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This article introduces a dynamic cloud-based marketplace of near-realtime human sensing data (MARSA)
for different stakeholders to sell and buy near-realtime data. MARSA is designed for environments where
information technology (IT) infrastructures are not well developed but the need to gather and sell near-
realtime data is great. To this end, we present techniques for selecting data types and managing data
contracts based on different cost models, quality of data, and data rights. We design our MARSA platform by
leveraging different data transferring solutions to enable an open and scalable communication mechanism
between sellers (data providers) and buyers (data consumers). To evaluate MARSA, we carry out several
experiments with the near-realtime transportation data provided by people in Ho Chi Minh City, Vietnam,
and simulated scenarios in multicloud environments.
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1. INTRODUCTION

With the advances in Internet of Things (IoT), realtime sensing data is becoming in-
creasingly important to many realtime applications, such as smarter city [Jin et al.
2014] and city traffic management [Chuang et al. 2013; Panichpapiboon 2010]. Re-
altime data might come from specifically configured sensors in well-designed infras-
tructures for specialized applications [Jin et al. 2014] or collected from the mass of
human participation, such as GPS signals from mobile devices. This type of human
sensing data is readily available in the public and also crucial for solving many real-
life problems. However, it is challenging to gather or share human sensing data owned
by people who have different habits, knowledge/perception, income, benefits from so-
ciety, social responsibilities, and so forth. Apart from technical solutions, such as data
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storage and delivery, the platform that enables such gathering and sharing activities
needs to have mechanisms to motivate the data owners. Previous studies showed that
benefits could be the incentives for data owners to contribute their sensing data [Lee
and Hoh 2010; Yang et al. 2012]. Therefore, marketplaces in which data owners are
allowed to trade their sensing data for benefits are believed to be the right solution to
address the challenge [Lee and Hoh 2010; Yang et al. 2012].

Several platforms have been introduced for sharing and trading different types of
data, but none of them is suitable to motivate owners of realtime human sensing data.
Examples are Factual [2016], Amazon Data Sets [Amazon 2016], Gnip [2016], Azure
Marketplace [Microsoft 2016], and Xignite [2016]. These platforms either exist in the
form of data marketplaces or data exchange services. The existing marketplace plat-
forms are commonly designed for trading discrete data packages, such as Web-based
information [Möller and Dodds 2012], graph data for structuring human knowledge
[Bollacker et al. 2008], or collected data from the physical world [De et al. 2012]. These
available marketplaces, however, do not support realtime data [Munjin and Morin
2012]. On the other hand, although data exchange service platforms (e.g., COMPOSE
[2016], EveryAware [2016], Ubicon [2016]), and IoT platforms (e.g., Etherios [2016],
ThingSpeak [2016], and Xively [2016]) allow the sharing of realtime or near-realtime
data, they do not have functions of a marketplace, such as features for selling, market-
ing, buying, and paying for data.

Our work in this article is motivated by the lack of a platform that could both enable
the sharing and provide the incentives for owners to share realtime human sensing
data. We present a new marketplace design that addresses the two challenges men-
tioned earlier: (1) the ability to handle realtime human sensing data and (2) offering
mechanisms to motivate data owners of different backgrounds to actively contribute
their data to the community. In addition, the new marketplace architecture is designed
to interact with existing IoT platforms. To develop such a marketplace, we first study
closely a real-life scenario in which realtime human sensing data (i.e., GPS data from
mobile devices) is needed to address a practical traffic problem. A set of requirements
derived from this motivating scenario is incorporated into the design of the market-
place architecture. A proof of concept system (i.e., a prototype) is built to demonstrate
and evaluate capabilities of our novel marketplace.

The remainder of this article is organized as follows. Section 2 presents a working
scenario of our marketplace. Section 3 analyzes requirements, proposes the architec-
ture, and discusses several components in detail. The prototype and its experiments for
a real-life case study are shown in Section 4. Related works are discussed in Section 5.
Finally, Section 6 concludes the article and discusses open issues for future work.

2. A WORKING SCENARIO

In this section, we first present an overview of a traffic monitoring system. Then we
analyze features of the system and show how our marketplace can serve as a data
exchange platform for the system.

2.1. A Traffic Monitoring System

Traffic congestion is a typical problem of many big cities around the world. A traffic
monitoring system is a system that continuously computes the state of traffic (e.g., fast,
normal, slow, congested) at any location in a city. Once obtained, the traffic states can
be utilized by different stakeholders, from police traffic departments to government
agencies and the public, in realtime, to design solutions for the congestion problem.
Generally, the traffic states can be derived by analyzing live traffic information collected
from different types of sources, such as traffic and surveillance cameras; signals from
GPS-enabled devices on cars, buses, and mobile phones; and through road pressure
sensors [Chuang et al. 2013; Picone et al. 2012; Panichpapiboon 2010]. In this work, we
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chose to study requirements of a traffic monitoring system for Ho Chi Minh (HCM) City,
one of the most crowded cities in Vietnam, as an example. This city currently suffers
from severe traffic problems and urgently needs innovative solutions to address these
problems. In addition, we chose this city for two other reasons:

—Traffic in HCM City is not only crowded but also mainly composed of motorcycles
whose drivers’ behavior are hard to predict. When an traffic incident occurs, it will
soon become worse if traffic police cannot take prompt action. These distinct charac-
teristics make HCM City very different from other cities in developed countries, and
hence solutions that are proven to be effective in cities of developed countries cannot
be applied in this city.

—Realtime data is essential to solving traffic problems. However, HCM City currently
does not have a systematic method to collect traffic data, even though various sources
of realtime data that can be utilized for solving traffic problems, such as GPS signals
from buses, taxis, and mobile phones, and videos from surveillance cameras, are
available. Therefore, it is reasonable to study closely the traffic system in this city
to see how a realtime data marketplace can be employed to improve the collection of
traffic data.

