pipelines scales linearly with the number of
container application packages.

Subjects Adaptive and Self-Organizing Systems, Distributed and Parallel Computing, Software
Engineering
Keywords Containers, Container evolution, Container adaptation, DevOps, Infrastructure as
Code

INTRODUCTION
In recent years, we have seen widespread uptake of operating system virtualization based
on containers (Soltesz et al., 2007) as a mechanism to deploy and manage complex,
large-scale software systems. Using containers, developers create self-contained images
of application components along with all dependencies that are then executed in
isolation on top of a container runtime (e.g., Docker: https://www.docker.com/, rkt:
https://github.com/coreos/rkt, or Triton: https://www.joyent.com/). By packaging

How to cite this article Schleicher et al. (2016), Smart Brix—a continuous evolution framework for container application deployments.
PeerJ Comput. Sci. 2:e66; DOI 10.7717/peerj-cs.66

https://peerj.com
mailto:schleicher@dsg.tuwien.ac.at
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.66
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.docker.com/
https://github.com/coreos/rkt
https://www.joyent.com/
http://dx.doi.org/10.7717/peerj-cs.66


application components into self-contained artifacts, developers can ensure that the same
artifact is consistently used throughout the complete software release process, from initial
testing to the final production deployment. This mechanism for application deployment
has become especially popular with practitioners executing projects following DevOps
(Hüttermann, 2012) principles. Based on the convergence of development and operations,
DevOps advocates a high degree of automation throughout the software development
lifecycle (e.g., to implement continuous delivery (Humble & Farley, 2010)), along with an
associated focus on deterministic creation, verification, and deployment of application
artifacts using Infrastructure as Code (IaC) (Nelson-Smith, 2013) techniques, such asDock-
erfiles (https://docs.docker.com/engine/reference/builder/) for containerized applications.

These properties allow for straightforward implementation of immutable infrastructure
deployments, as advocated by IaC approaches. Application container images are usually
created using a layered structure so that common base functionality can be reused by
multiple container images. Application-specific artifacts are layered on top of a base file
system so that for subsequent updates only the modified layers need to be transferred
among different deployment environments. Container engine vendors such as Docker
and CoreOS provide public repositories where practitioners can share and consume
container images, both base images for common Linux distributions (e.g., Ubuntu,
CoreOS, CentOS, or Alpine) to subsequently add custom functionality, as well as prepared
application images that can be directly used in a container deployment. Once uploaded
to a repository, a container image is assigned a unique, immutable identifier that can
subsequently be used to deterministically deploy the exact same application artifact
throughout multiple deployment stages. By deploying each application component in
its own container (https://docs.docker.com/engine/articles/dockerfile_best-practices/),
practitioners can reliably execute multiple component versions on the same machine
without introducing conflicts, as each component is executed in an isolated container.

However, since each container image must contain every runtime dependency of the
packaged application component, each of these dependency sets must be maintained
separately. This leads to several challenges for practitioners. Over time, the number of
active container images grows due to the introduction of new applications, new application
components, and updates to existing applications and their components. This growing
number of container images inherently leads to a fragmentation of deployed runtime
dependencies, making it difficult for operators to ensure that every deployed container
continues to adhere to all relevant security, compliance, and regulatory requirements.
Whenever, for instance, a severe vulnerability is found in a common runtime dependency,
practitioners either have to manually determine if any active container images are affected,
or initiate a costly rebuild of all active containers, irrespective of the actual occurrence of
the vulnerability. We argue that practitioners need a largely automated way to perform
arbitrary analyses on all container images in their deployment infrastructure. Furthermore,
amechanism is required that allows for the enactment of customizable corrective actions on
containers that fail to pass the performed analyses. Finally, in order to allow practitioners
to deal with the possibly large number of container images, the overall approach should be
able to adapt it’s deployment to scale out horizontally.

Schleicher et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.66 2/24

https://peerj.com
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/articles/dockerfile_best-practices/
http://dx.doi.org/10.7717/peerj-cs.66


In this paper, we present Smart Brix, a framework for continuous evolution of container
applications. Smart Brix integrates and unifies concepts of continuous integration, runtime
monitoring, and operational analytics systems. Practitioners are able to define generic
analytics and compensation pipelines composed of self-assembling processing components
to autonomously validate and verify containers to be deployed. The framework supports
both, traditional mechanisms such as integration tests, as well as custom, business-relevant
processes, e.g., to implement security or compliance checks. Smart Brix not only manages
the initial deployment of application containers, but is also designed to continuously
monitor the complete application deployment topology to allow for timely reactions to
changes (e.g., in regulatory frameworks or discovered application vulnerabilities). To enact
such reactions to changes in the application environment, developers define analytics and
compensation pipelines that will autonomously mitigate problems if possible, but are
designed with an escalation mechanism that will eventually request human intervention
if automated implementation of a change is not possible. To illustrate the feasibility of
our approach we evaluate the Smart Brix framework using a case study from the smart
city domain. We show that the runtime of the implemented analysis and compensation
pipelines scales linearly with the number of analyzed application packages, and that it adds
little overhead compared to container acquisition times.

The remainder of this paper is structured as follows. In ‘Motivation’ we present a
motivating scenario and relevant design goals for our framework. We present the Smart
Brix framework in ‘The Smart Brix Framework,’ along with a detailed discussion of the
framework components. In ‘Evaluation’ we evaluate our approach using a case study
from the smart city domain. Related work is discussed in ‘Related Work’, followed by a
conclusion and outlook for further research in ‘Conclusion.’

MOTIVATION
In this paper, we base our discussion on a scenario containing a multi-domain expert
network as created within URBEM (http://urbem.tuwien.ac.at), a research initiative of the
city of Vienna and TU Wien. To tackle the emerging complexities that arise in the smart
city domain, we introduced a novel Smart City Loop (Schleicher et al., 2015b), which is
depicted in Fig. 1. This loop outlines a reactive system that enables stakeholders to make
informed decisions based on the models and analyses of interdisciplinary domain experts
who in turn can access the large amounts of data provided by smart cities. In URBEM,
a network consists of experts in the domains of energy, mobility, mathematics, building
physics, sociology, as well as urban and regional planning. URBEM aims to provide decision
support for industry stakeholders to plan for the future of the city of Vienna and represents
a Distributed Analytical Environment (DAE) (Schleicher et al., 2015c).

