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Abstract: Advancements in the areas of Cloud Comput-
ing, Internet of Things (IoT), and hybrid Human-Computer
systems have made feasible the creation of a highly in-
tegrated human-machine world. The concept of elastic-
ity plays a crucial role in fulfilling this vision, enabling
systems to address various requirements reflecting perfor-
mance, security, and business concerns. However, elastic
systems are still in their inception, and numerous chal-
lenges need to be addressed in their development and
management.

In this article we present an overview of our experience
on elastic systems, with a focus on elastic cloud sys-
tems. In the quest for designing and managing elastic sys-
tems, several challenges need to be addressed, such as:
(i) enabling the systems to fulfill different requirements
from multiple involved stakeholders, (i) designing elas-
tic systems considering various degrees of elasticity ca-
pabilities provided by different technologies and envi-
ronments, (iii) understanding behavioral relationships in
elastic systems, and their effects on stakeholder require-
ments, (iv) monitoring costs and analyzing cost efficiency
of elastic systems, (v) controlling the elasticity of such sys-
tems at runtime in order to fulfill stakeholders’ require-
ments, and (vi) supporting system elasticity through op-
erations management. We present the techniques we have
adopted in order to tackle the above challenges. We intro-
duce our solution for creating elastic systems, following
their complete lifecycle, from design-time to operations
management.
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1 Introduction

Current technologies and trends facilitate the rapid devel-
opment and operation of systems that are more and more
integrated in our daily lives. Today’s scenery is quite com-
plex: devices are connected through the Internet, able to
serve our needs; we are able to use software, and com-
puting resources from the clouds; and we collaborate
with computing systems, changing the roles we were ac-
customed with (e.g., Jennifer voice picking system [31]).
Systems belonging to each of these domains, as well as
cross-domain systems, are aiming towards a high degree of
automation, and high adaptation rate to changes in the en-
vironment. Elasticity in software systems means that these
systems are able to adapt and trade-off between their re-
sources, cost, and quality.

Elasticity is consists of inherent dynamism, replace-
ability, heterogeneity, and compliance to business require-
ments. In order to develop elastic systems, elasticity needs
to be kept in mind from design-time to operation-time.
Modifying the system’s behavior during operation means
that the system provides interfaces with the outside world,
and allows such changes. For instance, decreasing the
amount of resources in a data cluster requires software in-
terface enabling to copy the data from the resources to be
removed/deallocated. This point holds as well for man-
aging groups of workers in crowdsourcing marketplaces,
where using APIs, the employer, or software programs on
behalf of the employer, can decide who to add/remove or
replace from its group of workers. Next, for understand-
ing how the system operates, proper metrics and collection
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mechanisms need to be designed. During system opera-
tion, the complexity of the system’s structure, of resources
used, of relationships and correlations existent in the sys-
tem and in its environment, make the behavior assessment
and control quite challenging.

In this paper, we introduce a methodology for devel-
oping elastic systems. We show how we address the issues
described above, through tackling the following design
and operation challenges: (i) designing cloud-native elas-
tic systems profiting from cloud services heterogeneity,
(ii) expressing requirements concerning desired systems
behavior, (iii) understanding system behavior, including
behavioral limits in relation to requirements, relationships
among measured metrics, and expected behavior (iv) con-
trolling the elastic system, based on all the knowledge ac-
cumulated through addressing challenges i—iv, and adapt-
ing operations management to the needs of elastic sys-
tems. We present our solutions addressing each of these
challenges, and discuss the possibilities of developing
cross-domain elastic systems, perfectly integrated into our
lives.

This paper presents a holistic view on designing and
managing elastic systems. Based on our work done in re-
cent years [5-8, 24-27], we show how it all fits together in
a complete approach for supporting the lifecycle of elas-
tic systems. Building on previous work, in this paper we
are proposing a novel methodology for developing elastic
systems, and centered around the concepts of continuous
design and operation for elastic systems.

The structure of the paper is as follows. Section 2
presents the overall methodology employed. Section 3
presents the scenario we will use in this paper. Section 4
presents challenges addressed and techniques used for
designing elastic systems, Section 5 presents techniques
for understanding and assessing elastic systems’ behavior,
and Section 6 details techniques used for managing elastic
systems. Section 8 discusses envisioned challenges for de-
veloping and operating elastic systems built of cloud ser-
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vices, humans, and cyber-physical devices. Section 9 con-
cludes the paper.

2 Methodology

For building elastic systems, stakeholders can use het-
erogeneous units of functionality offered as a service, or
as third party components. Normally, the heterogeneous
units of functionality can be anything from cloud ser-
vices (e.g., virtual resources, platforms, or services) to
connected devices (i.e., cyber-physical systems) and to
employees part of crowdsourcing teams, that offer their
services through well-defined interfaces. They can have di-
verse control capabilities, expose different metrics, and ex-
hibit distinctive behavior. A new type of systems that can
be built on top of them, which can profit from the possi-
bility to understand and control the underlying units. We
call these new type of systems Elastic Systems. In this pa-
per we focus on cloud-based elastic systems, and discuss
methods necessary for managing them from design to op-
eration time.

The aspects of dynamism, replaceability, and business
requirements should be considered both at design and op-
eration time. Figure 1 shows the two main phases we see
as essential for elasticity. The part on the top shows meth-
ods used for designing the system’s elasticity. After de-
veloping the system artifacts, mechanisms for enforcing
system’s elasticity capabilities must be developed, along
with mechanisms for collecting system’s metrics. Further,
these should be exposed through well-defined interfaces,
to be used by automated or semi-automated controllers
and/or operations managers. On the basis of this, the next
step in the system design is to define high-level system
requirements specified by various stakeholders (detailed
in Section 4). System operation steps are shown at the
bottom of Figure 1. For achieving elasticity, the system
has to be monitored and understood through (detailed in
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Figure 1: Steps in the design and operation of

elastic systems.
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Section 5): (i) collecting metrics concerning it, (ii) analyz-

ing its behavior, (iii) predicting its behavior. Based on this,

automated or semi-automated controllers can manage the
behavior of systems and turn them into elastic systems

(detailed in Section 6). Having this knowledge, it is very

important to revisit the system design decisions (e.g., ca-

pabilities available for a unit, or configuration options),
and refine requirements, introduce new capabilities, met-
rics, or even change the system architecture when bottle-
necks are identified (e.g., a system unit that is not scalable
may reduce system’s performance, irrespectively of other
units’ elasticity). This continuous refinement (detailed in

Section 8) through system updates or requirements refine-

ment connects the two main phases of elasticity depicted

in Figure 1.