2.2. A Marketplace for Traffic Data Exchange

Effective solutions to traffic problems require the integration of many sources of data.
However, with the current condition of the economy in Vietnam, it is almost infeasi-
ble for the government to buy expensive traffic data collection systems for its major
cities. Fortunately, in HCM City, data that can be utilized for solving traffic problems
currently exist in different forms and are owned by different parties. For example, the
Voice of Vietnam, a broadcasting agency, has many video cameras installed at major
intersections to monitor the city traffic, and it broadcasts the information through ra-
dio. The traffic police department also maintains a number of surveillance cameras on
streets to detect traffic violations. Major taxi, truck, and bus operators in HCM City
have GPS-enabled devices installed in their cars, as required by the government to
keep track of their fleets. Additionally, mobile users with GPS-enabled smartphones
are also valuable sources of GPS data.

Even though many different valuable sources of data are currently available, the
use of these data sources are limited within the scope of their designated applications.
Thus, the challenge is how to motivate owners of these data sources to share and make
them available to those solving traffic issues. Data owners need to have something to
compensate for their investments in data collection equipment, and human resources
are needed to keep the equipment operating. A data marketplace where owners have
the incentive to trade their data for benefits could be an appropriate solution in this
case [Lee and Hoh 2010; Yang et al. 2012].

The integration of data sources in the preceding scenario can be carried out via data
exchange in our marketplace, as shown in Figure 1, in which users can trade their
traffic data for some benefits. In the marketplace, the trading is usually achieved via
intermediate values, such as credits or money (commonly referred to as credits in later
discussions). In particular, if a data provider has some data to contribute (e.g., a mobile
user with live GPS data), the provider can trade the data for some credits with data
consumers. These credits can later be used to exchange integrated data or services
from others (e.g., processed information from traffic application providers). With the
marketplace, data providers will no longer be limited within the scope of designated
applications, where data has to be directly exchanged for services, as in the case of
existing traffic applications. Instead, users can freely exchange their data with other
participants in the market. As a result, owners of data sources will be motivated to
contribute their data. The marketplace also encourages third-party data processors
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Fig. 1. Data, stakeholders, and their interactions in a market-oriented view of traffic scenarios in HCM
City.

Table I. Costs and Benefits of Parties Involved in the Traffic Scenario

Parties Costs of Collecting Raw Data Benefits from Processed Traffic Data
Bus, taxi, and
truck operators

GPS devices, Internet and mobile
network subscription fees, acquiring and
maintaining data on servers

Able to track status of their buses,
knowledge of current traffic conditions
to better provide services to commuters

Private car
owners

GPS devices, mobile network
subscription fees

Knowledge of current traffic conditions
to better navigate cities

Mobile device
owners

Mobile devices (e.g., smartphones,
tablets), mobile network subscription
fees and device battery time

Knowledge of current traffic conditions
to better navigate cities

Video camera
owners

Video cameras and network connections
to video cameras

Selling of video data and traffic
information

Data processors Cost of raw data, infrastructures for
collecting and processing raw data

Selling traffic data

Traffic data
users

Buying traffic data Knowledge of current traffic conditions
to better navigate cities

(e.g., GPS data processors), who can use their knowledge and tools to buy raw data
(e.g., GPS signals), integrate and convert the data into more valuable data (e.g., traffic
data), and sell it back to the market for profit.

To summarize, Table I shows benefits from processed traffic data and costs of main-
taining the collection of raw data of various data owners. For each owner, the cost and
the benefit are not always balanced. If the cost is greater than the benefit, the owner
may hesitate to directly exchange raw data for processed traffic data. However, in the
market context, by exchanging via intermediate values, the cost and benefit of each
data owner can be balanced. This could motivate owners to contribute their data to the
market.

3. REALTIME HUMAN SENSING DATA MARKETPLACE

In this section, we first analyze the characteristics of near-realtime human sensing
data and the needs from various participants in a marketplace in Section 3.1. Then we
present our design for the marketplace in Section 3.2.

3.1. Requirements of Near-Realtime Human Sensing Data Marketplaces

Generally, there are two primary types of participants involved in a data marketplace:
data providers and data consumers, who sell and buy the data, respectively. There
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could be another type of participant who buys data from the marketplace, processes
data to add value to it, and resells the processed data to others. In the context of a
realtime data marketplace, this type of participant is referred to as an intermediate
data processors. Depending on activities that intermediate data processors perform in
the marketplace, they can expose themselves as data providers or data consumers.

A data marketplace generally must support buying and selling activities of data
providers and data consumers, such as the listing and discovering of data, pricing the
data, negotiating and managing the data contract, making payments, and transferring
data from providers to consumers. However, near-realtime human sensing data and
their owners have some distinct characteristics that a data marketplace designed for
near-realtime data needs to support:

—Near realtime: The sensing data has its highest value when it is delivered from
consumers to buyers immediately. The total time from the creation of data at sources
to the point when the data is delivered to consumers must be reasonably small so
that it can be processed and timely decisions to react to the current situations can
be made.

—Streaming: The data is usually delivered continuously from sellers to buyers in forms
of streams of events.

—Heterogeneity of data providers/consumers: Providers of near-realtime data can be
organizations or businesses, such as bus or taxi operators (big/commercial providers).
They can also be individuals, such as people with mobile phones, who have limited
computing infrastructures (small/personal providers). For example, in the case of the
working scenario for HCM City illustrated in Section 2, whereas the data from bus
and taxi operators only cover main streets, the data from small providers, such as
individuals with mobile phones, have much larger coverage. Therefore, the contribu-
tion of small data providers plays a significant role in the success of the system. In
addition, because of the heterogeneity of the providers, the volumes and formats of
the data streams are also varied. Similarly, data consumers are also diverse.

