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rSYBL: A Framework for Specifying and Controlling Cloud
Services Elasticity

GEORGIANA COPIL, DANIEL MOLDOVAN, HONG-LINH TRUONG,
and SCHAHRAM DUSTDAR, Distributed Systems Group, TU Wien, Austria

Cloud applications can benefit from the on-demand capacity of cloud infrastructures, which offer computing
and data resources with diverse capabilities, pricing, and quality models. However, state-of-the-art tools
mainly enable the user to specify “if-then-else” policies concerning resource usage and size, resulting in a
cumbersome specification process that lacks expressiveness for enabling the control of complex multilevel
elasticity requirements.

In this article, first we propose SYBL, a novel language for specifying elasticity requirements at multiple
levels of abstraction. Second, we design and develop the rSYBL framework for controlling cloud services
at multiple levels of abstractions. To enforce user-specified requirements, we develop a multilevel elasticity
control mechanism enhanced with conflict resolution. rSYBL supports different cloud providers and is highly
extensible, allowing service providers or developers to define their own connectors to the desired infrastruc-
tures or tools. We validate it through experiments with two distinct services, evaluating rSYBL over two
distinct cloud infrastructures, and showing the importance of multilevel elasticity control.

CCS Concepts: � Computer systems organization → Cloud computing; � Computing methodolo-
gies → Planning with abstraction and generalization; Planning for deterministic actions; � Software and
its engineering → Software design engineering
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1. INTRODUCTION

Web applications, workflows, and scientific applications can be offered as cloud ser-
vices [Fard et al. 2012; Tsoumakos et al. 2013]. When deploying them (ideally, automat-
ically) on various cloud infrastructures, the cloud service provider/developer usually
has high-level goals (e.g., testing reliability or achieving a specific level of performance
with a minimum cost) at different levels of the service (e.g., for the entire data end or for
specific parts of the data end). Current control frameworks mainly focus on single types
of services and enable the provider/developer to only specify resource-level SLA [Kouki
et al. 2014]. Furthermore, they lack means to interact with the stakeholders (e.g.,
service provider, service developer) for controlling elasticity-related tradeoffs (e.g., the
service provider cannot change requirements during runtime) [Almeida et al. 2014].
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As there are various types of stakeholders interested in cloud-hosted services (e.g.,
cloud service developers and cloud service providers), they might have different prefer-
ences at various abstraction levels. They have coarse- or fine-grained knowledge about
parts of their services. For instance, the provider knows how much he or she is will-
ing to pay for the entire service to be hosted on the cloud, while the developer knows
quality indicators at different layers of the service. Therefore, there is a strong need
for mechanisms to specify multilevel elasticity requirements, customized for various
parts of the cloud service. To address these requirements, we need to develop means
for multilevel elasticity requirements specification targeting high-level goals referring
to not only resources but also, more importantly, quality and cost, following the multi-
dimensional definition of elasticity [Dustdar et al. 2011]. Moreover, we need to manage
both the static description of the cloud service and its runtime behavior, which depends
on the virtual infrastructures on which it runs.

In this article, we present SYBL, a language for specifying elasticity requirements
at different levels of abstraction in complex cloud services. We model various types of
information for the elastic service, at runtime representing it as a relational graph
that captures all the needed information for the cloud service control. We present
our approach for multilevel elasticity control that generates action plans considering
the evolution of the service at different levels of abstraction. To this end, we present
our rSYBL framework, which is easily extensible, allows stakeholders to change their
requirements during runtime, and supports multiple enforcement mechanisms (e.g.,
multiple clouds and multiple software platforms), multiple monitoring tools, and plan-
ning mechanisms. We run experiments comparing rSYBL elasticity control on two
cloud infrastructures, one private based on OpenStack1 and the Flexiant2 public cloud
infrastructure. We showcase an experimental evaluation on the importance of multi-
level service control and analyze the performance of rSYBL under two different cloud
infrastructures (i.e., OpenStack and Flexiant).

This article substantially extends and details our previous work presented in Copil
et al. [2013a, 2013b] as follows: (1) we extend the service model from Copil et al.
[2013a] to support more detailed service description; (2) we explain the information
representation process, from creating the relational graph to its population with var-
ious types of information coming from multiple stakeholders; (3) we detail our multi-
level service control mechanisms; (4) we describe the rSYBL framework; and (5) we
present three new experiments with rSYBL, showcasing its usefulness under multiple
settings.

The article structure is as follows: In Section 2, we present the cloud service model
for describing different types of information related with the cloud service. In Section 3,
we show the main characteristics of SYBL. Section 4 presents the algorithm that we
use for generating action plans targeting multiple cloud service abstraction levels.
Section 5 describes the rSYBL framework and its main extensibility points. Section 6
presents experiments. Section 7 compares our work with existing research. Section 8
concludes the article.

2. CLOUD SERVICE MODEL

2.1. Service Units

Many types of scientific, enterprise, and government cloud services have been emerg-
ing [Andrikopoulos et al. 2013; Inzinger et al. 2014], which mix a series of types of
components, for example, Machine-to-Machine (M2M) sensors, web services/containers,

1http://openstack.org/.
2https://www.flexiant.com.
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Fig. 1. Emerging cloud services control.

and middleware. As shown in Figure 1, conceptually we can have a multitude of compo-
nents running in the cloud, each with various capabilities. By using cloud technologies,
on the one hand, each of these components can be reconfigured during runtime. On
the other hand, the cloud infrastructure also provides computing resources where they
are executed and a series of capabilities for creating/modifying them. Therefore, these
components at runtime provide certain “service” capabilities, which we call “service
units” [Tai et al. 2012].

Currently, most cloud control techniques scale service units only horizontally and
at resource level (e.g., adding a new VM to the whole stack). However, understanding
service units and their capabilities entails a highly granular control, using various
types of control actions (e.g., change distribution mechanism for load balancing, change
heap size, or change version) and combinations among them. These control actions
can facilitate the fulfillment of a high range of requirements desired by cloud service
stakeholders.