The experts in this scenario rely on a multitude of different models and analytical
approaches to make informed decisions based on the massive amounts of data that
are available about the city. In turn, these models rely on a plethora of different tools
and environments that lead to complex requirements in terms of providing the right
runtime environment for them to operate. The used tools range from modern systems
for data analytics and stream processing like Cassandra and Spark, to proprietary tools

Schleicher et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.66 3/24

https://peerj.com
http://urbem.tuwien.ac.at
http://dx.doi.org/10.7717/peerj-cs.66


Figure 1 Smart City Loop.

developed by companies and research institutes with a large variance in specific versions
and requirements to run them. Additionally, these domains have to deal with a broad range
of different stakeholders and their specific security and compliance requirements. Models
sometimes need to tailor their runtime environment to specific technology stacks to ensure
compliance or to be able to access the data they need. Managing and satisfying all these
requirements is a non-trivial task and a significant factor hindering broader adoption.
Therefore, this environment offers an optimal case for the advantages that come with the
use of container-based approaches. Operations teams that need to integrate these models
no longer need to be concerned with runtime specifics. Experts simply build containers
that can be deployed in the heterogenous infrastructures of participating stakeholders.

However, several challenges remain. InURBEM the teamof experts with their plethora of
different models created over 250 different images that serve as the foundation for running
containers. The models in these containers are fueled by data from several different

Schleicher et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.66 4/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.66


stakeholders in the scenario, ranging from research institutions in the City of Vienna
to industry stakeholders in the energy and mobility domain. Each of them mandates a very
distinct set of security and compliance requirements that need to be met in order to run
them. These requirements in turn are subject to frequent changes and the containers need
to be able to evolve along with them. Additionally, even though the container approach
provides isolation from the host system it is still vital to ensure that the containers themselves
are not compromised. This calls formeans to check the systems running inside the container
for known vulnerabilities, an issue that is subject to heavy and fast-paced change, again
requiring according evolution. A recent study (http://www.banyanops.com/blog/analyzing-
docker-hub/) shows that in the case of Docker, depending on the version of the images,
more than 70% of the images show potential vulnerabilities, with over 25% of them
being severe. This also begs the question of who is responsible for checking and fixing
these vulnerabilities, the operations team or the experts who created them? Despite these
security and compliance constraints, the ever-changing smart city domain itself makes
it necessary for experts to stay on top of the novel toolsets that emerge in order to
handle requirements stemming from topics like Big Data or IoT. This leads to a rapid
creation and adaptation of models and their according containers, which in turn need
be checked against these constraints again. Last but not least, these containers need to
comply to certain non-functional requirements that arise from the specific situations they
are applied in. This calls for the ability to constantly check containers against certain
runtime metrics that need to be met in order to ensure that these systems are able to
deliver their excepted results within stakeholder-specific time and resource constraints.

All these factors lead to a complex environment that calls for an ability to easily adapt
and evolve containers to their ever-changing requirements. Specifically, we identify the
following requirements in the context of our domain:

• The ability to check a large amount of heterogenous containers against an open
set of evolving requirements. These requirements can be vulnerabilities, compliance
constraints, functional tests, or any other metric of interest for the domain.
• The ability to mitigate issues and evolve these containers based on the results from the
previously mentioned checks.
• An approach that is applicable in the context of operations management, while still
enabling the participation of experts both for checking as well as evolution.
• An approach that can be applied to existing deployments as well as utilized to test
new ones.

THE SMART BRIX FRAMEWORK
In this section, we introduce the Smart Brix framework for continuos evolution of
container-based deployments, which addresses the previously introduced requirements.
We start with a framework overview, followed by a detailed description of all framework
elements, and conclude with a comprehensive description of our proof of concept
implementation including possible deployment variants.

Schleicher et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.66 5/24

https://peerj.com
http://www.banyanops.com/blog/analyzing-docker-hub/
http://www.banyanops.com/blog/analyzing-docker-hub/
http://dx.doi.org/10.7717/peerj-cs.66


Figure 2 Smart Brix framework overview.

Framework rationales
The Smart Brix framework follows themicroservice (Newman, 2015) architecture paradigm
and an overview of the main framework components is shown in Fig. 2. The framework is
logically organized into four main facets, which group areas of responsibility. Each of these
facets is composed of multiple components where each of these components represents a
microservice. The components in theAnalyzer andCompensation Facet aremanaged as self-
assembling omponents (http://techblog.netflix.com/2014/06/building-netflix-playback-
with-self.html), an approach we already successfully applied in previous work (Schleicher et
al., 2015a). Each of these components follows the Command Pattern (Gamma et al., 1995)
and consists of multiple processors that are able to accept multiple inputs and produce
exactly one output. This functional approach enables a clean separation of concerns and
allows us to decompose complex problems into manageable units.

Figure 3 illustrates an example of auto-assembly within the Analyzer facet. We see a set
of processors, where each processor is waiting for a specific type of input and clearly specifies
the output it produces. The processors use a message-oriented approach to exchange input
and output data, where each output and input is persistently available in the message queue
and accessible by any processor. In this example we perform an analysis of a custom-built
Debian-based container that hosts the Apache HTTPD server. There are two potential
processors for the input Artifact, each of them able to handle a different container format.
Since in our example the Artifact is a Docker Container, only the Docker Analyzer reacts
and produces as output aDocker Image. In the next step there are two active processors, the
Docker Base Image Analyzer and the Docker Package System Analyzer, both taking Docker
Images as input. Since the Docker Base Image Analyzer cannot determine a base image
for the given Docker Image, it produces no output. However, the Docker Package System
Analyzer is able to determine that the image uses a DPKG-based package system and
produces the according output. Now the DPKG Package Analyzer reacts by taking two
inputs, the original Artifact as well as the DPKG output and inspects the Artifact via the

Schleicher et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.66 6/24

https://peerj.com
http://techblog.netflix.com/2014/06/building-netflix-playback-with-self.html
http://techblog.netflix.com/2014/06/building-netflix-playback-with-self.html
http://dx.doi.org/10.7717/peerj-cs.66


Figure 3 Example of auto assembling processors within the analyzer facet.

DPKG command to produce a Package List. In the last step of this auto-assembly example
the Vulnerability Analyzer listens for a Package List and produces a List of Vulnerabilities.
This enables a straightforward auto-assembly approach, where connecting previous outputs
to desired inputs leads to an automatically assembled complex system consisting of simple
manageable processors. A processor itself can be anything and is not bound to any specific
functionality, so it can be created completely flexibel depending on the task at hand.
This approach further eliminates the necessity of complex composition and organization
mechanisms, enabling dynamic and elastic compositions of desired functionality, where
processors can be added on demand at runtime. This enables the previously mentioned
creation of open and flexible analytics and compensation pipelines based on this principle.