—Heterogeneity of data quality: Because of the heterogeneity of data providers, the
quality of data is also varied. Data quality of the same provider may also be varied
through time, as it depends on other factors, such as network infrastructure and
habits of data owners.

These characteristics have a strong influence in the design of the data marketplace.
In particular, the marketplace needs to address the following requirements:

—Efficient mechanisms for providers to distribute near-realtime data to consumers im-
mediately: Different from marketplaces for discrete data packages where the data
packages from providers can be stored statically on servers for consumers to down-
load, a marketplace for near-realtime sensing data needs to deliver data immediately
from providers to consumers. Near-realtime data will lose its value if it is stored for
a long time on servers.

—Data stream transferred from providers to consumers in both push and pull modes:
In the push mode, the provider actively makes a data connection to the consumer
to push the data through this connection as a stream. The pull mode happens in
an opposite way, in which the consumer initiates the data transfer by making a
connection to the data provider to get the data. For small data providers, such as
individuals, the push mode is more suitable. However, for big data providers, such as
taxi operators, who usually have sufficient computing infrastructure to collect raw
GPS data from their fleet and provide the data to the market, the pull mode may be
more appropriate.
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Fig. 2. General design of MARSA.

—Different mechanisms for listing data, pricing the data, negotiating contracts, and
making payments: Big data providers may make data available through streaming
servers and list information about the streaming servers, together with information
about the data, prices, and so forth in the marketplace. A consumer, once agreeing
to the listed prices, can make a data contract and connect to the server to stream
the data. Similarly, big data consumers may also set up servers to receive data, then
list the data they want to buy, prices, and so forth on the market. If a data provider
wants to sell data with the listed prices, he or she can connect to the server of the
data provider to transfer the data.

—Mechanisms for monitoring and assuring data quality: As near-realtime data is
usually delivered in the form of data streams over a period of time through the
Internet, a selling-buying transaction cannot be completed at the time of buying
but has to last for a period of time. Different from other kinds of goods, the quality
of near-realtime data (the goods) cannot be verified at the time the provider and
consumer agree to the deal. The quality of data may also fluctuate over time. Hence,
there is the need for a mechanism to monitor the quality of data during the data
transfer process.

—API for interactions with data providers and data consumers: Near-realtime data is
usually not consumed directly by humans. Instead, it is fed to applications on the
consumer side for further processing. Therefore, there is also a need for an API or
a set of services so that applications of end users can be easily integrated with the
data marketplace.

3.2. The MARSA Architecture

Based on the requirements identified in Section 3.1, we have developed MARSA, an ar-
chitecture for the realtime human sensing data marketplace (Figure 2). The core of the
marketplace is a set of services that deliver the main functions of a market, including
Data Discovery, Cost Model Management, Payment, Data Contract Management, and
Data Quality Analysis. In addition, Data Contract Model Management and External
Model Management services are also included to support a variety of contract models
due to the homogeneity of data providers and consumers. A graphical user interface
(GUI) is provided for user interactions with these core services. A set of APIs are also
provided so that external programs can interact with the marketplace. In this reference
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architecture, to address the need for streaming realtime data from providers to con-
sumers, we utilize available realtime databuses provided by the current IoT platforms
or data distribution service (DDS) middleware [OMG 2007; Al-Madani et al. 2013]. By
using available databuses, existing applications can easily interact with the market-
place through provided APIs with minimal modifications. Main services and the way in
which different components of the architecture interact with each other are discussed
in detail in the following sections.

3.2.1. Marketplace Orchestration. For the pull model, data providers first use cost model
management, data contract model management, and external model management to
specify the provided cost of and general information with regard to the data contract,
such as its quality and data rights, then publish their data description to the Data
Discovery service. Next, they publish their data to databuses, where their data will
be delivered immediately to data consumers. Data providers can also access the Data
Quality Analysis service and the Payment service to get a report about the quality of
data and payment status. On the other hand, through the marketplace, data consumers
can use the Data Discovery service to find their required data by submitting a set of
requirements (e.g., keywords for the data, expecting price of the data, and data quality).
If their required data are found, they can subscribe (i.e., choosing the payment model,
quality of the data model, and accepting the data rights) to use one or several data
services. At this step, a data contract/agreement based on the matched properties
among service description and customer requirements will be generated and managed
by the Data Contract Management service. While data transferring process between
provider and consumer is executed, through the APIs, the Payment service and Data
Quality Analysis service work as the intermediates to calculate data value to produce
the bill and monitor the quality of data. For the push model, the role of providers and
consumers are inverted.

3.2.2. Data Discovery. The function of the Data Discovery service is to allow users (i.e.,
providers and consumers) to publish and search for desired data streams. Metadata
is commonly used to enable automatic data/service lookup [Spillner and Schill 2013;
Segura et al. 2014]. However, existing data/service lookup approaches consider datasets
and data services as discrete and static entities. Therefore, their metadata sets are
not appropriate for near-realtime data delivered in streams. Thus, in this work, we
leverage DEMODS [Vu et al. 2012] to describe information about data and services for
near-realtime human sensing data.

From the analysis of data owners (Table I), we observe that there exist two main
levels of data and service description: (1) the data service level, in which the general
information of a group of data streams of a provider (or an intermediate provider) is
specified, and (2) the data stream level, in which data information of individual devices
is specified. To accommodate these descriptions, we extended DEMODS with (i) adding
a device field that links to an external model to describe the devices; (ii) adding a
data origin field to distinguish the raw data of devices and the processing data of
reseller; (iii) introducing time properties, such as data rate, latency, and time series;
(iv) redefining cost models and contract models, which are discussed more in the next
section; (v) replacing the data field definition with a data type model that supports more
data types such package-based data and streaming-based data; and (vi) in both levels
(i.e., data service and data stream), the databus is also specified to publish/subscribe
data. Figure 3 defines structures for necessary items of two main levels: data service
and data stream. Some of items (e.g., categories, quality of service (QoS), data types, or
devices) refer to external models, whereas the cost and service contract refer to models
defined in Section 3.2.3. Table II describes these items in detail.
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Fig. 3. An overview of general description model for data and services in MARSA.