2.2. Elasticity Requirements

Elasticity requirements are at the basis of cloud service elasticity, as they define the
elasticity behavior that the cloud service stakeholder needs. Elasticity requirements
are complex in the sense that they promote complex behavior for the elasticity of
cost, quality, and resources, through describing desirable states/behaviors in specific
conditions. A complex cloud service can have multiple semantically connected service
units, grouped into service topologies. Given this, elasticity requirements should refer
to different cloud service parts (e.g., service unit or service topology) and should be
formulated at various granularities by various cloud service stakeholders. The current
state of the art (see Section 7) facilitates description of low-level, infrastructure-related
requirements. The cloud service stakeholder must be able to specify requirements con-
cerning more abstract metrics (e.g., the cost per user that the stakeholder needs to pay
per hour). We identify three types of elasticity requirements, which focus on the elas-
ticity dimensions and the different dimensions among them: (1) cost-related elasticity
requirements, (2) quality-related elasticity requirements, and (3) elasticity require-
ments on the relation between cost and quality. Cost- and quality-related requirements
should specify expected values or expected policies under specific conditions. Require-
ments that focus on the relationship between cost and quality specify tradeoffs that
are acceptable for stakeholders (e.g., a cloud service designer could need to specify that
he or she is willing to pay more with 10% only if he or she receives a performance
improvement of at least 20%).

Depending on the cloud service type, elasticity requirements might be associated
with different parts of the cloud service, according to the cloud service structure. For
the entire cloud service, one should specify requirements on aggregated metrics over
the multiple parts of the cloud service (e.g., concerning the total cost). At the service
unit level, one specifies requirements for that part of the service (e.g., a NoSQL data
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Fig. 2. Linking structural, elasticity, and infrastructure system information.

node) and all the services from the cloud provider it is using (e.g., all the virtual
machines or monitoring services). Moreover, stakeholders could specify requirements
over service topologies (e.g., the reliability of the data topology of a multitier application
should be very high) as it stores sensitive information. Considering services running
continuously for a long time, these requirements might change due to various factors,
such as business plans, popularity increase, or cloud provider cost updates.

2.3. Cloud Service Structure

For specifying elasticity requirements at different abstraction levels and then control-
ling elasticity at these levels, we need to know the structure and particularities of the
cloud service. Current cloud service specification standards like TOSCA3 and CIMI4

facilitate the service description prior to the deployment, the description containing all
the information needed for the deployment process. However, as the purpose of these
languages is not to describe the cloud service runtime behavior, they cannot describe
mechanisms to achieve elasticity at different levels. In order to generate and enforce
control decisions during runtime, an elasticity controller would need to understand
multiple types of information (e.g., information regarding cloud service units and the
relation among them, information on the virtual resources used, or information re-
garding the cloud service developer/provider requirements). Therefore, we develop a
representation model for our cloud service control, which overcomes the aforementioned
issues.

The cloud service description, shown in Figure 2, is designed to provide the cloud ser-
vice elasticity controller with support for managing the cloud service. It holds different
types of information: (1) structural/static information, (2) virtual infrastructure-related
information, and (3) elasticity-related information. The cloud service can be seen as
a graph composed of all this information, where each of these concepts is a node of
the graph, with descriptive information regarding the concept being modeled as node
attributes and the relationships among them as edges connecting the various nodes.

3https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=tosca.
4http://www.dmtf.org/sites/default/files/standards/documents/DSP0264_1.0.0.pdf.
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The structural information describes the logical units out of which the cloud service
is composed and the relations between them:

—The Cloud Service represents the entire application or system and can be further
decomposed into service topologies and service units (e.g., a game, a web applica-
tion, or a scientific application). The term cloud service that we choose to use is in
accordance with existent cloud service architectures and standards (e.g., TOSCA).

—The Service Unit [Tai et al. 2012] represents any kind of artifact, component, or
service offering computation and data capabilities (e.g., a web service or a data
analysis service).

—The Service Topology represents a logical grouping of service units that are semanti-
cally connected and that have elasticity capabilities as a group (e.g., a tier of a cloud
service or a part of a workflow).

—The Code Region represents a particular sequence of code for which the user can
have elasticity requirements (e.g., a data analytics algorithm).

The infrastructure-related information enables the elasticity controller to be aware
of which unit is deployed on which VM, or which cloud provider:

—OS Processes represent any kind of processes belonging to a cloud service that can be
associated either with code regions or with service units (e.g., a web server process).

—Artifact is any atomic software unit or dataset.
—Containers provide an additional layer of abstraction and automation (e.g., Docker5,

LXD6).
—Virtual Machine (VM) and Virtual Storage are any IaaS services of type virtual

machine and storage, respectively, that are purchased from the IaaS provider.
—The Virtual Cluster is a grouping of virtual machines or storage that has different

properties (e.g., availability zone) and is offered as a service by the cloud provider.

This information regarding the infrastructure on which the cloud service is running
is important in deciding how to control the service, since many of the actions depend
on what the cloud provider offers. The aforementioned concepts (e.g., OS processes or
virtual cluster) are used to describe virtual resources in different cloud infrastructures.7
This information regarding the infrastructure on which the cloud service is running is
important in deciding how to control the service, since many of the actions depend on
what the cloud provider offers.

The elasticity-related information facilitates the description of elasticity behavior for
service units, service topologies, or the entire cloud service:

—Elasticity Metrics represent metrics targeted by elasticity requirements or lower-
level metrics that are used for computing targeted metrics (e.g., cost vs. performance,
cost vs. throughput, or cost vs. availability). Elasticity metrics can be associated with
any cloud service part (e.g., service unit, service topology, or code region).