We identify the following research questions that will
be answered in the next sections:

1.  What are the necessary methods for designing cloud-
based elastic systems?

2. What aspects of systems’ behavior need to be moni-
tored, and how do we understand elastic systems be-
havior?

3. How should such an elastic system be managed,
based on the obtained information (i.e., design,
needs/requirements, knowledge on behavior)?

3 Model and scenario

3.1 Elastic systems model

For any system to become elastic, its structure, what can
be monitored, how can it be changed, which are the
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virtual resources or cloud services it is using, and what
are their characteristics are very important. Figure 2 shows
the three types of information that we model: (i) structural
information, (ii) infrastructure system information, and
(iii) elasticity information. We consider that the system
has as basic blocks system units, which can be any soft-
ware components. System topologies are groups of units
that are semantically connected (e.g., database clusters).
At runtime, these structural units have associated infras-
tructure information, composed of virtual resources, and
relationships among them (e.g., containers, artifacts, vir-
tual machine). Both virtual resources and system units
have associated elasticity information, which is necessary
for achieving the desired elasticity for the system. Elas-
ticity information is composed of capabilities (i.e., how
the system units and virtual resources can change at run-
time), metrics (i.e., measures of the system’s behavior),
and requirements (i.e., desirable behavior specified by
stakeholders).

3.2 Scenario

Let us consider an IoT system, which collects data from de-
vices, and serves interested users querying requests. We
have implemented such a system?, to use in our developed
approaches, from design-time to run-time. The system has
a part of its components running in the cloud, and several
components running in mini-clouds or gateways, located
in the proximity of IoT devices. As theload of such a system

1 https://github.com/tuwiendsg/DaaSM2M/wiki/IoT-M2M-DaaS
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Figure 3: Elastic loT system.

varies, both the components meant to be located in pub-
lic clouds, and the local ones, have to continually adapt
the used resources and configurations in order to support
varying load, varying amount of processing that may be
needed, or of data that needs to be stored. Stakeholders
would want all of this happening automatically, without
the need to train employees for the operation of cloud-
based systems, and without the need to allocate extra-
effort for this.

Figure 3 shows the system we use as motivating sce-
nario, with two topologies: (i) one system topology local
to the devices, which will be deployed in gateways, com-
posed of a data queue and a local processing unit, and
(i) another part which can be deployed in public clouds,
composed of a processing topology (i.e., one load bal-
ancer, and one event processing unit), and a data end
topology (i.e., data controller and data node). We can
see a mapping of concepts from Figure 2 to the actual
application: system units such as Data Queue and Event
Processing, topologies such as Cloud Gateway and Event
Processing topology, or relationships among the Event
Processing and Data End system topologies. Elasticity ca-
pabilities provide the ability to control the system during
run-time (e.g., add/remove instances for local processing,
event processing and Cassandra? data node units, chang-
ing the balancing type for the HAProxy? Load Balancer, lo-
cation or access balancing on data cluster).

During runtime, elasticity capabilities should be au-
tomatically employed in order to fulfill quality and cost re-
quirements, on different areas of the system (e.g., adding
virtual machines to the Event Processing Unit, changing
the load distribution from round-robin to priority queu-
ing, re-balancing the Data End System Topology cluster).

2 http://cassandra.apache.org/
3 http://www.haproxy.org/

For this, system’s behavior needs to be thoroughly under-
stood, and this kind of information should be the basis of
any type of control. Relationships among the throughput
with which can be sent in the cloud from the local pro-
cessing unit, the total cost of hosting the system in the
cloud, and the skewness of the Data End cluster, can be
used in order to determine the units on which the control
should focus. This complex automated control has to inter-
face with operations processes, be them manual or semi-
automated. Each of the phases, from design, to analysis,
control, and operation produce information that can be
used in the rest of the phases, refining their quality (see
Section 8).

4 Design

For achieving elasticity at run-time, we need to design the
systems with elasticity in mind, from the way we choose
the cloud services which we will use, to the requirements
that stakeholders have for the system.

4.1 Designing cloud-based elastic systems

The appropriate cloud services must be determined and
used for deploying elastic systems in cloud environments.
The used cloud services must both provide support for the
required system elasticity, and ensure the needed perfor-
mance and cost. To support the design of elastic cloud
systems, we use our QUELLE [25] framework, for quanti-
fying the elasticity of cloud services and determine system
deployment configurations using cloud services providing
the necessary elasticity capabilities, and which fulfill re-
sources, quality, and cost requirements.
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Figure 4: Designing cloud-based elastic systems.

For designing cloud-based elastic system we define

a process having the following phases (Figure 4) :

— Theelasticity capabilities of cloud services from differ-
ent cloud providers are captured and modeled (D

— The system requirements in terms of performance, re-
sources, and cost are captured ®

— We define an elasticity quantification function for
evaluating cloud services’ support for the envisioned
system elasticity @

—  Weapply algorithms for recommending system config-
urations from cloud services @

Elasticity capabilities of a cloud service define how its cost,
quality, and resources can be configured during its life-
cycle. Concretely, an elasticity capability defines: (i) what
resource, cost, quality or associations among cloud ser-
vices can be created, (ii) when the cloud service can be re-
configured, (e.g., instantiation or run time), and (iii) how
often (e.g., hourly, monthly). We introduce in Figure 5
a model for capturing detailed information on elasticity
capabilities and elasticity dependencies. As one capabil-
ity might indicate multiple configuration possibilities, it
has a set of elasticity dependencies associated. An elastic-
ity dependency specifies to which cost, quality, resource,
or service a cloud service can be associated. Volatility is
the most important dependency property, defining its min-
imum usage time, determining the frequency at which the
dependency can be allocated/deallocated for the service.
Our approach recommends system configurations by
quantifying the elasticity support of cloud services. To
this end we define a series of coefficients for impos-
ing a numerical value over the elasticity capabilities of
particular systems, which a user must customize. An

ElasticityCapability

elasticityPhase: Instantiation-Time | Run-Time| Both
elasticityDim: Service Assoc. | Cost | Quality | Resource
dependencies: List<ElasticityDependency>

L
ElasticityDependency
maxReconfigurationFrequency: Volatility
type: Optional | Mandatory
to: List <Service | Cost | Quality | Resource>

Figure 5: Representing elasticity capabilities of cloud services.
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ElPhaseQ coefficient is used for quantifying the impor-
tance of Instantiation-Time and Run-Time elasticity.
An E1DepQ quantifies the elasticity dependencies between
cloud services through user-defined values representing
the importance of Optional and Mandatory dependen-
cies. A custom VolatilityQ quantifies the volatility of an
elasticity capability.

