
Distrib Parallel Databases
DOI 10.1007/s10619-011-7079-6

SEPL—a domain-specific language and execution
environment for protocols of stateful Web services

Waldemar Hummer · Philipp Leitner ·
Schahram Dustdar

© Springer Science+Business Media, LLC 2011

Abstract In order to interact with stateful Web services, clients need to obtain infor-
mation about the intra-service protocol, which contains valid operation sequences and
the expected input-output transformation across invocations. While the community
has widely agreed on WSDL as the standard for functional service description (the
“static” service interface), there is still an evident lack of languages to describe the
dynamic, behavioral interface of services. In this paper we introduce SEPL (SErvice
Protocol Language), a domain-specific language (DSL) for defining executable intra-
service protocols. Notable features of the DSL include support for WS-Addressing
and simple creation of new Web service instances, synchronous and asynchronous
service invocation facilities and easy access to WSRF-style service resource proper-
ties. Service providers use SEPL to define the procedure that clients must adhere to in
order to achieve a certain higher-level functionality. Clients use the combined infor-
mation of the SEPL document and the WSDL definitions to execute an intra-service
protocol. We provide a graphical representation of SEPL the form of UML Activ-
ity Diagrams, and tools to generate executable code from these models. We further
present a solution to host and execute SEPL protocols in a server application based
on Web services technology.

Keywords Web services · Intra-service protocol · Stateful Web services ·
Domain-specific language · Service Protocol Language · SEPL

Communicated by Amit Sheth.

W. Hummer (�) · P. Leitner · S. Dustdar
Distributed Systems Group, Vienna University of Technology, Argentinierstrasse 8/184-1,
1040 Vienna, Austria
e-mail: hummer@infosys.tuwien.ac.at

P. Leitner
e-mail: leitner@infosys.tuwien.ac.at

S. Dustdar
e-mail: dustdar@infosys.tuwien.ac.at

mailto:hummer@infosys.tuwien.ac.at
mailto:leitner@infosys.tuwien.ac.at
mailto:dustdar@infosys.tuwien.ac.at

Distrib Parallel Databases

1 Introduction

Throughout the last years, software engineering research and practice have put re-
markable focus on the Service-Oriented Architecture (SOA) [11, 22, 29] paradigm,
which propagates the use of services as a means to create decoupled, distributed, com-
posite applications in heterogeneous environments. Services are autonomous applica-
tions made available in a computer network using standardized interface description
and message exchange. Web services have gained momentum as a means for imple-
menting SOA applications and services. It is a commonly agreed principle that Web
services generally do not persist a state across invocations, i.e., that they are stateless
[11, 22]. However, in some areas stateful services have indeed become a necessity.
Most notable is the concept of the Grid service which is defined in [14] as follows: “a
Web service [. . .] that implements standard interfaces, behaviors, and conventions
that collectively allow for services that can be transient (i.e., can be created and
destroyed) and stateful (i.e., we can distinguish one service instance from another)”.
Additionally, distributed data management and integration architectures (e.g., [5, 16])
often also rely on stateful services. Furthermore, Data-as-a-Service [38] approaches
use Web services to provide data on demand, following certain access control models
and query protocols. The Web Services Resource Framework (WSRF) [27] builds a
foundation for creating, addressing and destroying service resources and for access-
ing the data (or properties) exposed by these resources.

In general, clients need to obtain information about a service in order to access its
exposed data, or to be able to successfully invoke one or more of the service’s oper-
ations. On the one hand, this information concerns the “static” interface description,
including the names of available operations, parameter and return types as well as the
message style to be used. These issues are well covered by the WSDL contract offered
by the service provider. On the other hand, for stateful services, clients additionally
ought to know the service’s “dynamic” (behavioral) interface, which specifies the or-
der in which operations can be invoked and in which way the data of a service may
be retrieved and modified. As illustrated in Fig. 1, Web services often provide differ-
ent functionalities which may involve invocation of more than one service operation
and access to several data properties. This especially applies to stateful services, i.e.,
services which persist data values across invocations. We refer to such constraints,
which require the client to have knowledge about functionalities on top of the ac-
tual service operations, as the intra-service protocol (for short, service protocol). We
observe that service protocols have transactional characteristics: if one involved op-
eration call fails, the wanted functionality can most likely not be delivered.