—Elasticity Requirement represents any request coming from the user regarding elas-
ticity of the cloud service (e.g., “the cost should not increase by more than 20% when
the performance increases by less than 5%”). These requirements can be specified
through SYBL and can be associated with any cloud service part.

—Elasticity Capability represents any action/mechanism/operation through which the
elasticity of the cloud service, of the service topology, or of service units can be

5http://www.docker.com.
6http://www.ubuntu.com/cloud/tools/lxd.
7Even though some names might differ, the actual concept presents a high degree of similarity. For example,
Flexiant2 uses Server for referring to VMs, offering Disks on the storage side, while Google Compute Engine9

is offering various types of Instances (VMs) and Storage.
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manipulated (e.g., the elastic reconfiguration of the data service topology for
higher availability, or the elastic creation of new processing jobs for a map-reduce
application).

—Elasticity Relationship represents any connection between any two cloud service
parts, which can be annotated with elasticity requirements (e.g., the connection
between two service units needs to be of high reliability). We choose the relationship
term for being in accordance with cloud service specification standards (e.g., TOSCA).

We populate the graph constructed according to the model presented earlier with infor-
mation from different sources (e.g., information from cloud providers regarding cloud
infrastructure, predeployment information such as TOSCA description, or postdeploy-
ment associations between the static description and the virtual cloud infrastructure).
Therefore, we do not assume that stakeholders will provide complete information at
all levels of the cloud service.

2.4. Managing Elasticity Capabilities from Cloud Providers

The previous model uses the Infrastructure System Information for enabling the elas-
ticity controller to describe, understand, and manage the runtime information and its
relation with service units, service topologies, and the entire cloud service. All elements
that are part of the Infrastructure System Information can have associated elasticity
capabilities, described as part of the Elasticity Information. Most cloud providers imple-
ment similar concepts describing the services they offer (e.g., Flexiant2 offers servers,
Amazon8 offers instances, and Google9 offers virtual machine; Amazon offers Elastic
Load Balancing while Google offers Global Load Balancing, although both refer to
distributing incoming requests across pools of VMs). Therefore, we use the concepts
presented in the previous model for the Infrastructure System Information in order to
describe the services used from the chosen cloud providers. Moreover, we can abstract
possible elasticity capabilities for all resources belonging to the Infrastructure System
Information in order to be referred by other elements of the model or by the cloud
service elasticity controller.

All the elements that are part of the Infrastructure System Information have asso-
ciated, during runtime, (1) the properties that are used by the respective cloud service
parts (e.g., service unit, service topology, or the entire cloud service), and from the
Elasticity Information part, (2) the elasticity capabilities that are available for the
cloud service controller to manage them, together with the mechanisms for triggering
these control capabilities, and (3) elasticity metrics that give the controller the nec-
essary information in order to take control decisions. The elasticity capabilities of the
service units, service topologies, and cloud services are composed of a list of elasticity
capabilities of different resources from the Infrastructure System Information and are
enforced by the cloud service elasticity controller.

3. ELASTICITY REQUIREMENTS SPECIFICATION: SYBL

3.1. SYBL Overview

The SYBL language for elasticity requirements specification is designed for specifying
various types of requirements described in Section 2.2. SYBL facilitates the descrip-
tion of elasticity requirements at different levels, depending on the service provider’s
knowledge on the cloud service and on his or her perspective: cloud service, service
topology, service unit, elasticity relationship, and programming/code region level. SYBL
is implemented as directives in different languages, enabling easy description of the

8http://aws.amazon.com/ec2.
9https://cloud.google.com/compute/.
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requirements, and delegating the actual difficult part of controlling the cloud service
to the SYBL runtime (rSYBL), which is the controller of the cloud service.

Listing 1 shows in BNF the constructs of the SYBL language. The monitoring direc-
tives start with the MONITORING keyword and specify new variables to be monitored.
A constraint defines elasticity requirements for the cloud service state, defining the
limits of the cloud service behavior. A strategy specifies requirements on the elastic-
ity behavior of the service. It specifies both control strategies to be enforced under
specific conditions, and WAIT, STOP, or RESUME actions for the controller, which can be
paused/stopped/resumed when specified conditions hold. Therefore, with these two con-
structs at the center of the SYBL language, constraints and strategies, depending on
the service provider/developer knowledge about the service, we enable various elas-
ticity state and behavior specification mechanisms, with the controllers interpreting
the language, detailed in Section 4, being in charge of determining the specific control
mechanisms that enable such service states or behaviors.

Listings 1. SYBL in Backus Naur Form (BNF).

SYBL hides the complexity of enforcing a variety of complex calls to different APIs
(e.g., cloud provider APIs or bash configurations) with the help of elasticity capabilities
defined in the model in Section 2. It facilitates the service provider/developer to focus
more on the elasticity requirements that would help his or her application to behave
as desired. For referring to the currently used infrastructure or platforms, it offers
several predefined functions and environment variables with predefined semantics.
The environment comprises different types of static and dynamic cloud information,
its capabilities (e.g., whether or not it can modify the service during runtime and in
what extent), and service-related information. When referring to the environment (e.g.,
through the predefined function GetEnv), the stakeholder needs to consider the level
at which functions or variables appear, since information and extent of control varies
with the level at which the SYBL elasticity requirement is specified. For instance,
at the service topology level, the service provider/developer would get environment
information regarding his or her service topology, which might be running in a different
region than the rest of the cloud service.

3.2. Expressing SYBL Requirements

The SYBL language is not strictly bound to a single implementation (e.g., require-
ments can be specified as Java annotations, C# annotations, or Python decorators).
Moreover, the SYBL elasticity requirements can be injected into any cloud service
description language (e.g., TOSCA) or can be specified separately through XML de-
scription. The current language interpretation mechanism is implemented in Java and

ACM Transactions on Internet Technology, Vol. 16, No. 3, Article 18, Publication date: August 2016.
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supports TOSCA-injected, XML-based, or Java-annotation-based elasticity require-
ments specification.