Schleicher et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.66 7/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.66


Figure 4 Confidence adaptationmodel escalation.

Additionally, the components in the analyzer and compensation facets follow the
principle of Confidence Elasticity, which means that a component or processor produces a
result that is augmented with a confidence value (c ∈R,0≤ c ≤ 1), with 0 representing no
certainty and 1 representing absolute certainty about the produced result. This allows for
the specification of acceptable confidence intervals for the framework, which augment the
auto-assemblymechanism. The confidence intervals are provided as optional configuration
elements for the framework. In case the provided confidence thresholds are not met, the
framework follows an escalation model to find the next component or processor that
is able to provide results with higher confidence until it reaches the point where human
interaction is necessary to produce a satisfactory result (illustrated in Fig. 4). Each processor
(pi) from the set of active processors (Pa) provides a confidence value ci. We define the
overall confidence value of all active processors (ca) as ca=

∏
pi ∈ Pa

ci. The compensation

stops when ca meets the specified confidence interval of the framework or a processor
represents a human interaction which has a confidence value of (ci= 1).

Smart Brix Manager
In order to initiate a container evolution, the Smart Brix Manager is invoked via the
Smart Brix API with the following parameters: (i) a set of Containers to be inspected with
(ii) the necessary Credentials to analyze and evolve them, as well as an optional (iii) set
of Artifacts necessary to compensate or analyze the containers. In a first step the Smart

Schleicher et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.66 8/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.66


Brix Manager queries the Repository Manager to see if there are already known issues
for the supplied containers. If any known issues are found, the Smart Brix Manager
creates a corresponding compensation topic via the messaging infrastructure by publishing
the container identifiers as well as the found issues. This represents an input that will
subsequently be consumed by the corresponding Compensation Handlers and starts the
previously described auto-assembly process in the Compensation Facet.

If no issues were found, the Smart Brix Manager hands off the supplied Containers,
Credentials and Artifacts to the Dependency Manager that is responsible for storing them in
the Dependency Repository. As a next step, the Smart Brix Manager creates a corresponding
analyzer topic via the messaging infrastructure and publishes the container identifiers to
it. This generates an input that will be consumed by the corresponding Analyzers and
starts another auto-assembly process in the Analyzer Facet. The Smart Brix Manager then
listens to the created topic and waits for a response from the Analyzer Facet. If any analyzer
responds, the manager checks the confidence value of the provided results against the
configured confidence interval of the framework. If the results satisfy the interval it uses
the Repository API to store them in the Analytics Repository. If the confidence intervals
are not satisfied, it waits for a configured timeout for additional results to emerge. If
this fails the framework escalates according to the principle of Confidence Elasticity and
marks the containers as required for human interaction. If the confidence interval was
met, the Smart Brix Manager initiates the previously mentioned auto-assembly process in
the Compensation Facet. The Smart Brix Manager then listens to the created topic and
waits for a response from any compensation handler. In case of a response, it checks the
confidence values by applying the same approach as for the Analyzer Facet, and stores
them as compensations into the Analytics Repository. A corresponding sequence diagram
illustrating this is shown in Fig. 5.

Furthermore, the Smart Brix Manager provides API endpoints to query the results of
analytics and compensation processes, as well as the current status via container identifiers.

Repository Manager
The Repository Manager provides a repository for storing analytics results of all analyzed
containers as well as their corresponding compensations. The Analytics Repository itself
is a distributed key value store that enables Analyzers as well as Compensation Handlers
to store information without being bound to a fixed schema. In addition, this enables the
previously mentioned open extensibility of our auto-assembly approach by allowing every
component to choose the required storage format. Finally, the RepositoryManager provides
a service interface to store and retrieve analytics and compensation information as well as
an interface for querying information based on container identifiers or other attributes.

Dependency Manager
The Dependency Manager handles necessary credentials and artifacts that are needed for
processing containers. The Dependency Manager provides a service interface that allows
the Smart BrixManager to store artifacts and credentials associated with specific containers.
Additionally, it provides a mechanism for components in the Analyzer and Compensation

Schleicher et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.66 9/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.66


Figure 5 Smart Brix Manager sequence diagram.

Facets to retrieve the necessary credentials and artifacts for the corresponding container
IDs. Finally, it acts as service registry for components in the Utility Facet and exposes them
to the Compensation and Analyzer Facet. The Dependency Manager uses a distributed key
value store for its Dependency Repository in order to store the necessary information.

Utility Facet
The general role of the Utility Facet is to provide supporting services for Analyzers,
Compensation Handlers, and Managers of the framework. Components in the Utility
Facet register their offered services via the Dependency Manager. This provides an open
and extensible approach that allows to incorporate novel elements in order to address
changing requirements of container evolution. In our current architecture, the Utility
Facet contains three components. First, a Vulnerability Hub, which represents a service
interface that allows Analyzers as well as Compensation Handlers to check artifacts for
vulnerabilities. The Vulnerability Hub can either utilize public repositories (e.g., the
National Vulnerability Database: https://nvd.nist.gov/), or any other open or proprietary

Schleicher et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.66 10/24

https://peerj.com
https://nvd.nist.gov/
http://dx.doi.org/10.7717/peerj-cs.66


vulnerability repository. The second component is a Compliance Hub that allows to check
for any compliance violations in the same way the Vulnerability Hub does. This is an
important element in heterogenous multi-stakeholder environments, where compliance to
all specified criteria must be ensured at all times. The last element is a Metric Hub, which
allows to check artifacts for certain relevant metrics in order to ensure relevant Quality of
Service constraints for containers.

Analyzers
The task of the components within the Analyzer Facet is to test containers for potential
vulnerabilities, compliance violations or any other metrics. The facet is invoked by the
Smart Brix Manager, which triggers an auto-assembly process for the given containers that
should be analyzed. The Analyzer Facet can contain components for the most prominent
container formats like Docker or Rkt, but due to the fact that we utilize the auto-assembly
approach, we are able to integrate new container formats as they emerge. For analyzing a
container an analyzer follows three basic steps: (i) Determine the base layer of the container
in order to know how to access the package list; (ii) Determine the list of installed packages
including their current version; (iii) Match the list of installed packages against a set of
vulnerabilities, issues, or compliance constraints in order to determine the set of problems.