3.2.3. Data Contract Management. The Data Contract Management service is designed
to handle contracts agreed between providers and consumers. Contracts can be in dif-
ferent forms. Each contract usually consists of terms and conditions that govern the
quality of data and the associated costs. As shown in Figure 2, the Data Contract
Management service refers to Cost Model Management, Data Contract Model Man-
agement, and External Model Management services to manage various components of
a contract. Section 3.3 discusses the various contract models, quality models and cost
models that the data marketplace is designed to support.

3.2.4. Data Quality Analysis. As the quality of realtime streams might vary through time,
the Data Quality Analysis service is designed to continuously monitor and analyze the
quality of data streams. Reports produced by this service are the basis for verifying
data quality specified in contracts.

3.2.5. Payment. The Payment service continuously monitors the data streams in the
databuses. Together with the terms and conditions in data contracts on which providers
and consumers have previously agreed, the Payment service produces data bills and
provides facilities for making transactions between providers and consumers.

3.3. Data Contract and Related Components

A data contract often includes five basic components: data rights, quality of data,
regulatory compliance, cost model, and control and relationship [Truong et al. 2012].
The most important component in a data contract for the data marketplace is the cost
model, which represents a generic way in which the cost, time, data size, and number
of transactions are specified.

3.3.1. Contract Models. The marketplace is designed to support the following four basic
contract models:

—Obligation-free contract: This type of data contract does not require involving parties
to have any obligation to conform to terms and conditions specified in the contract.
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Table II. Description Model for MARSA

Level Properties Description

S
er

vi
ce

D
es

cr
ip

ti
on

Service UUID Service Universal Unique Identifier
Service name Data service name
Description Detailed data service description
Provider Data owner
Cost model List of cost models where data owners make offers to their consumers;

it links to the cost model defined in Section 3.3.3.
Contract
model

List of contract types where data owners make offers to their con-
sumers; it links to the contract model defined in Section 3.3.1.

Categories Linking to a category model defined outside the platform that supports
service/stream discovery

QoS Description of quality of service; it also links to a QoS model defined
outside the platform

Databus Place/address where consumers can subscribe to all data of a service

D
at

a
S

tr
ea

m

Stream UUID Stream Universal Unique Identifier
Service UUID Data service owner of stream
Description Detailed description of stream
Device Description of device that generates the data; it links to a device model

that supports data service/stream discovery
Cost model A stream may offer a different cost model from its data service
Contract
model

A stream may offer a different contract model from its data service

Data type Description of the type of data stream; it is classified into object based
and nonobject/streaming based and links to a model defined outside
the platform

Categories A stream may belong to different categories within its data service
Databus Place/address where consumers can subscribe to the data of a stream
Time series Use if data is object based; the time series represented by a pair (x, ±u),

in which the first one is a positive integer number measured at suc-
cessive points in time spaced at uniform time intervals (default in
second), and the second one is where its uncertainly should be given

Data origin Description of from where the data comes (i.e., self-generated, col-
lected, or location of device)

Data rate Data rate from the data provider side
Latency Maximum time delay from data provider to consumer

For example, contracting parties are not required to follow any restriction on data
rights, and they do not need to provide any guarantee on quality of data.

—User-centric contract: This type of data contract focuses on requirements of a service
that the service provider has to deliver to users. It contains not only elements to
determine the quality of data, such as completeness and accuracy, but also elements
to specify the support and indemnification of the service provider in cases of failure.
For example, a typical user-centric contract for traffic information would have con-
straints on the latency of information (e.g., less than 5 minutes), the sample rate
(e.g., 10 samples per minute), and the accuracy of sample location (e.g., less than
20 meters in geographical distance error).

—Provider-centric contract: This type of data contract provides requirements on data
rights and regulatory compliance of the data that users have to follow. In particular,
it specifies key requirements for using the data (i.e., data rights) and rules on data
that are to be obeyed (i.e., regulatory compliance). For example, constraints on the
redistribution of traffic information in a provider-centric contract could be no re-
distribution for commercial purposes and redistribution without modification of the
data and with a display of the service provider name for noncommercial purposes.

—Customizable contract: This type of contract allows users to modify any of the pre-
ceding contract models. On the one hand, a customizable contract can be developed
from any contract model by adding constraints to it. It can also be developed by
mixing the preceding contract models and even modifying the mixed model after
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that. On the other hand, it is possible for service providers or users to define their
own requirements or constraints to add to the contract model. Since a contract is
often expected to include constraints from both parties and both users and providers
always have some specific constraints to include, the customizable contract model is
the most popular model used in practice.

3.3.2. Quality of Data Models. In a data service, the quality of data has a strong rela-
tionship with the cost, because in any market, the cost usually meshes with the quality
of data, product, or service. Based on quality of data models that consider the data in
many aspects (e.g., accuracy, completeness, and timeliness), data providers can define
the appropriate cost for their data service. Actually, linking quality of data to the data
cost is important to prevent providers from increasing the data quantity by adding a
lot of noise, such as replicated data, out-of-date data, or data already on the protocol
layer. Since quality of data models depend on many data properties, we suggest that
providers use external models [D’Ambrogio 2006; Dobson et al. 2005] to define and
monitor their quality of data.

3.3.3. Cost Models. When a data producer sells data to a data consumer, the data value
will be based on cost. Several cost strategies have been summarized by Muschalle
et al. [2012] and Schomm et al. [2013]. However, in the context of realtime human
sensing data, it is not completely suitable, because at different moments and different
locations, a data stream may have different values. To adapt to different business
models of different consumers/providers for both the pull and push models, we support
the following payment strategies:

—Payment on package delivering (API handle): Data can be split into separated pack-
ages (e.g., messages or images). Consumers are charged every time they successfully
receive packages from the marketplace. To describe this cost model, the usage fee of
a fixed number of packages has to be included in the API description.