For example, Listing 2 shows a constraint specified for the service topology with
ID WebService Topology. The elasticity requirement sets the preferred response time
below 450ms. We define this elasticity requirement as a subtype of Java annotation,
triggered at runtime when the annotated method is executed and caught and inter-
preted using AspectJ.

Listings 2. Example of elasticity requirements as Java annotations.

Listing 3 shows a strategy for the service topology with ID DataEnd Topology. The
elasticity requirement is a conditional strategy, which enforces the action scalein for
the service topology when both responseTime and the average throughput are above
predefined values.

Listings 3. Example of elasticity requirements in XML.

The constraint shown in Listing 4 specifies that the cost for the PilotCloudService
should be below $ 100. The SYBL elasticity requirements can be easily integrated
within TOSCA policies and interpreted by the elasticity controller.

Listings 4. Example of elasticity requirements as TOSCA policies.

4. MULTILEVEL ELASTICITY CONTROL

4.1. Runtime Dependency Graph of Elastic Cloud Services

In order todescribe the cloud service during runtime, a runtime elasticity dependency
graph is used, which has as nodes the concepts described in the model presented in
Section 2. This dynamic graph captures all the information about the structure and
runtime information like elasticity metrics, requirements, and deployment topology
during runtime and is constructed by our elasticity controller described in detail in
the following sections. Initially, the elasticity dependency graph is populated with
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Fig. 3. Constructing runtime dependency graph.

Fig. 4. An action plan example.

different types of information, in order to construct the knowledge base for elasticity
control. Moreover, the dependency graph is populated continuously with monitoring
information, coming from MELA [Moldovan et al. 2013], Ganglia,10 or other monitoring
tools. Figure 3 shows how the runtime dependency graph is constructed. If we take the
example of a web service (the left side of Figure 3), the cloud user views his or her web
service as a set of services (in this case Service C1, Service C2, and Service C3), some
of them grouped together for monitoring purposes (in this case Service Group, which
consists of Service C1 and Service C3). The metrics targeted in the user’s elasticity
requirements in this stage are high-level metrics, referring to the quality, cost, and
resources of services, of groups of services, or even of the entire web service. The
right part of Figure 3 shows the dependency graph being constructed at runtime by
our elasticity control. Service instances are deployed on virtual machines, in different
virtual clusters and virtual providers, aggregating low-level metrics for computing
higher-level ones. For instance, the availability at service level would be computed
from the availability at each service part and the cost is determined from cost per I/O
and VM cost and the runtime service topology and loads.

4.2. Steps in Multilevel Elasticity Control

Considering the model of the cloud service described through the runtime dependency
graph presented in Section 2, we enable elasticity control simultaneously for each
of the described nodes, resulting in a multilevel elasticity control of the described
cloud service. The service provider/developer describes his or her cloud service using
TOSCA or other description standards. The initial deployment configuration is specified
either by the automatic deployment tool used or by the service provider/developer if
a manual deployment approach is chosen. The elasticity requirements are evaluated
and conflicts that may appear among them are resolved. After that, an action plan is
generated, consisting of elasticity capabilities that enable the fulfillment of specified
elasticity requirements. The action plan is composed from elasticity capabilities that
have associated a series of IaaS calls, configurations, or bash/script executions.

Let us consider a simple example shown in Figure 4 of controlling the entire cloud
service, for example, by the system designer. The described elasticity requirements, Co1,

10http://ganglia.sourceforge.net/.
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Co2, and Co3, are not conflicting, and elasticity capabilities are searched for fulfilling
these requirements. Possible elasticity capabilities are, for instance, for the case when
the running time is higher than 10 hours and the cost is still in acceptable limits to scale
out for the computation service topology, increasing the processing speed. An example
of an action plan, shown in Figure 4, could be ActionPlan1=[[increaseReplication],
[scaleOut, setThreadPool=100]]. This action plan would address performance issues
for the second elasticity requirement Co2 and availability issues for the third elasticity
requirement Co3. Each of the generated elasticity capabilities is mapped into complex
API calls. For instance, the increaseReplication elasticity capability would consist of
calls for adding and configuring a new database node and configuring the cluster for
higher replication, while the scaleOut elasticity capability would be the addition of
a new virtual machine, deployment of the ComputationEnd on the new machine, and
necessary calls for the new instance of the service unit to join the computation topology
cluster.

4.3. Resolving Elasticity Requirements Conflicts and Generating Action Plans

We identify two types of conflicts: (1) conflicts between elasticity requirements tar-
geting the same abstraction level and (2) conflicts that appear between elasticity re-
quirements targeting different abstraction levels. For the first case, sets of conflicting
constraints are identified and a new constraint overriding the previous set is added
to the dependency graph for each level. In the second type of conflict, the constraints
from a lower level (e.g., service unit level) are translated into the higher constraint’s
level (e.g., service topology level) by aggregating metrics considering the dependency
graph. Since the problem is reduced to same-level conflicting elasticity requirements,
we use the approach for the same-level conflicting elasticity requirements and compute
a new elasticity requirement from overlapping conditions. More details on requirement
resolution are available in Copil et al. [2013a].

For generating an action plan for cloud service elasticity control, we formulate the
planning problem as a maximum coverage problem: we need the minimum set of ca-
pabilities that help fulfilling the maximum set of requirements. Given the current
cloud service state, we can apply a number of elasticity capabilities from the Elasticity
Capability Set ECS. As described in Equation (1), for each elasticity capability enforce-
ment, we reach a state with a set of requirements fulfilled ECx. We therefore need the
minimum set of capabilities that fulfill the maximum set of requirements. Since the
maximum coverage problem is an NP-hard problem and our research does not target
finding the optimal solution for it, we choose the greedy approach, which offers an 1− 1

e
approximation:

ECS = {EC1, EC2, . . . , ECn}
ECx = {Fulf illed(Rx1 ), . . . , Fulf illed(Rxy )|Ri ∈ Requirements}. (1)

The main step of the greedy approach consists of finding each time the elasticity
capability ECi fulfilling the most constraints and improving the most strategies. After
selecting an elasticity capability in this iterative process, the ECS needs to be recom-
puted since the context of the service is changed and the effect of applying ECj will be
different than before applying ECi. For now we consider that the effects of enforcing
an elasticity capability are introduced by the user, with our framework presented in
Section 5 offering mechanisms for easily plugging in tools that automatically detect
the effect of an elasticity capability.