Every step can follow a different set of strategies to analyze a container represented as
different processors, each of them with a specific confidence value. Possible processors
for these steps are: (i) Base Image Processors, which try to determine the base layer
of a container by matching their history against known base image IDs; (ii) Similarity
Processors that try to select a base layer based on similarities in the history of the container
with known containers by performing actions like collaborative filtering and text mining;
(iii) Convention Processors that try to determine the base layer by trying common
commands and checking their results; (iv) Human Provided Processors, which are human
experts that manually analyze a container.

In order to access the containers and to perform analytics, the components within the
Analyzer Facet interact with the Dependency Manager. The manager provides them with
the necessary credentials for processing containers. Once the analyzers have processed a
container, they publish the results, which are augmented with the confidence value, to the
corresponding topic where the Smart Brix Manager carries on as previously described.

Compensation Handlers
The components in the Compensation Facet generate potential compensations for
containers that have been previously identified by the Analyzers. Like the Analyzers,
the Compensation Handlers are invoked by the Smart Brix Manager, which starts an
auto-assembly process for the containers with problems that should be compensated.
We provide components for the most prominent container formats, with the ability to
extend the list as new formats emerge. The compensation handlers follow three basic steps:
(i) Apply a compensation strategy for the container and the identified problem; (ii) Verify
if the compensation strategy could be applied by rebuilding or restarting the container;
(iii) Verify that the problems could be eliminated or reduced.

Schleicher et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.66 11/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.66


Again, every step can utilize a set of different processors, each of them with a specific
confidence value, which represent different strategies. Possible processors are: (i) Container
Processors, which try to use the base image’s package manager to upgrade packages with
identified vulnerabilities. (ii) Image Processors that try to build a new image without the
vulnerabilities; (iii) Similarity Processor that try to compensate via applying steps from
similar containers that do not show these vulnerabilities; (iv) Human Provided Processors,
which are human experts that manually compensate a container.

The Compensation Handlers interact with the Dependency Manager in a similar way
like the Analyzers to retrieve the necessary credentials to operate. As Image Processors
and Similarity Processors build new images in order to compensate, they can request the
necessary artifacts associated with an image to be able build them.

Implementation
We created a proof of concept prototype of our framework based on a set of RESTful
microservices implemented in Ruby. Each component that exposes a service interface relies
on the Sinatra (http://www.sinatrarb.com/) web framework. The Repository Manager and
the Dependency Manager utilize MongoDB (https://www.mongodb.org/) as their storage
backend,which enables the previously described distributed, open, and extendable key value
store for their repositories. We implemented a Vulnerability Hub that uses a SQLite (https:
//www.sqlite.org/) storage backend to persist vulnerabilities in a structured format. It holds
the recent data from the National Vulnerability Database (NVD; https://nvd.nist.gov/),
specifically the listedCommonVulnerabilities and Exposures (CVEs). This CVEHub allows
to import the CVEs posted on NVD, stores them in its repository, and allows to search for
CVEs by vulnerable software name as well as version via its Sinatra-based REST interface.

To enable the auto-assembly mechanism for each processor within each component in
the Analyzer and Compensation Facet, we use a message-oriented middleware. Specifically,
we utilize RabbitMQ’s (https://www.rabbitmq.com/) topic and RPC concepts, by
publishing each output and listening for its potential inputs on dedicated topics. We
implemented a Docker Analyzer component with a Base Image Processor and a Convention
Processor-based strategy. The Docker Analyzer first tries to determine the operating system
distribution of the container by analyzing its history. Specifically, it uses the Docker API
to generate the history for the container and selects the first layer’s ID, which represents
the base layer. It then matches this layer against a set of known layer IDs, which matches
corresponding operating system distributions to determine which command to use for
extracting the package list. If a match is found, it uses the corresponding commands to
determine the package list. If the determined operating system is Ubuntu or Debian, it will
use dpkg to determine the package list. If it was CentOS, yum is used, and if it was Alpine,
apk. After parsing the package command output into a processable list of packages, it
checks each package name and version by using the CVE Hub via its REST interface. When
this step is finished the Analyzer publishes the list of possible vulnerabilities, including
analyzed packages along with several runtime metrics. In case the base image strategy
fails, the Docker Analyzer tries to determine the base layer including the corresponding
operating system via a convention processor. Specifically, it test if the image contains any of

Schleicher et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.66 12/24

https://peerj.com
http://www.sinatrarb.com/
https://www.mongodb.org/
https://www.sqlite.org/
https://www.sqlite.org/
https://nvd.nist.gov/
https://www.rabbitmq.com/
http://dx.doi.org/10.7717/peerj-cs.66


the known package managers. Based on the results the analyzer determines the distribution
flavor and continues as described above.

We further implemented a Docker Compensation Handler with a Container Processor
and an Image Processor based compensation strategy. The Container Processor tries to
upgrade the container using the operating system distribution’s package manager. After
this operation succeeds, it checks if the number of vulnerabilities are reduced, by comparing
the new version of packages against theCVE Hub. If this was the case it augments the results
with a confidence value based on the percentage of fixed vulnerabilities and publishes the
results. The Image Processor tries to fix the container by generating a new container
manifest (e.g., Dockerfile). More precisely, it uses the Docker API to generate the image
history and then derives a Dockerfile from this history. After this step, the Image Processor
exchanges the first layer of the Dockerfile with the newest version of its base image. In cases
where it cannot uniquely identify the correct Linux flavor, it generates multiple Dockerfiles,
for example one for Ubuntu and one for Debian. It then checks the Dockerfiles’ structure
for potential external artifacts. Specifically, it searches for any COPY or ADD commands
that are present in the Dockerfile. If this is the case, it contacts the Dependency Manager
and attempts to retrieve the missing artifacts. Once this is finished the Image Processor
tries to rebuild the image based on the generated Dockerfile. After this step is finished,
the Image Processor again checks the new list of packages against the CVE Hub, and if
it could improve the state of the image it publishes the results with the corresponding
confidence value. The prototype implementation is available online and can be found at
https://bitbucket.org/jomis/smartbrix/.

Deployment modes
The Smart Brix Framework provides a container for each facet and therefore supports
deployment on heterogeneous infrastructures. The framework enables wiring of
components and aspects via setting the container’s environment variables, enabling
dynamic setups. We distinguish between two fundamental deployment modes, Inspection
Mode and Introspection Mode.

Inspection Mode
The Inspection Mode allows the framework to run in a dedicated inspection and com-
pensation setting. In this mode the framework ideally runs exclusively without any other
containers and utilizes the full potential of the host systems. This means that the Smart Brix
Managers wait until they receive an explicit request to analyze and compensate an artifact.