To obtain cloud service recommendations for a sys-
tem, a user first chooses the cloud provider and describes
its services. Then, the user defines the variables for the
above coefficients. The user describes requirements over
the system units, and the important elasticity dimensions.
As a user might not initially know the complete system
requirements, we apply an iterative approach. The rec-
ommended configurations are analyzed, and the require-
ments are refined and resubmitted. Let’s consider for the
elastic system from Figure 3 that its Data End requires an
IaaS cloud service with 10 GB of RAM, I/O Performance
of at least 1000 IOps, and at least a Moderate network
performance. After several requirements refinement iter-
ations, QUELLE produces a software-interpretable deploy-
ment description visualized in Figure 6 using Winery [16].
The recommendation contains a mi.xlarge IaaS service ful-
filling the resource and network requirements. A IaaS EBS
is recommended due to I/O performance requirements,
with associated High I/0 Performance and High I/0 Perfor-
mance Cost, and a Monitoring Service with Standard Moni-
toring Frequency and associated cost option.

4.2 Expressing requirements

The elasticity requirements are demands formulated by
stakeholders, expressing the necessary behavior for the
system to be elastic. Our solution for specifying require-
ments, the SYBL language [6], enables elastic specifica-
tions at different granularities, depending on the user’s de-
mands and perspective: system, system topology, system
unit, and code region.

As opposed to usual languages for scalability, where
rules are specified at a per-virtual resource level, SYBL
provides greater granularity. At the highest level, the sys-
tem level, global system characteristics can be described.
At the system unit level stakeholders can express require-
ments for black box system units or requirements focus-
ing at a level lower than system but higher than code,
while the code region level enables the user to specify
requirements inside their codebase. By providing these
finer-grained specification levels, we support stakehold-
ers to choose the level of abstraction they are interested in
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(e.g., system owners on system level, developers on unit
level) for expressing requirements.

SYBL is based on three main constructs: monitoring,
constraints, and strategies. Monitoring requirements spec-
ify what needs to be monitored, and under what con-
ditions. Constraints specify desired system states, while
strategies specify desired system behavior.

Listing 1 shows in BNF the constructs of the SYBL
language. The monitoring requirements start with
a MONITORING keyword and specify new variables to be
monitored. A constraint defines elasticity requirements
for the cloud system state, defining the limits of cloud
system behavior. A strategy specifies requirements on
the behavior of the system. It specifies both control
strategies to be enforced under specific conditions, and
WAIT, STOP or RESUME actions for the controller, which
can be paused/stopped/resumed when specified condi-
tions hold. Therefore, with these two constructs at the
center of the SYBL language, constraints and strategies,
depending on the stakeholder’s or developer’s knowledge
about the system, we enable various elasticity state and
behavior specification mechanisms. Controllers interpret
the language, detailed in Section 6, being in charge
with determining the specific control mechanisms which
enable such system states or behavior.

Figure 6: Design recommendation for Data

End.

Constraint :=

constraintName :

CONSTRAINT ComplexCondition
Monitoring :=

monitoringName : MONITORING

varName=MetricFormula
Strategy :=

strategyName : STRATEGY

CASE ComplexCondition :
action(parameterList) |

strategyName : STRATEGY WAIT
ComplexCondition |

strategyName : STRATEGY STOP
ComplexCondition |

strategyName : STRATEGY RESUME
ComplexCondition

MetricFormula := metric | number
[MetricFormula MathOperator
metric | MetricFormula

MathOperator number
ComplexCondition := Condition |
ComplexCondition BitwiseOperator
Condition| (ComplexCondition
BitwiseOperator Condition)

Condition := metric

RelationOperator number
[number RelationOperator

metric | Violated(name) |

Fulfilled(name)
MathOperator := + | - | x | /
BitwiseOperator :=0R|AND|XOR|NOT

RelationOperator :=<[>|>=]|
<=|==|I=

Listing 1. SYBL in Backus Naur Form (BNF).
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SYBL hides the complexity of enforcing a variety of
complex calls, to different APIs (e.g., cloud provider APIs,
or bash configurations) with the help of elasticity capabil-
ities defined in the model in Section 3. It facilitates the sys-
tem stakeholders or developers to focus more on the elas-
ticity requirements that would help their application to be-
have as desired.

Current SYBL implementations allow specifying re-
quirements as Java Annotations, using our custom XML
format, and as policies in the TOSCA description. An ex-
ample of a SYBL requirement is shown in Listing 2.

<tosca:ServiceTemplate
name="CaseStudyApplication">
<tosca:Policy name="St1"
policyType="SYBLStrategy" >
St1:STRATEGY minimize(Cost) WHEN
high(overallQuality)
</tosca:Policy>...

Listing 2. SYBL requirement as TOSCA Policy

5 Assessment

After designing the system, during run-time, its behavior
needs to be constantly analyzed in order to provide sup-
port both for automated controllers, and for stakeholders
wanting to better understand their system.

5.1 Monitoring elastic cloud systems

Elastic systems can re-configure individual components/
units at run-time, due to various requirements through:
(i) vertical scaling, adding/removing resources to existing
components; or (ii) horizontal scaling, duplicating com-
ponents/instantiating more instances of the same cloud
service (e.g., virtual machine, cloud storage). This gen-
erates an important monitoring problem. As cloud ser-
vices are allocated/deallocated dynamically at run-time,
if monitoring information is associated only with each ser-
vice, it will be lost during scale-in operations. Address-
ing the elasticity requires a different approach in manag-
ing collected monitoring information, which we achieve
through MELA [26], a framework for monitoring and an-
alyzing elastic systems.

To analyze elastic systems we first categorize monitor-
ing data in three dimensions: Cost, Quality, and Resource
(Figure 7). These categories are sufficient for capturing
data about any monitored element (e.g., system topology

G. Copil et al., Continuous elasticity = 7

<Cost>

VM Usage
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Figure 7: Elasticity dimensions.

or unit) within a cloud system, and can be used for un-
derstanding the behavior of that system. For an elastic
cloud system, the Quality dimension would capture met-
rics characterizing the system’s quality, such as response
time or throughput. The Cost dimension would in turn cap-
ture all metrics influencing cost, such as cost of using the
virtual machine (e.g., hourly or monthly cost), cost of data
transferred over the network, or separate cost of using stor-
age (e.g., cost per each 10 GB of stored data). The Resource
dimension metrics capture resource usage and allocation
information, such as the amount of data transferred over
the network.