4.4. Enforcing Action Plans

For controlling the elasticity of cloud services, tools monitoring the elasticity and the
different types of metrics targeted by the cloud service user are necessary. Although
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Fig. 5. Architecture of rSYBL.

at the moment existing cloud APIs offer only access to low-level resources, elasticity
control of cloud services would also impose the existence of cloud APIs that take into
account the different levels of metrics or the cloud service structure.

For overcoming this situation, we use the MELA framework, which aggregates low-
level metrics for achieving higher-level ones, and use existent resource-level control
capabilities for manipulating higher-level quality and cost. For instance, the cost of a
service unit would be composed of the different types of cost associated to each resource
associated with the service unit, like cost depending on the number of virtual machines,
cost for intraunit communication, or I/O cost. The cloud service cost is computed as the
sum of service unit cost, interunit communication cost, and possible licensing costs.

Considering long running services, the stakeholders can evaluate the actions gener-
ated and revise their requirements on the basis of application behavior. This is possible
either before or after action plan enforcement, with rSYBL rerunning the elasticity con-
trol loop, starting from the first step described in Section 4.1.

A roll-back mechanism for each capability allows the controller to also handle situa-
tions where the action plans do not produce the expected results when enforced. When
this is observed, the reverse actions associated with each capability are in the reverse
order of the action plan enforcement.

5. RSYBL: ELASTICITY CONTROL AS A SERVICE

Based on the previously presented concepts and mechanisms, we develop the rSYBL
framework,11 shown in the Figure 5. The central module of rSYBL is the Control Ser-
vice, which takes processed elasticity requirements from the SYBL Specification unit
and communicates with the Interaction Unit for enforcing found elasticity mechanisms
and with the Monitoring Information Gathering Unit for pulling monitoring and anal-
ysis information on the cloud service. The distributed components of rSYBL are the
Local Monitor and the Local Service. The Local Monitor is part of the service units (e.g.,
in this case as a weaving library) and knows when a process with SYBL programming
directives has started, or when a sequence of code annotated with SYBL has started
or finished. The Local Monitor communicates with the Local Service for sending SYBL
elasticity requirements and for ensuring elasticity requirements through local elastic-
ity mechanisms (e.g., reconfigure the service unit to accommodate higher number of
customers or increase maximum thread pool size). The current rSYBL prototype sup-
ports elasticity control of cloud services, service units, service topologies, relationships,
and code regions for fulfilling elasticity requirements that can be specified in XML or

11Find the prototype implementation and further experiments at http://dsg.tuwien.ac.at/research/viecom/SYBL.
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through Java annotations detected at runtime with AspectJ. We tested our prototype on
our local cloud running OpenStack1 using JClouds12 for controlling virtual machines,
and on Flexiant2 cloud using the Flexiant Cloud Orchestrator (FCO) REST API, and
using MELA for monitoring.

The rSYBL framework is designed to be easily extended, customized, and used
for various applications, in different environments and focusing on various metrics.
We designed plugin mechanisms for different parts of the framework, as shown in
Figure 5, with various plugins for information gathering currently available (e.g.,
Ganglia and MELA); for interacting with cloud infrastructures and service artifacts
(e.g., OpenStack, FCO, or Cassandra); and for control algorithms (e.g., the greedy
planning described in Section 4.3). First, the specification of SYBL directives can be
extended from the point of view of the metrics that we use and of the higher-level
metrics that are defined. The link of the new metrics names with the manner of finding
them in the new plugins is done through a simple configuration file. Both the moni-
toring and analysis and the enforcement units can be adapted for working in different
environments. For instance, in one extreme, one may want to control the elasticity of a
service that is deployed on one or several local servers. This may be the case of a service
provider who is interested in deploying just parts of its service on the cloud, but on elas-
tically controlling all the cloud service. In this case, the service units that are deployed
on the cloud benefit from more mechanisms of elasticity control than the local ones, but
all can be elastically controlled with rSYBL by just specifying the control mechanisms
for each service unit or service topology that can be controlled. On the other hand, even
if the entire service is deployed on the cloud, we may need monitoring information
from different sources (e.g., one API may provide process-level information, another
API may provide quality- or cost-related information, and another one could provide
VM-level monitoring information). All this information can be used at the same time by
rSYBL, by using plugins for each mechanism of information gathering. These plugins
will be used by rSYBL in evaluating elasticity requirements, learning about the cloud
service behavior, and planning for the next control mechanisms to be used.

The Control Service is deployed on a per-cloud infrastructure basis and can control
multiple cloud services at once. For catching the events sent by the Local Monitor
that handles programming-level SYBL elasticity requirements, we need to also deploy
on each virtual machine a Local Service instance that is part of rSYBL, and to use
inside our controlled application the Local Monitor library. The rSYBL Control Service,
Interaction Unit, and Information Gathering Unit are components of the rSYBL core,
being deployed on the same virtual machine and connecting to the necessary tools for
monitoring and enforcement, depending on the available plugins. Figure 5 shows the
current plugins used by rSYBL for elasticity control.