Introspection Mode
The Introspection Mode allows the framework to run in an active container setup. In this
mode the framework constantly watches deployed containers via the Smart Brix Manager.
The Manager can be provided with a list of containers to watch via a configuration setting.
This provided list of containers is then analyzed and compensated. If no container lists
are supplied, the Manager watches all running containers on the platform. In this case it
initiates a check whenever new images are added, an image of a running container changes,
or new vulnerabilities are listed in the CVE Hub.

Schleicher et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.66 13/24

https://peerj.com
https://bitbucket.org/jomis/smartbrix/
http://dx.doi.org/10.7717/peerj-cs.66


Figure 6 Evaluation Setup of Smart Brix running in inspectionmode.

EVALUATION
Setup
For our evaluation we used the following setup. We provisioned three instances in our
private OpenStack cloud, each with 7.5 GB of RAM and 4 virtual CPUs. Each of these
instances was running Ubuntu 14.04 LTS with Docker staged via docker-machine (https:
//docs.docker.com/machine/install-machine/). For our evaluation we choose the inspection
deployment variant of our framework in order to stress-test the system without other inter-
fering containers.We deployed onemanager container representing theManagement Facet,
as well as two utility containers containing the CVE Hub and the Messaging Infrastructure
on one instance. We then distributed 12 analyzer containers with 12 compensation
containers over the remaining two instances. Additionally, we deployed a cAdvisor (https:
//github.com/google/cadvisor) container on every instance to monitor the resource usage
and performance characteristics of the running containers. Figure 6 shows an overview of
the deployed evaluation setup.

Experiments
Since we currently only have around 250 images in our URBEM setting, we extended the
number of images to be evaluated. In order to get a representative set of heterogenous
images we implemented a small service to crawl Docker Hub (https://hub.docker.com/).
The Docker Hub is a public repository of Docker container images of different flavors.
These images range from base images, like Ubuntu and CentOS etc., to more complex
images like Cassandra and Apache Spark. We utilized the search function of the Hub to
collect a set of 4,000 images ordered by their popularity (number of pulls and number of

Schleicher et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.66 14/24

https://peerj.com
https://docs.docker.com/machine/install-machine/
https://docs.docker.com/machine/install-machine/
https://github.com/google/cadvisor
https://github.com/google/cadvisor
https://hub.docker.com/
http://dx.doi.org/10.7717/peerj-cs.66


stars), which ensures that we focus on a set with a certain impact. We then extracted the
name and the corresponding pull commands along with the latest tag to form the URI of
the image. This set of 4,000 URIs represented the source for our experiments, which was
then split into 3 sets containing 250, 500, and 1,000 images to be tested.

Analyzer experiments
We started our experiments with a focus on the Analyzer Facet of the framework. First, we
started the analyzer containers on one instance and started our tests with the 250 image set.
After the run finishedwe repeated it with the 500 and 1,000 image set. After the tests with one
instance, we repeated the experiments with two instances where each runwas repeated three
times. During the tests we constantly monitored cAdvisor to ensure that the instances were
not fully utilized in order to ensure thiswould not skew results. The focus of our experiments
were not the performance characteristics of our framework, in terms of cpu, memory or
disk usage, which is why we used cAdvisor only as a monitor to rule out overloading
our infrastructure. We also did not utilize any storage backend for cAdvisor since this
has shown to be a significant overhead which in turn would have skewed our results.

After the runs had finished we evaluated the vulnerability results. The analyzers logged
the analyzed images, their base image flavor (e.g., Ubuntu, Debian etc.), processing time
to analyze the image, pull time to get the image from the DockerHub as well as the overall
runtime, number of packages, size of the image, and number of vulnerabilities.

Over all our experiments the analyzers showed that around 93% of the analyzed
images have vulnerabilities. This mainly stems from the fact that our implemented
analyzers have a very high sensitivity and check for any potentially vulnerable software
with any potentially vulnerable configuration. However, this does not necessarily mean
that the specific combination of software and configuration in place shows the detected
vulnerability. If we only take a look at the imageswith a high severity according to their CVSS
(https://nvd.nist.gov/cvss.cfm) score, around 40% show to be affected which is conclusive
with recent findings (http://www.banyanops.com/blog/analyzing-docker-hub/). These
results underline the importance to implement the measures proposed by our framework.
However, the focus of our work and the aim of our experiments was not to demonstrate
the accuracy of the implemented vulnerability detection, but the overall characteristics of
our framework, which we discuss in the remainder of this section.

We first compared the overall runtime of our analyzers, specifically the difference for
one instance vs two instance deployments, the results are shown in Fig. 7. Based on the
results we see that our approach can be horizontally scaled over two nodes leading to a
performance improvement of around 40%. The fact that in our current evaluation setting
we were not able to halve the overall runtime using two instances stems from several factors.
On the one hand, we have a certain overhead in terms of management and coordination
including the fact that we only deployed one manager and storage asset. On the other hand,
a lot of the runtime is caused by the acquisition time, which is clearly bound by network
and bandwidth. Since our infrastructure is equipped with just one 100 Mbit uplink that
is shared by all cloud resources, this is a clear bottleneck. We also see that the majority of
wall clock time is spent for acquisition and that the actual processing time only amounts to

Schleicher et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.66 15/24

https://peerj.com
https://nvd.nist.gov/cvss.cfm
http://www.banyanops.com/blog/analyzing-docker-hub/
http://dx.doi.org/10.7717/peerj-cs.66


Figure 7 Comparison of runtime for analytics between one instance and two instances.

Table 1 Median and standard deviation for processing time per package over all runs with two in-
stances.

Set Median processing time Standard deviation processing time No. of packages

250 0.620 s 0.255 s 153,275
500 0.564 s 0.263 s 303,483
1,000 0.537 s 0.252 s 606,721
Overall 0.558 s 0.257 s 1,063,479

approximately 3% of the overall runtime. The fact that the acquisition time for the 1,000
image set does not grow linearly like the runs with the 250 and 500 image set, stems from
Docker’s image layer cache. In this case the overall acquisition time grows slower, because
a lot of images in the 1,000 set share several layers, which, if already pulled by another
analyzer in a previous run, do not need to be pulled again, hence reducing the acquisition
time. Finally, we demonstrate that the average processing time of our framework is stable,
which is shown in Fig. 8. We further notice a small increase in average processing time
for the 250 image set, which is caused by the fact that this set contains more images with
larger package numbers compared to the overall amount of images tested, resulting in a
slightly higher average processing time. As illustrated in Table 1, per-package processing
times remain stable throughout the performed experiments, with a median of 0.558 s and
a standard deviation of 0.257 s.