—Payment on data size: Consumers are charged on the size of received data. Similar to
the previous case, the basic unit charge fee for a data unit (e.g., 1MB, 10MB, 100MB,
or 1GB) should be described.

—Payment on time of subscription: Providers can split a day or a week into different
time units and the corresponding cost for each unit of time (e.g., $1 for 1 hour of a
subscription within the hours of 1 pm to 5 pm) is set up. Consumers are then charged
on the total time of each unit to which they subscribed. This model is appropriate for
streaming data where the data is generated on a duration of time.

—Payment on data unit: Providers split their data into different data units and set
up the basic unit charge for each. Unlike payment on data size, the data unit here
can be split not only by data size but also by time and over a group of data streams.
Consumers will pay one time and get the data until reaching the limitation of unit.

—Payment on plan (fixed payment on a period): Consumers subscribe to use data in a
subscription period (e.g., a week or a month) and only pay one time for this period
with or without maximum limitation of received data. The basic unit charge fee for
a unit of time (e.g., 1 hour, 1 day) is also described.

—Free users: In a number of cases, consumers can use these services at no charge from
providers. There are several reasons to offer a service for free, such as (1) the data
comes from the government and the consumer is a public authority funded by tax
money, a case which is usually constrained by a data contract, and (2) a person or an
organization providing the free data as a social responsibility because the generating
data fee is supported by the other organization or the government.

To encourage consumers, for each payment strategy mentioned earlier, we support a
mechanism called Freemium, in which providers offer a limited access (e.g., the limit
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of package quantity, the data size, or a duration) at no cost initially. In addition, the
provider can define several requirements that allow their consumers to get a discount
(e.g., at specific subscription times on the bill or the data size). Finally, for certain types
of data or service, the preceding cost models can be expanded to include a free payment
option with pop-up advertisements for data consumers (i.e., the data can be provided
free of charge in exchange for some advertisements).

3.3.4. Contract Governance. A data contract, once established, is governed via two pro-
cesses: a data contract monitor and data contract enforcement. A data contract monitor
is used to monitor requirements specified in the contract. Our framework provides a
basic monitor; however, it is possible to allow a third party to be involved in the moni-
toring process. For example, the quality of data delivered in a service can be monitored
and assessed by a third party, and then the result is reported to our framework. On
the other hand, data contract enforcement ensures that the contract is followed strictly
by both data providers and data consumers. In cases of violation, different types of
penalties can be applied, such as a warning, a temporary suspension of the service,
penalty fees, or even termination of the service.

4. IMPLEMENTATION AND EXPERIMENTS

4.1. Marketplace Prototype

For demonstration purposes, a prototype1 of the reference architecture described in
Section 3 has been implemented. In this prototype, we fully implemented two basic
services: Data Discovery and Cost Model Management. Whereas the first one was a re-
vision of a previous work [Vu et al. 2012], the second service was a new implementation.
A set of APIs have also been built for external databuses, such as Mosquitto2 and the
Xively IoT platform [Xively 2016] to interact with the marketplace via Web services.
These APIs are used to enforce the cost model and support latency analytics. Mosquitto
and the Xively IoT platform were chosen to illustrate the interactions between the mar-
ketplace and external databuses because they implemented a lightweight broker-based
publish/subscribe messaging protocol—MQTT.3 A simple Payment service version was
also implemented. This service uses a data log captured by databus via APIs and is cost
managed by the Data Contract Management service to produce online bills. To prove
the realtime capability of the design, we implemented, as a part of the Data Quality
Analysis service, a latency analytics that allows us to measure the near realtime ca-
pacity of databuses. An overview of the MARSA prototype is shown in Figure 4. Based
on our work, a full version has been also implemented by TMA Research.4

Together with core services, cost models used in data contracts discussed in Sec-
tion 3.3.3 were also implemented. The class diagram in Figure 5 describes the rela-
tionship among payment plans used in cost models during the implementation. Each
payment plan was implemented as a class, which was a subclass of the cost model.
Even though all payment plans inherited a price property from the cost model, the
use of this property was slightly different depending on the actual payment plans. For
example, with a data size plan, it was used to represent the price of one data unit (e.g.,
1Kb, 10Kb, and 1Mb). In the time Plan and subscribe plan, it was the price for one time
unit (e.g., 1 hour, 1 day, or 1 week). With the data unit plan, it was the cost of using
data streams.

1The platform has been released as an open source at http://dungcao.github.io/marsa.
2http://mosquitto.org/.
3http://public.dhe.ibm.com/software/dw/webservices/ws-mqtt/mqtt-v3r1.html.
4http://www.tmaresearch.com.
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Fig. 4. MARSA prototype.

Fig. 5. Class diagram of cost model management.

In the current prototype, once a consumer subscribes to a data service and chooses a
particular payment plan, the marketplace enforces the plan by continuously monitoring
and analyzing information collected from databuses via the APIs. Depending on the
type of payment plan, the necessary information for enforcing the plan may be different.
Table III lists a set of provided APIs and the types of information that these APIs can
collect for enforcing different payment plans.

4.2. Comparison with Other Platforms

Several data marketplaces exist. In this section, we compare our proposed marketplace
with some popular marketplaces to identify the strengths and weaknesses of each
marketplace with respect to their support for realtime human sensing data. Features
of a realtime data marketplace, including supported data types, data sources, data
publishing and delivery method, cost model, automatic data lookup, data contract, and
payment management, are used as the main criteria for our comparison. Through this
comparison, we want to demonstrate that our solution meets typical requirements of
a data marketplace for realtime IoT/human sensing data. The requirements include
reusing the IoT platform for data publishing and delivery, providing flexible contract
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Table III. List of Marketplace APIs

Methods Description Use for Plan
subscribeStart() Used when consumer starts to subscribe to a stream. Subscription
subscribeEnd() Used when consumer unsubscribes from a stream. Subscription
getTimePlan() Return either the period if consumer chose the time plan as the

payment strategy or null. After calling this function, databus
must control the deadline upon the time period it returns.