5.1. Linking Elasticity Requirements to Enforced Actions

Figure 6 shows a flow from elasticity requirement specifications to the enforcement of
actions, which are mapped from an elasticity capability of scaling up at thread level
and one of scaling in at the data analysis service unit level. The Java-annotation-based
elasticity requirement is injected by the cloud service developer into code, from where
an rSYBL library (the Local Monitor) weaves it when the annotation is triggered and
forwards it to the rSYBL Local Service that is deployed on each VM for providing
local control. The Local Service processes the triggered requirement, checks whether
or not it can enforce it locally, and, if it cannot be enforced locally, sends it forward to the
Control Service. The Control Service also receives the SYBL elasticity requirement,
which is described as TOSCA policy. It evaluates the received elasticity requirements,

12http://jclouds.org/.
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Fig. 6. Elasticity requirement processing by rSYBL.

Fig. 7. Provided elasticity control plugins in rSYBL.

and in case it finds suitable elasticity capabilities that are expected to better fulfill the
requirements, it triggers their enforcement. As described in Section 4, the enforcement
also consists of the mapping of each of these elasticity capabilities to cloud-provided or
cloud-service-specific APIs, which we detail in what follows.

5.2. Elasticity Capabilities Used in the Elasticity Control Process

rSYBL facilitates the control through various types of elasticity capabilities, described
through the model presented in Section 2, which are exposed either by IaaS providers or
by software used by the cloud service. Action plans are saved in a repository and reused
for learning their effects on the service behavior. Figure 7 shows how rSYBL facilitates
the description of different complex actions that involve complex calls (right-hand side
of Figure 7) for a variety of infrastructures and platforms, in order for the rSYBL
common user to specify simple elasticity capabilities that hide a lot of complexity.
Moreover, the rSYBL user (e.g., a cloud service developer) can specify custom actions
(e.g., through TOSCA plans) to be executed by the controller as standalone or as part
of an elasticity capability.

In the SYBL strategies, the user can simply specify the elasticity capability name,
while the rSYBL controller is in charge of detecting the exact combination of actions
necessary, from the ones presented in Table I. The table is not meant to be exhaus-
tive, and new actions are continuously developed by cloud providers. At the infras-
tructure level, for example, recently some of the providers have allowed attaching/
detaching disks without the need to restart the corresponding virtual machines (e.g.,
Flexiant). For enforcing platform-level scale-in, we have two options: either focus-
ing on platform-level actions (e.g., leave cluster & remove artifact, remove network

ACM Transactions on Internet Technology, Vol. 16, No. 3, Article 18, Publication date: August 2016.
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Table I. Example of Elasticity Capabilities at Different Control Levels

Level Elasticity Capability Action
Infrastructure Scale In Remove Network Interface; Remove VM

Scale Out Create Network Interface; Create Disk; Create VM
Custom Action Attach/Detach Disk; Scale Vertically

Platform Scale In Leave Cluster; Remove Artifact
Scale Out Create Artifact; Join Cluster

Reconfiguration Increase Thread Pool; Decrease Thread Pool; Set Load Dis-
tribution Mechanism

Application Reconfiguration Set Specific Config. Param.
Custom Action Action Given by User

interface) or using infrastructure-level actions (e.g., leave cluster, remove VM,
remove network interface). rSYBL will decide on the appropriate action, depending
on the expected effect and whether or not it is possible to collocate more artifacts on the
same VM without the need for IaaS-level actions. The supported platform software can
be extended by simply implementing the described actions in plugins. For the case of
the application-level actions, the user can decide to customize rSYBL by implementing
plugins or to call deployment-defined actions from SYBL strategies.

For implementing custom plugins or supporting new monitoring/enforcement plug-
ins, three steps are necessary: (1) implementing the monitoring/enforcement interfaces
from rSYBL, (2) adding the needed configurations (i.e., credentials or other plugin-
specific information), and (3) adding the primitive actions offered by plugins to the
primitive actions description. The SYBL directives are not dependent on the plugins
available, as capabilities are composed of primitives associated with the service or plu-
gins. With this indirection layer, there is no need for changes in the SYBL directives
when plugins are added or removed to rSYBL.

More technical details on configuring and running the framework are available on
the rSYBL wiki.13

6. EXPERIMENTS

6.1. Controlling Elasticity with rSYBL: M2M DaaS Cloud Service

Considering a machine-to-machine (M2M) DaaS14 that processes information coming
from various data sensors, we design the application in Figure 8 and simulate clients
that send sensor information. Specifically, the M2M DaaS is composed of an Event
Processing Service Topology and a Data End Service Topology. The Event Processing
Service Topology consists of a Load Balancer Service Unit and an Event Processing
Service Unit, which analyzes and stores data in a NoSQL cluster, in this case Cassandra
based, composed of a Data Controller Service Unit (i.e., Cassandra seed) and a Data
Node Service Unit (i.e., Cassandra node).

We deploy the M2M DaaS service on two different cloud infrastructures: (1) using the
Flexiant2 cloud provider, we deploy on their public cloud, and (2) on our OpenStack1-
based private cloud. We simulate data sensors that send information to Event Process-
ing Service Topology with a python-based load generator that sends random data to
our M2M DaaS. As the two clouds considered are different, they differ in reliability, in
the estimated cost, and in quality characteristics, even when using similar resources.
Table II shows the settings of our experiments in terms of estimated cost. The Flexiant
cloud provider costs vary with the user type, and it is manually set by Flexiant cloud

13https://github.com/tuwiendsg/rSYBL/wiki.
14M2M DaaS prototype: https://github.com/tuwiendsg/DaaSM2M.
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Fig. 8. M2M DaaS with SYBL elasticity requirements.

Table II. Experiment Unit Costs

Setting Flexiant OpenStack
Small instance GB:CPU 2GB:2CPU 1GB:1CPU
Small instance price 6 Flexiant Units/h 3 OpenStack Units/h
Network interface card price 0.13 Flexiant Units/h 0.13 OpenStack Units/h

administrators. For our case, the price for an instance with 2GB and 2 CPU is 6 units
per hour, where the units can be bought at varying prices (from 11£ per 1,000 units to
4700£ per 500,000 units). From OpenStack, we select an m1.small instance, with 1GB
and 1 CPU, and compute an equivalent cost of half the number of units from Flexiant
(based on our assumption that OpenStack private cloud units are much cheaper than
Flexiant units due to maintenance costs, e.g., electricity, or administration). The price
of a network interface card, associated by default with each instance, is 0.13 units,
which we also set for OpenStack cloud experiment settings.