Compensation experiments
In the the next part of our experiments we focused on the Compensation Facet of
our framework. In order to test the ability to automatically handle compensations of
vulnerable images, we tested the implemented Container Processor strategy. This strategy
compensates found vulnerabilities via automatic upgrades of existing images. It takes

Schleicher et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.66 16/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.66


Figure 8 Comparison of processing time for analytics with two instances.

no human intervention, has a very high confidence, keeps all artifacts within the images
and is therefore optimal to test the auto-compensation ability of our framework. In the
process of compensation the Container Processor generates a new image with the upgraded
packages. In order to test this image for improvement we have to store it. This means that
for every tested image we have to hold the original image as well as its compensated version.
Specifically, we choose to test the most vulnerable images (images with the most vulnerable
packages) out of the 1,000 image set we tested that are also themost prominent images in our
URBEM scenario. This left us with 150 images, which we split in three sets with 50, 100, and
150 images and started our compensation tests. We then repeated each run to demonstrate
repeatability and to balance our results. Since the Compensation Facet follows the same
principle as the Analyzer Facet we omitted testing it on one instance and immediately
started with two instances. After the tests finished, we compared the newly created images
to the original ones and checked if the number of vulnerabilities could be reduced.

Overall our experiments showed that from the 150 images we were able to auto-
compensate 34 images by reducing the number of vulnerabilities. This illustrates that even
a rather simple strategy leads to a significant improvement of around 22.6%, which makes
this a very promising approach. In a next step, we compared the overall runtime of our
compensation handlers for the three tested sets, and the results are shown in Fig. 9. We
again can clearly see that the major amount of time is spent for acquisition, in this case
pulling the images that need to be compensated. The compensation itself only takes between
24% and 28% of the overall runtime and shows linear characteristics correlating with the
number of images to be compensated. The comparatively low increase in acquisition time
for the 150 image set again can be explained with the specific characteristics we see in
Docker’s layer handling.

In a next step, we compared the average processing time for each set, and the results
are shown in Fig. 10. We again notice similar characteristics as we saw with our analyzers.

Schleicher et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.66 17/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.66


Figure 9 Comparison of pulltime and processing time for compensation with two instances.

Figure 10 Comparison of processing time for compensation with two instances.

The average processing time as well as the median processing time are stable. The small
increase for the 50 image set is explained with a larger number of images that contain more
packages. This fact leads to relatively longer compensation times when upgrading them.

DISCUSSION
Our experiments showed that our framework is able to scale horizontally. We further
demonstrated that the majority of the runtime, both when analyzing and compensating
images is caused by the image acquisition, which is bandwidth bound. Given the fact that
in most application scenarios of our framework the images will not necessarily reside on

Schleicher et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.66 18/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.66


DockerHub, but instead in a local registry, this factor greatly relativizes. The processing time
itself scales linearly with the number of analyzed packages, and the same was shown for the
compensation approach. Furthermore, the processing time in our current evaluation setup
is mostly constrained by the prototypical vulnerability checking mechanism and the chosen
storage system, which both are not the focus of our contribution. The implementation
of different vulnerability checkers, along with more efficient storage and caching of
vulnerability data could lead to further reduction in processing time and will be tackled
in future work. An additional aspect we did not specifically address in this paper is the
fine-grained scale-out of components in all Smart Brix facets.

Threats to applicability
While the presented framework fulfills the requirements set forth in the previously
introducedURBEMproject, certain threats to the general applicability of Smart Brix remain.

Currently, the auto-assemblymechanism introduced in ‘Framework rationales’ attempts
to eagerly construct analysis and compensation pipelines that are loosely structured along
the level of specificity of the performed analysis. Hence, the number of created pipelines
can grow exponentially with the number of candidate components in the worst case. If all
components for a given level of specificity accept all inputs produced in the previous level,
and all subsequent components accept all produced outputs in turn, the number of created
pipelines would grow exponentially with the number of components per level of specificity.
This problem can be mitigated by introducing a transparent consolidation mechanism
that delays the propagation of produced outputs of a certain type for a specified amount
of time, orders them by the reported confidence values, and only submits one (or a few) of
the produced output values with the highest confidence values for further consumption by
other components. Due to the relatively small number of processing components required
for the URBEM use case, we left the implementation of this consolidation mechanism for
future work.

RELATED WORK
The rapid adoption of container-based execution environments for modern applications
enables increased flexibility and fast-paced evolution. Next to this fast-paced evolution of
containers, new containers are deployed whenever functionality has to be added, which
leads to massive amounts of containers that need to be maintained. While the container
provides an abstraction on top of the operating system, it is still vital that the underlying
system complies to policies or regulations to avoid vulnerabilities. However, checking the
plethora of available environments and adapting them accordingly, is not a trivial task.

Among several approaches stemming from the area of SOA like the works of Lowis
& Accorsi (2009), Yu, Aravind & Supthaweesuk (2006) which deal with classic service
vulnerabilities as well as the work of Li et al. (2010), Lowis & Accorsi (2011) propose a novel
method for analyzing cloud-based services for certain types of vulnerabilities. Next to
general models and methods for classifying and analyzing applications, several approaches
emerged that allow vulnerability testing. They range from service oriented approaches
for penetration and automated black box testing introduced by Bau et al. (2010) and Li

Schleicher et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.66 19/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.66


et al. (2015) to model based vulnerability testing like the work of Lebeau et al. (2013)
as well as automated vulnerability and infrastructure testing methods (e.g., Shahriar &
Zulkernine, 2009; Hummer et al., 2013). Antunes & Vieira (2013) introduce SOA-Scanner,
an extensible tool for testing service-based environments for vulnerabilities. Based on an
iterative approach the tool discovers and monitors existing resources, and automatically
applies specific testing approaches. Also, more recently, large scale distributed vulnerability
testing approaches have been introduced (e.g., Evans, Benameur & Elder, 2014; Zhang et
al., 2014). In contrast to our approach, the aforementioned tools solely concentrate on
testing and identifying possible security threats, but do not provide means for adapting the
observed application or its environment accordingly.