Service protocols play a key role for transactional services [21, 31] and distributed
databases. A transactional service embraces a sequence of actions that must be exe-
cuted as a unit [21], similar to the service functionalities of stateful services. In the
Web service environment, SOAP (Simple Object Access Protocol) Faults are used to
indicate exceptional and erroneous behavior. When an error is detected, some com-
pensation routine can be started to rollback the performed changes and to reconstruct
a consistent state. The Web services standards for defining distributed transactions
are (1) WS-AtomicTransaction (AT) for short-running transactions with an all-or-
nothing property, and (2) WS-BusinessActivity (BA) to handle long-lived activities

Distrib Parallel Databases

Fig. 1 Service functionalities

and business protocols. Both specifications build on WS-Coordination, which defines
a coordinator service that is used by the participating services to activate a coordina-
tion context, to register for a certain transaction protocol and to execute it. AT follows
a traditional approach from the database domain and enforces the ACID (atomicity,
consistency, isolation, and durability) criterion using a two-phase commit protocol.
These ACID transactions are usually not applicable for long-running activities be-
cause resources cannot be locked in a transaction that runs over a long time. There-
fore, BA defines compensating transactions, which provide a means to undo an action
if a process or user cancels it [31]. In any case, AT and BA require a centralized co-
ordinator entity.

1.1 Motivation

Intra-service protocols have commonalities with transaction protocols in distributed
databases and combine properties from both AT and BA. A sequence of actions (in-
vocations) needs to be executed, and the result of the sequence depends on the proper
execution of all atomic actions. However, the fact that only one service participates in
a protocol functionality renders the coordinator service’s functionality for activation
and registration unnecessary. Hence, coordination and execution of an intra-service
protocol is performed solely between client and target service.

The description of intra-service protocols is essentially a subproblem of service
composition [9]. Therefore, languages from the service composition domain (e.g.,
WS-BPEL [26]) can also be used to specify intra-service protocols. However, this ap-
proach has a number of drawbacks. Firstly, we argue that the problem of intra-service
protocol specification is considerably less complex than service composition. The ser-
vice to invoke is always clearly defined (e.g., there is no need for different partner link
types), and protocols are usually much less complicated than compositions. The re-
lated work discussion in Sect. 7 compares in more detail which language constructs
are (not) supported in intra-service protocols as opposed to WS-BPEL. Secondly,
composition languages are generic and do not contain any explicit support for state-
ful Web services specifics, such as Resource Properties [28] in WSRF or patterns for
resource lifetime. Thirdly, composition engines are rather heavy-weight server tools,
and not suitable for client-side usage. Lastly, the XML syntax of languages such as
WS-BPEL is notoriously hard to write without appropriate tool support. For a light-

Distrib Parallel Databases

weight Domain-Specific Language [34] (DSL) a simpler and easier-to-understand
syntax may therefore be superior.

Currently, there is still an evident lack of special purpose languages to describe
executable intra-service protocols for stateful Web services. The discussion of related
work in Sect. 7 outlines that most existing approaches and standards for intra-service
protocols are rather a high-level guideline for clients than an executable language.
We tackle this particular problem and present a domain-specific language and an
execution environment for protocols of stateful Web services.

1.2 Example scenario

As the motivating example we consider a service hosted by a European cell phone
operator (CPO). The service allows other CPOs to port customer telephone numbers
from one provider to the other, a functionality that CPOs have to provide because of
European Union regulations. The service is implemented as a stateful Web service
using WSRF, and employs the factory/instance pattern (one stateless factory service
is used to create stateful Web service resources).

Figure 2 sketches the intra-service protocol for the number porting functionality
in a simple graphical notation. The left-hand side of the figure depicts the steps to
be carried out by the client, while the right-hand side shows the services involved.
Firstly, the client has to create a new Number Porting service instance by using
the Service Factory’s create operation. This operation returns a reference
to the new instance, which is used by the client in all subsequent invocations. After
being granted access to the actual service functionality by logging in, the client has
to loop over all porting requests and check whether the porting process is possible.
If it is not, the client interrupts the current execution and calls a rollback routine. If

Fig. 2 Intra-service protocol for number porting functionality

Distrib Parallel Databases

porting is possible, the client provides the necessary input to the service by setting
two WSRF resource properties (customer and newProvider). Then the porting
can be scheduled for a specific date, causing the porting operation to be carried out
asynchronously. The service returns the result of this operation by sending a notifi-
cation to the client. The protocol ends at the point where all notification results have
arrived at the client.