The SYBL elasticity requirements are associated with the M2M DaaS at different
levels (e.g., cloud service level, service topology level). Since the cloud infrastructures
are different, the requirements have to be adjusted for the providers, as they provide
different performance at different costs. For Flexiant, we set a requirement of keeping
response time less than 8ms (see Co3 for Flexiant case), while for the OpenStack private
cloud we set the requirement of maintaining response time below the limit of 200ms
(See Co3 for OpenStack case). As we have equated the costs for the two providers
considering resources provided, we maintain the same cost requirement for the two
cases (see Co4).

Figure 9 shows how the Event Processing Service Topology of the DaaS cloud ser-
vice is affected by rSYBL control actions on the Flexiant cloud. An action enforcement
is reflected in a change of cost, the deployment of a new instance with the necessary
configurations being reflected in a cost increase, while the removal of an instance as-
sociated to a unit is reflected in a decrease in cost. We can see that starting from the
minimal deployment configuration (1 VM per service unit), rSYBL manages to find
a level of resource configurations where any control enforcements do not affect the
quality characteristics as was the case in the first part of the experiment, when the
response time has a short peak of 180ms. For the second case presented in Figure 10,
running on the OpenStack cloud, the evolution of the service is different since the cost
(i.e., the actual price that needs to be paid at the end of the day) is smaller, while
the performance (e.g., response time for the Event Processing Topology) is as well
smaller, with rSYBL having to allocate a lot of resources.
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Fig. 9. Event processing service topology on Flexiant public cloud.

Fig. 10. Event processing service topology on OpenStack-based private cloud.

Table III. Cost and Execution Time: Comparison on Different Workloads

Config.
DB

Controllers DB Nodes Workload Total Execution Time Cost (Units)

Config1 1 3 Workload1 44 min 9.13
Config2 2 2 Workload1 28.4 min 5.88
Config1 1 3 Workload2 >3h+connection failures >37.56
Config2 2 2 Workload2 102.75 min 21.53

6.2. Analyzing Multiple Levels of Control: YCSB+Cassandra Cloud Service

In the second part of our experiments, we use a cloud service with two service topologies:
one made from YCSB15 Cassandra clients, and the second one being a Cassandra16

cluster, with two types of service units: Cassandra Seed (the unit acting as the controller
of the cluster) and Cassandra Node. We experiment taking different levels of control
actions for the Cassandra NoSQL cluster. For the current experiment, the number
of actions available is limited to scaling in and out at the service unit level and at
service topology level, by adding/removing virtual machines hosting data nodes, or by
instantiating entire new data clusters, and making the proper configurations for them
to receive requests from the YCSB clients.

To show the importance of higher-level elasticity control, Table III presents perfor-
mance and cost data on different Data Service Topology configurations and different

15https://github.com/brianfrankcooper/YCSB.
16http://cassandra.apache.org/.
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workloads. We use two update-heavy YCSB workloads,17 the Workload 1 having 10
times fewer operations to be executed than Workload 2. We assume the OpenStack
costs in the previous experiment (see Table II). The first important reason for enabling
topology-level elasticity is that multiple clusters remove the single point-of-failure
problem, decreasing the probability of failures, imminent for the case of highly inten-
sive workloads with a single Cassandra seed. We show how two clusters (Config 2) can
decrease the final cost as opposed to a single cluster (Config 1), and more importantly
that it can avoid errors due to overloading. For instance, for the more intensive and
longer workload, Workload 2, a single cassandra cluster, although with multiple vir-
tual machines for the slave component, reaches a point where it cannot serve requests
anymore, in case only the service-unit-level control is enabled.

Therefore, enabling various types of actions and creating controllers that differenti-
ate among them, taking into consideration the effect they have not only on the current
part of the cloud service that is being reconfigured but also on the overall cloud service
and on various other parts as well, can greatly improve cloud service elasticity. With
the capability to control the service’s elasticity both at the service unit level and at
the topology level, rSYBL can improve the elasticity of cloud services both from the
performance and from the cost perspective.

6.3. rSYBL Performance Analysis

rSYBL needs a dedicated VM but can be collocated with other service management tools
like MELA. The overhead of running rSYBL is CostV M+CostNetwork eGress, where CostV M
is the cost of a VM for the current cloud provider, given that we know approximately
how long we would like the service hosted, and we can choose a subscription-based
cost schema for this VM, and the cost of communicating among regions belonging to
the same cloud provider CostNetwork eGress, for the case when we have a multiregion
deployment. For the stable workload case, this cost is not justified since we have no
need for elasticity, as we can create the optimum static configuration and use it. In
the case the workload is variable, it makes sense to try to reduce the bigger costs that
usually are connected with virtual machines and storage disks.

Controlling the service by using rSYBL empowers the user to specify the require-
ments he or she is interested in, at the level and for the unit that fits best, since most
of the time, the user knows best what is his or her budget, and what is the desired
quality. As rSYBL’s main goal is fulfilling users’ requirements, we analyze the degree
with which rSYBL manages to fulfill user requirements for the M2M DaaS described
in Section 6.1. We compare the rSYBL control outcome with two stable cases that are
manually configured for this experiment: (1) underprovisioning strategy (fixed configu-
ration with minimum resources used with rSYBL: four VMs) and (2) overprovisioning
strategy (fixed configuration with maximum resources used with rSYBL: 14 VMs in
Flexiant and 17 VMs in OpenStack). When computing the cost for the case of running
with the rSYBL control strategy, we factor in the cost for rSYBL to run as part of
the M2M DaaS cost. We want to understand whether and how much the elasticity
performance impact affects requirements (i.e., each control action initially decreases
performance, and needs a “cool-down period” [Gambi et al. 2013]).