More recently, container-based approaches are applied in the literature to ease
development and operation of applications. Tosatto, Ruiu & Attanasio (2015) analyze
different cloud orchestration approaches based on containers, discuss ongoing research
efforts as well as existing solutions. Furthermore, the authors present a broad variety of
challenges and issues that emerge in this context. Wettinger, Breitenbücher & Leymann
(2014) present an approach that facilitates container virtualization in order to provide
an alternative deployment automation mechanism to convergent approaches that are
based on idempotent scripts. By applying action-level compensations, implemented as
fine-grained snapshots in the form of containers, the authors showed that this approach is
more efficient, more robust, and easier to implement as convergent approaches. However,
compared to our approach, the authors do not provide a framework for analyzing container
application deployments, which based on identified issues triggers according compensation
mechanisms. Gerlach et al. (2014) introduce Skyport, a container-based execution
environment for multi-cloud scientific workflows. By employing Docker containers,
Skyport is able to address software deployment challenges and deficiencies in resource
utilization, which are inherent to existing platforms for executing scientific workflows. In
order to show the feasibility of their approach, the authors add Skyport as an extension to
an existing platform, and were able to reduce the complexities that arise when providing a
suitable execution environment for scientific workflows. In contrast to our approach the
authors solely focus on introducing a flexible execution environment, but do not provide
a mechanism for continuously evolving container-based deployments. Li, Kanso & Gherbi
(2015) present an approach that leverages Linux containers for achieving high availability
of cloud applications. The authors present a middleware that is comprised of agents
to enable high availability of Linux containers. In addition, application components are
encapsulated inside containers, whichmakes the deployment of components transparent to
the application. This allows monitoring and adapting components deployed in containers
without modifying the application itself. Although this work shares similarities with our
approach, the authors do not provide a framework for testing container-based deployments,
which also supports semi-automatic compensation of found issues.

Next to scientific approaches, also several industrial platforms emerged that deal
with the development and management of container-based applications, with the most
prominent being Tutum (https://www.tutum.co) and Tectonic (https://tectonic.com).
These cloud-based platforms allow building, deploying and managing dockerized

Schleicher et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.66 20/24

https://peerj.com
https://www.tutum.co
https://tectonic.com
http://dx.doi.org/10.7717/peerj-cs.66


applications. They are specifically built to make it easy for users to develop and operate
the full spectrum of applications, reaching from single container apps, up to distributed
microservices stacks. Furthermore, these platforms allow keeping applications secure and
up to date, by providing easy patching mechanisms and holistic systems views. In contrast
to our approach, these platforms only focus on one specific container technology, and
are not extensible. IBM recently introduced the IBM Vulnerability Advisor (https:
//developer.ibm.com/bluemix/2015/07/02/vulnerability-advisor/), a tool for discovering
possible vulnerabilities and compliance policy problems in IBM containers. While IBM’s
approach shares similarities with our work, they are solely focusing on Docker containers
that are hosted inside their own Bluemix environment and therefore do not provide a
generic approach. Furthermore, their Vulnerability Advisor only provides guidance on how
to improve the security of images, but does not support mechanisms to evolve containers.

CONCLUSION
The numerous benefits of container-based solutions have led to a rapid adoption of
this paradigm in recent years. The ability to package application components into self-
contained artifacts has brought substantial flexibility to developers and operation teams
alike. However, to enable this flexibility, practitioners need to respect numerous dynamic
security and compliance constraints, as well as manage the rapidly growing number of
container images. In order to stay on top of this complexity it is essential to provide means
to evolve these containers accordingly. In this paper we presented Smart Brix, a framework
enabling continuous evolution of container application deployments. We described the
URBEM scenario as a case study in the smart city context and provided a comprehensive
description of its requirements in terms of container evolution. We introduced Smart
Brix to address these requirements, described its architecture, and the proof of concept
implementation. Smart Brix supports both, traditional continuous integration processes
such as integration tests, as well as custom, business-relevant processes, e.g., to implement
security, compliance, or other regulatory checks. Furthermore, Smart Brix not only enables
the initial management of application container deployments, but is also designed to
continuously monitor the complete application deployment topology and allows for timely
reaction to changes (e.g., discovered application vulnerabilities). This is achieved using
analytics and compensation pipelines that will autonomously detect and mitigate problems
if possible, but are also designed with an escalation mechanism that will eventually request
human intervention if automated implementation of a change is not possible.We evaluated
our framework using a representative case study that clearly showed that the framework
is feasible and that we could provide an effective and efficient approach for container
evolution.

As part of our ongoing and future work, we will extend the presented framework
to incorporate more sophisticated checking and compensation mechanisms. We will
integrate mechanisms from machine learning, specifically focusing on unsupervised
learning techniques as a potential vector to advance the framework with autonomous
capabilities.We also aim to integrate the Smart Brix framework with our work on IoT cloud
applications (Inzinger et al., 2014;Vögler et al., 2015b;Vögler et al., 2015a). Furthermore, we

Schleicher et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.66 21/24

https://peerj.com
https://developer.ibm.com/bluemix/2015/07/02/vulnerability-advisor/
https://developer.ibm.com/bluemix/2015/07/02/vulnerability-advisor/
http://dx.doi.org/10.7717/peerj-cs.66


plan to conduct a large-scale feasibility study of our framework in heterogenous container
application deployments.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
The research leading to these results has received funding from the URBEM doctoral
college. The funders had no role in study design, data collection and analysis, decision to
publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
URBEM.

Competing Interests
Schahram Dustdar is an Academic Editor for PeerJ.

Author Contributions
• Johannes M. Schleicher conceived and designed the experiments, performed the
experiments, analyzed the data, wrote the paper, prepared figures and/or tables,
performed the computation work, reviewed drafts of the paper.
• Michael Vögler andChristian Inzinger conceived and designed the experiments, analyzed
the data, wrote the paper, prepared figures and/or tables, reviewed drafts of the paper.
• Schahram Dustdar wrote the paper, reviewed drafts of the paper.

Data Availability
The following information was supplied regarding data availability:

(1) Source Code Repository for the Prototype Implementation: https://bitbucket.org/
jomis/smartbrix/

(2) The evaluation results: https://bitbucket.org/jomis/smartbrix/downloads/smartbrix_
evaluation_results.zip.

REFERENCES
Antunes N, Vieira M. 2013. SOA-Scanner: an integrated tool to detect vulnerabilities in

service-based infrastructures. In: Proceedings of the international conference on services
computing . Piscataway: IEEE, 280–287.

Bau J, Bursztein E, Gupta D, Mitchell J. 2010. State of the art: automated black-box web
application vulnerability testing. In: Proceedings of the symposium on security and
privacy . Piscataway: IEEE, 332–345.