To obtain a complete view over the cloud system be-
havior we compose, aggregate, and enrich monitoring
snapshots collected from existing monitoring systems. De-
pending on the type of metrics, a valid composition of two
metrics might involve different operations, depending on
the metric type and the information which must be ob-
tained. For example, one would average response time for
a system unit to get an indicator of the system’s perfor-
mance, but sum up its throughput to get overall number
of performed operations. Thus, we introduce a domain-
specific language describing metric composition rules as
a cascading sequence of operations which apply one or
more operators over one or more operands (Listing 3). For
each rule there are at least one reference metric, one result-
ing metric, and several operations. The reference metric is
used as a base for computing the composite metric, and it
is searched in the metrics of the target monitored element
children having the Target Monitored Element Level. The
resulting metric defines the name and unit of the compos-
ite metric being created. Defining the composition rules re-
quires domain specific knowledge, knowing which opera-
tion is appropriate for which metric.

Bereitgestellt von | Technische Universitat Wien
Angemeldet
Heruntergeladen am | 01.12.16 09:05



8 —— G.Copiletal., Continuous elasticity

rule := operation "=>" metric
operation:= operator "(" operand { ","
operand + ")"

operator := "H"[U=t]Ux [N/ VAYG
"SUM" | "MAX"|"MIN"|"SET" | "KEEP"
operand := metric | number | string
metric := name, measurementUnit,
[monitoredElementID],

monitoredElementlLevel

Listing 3. Metric composition rules grammar

Cloud System
|System composite metrics|

e e e e e - X< compose >> _ _ _ _
Service Topology level i‘ %
Service Topology Ti

i . LL T
Ti composite metrics | .
<< compose >> )

Service Unit level

System Unit Ui
| Ui composite metrics |

<< COMpose ==

Virtual Machine Level
‘_Virtual Machine VMi

VMi metrics

LLL]

Virtual Machine VM|
[ VM| metrics ||

Figure 8: Multi-level metric composition process.

We compose lower level metrics into higher level ones,
offering information better suited for elasticity control
(Figure 8). The metrics collected from the VM level are ag-
gregated and a System Unit monitoring snapshot is cre-
ated, giving information about the overall unit behavior.

DE GRUYTER OLDENBOURG

This is further aggregated in a topology snapshot, up to
the overall system level snapshot.

5.2 Analyzing elasticity space of cloud
systems

The run-time control of elastic systems must ensure that
systems fulfill their requirements. However, the whole set
of requirements over all system units might not be known,
due to system complexity, limited user knowledge over the
overall system, or other factors. Considering a two tier ap-
plication, one might know required system response time,
but not what data latency is required from the data end to
ensure that response time. Thus, we investigate new con-
cepts that can be used to characterize the cloud system’s
elastic behavior based on multi-dimensional monitoring
data, with which we extend our MELA [26] prototype.

We address this issue by focusing on understand-
ing boundaries over the metric’s values in which user-
defined elasticity requirements are fulfilled. The known
system requirements are expressed as user-defined elas-
ticity boundaries over the system’s cost, quality and re-
sources. Based on them, we evaluate collected monitor-
ing information and determine elasticity boundaries for
all monitored elements of a cloud system. Thus, from a set
of supplied requirements we determine the requirements
for all cloud system monitored elements. Based on the
determined and supplied boundaries we define the sys-
tem elasticity space, capturing all runtime system metrics
and their boundaries. Figure 9 shows system’s evolution in
time, i.e., elasticity pathway, through the elasticity space.

Elasticity Space Boundary

~
Quality .
A

Figure 9: Elasticity space and pathway concepts.

Bereitgestellt von | Technische Universitat Wien
Angemeldet
Heruntergeladen am | 01.12.16 09:05



DE GRUYTER OLDENBOURG

To stay within its elasticity boundaries, an elastic sys-
tem must scale out/in its cost, quality and resources at
run-time. By allocating/deallocating cloud services, the
system copes with variations in pricing, quality and load.
The elastic behavior is the behavior of a system which
is dynamically reconfigured at run-time by software con-
trollers. Formally, let f,5,,.. be an elasticity space func-
tion, and MS = {ms;} be the set of monitoring snap-
shots. Then an elasticity space elSpace can be defined as:
elSpace = fospace(MS). A fo5pace has to perform two steps:
(i) detect when an elastic behavior starts and stops, and
(ii) extract monitoring data describing the system’s be-
havior while respecting the user-defined elasticity bound-
aries. In principle, there could be several elasticity space
functions, which can be developed for and applied to dif-
ferent types of monitored elements, e.g., specific types of
system units, topologies, or the whole system.

An elasticity space function is designed to extract
useful information about the overall behavior of the
cloud system when elasticity requirements are fulfilled.
For example, given a user-defined elasticity requirement
over cost/client/h, an elasticity space might contain only
the throughput and cost/VM/h metrics from which the
cost/client/h targeted by requirements can be determined.
It would not include metrics that have no impact on the
cost/client/h. Thus, using the elasticity space, one can de-
termine the elasticity boundaries to be enforced on the
metrics that influence the user-defined elasticity require-
ments. Moreover, one can analyze if the behavior of an
elastic cloud system is within expected user-defined elas-
ticity boundaries by checking the elasticity boundaries
of its elasticity space. For example, the upper elasticity
boundary of the cost/client/h from the determined elastic-
ity space could have a different value than expected by the
user.

The elasticity space enables analysis over the system’s
elastic behavior. Thus, based on the analysis, one can
define an elasticity pathway, characterizes the relation-
ships among system metrics in time. An elasticity pathway
el Ptw is determined by a function f,;;,,, which takes as in-
put an elasticity space elSpace and a set of metrics M, and
returns another function describing behavioral patterns or
characteristics of the monitored element: elPtw = g(M) =
fupiw(€lSpace, V). Various functions can be defined over
the elasticity space, enabling space analysis from multiple
perspectives.