Analyzing the comparison from Figure 11, we can see that rSYBL is better than
both underprovisioning and overprovisioning strategies, on both cloud providers used.
In the overprovisioning case, while most of the time the response time requirement
is fulfilled, the one on cost (Co4) and the one on data end CPU usage are not fulfilled
(Co2), due to the fact that we have a continuously high number of resources for the

17https://github.com/brianfrankcooper/YCSB/wiki/Core-Workloads.
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Fig. 11. Requirement fulfillment on Flexiant and OpenStack.

Event Processing Service Topology, for which the maximum resources of the Data
End Service Topology allocated by rSYBL in Section 6.1 are not enough. For the cur-
rent framework, rSYBL takes only reactive actions, having a relatively high number
of requirement violations. We see as future work incorporating into rSYBL predic-
tive decision making, thus decreasing the number of cases in which requirements are
violated.

7. RELATED WORK

7.1. Cloud Services Requirements Specification

Resource reallocation and requirement specification have been a focus usually from the
SLA fulfilment or scheduling and resource allocation perspectives. Fard et al. [2012]
approach static scheduling with a different view, defining a multiobjective optimization
algorithm and demonstrating its usefulness on real-world applications. The authors
consider makespan, economic cost, energy consumption, and reliability in their mul-
tiobjective list scheduling algorithm. Han et al. [2012] describe an approach for fine-
grained scaling at the resource level in addition to the VM-level scaling, which uses a
lightweight scaling algorithm for improving resource utilization while reducing cloud
providers’ costs. Our approach differs from this research work in three main points:
we support (1) multiple levels of elasticity control based on (2) user-specific, high-level
requirements with (3) multiple elasticity dimensions.

Martin et al. [2011] present an attempt to tackle the problem of elasticity from
the point of view of resource and elasticity in SaaS-based clouds. The authors pro-
pose relating cost with quality: cost per performance metric (C/P) and cost per
throughput (C/T). However, existing approaches have not developed flexible lan-
guages for controlling multidimensional elastic properties. Galán et al. [2009] pro-
poses an extension of OVF for service specification in cloud environments describing
resource as well as business rules and enforcing them through resource allocation/de-
allocation. Kouki et al. [2014] propose extending Cloud Service Level Agreement
(CSLA) with features for cloud management, showing the degree of SLA fulfillment
with and without elasticity for different cloud levels (SaaS, IaaS). In contrast with
these approaches, our main focus is describing elasticity requirements and the dif-
ferent granularities at which they can be specified by developers, end-users, or cloud
providers.

The major difference between existing work and our approach from an elasticity
requirement specification perspective is that our work tackles elasticity requirement
specification from more than one perspective (resource, quality, cost) and at differ-
ent levels of granularity, thus assigning the user the capacity of specifying when the
application should scale throughout its execution and, most importantly, how.
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7.2. Elasticity Control of Cloud Services

Elasticity control of storage based on resources and quality has been focused by various
research works, for example, adaptively deciding how many database nodes are needed
depending on the monitored data in Tsoumakos et al. [2013]. Yu and Thain [2012]
propose an approach for resource management of elastic cloud workflows. They present
a generic workflow architecture with components such as makeflow (that parallelizes
large complex workflows on clusters grids and clouds) and master-work-workers.

Chard et al. [2015] propose an approach for cost-aware heterogeneous resource pro-
visioning for scientific workflows. The authors study the impact of using both by using
spot and on-demand AWS instances, and different availability zones. Almeida et al.
[2014] propose a branch-and-bound approach for optimally selecting services from
multiple clouds during runtime. Based on the software product line paradigm, the pro-
posed approach scales well in selecting optimal resources, even for a high number of
possible configurations. Kranas et al. [2012] propose a framework for automatic scal-
ability using a deployment graph as a base model for the application structure. The
authors introduce elasticity as a service (ElaaS), cross-cutting different cloud stack
layers (SaaS, PaaS, IaaS), to offer SLA fulfillment while decreasing operational costs.

Compared to the aforementioned work, we control elasticity not just in terms of re-
sources but also in terms of quality and cost and use an application structure for propos-
ing an accurate multiple-level control of elasticity of cloud services. Furthermore, they
lack user-customized elasticity control. We propose a user-oriented elasticity control
in which the user (cloud service creator, application developer, etc.) specifies how the
cloud service should behave for achieving the elasticity property. Moreover, we argue in
favor of an elastic services control aware of the structure of the elastic service, profiting
from this knowledge for a multiple-level elasticity control of cloud services.

8. CONCLUSIONS AND FUTURE WORK

Using current state-of-the-art solutions, cloud service developers are capable of solely
controlling virtual resources, by specifying intricate policies concerning system-level
metrics. We presented a solution for multilevel cloud service elasticity control, consid-
ering requirements associated to multiple abstraction levels. The rSYBL framework is
open source, is extensible, and can be customized for different cloud providers and cloud
services, having various preferences in terms of elasticity control. We base our control
mechanisms on the user-provided requirements and on cloud service predeployment
information and runtime information. This way, we empower the users to steer the
control by specifying their needs, at the service level they possess knowledge for (e.g.,
in the case he or she is aware of how or what should be controlled at the data end but
not at the business end), and the level of detail he or she is comfortable with (e.g., if the
cloud provider knows only requirements about cost in relation to the number of clients
expected, he or hse is not needed to specify response time requirements).

As future work, we will focus on integrating the rSYBL framework with techniques
for accurately estimating effects and employing these estimations for better control
of cloud service elasticity. These improvements will also open the road for predictive
control and for studying the conditions under which the predictive or reactive control
is better.
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