Time plan/
Data unit

packageCount() Whenever a package is delivered to consumer, the function is
called only one time. In case the current stream touched the
limitation (if it is set), this function will return false.

API handle/
Data unit

setDataSize() Set the transferring data size of objects or data stream within a
duration. In case the current stream touched the limitation (if it
is set), this function will return false.

Data size/Data
unit

Table IV. Comparison of Data Marketplaces

Products Data Type
Data

Source
Publishing/

Delivery Cost Model
Auto

Lookup
Data

Contract Payment
MARSA Realtime,

streaming
IoT devices MOM,5 IoT

platform
Flexible6 Yes Yes Online

billing
Xignite Datasets,

realtime
Range,
finance

Files, API Asset,
delivery

Yes N/A N/A

Amazon Datasets Range Files Free N/A N/A N/A
Azure Datasets Range OData API Subscription N/A Publisher

offers
terms

N/A

Factual Datasets Geography Files, API Free/
Subscription

Yes Terms of
service

N/A

Trimble
InSphere

Datasets Geography Files Per user/
Device/Data

N/A License
agreement

N/A

Gnip Realtime,
historical

Social
network

API N/A Yes N/A N/A

Sense2Web Realtime,
streaming

IoT devices MOM, IoT
platform

N/A Yes N/A N/A

and cost models for data streams to meet the needs of different data providers and
consumers, supporting automatic data lookup services to support different ways of
streaming data, and especially the capability to produce online billing in near realtime.

4.3. Application to a Real-Life Case Study

A concrete application, named Traffic Information System7 (TIS) for HCM City, of the
urban traffic systems scenario in Section 2 was analyzed to show the usefulness of
the data marketplace. The main functionality of this system is to provide information
about the velocity of vehicles on roads in the city in realtime. With this system, users
can make a good plan for their travel in the city (e.g., to avoid traffic jams). This
system receives raw GPS data (i.e., longitude, latitude, velocity, and timestamp) from
GPS devices attached to city buses, taxis, and GPS-enabled mobile phones in realtime.
The system then estimates possible travel speeds that vehicles are moving on the
roads. The result is displayed on an online city map, in which the possible travel
speeds are represented by colored lines. Generally, the system consists of three main

5MOM: Message-oriented middleware.
6The providers are very flexible to define their data value by data type, data size, or subscription time, and
so forth.
7http://traffic.hcmut.edu.vn/.
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Fig. 6. Interactions between TIS and the data marketplace (i.e., MARSA).

components involved in processing realtime data: GPS Data Receiver, Traffic Data
Generator, and Traffic Visualizer. The GPS Data Receiver receives realtime raw GPS
data from external sources. The Traffic Data Generator converts raw GPS data into
traffic data (i.e., possible traveling speeds of city roads) and provides the traffic data to
the Traffic Visualizer. The following description will show how the MARSA prototype
can be used to facilitate the exchange of data related to the TIS scenario. The overall
interactions are described in Figure 6, in which the GPS Data Receiver is considered a
databus of the marketplace. We integrated the marketplace APIs into this component
to count the amount of data and send it to the marketplace.

4.3.1. Market Interactions. The TIS plays a dominant role in this interaction scenario,
as it is the major consumer of the data. Therefore, the price of GPS data is predefined
by the TIS owner using the Cost Model Management service. The information of the
databus is also specified by the TIS owner. To sell their raw GPS data, GPS data
providers such as bus and taxi operators get into the data marketplace and provide a
set of information to the data market as described in Figure 3. After registering with
the market, data providers can use the APIs provided by the TIS owner to connect to the
GPS Data Receiver to upload their data. It is assumed that the providers have agreed
on the terms, conditions, and cost policies set by the TIS owner. The marketplace APIs
integrated in the GPS Data Receiver of the TIS will count the amount of data that the
system receives from each provider and regularly update the information to the data
market. The payment component of the market uses this information for accounting
purposes and decides on the cost that the TIS owner has to pay for the data providers.
For small data providers such as commuters with mobile devices, a mobile application is
built for sending GPS data to the GPS Data Receiver of the TIS. Interactions between
the providers and the market, as well as the TIS, such as accounting and billing
information, registration, and so forth, are done through this application.

4.3.2. Discussion. The example of the TIS, a practical application of an urban traffic
scenario, has demonstrated the use of the dynamic data market for a realistic applica-
tion. Currently, the TIS receives GPS data from around 4,000 city buses every day. On
average, each bus sends about 0.25MB of data to the TIS GPS Data Receiver per day,
equivalent to 7.5MB of data per month. For the whole city bus fleet, the total amount
of GPS data received per month is about 30GB. We can now use the data free of charge
for research purposes. However, if each megabyte of GPS data costs 20 ¢ in the market,
the bus operators will receive around $6,000 for the whole bus fleet. This is an account-
able amount, and enough for the bus operators to pay for the cost of 3G/GPRS data
connections used to send GPS data to data-gathering servers. For mobile users, if each
mobile phone sends the same amount of GPS data to the TIS as a bus, the providers
will receive approximately $1.50 per month for each GPS-enabled device. Even though
this is a relatively small amount, it could be used to pay for half of a 3G data bill
for mobiles in the current condition of Vietnam. This illustrated example shows that
the data market model can bring some benefits to users. Several studies have shown
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that benefits can be used as incentives to encourage mobile users to participate in the
marketplace and contribute their data [Lee and Hoh 2010; Yang et al. 2012].