In the current MELA prototype, we implement an elas-
ticity space function which determines as space bound-
aries the maximum and minimum encountered metric
values when the user-defined elasticity requirements are
respected. The function uses as input the user-defined

G. Copil et al., Continuous elasticity =—— 9

elasticity requirements for the whole cloud system, and
is applied for all system topologies, units, and unit in-
stances. Let’s consider the Event Processing Topology from
Figure 3, with requirements over certain response time.
Our elasticity space function determines the boundaries
for the other collected metrics (depicted in Figure 10), de-
termining the maximum and minimum CPU usage and
throughput the Event Processing Topology must fulfill.
The determined boundaries show the resource conges-
tion and throughput limits any elasticity controller should
monitor and enforce to ensure the system fulfills initial
requirements.

5.3 Analyzing elasticity relationships in
elastic systems

Cloud system are becoming more and more complex. In
elastic cloud systems, individual system units are typically
not behaving independently. Instead, due to communica-
tion or run-time control dependencies, there exist different
relationships between system units, influencing their run-
time behavior. In the following we describe our approach
for determining the elasticity relationships influencing the
behavior of elastic systems [24].

An elasticity relationship between one elastic element
and a set of other elements describes the change in the be-
havior of the first element w.r.t. its elasticity boundaries, trig-
gered by a change in the behavior of the other elements.
Particular relationships can be of interest for particular
stakeholders. However, analyzing such relationships is
challenging. Due to the potential complexity of the sys-
tem’s software stack, each software layer can introduce
different relationships. Second, the relationships can vary
between different cloud providers. To this end, we focus
on determining relationships between any of the system’s
performance, cost, and resource usage.

The most important for a relationship is determining
the change function describing how much the value of
the elasticity metrics of one element change. Elasticity of
cloud systems is evaluated based on boundaries over the
system’s metrics defined by elasticity requirements. For
determining the relationship we abstract from concrete
monitored values, the behavior of elastic systems with re-
spect to their requirements (i.e., elasticity boundaries). To
this end we define the concept of Elasticity Work of a cloud
system as the current load on the system with respect to
its elasticity boundaries. We define the difference between
the current elasticity work and the elasticity boundaries
as the Elasticity Energy. Using these concepts illustrated
for a single metric in Figure 11, we determine relationships
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Figure 11: Elasticity boundary, work and energy concepts.

between the elasticity energy of two systems, and not in-
dividual metric values.

Let us consider the case study application. At run-
time, an elasticity controller scales the system, according
to its requirements. From the system structure (Figure 3)
we can assume that relationships should exist between
units which communicate directly, such as Load Balancer
and Event Processing. However, other relationships might
not be so obvious, being generated by indirect communi-
cation (e.g., a relationship between Load Balancer load in-
fluencing the performance of the Data Node).

We extend MELA with a mechanism for determining
relationships based on R*. We use a linear regression ap-
proach, computing the linear correlations between two en-
ergy time series. For each determined coefficient of the lin-
ear relationship, we check if the estimation error is one or-
der of magnitude smaller than the coefficient, and if not,
we discard the relationship as inaccurate. Finally, we ob-
tain the change function, with the associated coefficient
of determination, an indicator on how well the extracted
relationship fits the original data.

Applying our approach on the case study applica-
tion (Figure 3) we determine a relationships graph be-
tween system metrics (Figure 12). We focus on the rela-
tionship between the cpuUsage of the Data End Unit and
throughput of the Event Processing. The determined rela-
tionship (Figure 13) is a linear equation in which the elas-
ticity energy of cpuUsage at time t can be estimated by
multiplying the throughput’s energy value at time t with
0.29, and adding 2.86 (i.e., the free term in the linear re-
lation in Figure 13) to the result. Converting the abstract

4 http://www.r-project.org/

Bereitgestellt von | Technische Universitat Wien
Angemeldet
Heruntergeladen am | 01.12.16 09:05


http://www.r-project.org/

DE GRUYTER OLDENBOURG

® DaaS_OpenStack @DataEndTopology

= VR

m

G. Copil et al., Continuous elasticity = 11

M YOccesngUnii
"Sraag,, m fhm"gﬁput

Figure 12: Case study
0 - application on private cloud

e, R . . .
®LoadBalancerUnil - det.ermered elasticity
relationships graph.

cpulsage(t):DataEndTopology = 2.86 +

——Monitored
——Estimated

0.29*throughput(t):EventProcessingTopology ]

[AdjustedR=0.33 | [Deviation: std =3.19, avg = 2.64, min= 0, max=10 |

14
s 10 | i -
g Il m w A
-
2 6 VA EVRLAA
S W
4
2
0 Figure 13: Case study application on
- mur~OOAMOO M~ EM O~ M NN E MM NN A S A MNNENSO A . . .
TENEINARGISRARBERRRIRIRBEERSNES SRS  privatecloud - determined quality

energy to concrete values with respect to the current elas-
ticity boundaries of the system, we can estimate cpuUsage
based on the throughput’s monitored values. From the re-
lationship, we estimate that, using this deployment struc-
ture, with maximum accepted CPU usage (from elasticity
requirements) of around 90%, the maximum achievable
throughput is (90 — 2.86)/0.29 =300 sensors per second.

Thus, using our approach, one learns that when more
than 300 sensors are connecting to the case study appli-
cation, the data end should be scaled out. Thus, we en-
able users to understand how system units influence each
other at run-time, crucial in designing appropriate elastic-
ity control mechanisms.

5.4 Estimating elastic systems behavior

In controlling cloud systems, a common approach em-
ployed by many elasticity controllers [1] [34], is to allocate/
de-allocate virtual resources when threshold rules are vi-
olated. This approach may be sufficient for simple cloud
systems, but for large-scale distributed cloud systems with

relationship.

complex inter-dependencies among components, we need
a deeper understanding of their behavior for a better con-
trol. Therefore, we need to be able to understand which
control processes are most appropriate for a particular sit-
uation, and what are their effects, in time. Moreover, we
are interested in this not only on the system part which is
directly involved in the control process but also on the rest
of the system.

For estimating this behavior we propose using a three-
phase approach [7] (see Figure 14): (i) mapping past be-
havior related with control processes to multi-dimensional
points for keeping the relationship among consecutive
metric values, and (ii) using a clustering based ap-
proach to form clusters from these multi-dimensional be-
havior points, showing common behavior patterns, and
(iii) mapping current behavior in multi-dimensional be-
havior points, and computing behavioral clusters that are
closest to current behavior, for obtaining the expected
behavior.