Evans NS, Benameur A, Elder M. 2014. Large-scale evaluation of a vulnerability analysis
framework. In: 7th Workshop on Cyber Security Experimentation and Test (CSET
14). Available at http://nsl.cs.columbia.edu/projects/minestrone/papers/ cset14-paper-
evans.pdf .

Schleicher et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.66 22/24

https://peerj.com
https://bitbucket.org/jomis/smartbrix/
https://bitbucket.org/jomis/smartbrix/
https://bitbucket.org/jomis/smartbrix/downloads/smartbrix_evaluation_results.zip
https://bitbucket.org/jomis/smartbrix/downloads/smartbrix_evaluation_results.zip
http://dx.doi.org/10.7717/peerj-cs.66


Gamma E, Helm R, Johnson R, Vlissides J. 1995.Design patterns: elements of reusable
object-oriented software. Boston: Addison-Wesley Professional.

GerlachW, TangW, Keegan K, Harrison T,Wilke A, Bischof J, DSouzaM, Devoid S,
Murphy-Olson D, Desai N, Meyer F. 2014. Skyport—container-based execution
environment management for multi-cloud scientific workflows. In: Proceedings of the
international workshop on data-intensive computing in the clouds. Piscataway: IEEE,
25–32.

Humble J, Farley D. 2010. Continuous delivery: reliable software releases through build,
test, and deployment automation. 1st edition. Boston: Addison-Wesley Professional.

HummerW, Rosenberg F, Oliveira F, Eilam T. 2013. Testing idempotence for
infrastructure as code. Lecture notes in computer science, vol. 8275. Berlin Heidelberg:
Springer, 368–388.

HüttermannM. 2012.DevOps for developers. New York: Apress.
Inzinger C, Nastic S, Sehic S, Vögler M, Li F, Dustdar S. 2014.MADCAT—a methodol-

ogy for architecture and deployment of cloud application topologies. In: Proc. Intl.
Symp. on service-oriented system engineering . Piscataway: IEEE, 13–22.

Lebeau F, Legeard B, Peureux F, Vernotte A. 2013.Model-based vulnerability testing for
web applications. In: Proceedings of the international conference on software testing,
verification and validation workshops. Piscataway: IEEE, 445–452.

Li R, Abendroth D, Lin X, Guo Y, Baek H-W, Eide E, Ricci R, Van der Merwe J. 2015.
Potassium: penetration testing as a service. In: Proceedings of the symposium on cloud
computing . New York: ACM, 30–42.

LiW, Kanso A, Gherbi A. 2015. Leveraging linux containers to achieve high availability
for cloud services. In: Proceedings of the international conference on cloud engineering .
Piscataway: IEEE, 76–83.

Li H-C, Liang P-H, Yang J-M, Chen S-J. 2010. Analysis on cloud-based security vul-
nerability assessment. In: Proceedings of the international conference on E-business
engineering . Piscataway: IEEE, 490–494.

Lowis L, Accorsi R. 2009. On a classification approach for SOA vulnerabilities. In:
Proceedings of the international computer software and applications conference.
Piscataway: IEEE, 439–444.

Lowis L, Accorsi R. 2011. Vulnerability analysis in SOA-based business processes. IEEE
Transactions on Services Computing 4(3):230–242 DOI 10.1109/TSC.2010.37.

Nelson-Smith S. 2013. Test-driven infrastructure with chef . 2nd edition. North Se-
bastopol: O’Reilly Media.

Newman S. 2015. Building microservices. North Sebastopol: O’Reilly Media, Inc.
Schleicher JM, Vögler M, Inzinger C, Dustdar S. 2015a. Smart fabric-an infrastructure-

agnostic artifact topology deployment framework. In: Proceedings of the international
conference on mobile services. Piscataway: IEEE, 320–327.

Schleicher JM, Vögler M, Inzinger C, Dustdar S. 2015b. Towards the internet of cities: a
research roadmap for next-generation smart cities. In: Proceedings of the international
workshop on understanding the city with urban informatics. New York: ACM, 3–6.

Schleicher et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.66 23/24

https://peerj.com
http://dx.doi.org/10.1109/TSC.2010.37
http://dx.doi.org/10.7717/peerj-cs.66


Schleicher JM, Vögler M, Inzinger C, HummerW, Dustdar S. 2015c. Nomads—
enabling distributed analytical service environments for the smart city domain. In:
Proceedings of the international conference on web services. Piscataway: IEEE, 679–685.

Shahriar H, ZulkernineM. 2009. Automatic testing of program security vulnerabilities.
In: Proceedings of the international computer software and applications conference,
vol. 2. Piscataway: IEEE, 550–555.

Soltesz S, Pötzl H, Fiuczynski ME, Bavier A, Peterson L. 2007. Container-based oper-
ating system virtualization: a scalable, high-performance alternative to hypervisors.
SIGOPS Operating Systems Review 41(3):275–287 DOI 10.1145/1272998.1273025.

Tosatto A, Ruiu P, Attanasio A. 2015. Container-based orchestration in cloud: state
of the art and challenges. In: Proceedings of the international conference on complex,
intelligent, and software intensive systems. Piscataway: IEEE, 70–75.

Vögler M, Schleicher JM, Inzinger C, Dustdar S. 2015a. Diane—dynamic iot application
deployment. In: Proceedings of the international conference on mobile services.
Piscataway: IEEE, 298–305.

Vögler M, Schleicher JM, Inzinger C, Nastic S, Sehic S, Dustdar S. 2015b. LEONORE—
large-scale provisioning of resource-constrained IoT deployments. In: Proceedings of
the international symposium on service-oriented system engineering . Piscataway: IEEE,
78–87.

Wettinger J, Breitenbücher U, Leymann F. 2014. Compensation-based vs. convergent
deployment automation for services operated in the cloud. Lecture Notes in Computer
Science 8831:336–350 DOI 10.1007/978-3-662-45391-9_23.

YuW, Aravind D, Supthaweesuk P. 2006. Software vulnerability analysis for web services
software systems. In: Proceedings of the symposium on computers and communications.
Piscataway: IEEE, 740–748.

Zhang D, Liu D, Csallner C, Kung D, Lei Y. 2014. A distributed framework for
demand-driven software vulnerability detection. Journal of Systems and Software
87:60–73 DOI 10.1016/j.jss.2013.08.033.

Schleicher et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.66 24/24

https://peerj.com
http://dx.doi.org/10.1145/1272998.1273025
http://dx.doi.org/10.1007/978-3-662-45391-9_23
http://dx.doi.org/10.1016/j.jss.2013.08.033
http://dx.doi.org/10.7717/peerj-cs.66