Technically, as the marketplace is currently built based on a service-oriented model,
it has certain limitations that affect the flexibility of the market. For example, it
is hard for small data owners, such as providers with GPS-enabled devices, to sell
their data directly in the marketplace. As the realtime data streams must be provided
through data services, data providers have to gather their data and then publish the
data to some forms of databus so that data consumers can access the data. However,
small data owners, such as ordinary mobile users, do not usually have their own
computing infrastructure or the necessary computing skills to do so. The specific GPS
data collection application developed for mobile devices used in the TIS application is
a walk-around solution to help ordinary mobile users easily contribute their data.

4.4. Experiments in Simulated Scenarios

4.4.1. Experimental Scenario and Settings. The main purpose of our experiments is to
evaluate the practicability of MARSA according to real-world scenarios.8 We used
Mosquitto, an open source MQTT message broker, as the databus:

—Infrastructure setting: As a proof of concept that MARSA works for the scenario in
Section 4.3, we deployed one databus in a virtual machine (VM) with 2 CPU Au-
thenticAMD, 2.80GHz, and 8GB of RAM, running on an Ubuntu Server 12.04.2 LTS
64-bit of our partner cloud (Flexiant9). Here, 200 simulated sensors were deployed in
four VMs of the same cloud with the databus and 200 simulated consumers were de-
ployed both inside and outside the cloud of the databus—for instance, three servers
in Vietnam (Tan Tao University, HCM City University of Technology and Hanoi Uni-
versity of Technology) and our partner clouds around Europe, such as Stratuslab
(in France), Distributed Systems Group (DSG lab) at TU Wien (Austria), and in the
Flexiant FCO cloud. The simulated sensors published a text file, in which each line
was about 100 bytes, to the databus by reading line-by-line every 5 seconds. On the
other hand, whenever receiving a message, the simulated consumers saved it into
a text file. We also used five personal computers (PCs) located in Vietnam as video
streaming sensors. These sensors published video data that was captured by cameras
and whose sound was removed. The simulated camera consumers were deployed on
other PCs located in the DSG lab. This setting allowed us to verify the near-realtime
capability on different environments and the capability of the platform to deal with
different data types. Figure 7 depicts our setting across distributed sites.

—Cost setting: According to the preceding setting, we have two types of data (i.e.,
text/message and video streaming). We assume that 200 simulated sensors and five
video streaming sensors are owned by a provider, and he or she has set the cost of
data as follows. For five video streams, the value of data is evaluated by subscription
time (e.g., $2 /hour/stream). For the text streams, the value of data is evaluated by
data size (e.g., $5 /1GB).

Based on the settings mentioned previously, we analyzed how well the platform mea-
sures near-realtime capability and evaluates data values. To support this, the market-
place APIs were integrated into all simulated sensors and simulated consumers to cap-
ture a data log and notify the marketplace whenever a data package was sent/received.

8In our experiments, MARSA and its APIs (i.e., Web services) were deployed at http://109.231.124.57:8080/
marketplace/default and http://109.231.124.57:8080/ws.
9http://www.flexiant.com/.
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Fig. 7. General resource settings for experiments.

4.4.2. Near-Realtime Capability Measurement. In this experiment, we followed the first
setting to test the prototype with two types of realtime data related to the traffic
scenario, including structured data (i.e., raw GPS) and unstructured data (i.e., video
data). Then we measured the average latency of each type of data caused by the
databus for each consumer. The latency was calculated by the difference between two
timestamps of a data package recorded by the platform (i.e., MARSA): the time when
the source device published notification and the time when the consumer receives
notification. This avoided the problem of a time difference between internal clocks,
as we had too many source devices and consumers. For raw GPS data, on the left of
Figure 8(a), we show the realtime capability of some consumers deploying in different
clouds to subscribe for the data published by the simulated sensors deployed in the
StratusLab cloud. On the right, we inverted the location of the simulated sensors and
the simulated consumers—for instance, 200 simulated consumers were deployed in two
VMs of the StratusLab cloud, and their simulated sensors were deployed in the different
clouds and the servers. For the video data, we were interested in the coefficient of
correlation between the latency and the size of the data package (Figure 8(b)) when we
changed the size of video frames. These results show that our marketplace is acceptable
for realtime applications.

4.4.3. Data Value Evaluation. In this section, we show how the platform evaluates the
value of data in near realtime. There are many consumers who bought the 200 text
streams and five video streams discussed earlier; however, we assume that there is one
consumer who bought 5 text streams and two video streams in a contract. Based on the
data log from the marketplace APIs and data cost defined by the provider (i.e., $5 /1GB
for text and $2 /hour/stream for video streaming), the marketplace produced an online
bill whenever the consumer wanted to check his or her used data (Figure 9). Based
on this bill, customers could update their plan, subscribe to more data, or unsubscribe
from some data streams.

4.4.4. Discussion. Throughout the preceeding experiment of the simulated scenario,
the realtime capability and data heterogeneity are supported by our platform, al-
though the realtime capability of video streaming data is unexpected. However, this
is a problem of the databus, and we can solve it by using a specific databus for video
streaming, such as the one in Al-Madani et al. [2013]. Our platform also has the ca-
pacity to measure the value of data in realtime. Even though we do not focus on the
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Fig. 8. Realtime capability measurement.

Fig. 9. A screenshot of an online bill.

quality of data analysis in this experiment, by integrating our APIs into sensors and
applications of the consumer, the APIs can analyze the quality of data whenever they
send/receive a data package and then submit the report to the marketplace.