Figure 15 shows, on the left side, the current behavior
of the data node. Based on this information, and on histor-
ical information, our approach is able to estimate future
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behavior. In the right side, we show with continuous line
the estimated behavior, and dotted line the observed be-
havior. Our approach is able to estimate with a high degree
of accuracy the future behavior for the case of enforcing
a scale-in process consisting of decomissioning the unit,
and removing virtual resources.

6 Management

Based on the assessment techniques presented above, we
design a control mechanism able to automatically adapt
the system to the load, considering the requirements and
the complex cost schema of cloud providers. Based on this,
we further provide support for stakeholders for operations
management, focusing on the amount of information they
receive, the information type, and the way they can inter-
act with the running system.

6.1 Multi-level elastic cloud systems control
As there are various types of stakeholders interested in

cloud-hosted systems (e.g., cloud systems developers and
cloud systems providers), they have different preferences

Estimated CPU Usage
Estimated Cost/Client/h

Figure 15: Effect of scale-in data node
on the use-case application.

at the various abstraction levels. They have coarse or fine
grained knowledge about their cloud systems, with regard
to various matters (e.g., the provider knows how much
s/he is willing to pay for the entire system to be hosted on
the cloud, while the developer knows quality indicators at
different layers of the system). However, most of existing
mechanisms are limited to assuming the level of trade-off
necessary between cost and quality [2, 29, 32]. Moreover,
we need to manage both the static description of the cloud
system, and its runtime behavior, which depends on the
virtual infrastructure on which it runs.

Our approach [5] uses multiple types of information,
such as requirements specified by stakeholders at multi-
ple abstraction levels, associated to the system model, and
monitoring information. We implemented this technique
in the rSYBL framework?®, having connectors for multiple
monitoring frameworks and cloud providers.

Based on the model described in Section 3, at runtime
we construct a dependency graph, in which nodes are in-
stantiations of concepts from the model (e.g., system units,
system topologies), and edges are given by relationships.
Based on it, we enable elasticity control simultaneously

5 https://github.com/tuwiendsg/rSYBL
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for each of the described nodes, resulting in a multi-level
elasticity control of the described cloud system, based on
the flow shown in Figure 16. The system stakeholders de-
scribe their system using TOSCA [4] or other description
standards. The initial deployment configuration is speci-
fied either by the automatic deployment tool used or by de-
velopers if a manual deployment approach is chosen. The
elasticity requirements are evaluated and conflicts that
may appear among them are resolved (for details on con-
flict resolution please refer to [5]). After that, an action
plan is generated, consisting of elasticity capabilities that
enable the fulfillment of specified elasticity requirements.
The action plan is composed from elasticity capabilities
that have associated a series of cloud provider API calls,
configurations, or bash/scripts executions.

For generating an action plan for cloud system elastic-
ity control, we formulate the planning problem as a max-
imum coverage problem: we need the minimum set of ca-
pabilities that help fulfilling the maximum set of require-
ments. Since maximum coverage problem is an NP-hard
problem, and our research does not target finding the op-
timal solution for it, we choose the greedy approach. The
main step of the greedy approach consists of finding each
time the elasticity capability EC; fulfilling the most con-
straints and improving the most strategies. For calculating
the effects, the elasticity behavior estimation technique
presented in the previous section is used.

The results of running a sinusoidal workload with
a high amount of bursts are shown in Figure 17. For this
case, we assume the cost of a VM 0.12 $ per hour. The
Event Processing System Topology is being controlled, in
time, for fulfilling requirements targeting the cost and
throughput.

Solve Conflicting,

[ e T o o i T )
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6.2 Cost-aware control of elastic systems

Run-time costs evaluation is required for understand-
ing and controlling elastic systems running in public
clouds. In what follows, we capture cloud providers pric-
ing schemes, evaluate the costs and cost efficiency of elas-
tic systems, and use them to define an approach for cost-
aware scale-in of elastic cloud systems [27].

Systems deployed in public clouds can be built from
a proprietary software and public cloud services. While
systems are scaled-out due to performance requirements,
cost is the main driver for system scale-in [22]. However,
cost of elastic systems is complex. Certain costs can be
static, such as costs for reserving a cloud service. Other
costs can be dynamic, such as modifying the price of us-
ing a cloud service depending on its usage. Cost can also
depend on particular service combinations.

Towards costs analysis, we define a cost representa-
tion model detailing the Cost Element concept (Figure 18).
Each cost element that is associated with a cloud service
can be either reservation-based or per usage. Next, it can
be defined per billing cycle, over its reservation time or us-
age. Additionally, cost can be specified in intervals, spec-
ifying intervals of measured units over the billing metric.
Finally, a cost element might be applicable if the service is
used in a particular configuration, including concrete re-
source and quality properties, or other cloud services the
service should have associated.

We enrich MELA with the previous model and use it
to compute and visualize the costs of our use-case in Fig-
ure 19 focusing on the Event Processing topology. The sys-
tem costs are composed of the costs of its topologies, com-
posed from the costs of system units. The cost of indi-
vidual units consists of the costs of the used instances of
VM services, and the costs of the Cloud Storage, reported
both in price per disk size, and per size of read/written

Bereitgestellt von | Technische Universitat Wien
Angemeldet
Heruntergeladen am | 01.12.16 09:05



14 =— G.Copil etal., Continuous elasticity

Adding New Event

s Processing Service Unit Instance
- N} A '\\

i v ~

! ~
] A

£ jy \

g

-~

N

0.8

07

~ n o 0N

o o

05 |

-

04 |

03 |

I S - -

02 |

01 |

= 4125

4250

4375

o
_
C8

DE GRUYTER OLDENBOURG

Removing Event Processing

T e I 3

kAL e .
i

M wvw 3 0T v O D

o

4625
4750
4875
5000
5125
5250
5375
5500
5625
5750
5875
6000
6125
6250
6375
6500
6625
6750
6875
7000
7125
7250
7375
7500
7625
T750
7875
8000
8125
8250
8375
8500

m 3 — -

—Cost —Throughput—Response Time
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data. We also have the costs of additional used services,
such as the Public VLAN. From the cost proportion of each
cost element, the developer can understand which units
have a low cost impact, and which are costly. Using this

costs complexity.

information, the developer can reduce costs by redesign-
ing the system, or changing the used cloud services or
cloud provider.