5. RELATED WORK

5.1. The IoT Platforms

Studying the features of existing IoT platforms and comparing them to a set of require-
ments for the marketplace are important when developing a data marketplace in the
context of IoT applications. Misra and Pal [2013] made a survey on important trends,
key requirements, evolving technologies, and emerging solutions for such a platform
for IoT and M2M services. They also took a look at some commercial and open source
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IoT platforms for data services, device management, and application development in
the market. Based on this work and a study of existing IoT platforms (e.g., Arrayent
[2016], Axeda [2016], Xively [2016], and ThingWorx [2016]), we recognized that most
of them have three basic processes: upload/publish data, storage with a time-series
database, and download/query data using time points. Moreover, they allow users to
analyze or visualize the data. However, except for Xively, all of them do not consider
the issue of data delivery to users in realtime. Nimbits [2016], Sentilo [2016], and Kaa
[CyberVision 2016] consider the alert settings in the point properties whenever a new
value is recorded into a data point.

From the research community, several middleware platforms have been proposed/
developed. Using the Web protocol to establish the connectivity of the things into the
Internet, Guinard et al. [2010] defined a resource-oriented architecture for the Web of
Things in which data is stored in distributed devices. The applications/consumers can
directly access these devices using the HTTP protocol to query data. This architecture
is appropriate for the private platform, as the number of queries to devices is limited.
However, the challenge of publishing data to consumers with high-performance real-
time communication is an open issue due to the limitation of the HTTP protocol. The
EVRYTHNG [2016] platform has been using this technology. De et al. [2012] describe
the Sense2Web platform for real-world services and smart objects. Starting from the
IoT information models detailing entities, resources, and services, the platform makes
linkages with tag and location analysis of the existing resources on the Web, then pub-
lishes them on the Web within two user interfaces: human-to-machine interaction via
Web and M2M interaction via SPARQL endpoints. Valente and Martins [2011] devel-
oped a middleware framework in which it receives smart objects from wireless sensor
networks and transforms them into Web services. This platform supports a notification
mechanism to alert clients whenever a new smart object is available. Tong and Ngai
[2012] developed a publish/subscribe system that supports ubiquitous data access from
both wireless sensors and mobile phones. This system plays the role of databus in our
platform.

Discussion. With respect to the problems that need to be solved for a data market
mentioned in Section 2, we recognize that all of these platforms only satisfy a part
of the technology infrastructure, such as missing the mechanism to process data in
realtime, whereas a set of requirements, such as a business model, service/data broker,
or QoS/quality of data, is totally missing. Munjin and Morin [2012] reuse these IoT
platforms as the data brokerage platforms to define an architecture for IoT application
marketplaces. In this work, the application store is suggested as an element of IoT plat-
forms, which was designed as a registry of networked applications. The authors suggest
that this registry should support application description management and authentica-
tion. This work, however, focuses on application development instead of selling data.

5.2. Data Services

In recent years, the number of platforms for data marketplace has grown rapidly. Typ-
ical examples include Amazon Data Sets [Amazon 2016], Factual [2016], Gnip [2016],
Azure Marketplace [Microsoft 2016], and Xignite [2016]. Using these platforms, a
registered client can upload his or her data manually or automatically using the sup-
ported APIs. However, many types of data are not near realtime and become obsolete
for some consumers. Some consumers may not be satisfied with this situation because
they need fresh new data or near-realtime data. To have the realtime data for con-
sumers, it is required that the data must be collected by devices and simultaneously
uploaded to the platform for prompt delivery to consumers. All of these platforms do
not address this issue.
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In our previous works, by focusing on the automatic service lookup, data composi-
tion, and utilization for several DaaS on the Cloud, we defined a description model for
DaaSes, named DEMODS [Vu et al. 2012], which covers all basic information of a DaaS,
such the description of service, data assets, APIs, and several linked models: pricing,
contract, QoS, and so forth. Additionally focusing on data composition, we developed
data contracts [Truong et al. 2012] to support concern-aware data selection and utiliza-
tion from cloud-based data marketplaces. In an empirical study, Muschalle et al. [2012]
presented several pricing strategies for data markets. They also presented attractive
research opportunities for the business intelligence community. Li and Miklau [2012]
focused on pricing of data market; however, they proposed criteria for interactive pric-
ing instead of analysis of pricing strategies. Using linked data principles—for instance,
all datasets are represented internally as RDF graphs and each item is identified with
a URI, Moller and Dodds [2012] developed a platform as a Web-based information mar-
ketplace named Kasabi. A similar work, Bollacker et al [2008], defined a platform for
structuring human knowledge using a collaboratively created graph database. How-
ever, these works do not consider payment of data. In Carey et al. [2012], starting from
a general architecture for data services that can be deployed on top of a data store, the
authors reviewed data service concepts and examined approaches to service-enabling
data sources, create an integrated data service from multiple sources, and manage
data in the cloud. Moreover, they highlighted technical challenges, including updates
and transactions, data consistency, or security for data services, and they discussed
emerging trends for future research and development.

6. CONCLUSION AND FUTURE WORK

In this article, we presented the design of MARSA, a platform for a human sensing
realtime data marketplace. MARSA consists of a set of services interacting with one
other to cover data discovery, cost model management, and data contract management.
The roles of services addressing payment, data quality analysis, and marketplace APIs
were also analyzed. In addition, a prototype has been implemented as a proof of concept
of the proposed marketplace platform. By using multiple databuses, with different data
types and the flexibility of choosing databuses at providers and consumers to transfer
data, users can use a specific databus for a concrete data type to improve performance.
Our prototype allows data providers and their consumers to negotiate their payment
for each type of data according to five supported cost models. It helps them monitor
how their choice of models are executed through the marketplace APIs.

In the future, we plan to introduce a dynamic cost model for the platform. All cost
models that we introduced in this article are static. In reality, in some cases, it is
desirable to have a dynamic one. Our plan toward this issue is to work for a cost model
that can change costs according to the supply and demand of the market. We also plan
to continue our work on the implementation of missing services, such as those involving
data quality analysis and external model management.
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