After multiple scale in/out actions, the billing cycles
of different instances of the cloud services used by the sys-
tem units can become desynchronized, i.e., billing occurs
at different points in time, depending on when each in-
stance was allocated, and on how much it was used (Fig-
ure 20). When scaling a cloud system, a cost-aware con-
troller should deallocate a unit instance with a usage of
100% over all its cost elements, w.r.t., the billing cycle of
each element, e.g., if a unit uses cloud services billed per
hour and per GB of data, it is cost efficient to deallocate it
when it has run for an integer number of hours, and has
generated an integer number of GBs.

To evaluate the benefit of considering cost efficiency
we have implemented a scalability controller support-
ing two cost-agnostic and two cost-aware scaling strate-
gies. The cost-agnostic strategies deallocate the Last and
First allocated unit instance. The first cost-aware strategy
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deallocates a unit instance and its cloud services when
its VM has run over 90% of its reservation billing cycle.
The second cost-aware strategy deallocates a unit instance
when its cost efficiency is over 80%.

From Figure 21, we can notice that except one action,
the strategy deallocating units when their cost efficiency is
over 80% obtains better cost efficiency even compared to
the one deallocating units at over 90% of their reservation
billing cycle. This highlights that all cost elements need to
be considered when scaling elastic systems.

In highly fluctuating load, controllers can use the cost
efficiency in order to reduce the costs, keeping services
that are already payed for even if they are not necessar-
ily needed. As the load fluctuates, supplementary services
might be needed soon, thereby increasing the control sta-
bility. As shown in Figure 22, under the cost-agnostic strat-
egy, the controller deallocates unit instances as soon as
requested. In contrast, the cost-aware controller waits un-
til a unit instance has reached 80% cost efficiency before
deallocating it. If a scale-out is requested, the cost-aware
controller will verify if it is waiting to scale-in, and cancel
the pending action.

Employing cost-aware scalability controllers in public
clouds can also increase the performance and stability of
cloud applications, while reducing their costs. As shown
in Figure 22, the cost-aware strategy avoided unnecessary
scale-ins, while the cost-agnostic one deallocated and al-
located back unit instances.

G. Copil et al., Continuous elasticity = 15
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Figure 22: Number of event processing instances under cost-aware
and cost-agnostic scalability.

6.3 Elastic cloud systems operations
management

A system deployed in the cloud can use various resources
and services offered by cloud providers, and can be very
dynamic at run-time. The cloud is one of the most dynamic
environments. Providers can change their cost schemas,
and the offered service characteristics, from one day to an-
other. Although in this environment automated controllers
such as the ones shown above are necessary, given this
high dynamism, it might be necessary for system stake-
holders to re-examine the desired behavior of a cloud
system, and their interactions with other stakeholders
(e.g., cloud providers, or data providers). In this context,
the responsibilities and processes of operation manage-
ment teams need to be revisited, in order to accommodate
characteristics of elastic systems. Even more, the control
needed for these kind of complex systems should be semi-
automated [30], still allowing the operation roles to inter-
vene where needed. The approach that we choose for our
solution is supervisory control (i.e., level of automation
9 from Endsley’s levels of automation [11]), for allowing,
from the operation roles side, both the supervision of the
controller and the system, and the intervention in the con-
trol process (e.g., through refinement of requirements).
Our solution [8] involves adding roles (i.e., employ-
ees) as first class entities in cloud system elasticity con-
trol loops. Based on the roles, we define necessary in-
teraction protocols for system’s elasticity-driven opera-
tion management. We focus on interactions between roles
and elasticity controllers, but we also support interac-
tions among employees, for notifying each other of up-
dates or for delegating responsibility related to various
events. We extend SYBL to support roles and role-based
communication between stakeholders. Based on this, we
develop an elasticity Operations Management Platform
(eOMP) for cloud systems, and we validate its usefulness
showing various events encountered for a complex sys-
tem. eOMP can support different organization structures,
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and enables employees to interact easily with the elasticity
controller, for obtaining a more complex elasticity control.
eOMPs supports managing unexpected situations, by fa-
cilitating the collaboration between elasticity controllers
and stakeholders, identifying various types of events oc-
curring during operation, and providing mechanisms for
solving them.

In order to support operations management for elas-
tic cloud systems, the roles and elasticity controller need
to collaborate in order to manage system operation dur-
ing runtime. As shown in Figure 23, roles should be noti-
fied by other roles or by the elasticity controller concerning
the operation events that occur in relation to the elastic-
ity of current system. From the operation events, we focus
on any type of elasticity changes. System stakeholders are
usually interested in failure or quality-related events, in
order to be able to learn from system behavior and envi-
ronment changes that produce failures. As shown in Fig-
ure 24, a role can receive a multitude of messages from
other roles or from elasticity controllers. Analyzing them,
the role decides whether it can perform needed actions,
or if it should delegate to other roles. After analyzing the
interaction flow, the next section is focused on analyzing
the roles and their responsibilities and interests in elastic-
ity operations management.

In eOMP, for ensuring that the correct role receives
messages according to its responsibilities, and its author-
ity, we define filtering and aggregation methods for di-
recting messages to the correct roles. Figure 25 shows the
amount of messages received by each of the roles in the or-
ganizational structure, for our use-case scenario based on
the case study application.

<=continue interaction==
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Third Party
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Figure 24: From roles to
elasticity operation actions.
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This way, we start bridging the gap between the ever
more automated world of elastic systems, and the op-
erations management world, with clearly defined pro-
cesses and responsibilities. Although the automation of
elastic systems control does take over some of traditional
responsibilities from system operation management, it
should also involve an adaptation of responsibilities, and
achange of focus in order to meet the dynamism and needs
of elastic systems.

7 Related work

In requirements languages, multiple solutions have been
proposed in recent years. Kouki et al. [17] propose an exten-
sion of CSLA (Cloud Service Level Agreement) [3], focusing
on QoS degradation and penalty models for an easier and
clearer interaction between the cloud customer and the
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cloud provider. Li et al. [20] propose PSLA (PaaS level SLA)
language for the description of SLA, focusing on work-
load elasticity and PaaS-specific properties. CloudMF [13]
is a language for cloud infrastructure resources manage-
ment, with focus on uniformly describing applications
for reducing vendor lock-ins. Based on CloudML [14], Kri-
tikos et al. [18] propose SRL, a policy language for scal-
ing multi-cloud applications. Zabolotnyi et al. [35] propose
SPEEDL, a declarative language for event-based scaling of
cloud applications. The major difference between existing
work and our approach is that our work tackles elasticity
requirements from more than one perspective (resource,
quality, cost) and at different levels of granularity, thus as-
signing the user the capacity of specifying when the ap-
plication should scale throughout its execution and, most
importantly how.

An elastic monitoring framework for cloud infrastruc-
tures is presented in Konig et al. [15], based on a peer-
to-peer architecture enabling the authors to monitor a di-
verse set of entities and metrics, spanning across all lay-
ers of a cloud stack. Also dealing with dynamic infrastruc-
tures, Trihinas et al. [33] introduce JCatascopia, a tool for
monitoring elastic systems, employing dynamic probe ad-
dition and removal to cope with infrastructure dynamic-
ity. Moreover, to provide support for monitoring elastic-
ity, monitoring probes can be activated/deactivated dy-
namically during system run-time, if required by elastic-
ity controllers. Moving further into system-level monitor-
ing, Leitner et al. [19] apply complex event processing tech-
niques to extract system-specific performance information
from system-level metrics. To this end, monitored data is
expressed as event streams, the authors determining the
system state using rules targeting sequences of detected
events. Highlighting that in cloud environments one can-
not assume the existence of online distributed monitoring
nodes and reliable inter-node communication, Shicong
et al. [23] present an adaptive cloud monitoring system
providing information about monitoring message delay
and loss. Further, the authors provide estimations on mon-
itoring accuracy, and capture uncertainties introduced by
messaging problems. Cloud monitoring is also the focus
of many industry tools such as Nagios®, Zabbix’, Open-
NMSS8, or Hyperic®. Such tools mostly focus on gathering
data from the physical and virtual infrastructure, and dis-

6 http://www.nagios.org/
7 http://www.zabbix.com/
8 http://www.opennms.org/
9 http://www.hyperic.com/
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tributing it, without correlating it with the systems run-
ning on it. We differ as we do not focus on monitoring. In-
stead, we rely on data from existing monitoring solutions,
aggregate and enrich it according to the system’s structure.
In controlling systems, Tolosana-Calasanz et al. [32]
propose controlling resources necessary for data streams,
using a shared token bucket approach. Dupont et al. [10]
propose the notion of software scalability, both hori-
zontal and vertical, by drawing inspiration from infras-
tructure scalability. For SaaS providers, horizontal (i.e.,
adding/removing more software units), or vertical (i.e.,
increasing/decreasing offerings for the service), can be
a good customization opportunity to profit from elastic-
ity at IaaS level. Aragna et al. [2] define metrics and
rules for elasticity control, and study various scenarios
(e.g., infrastructure only, or database only control). Nakos
et al. [29] propose an approach for elasticity control based
on dynamic instantiated Markov decision processes, using
probabilistic model checking. Ferry et al. [12] propose an
approach for the continuous management of scalability in
multi-cloud systems, based on CloudMF [13]. Compared to
the above-mentioned work, we control elasticity not justin
terms of resources but also in terms of quality and cost and
use application structure for proposing an accurate mul-
tiple level control of elasticity of cloud services. Further-
more, they lack user-customized elasticity control.
Several commercial solutions enable cloud infras-
tructure management support, but do not support ser-
vice operations management at cloud customer’s ser-
vice level (e.g., VMWare vCloud Suite?®, Oracle Enterprise
Manager!). Liu et al. [21] propose an incident diagno-
sis approach based on incident relationships, using co-
occurring and re-occurring incidents for performing root
cause analysis. Munteanu et al. [28] propose an archi-
tectural approach for incident management in the cloud,
from service monitoring perspective, including incident
lifecycle management, event and incident detection, inci-
dent classification and recovery and root cause analysis.
In contrast with above presented work, we focus on the
elasticity aspect of service operations management in the
cloud, characterizing the relevant properties and interac-
tions. Moreover, we emphasize the importance of supervi-
sory control for the cloud, and introduce service provider
employees as first-class entities in the control loops.

10 http://www.vmware.com/products/vcloud-suite
11 http://www.oracle.com/technetwork/oem/enterprise-manager
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8 Continuous elastic systems
management

As emphasized in Section 2, design and operation of elas-
tic systems are not consecutive or atomic phases (see Fig-
ure 1). In each of the operation steps, gathered informa-
tion can be useful for design refinement: possible issues
could be fixed by developers, new metrics and capabili-
ties could be introduced, other services can be used for
the initial deployment, and requirements could be refined.
This merges design and operations processes, following
the DevOps culture [9], in order to provide continuously
best quality and flexibility in business requirements.

First, when monitoring and analyzing the system at
runtime, one can detect a series of patterns in behavior,
possible bottlenecks, and possible flaws in the system de-
sign, as detailed in Section 5. When reported to opera-
tion managers, this information needs to be fed back in
a design refinement, in order to develop new features, in-
troduce new units (e.g., introduce load balancers where
needed), or adapt requirements considering system’s elas-
ticity space. Moreover, estimations on the effect capabili-
ties have (e.g., adding virtual resources for a unit produces
little effect), enables developers to look into possible is-
sues with the respective unit, or possible issues with the
actual capability. Next, while the system is running, stake-
holders should be able to refine requirements based on
the observed control outcome produced by initial require-
ments. This would be done either by operation managers,
or by operation managers with the support of the devel-
opment team. Furthermore, a complete support for elastic
systems at run-time means also operations management
support, as shown in Section 6. We are supporting roles of
various types in receiving the relevant information, and in
interacting with semi-automated controllers for managing
operation processes for the running systems.

All of the above can and should be applied, on any
elastic systems, not only on cloud-based systems, as it was
the case for our proposed solutions. The driving proper-
ties for our solutions were the systems’ dynamism, hetero-
geneity, replaceability of composing units, and business
perspective. These properties are defining for any types of
elastic systems, be them cloud systems, human comput-
ing based systems, or IoT systems. Therefore, our solutions
can be extended to support even more complex scenar-
ios, integrating people, things, and computing in open dy-
namic ecosystems.

DE GRUYTER OLDENBOURG

9 Conclusions

We have presented our solution for supporting elastic sys-
tems development and operation. We support designing
native cloud systems with elasticity in mind, for specifying
requirements, and assessing and managing their behavior
at run-time.

Elasticity is not a defining property only for cloud sys-
tems, but of systems in general. In a world where service-
based systems are evermore used, and where physical
things become part of our digital world, elasticity should
be one of the main properties of every system. The tech-
niques that we have introduced for building elastic cloud-
based systems can be extended to other domains, where
the targeted characteristics still hold: heterogeneity, dy-
namism, business orientation, and replaceability of com-
posing units.
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