Even though this example is simple to understand, it contains a number of chal-
lenges and issues that service providers may encounter when defining intra-service
protocols, including invocations of Web service operations, alternative branches of
execution, service callbacks, (SOAP) fault handling, and handling of WSRF resource
properties. Furthermore, the number porting protocol has a transactional aspect, since
all requested portings passed as input to the protocol need to be completed, and the
operation is rolled back in case one request cannot be completed. It should also be
noted that the number porting scenario defines a rather intensive business logic, and
real-world protocols may be significantly simpler. The scenario has been chosen to
illustrate the majority of the SEPL features in one example.

1.3 Contribution

We address the issues mentioned above and propose a framework for intra-service
protocol description, modeling, and execution. The contribution is threefold:

• We introduce a light-weight DSL named SEPL (SErvice Protocol Language),
which offers features to specify functionalities on top of the operations of a Web
service. Features of SEPL include synchronous and asynchronous invocations,
fault handling, simplified processing of XML messages and direct support for
WSRF specifics and for the service factory/instance pattern. An advantage of SEPL
documents is that they are decoupled from existing services and that service im-
plementations remain untouched. SEPL documents are straight-forward to author
for service providers and easy and efficient to interpret for clients.

• Following a model-driven approach [1], SEPL protocols can be modeled as UML
(Unified Modeling Language) activity diagrams [23]. Existing UML tools facilitate
the development process and help to graphically compose intra-service protocol
activity diagrams (PADs). A PAD definition provides the required information to
generate executable code in the syntax of a scripting language. We define a 1-to-1
mapping from UML activity diagrams to executable SEPL code, and present the
implementation of the SEPL code generation tool UML2SEPL.

• We present a prototype SEPL execution client written in the Java programming
language. The SEPL client combines the information from WSDL and SEPL doc-
uments and conducts the SOAP message exchange as mandated by the service
protocol. Additionally, to take away the responsibility of clients to execute SEPL
protocols, we offer a SEPL protocol server implementation. The task of the server
is to host SEPL protocols, to expose functionalities contained therein as WSDL
operations and to execute protocol functions upon request.

The remainder of this paper is structured as follows. Based on the motivating ex-
ample scenario, we introduce the UML notation of SEPL and define the concepts

Distrib Parallel Databases

and language features in Sect. 2. Section 3 presents the and describe the mapping of
UML to executable SEPL code. Section 4 describes how intra-service protocols can
be centrally hosted in a server application. Section 5 discusses the implementation
of the SEPL client and the protocol host. An evaluation of the SEPL framework is
carried out in Sect. 6. Section 7 discusses existing work related to our approach and
the paper concludes with a brief summary in Sect. 8.

2 SEPL—the Service Protocol Language

In this section we present the concepts employed by SEPL and describe the syntax
and purpose of its concrete language constructs. Development of SEPL protocols fol-
lows a model-driven approach, based on UML activity diagrams. The presentation
of the language details is based on the UML representation of the sample scenario,
which is depicted in Fig. 3. All SEPL-specific language constructs in the figure are
printed in bold, whereas scenario-specific parts are printed in italics (names of ser-
vice operations to invoke) or in normal font (variables, constants and data properties).
In the following, a SEPL protocol in UML notation is referred to as service protocol
activity diagram, or PAD.

2.1 Scenario service protocol

The top-level structure in SEPL documents, the protocol function, is modeled as a
UML activity. The scenario protocol function port_numbers is depicted in Fig. 3.

Fig. 3 UML activity diagram of sample service protocol

Distrib Parallel Databases

The activity defines three input pins, which constitute the input parameters needed
by the service protocol: (username, password and requests). Parameters are
immutable and cannot be changed inside an activity. The activity result is defined
using an output parameter, in the example using the variable named result. The
UML standard specifies that an activity contains executable nodes and control nodes
as well as edges between these nodes. The node types are further divided into differ-
ent subtypes. Each edge connects exactly two nodes and the directions of the edges
signify the control flow of the service protocol. Note that PADs contain no UML
object flow edges but only control flow edges. The port_numbers activity con-
tains both structured activities (in the form of two loop nodes) as well as atomic
actions. Actions are used for resource creation/destruction, synchronous service in-
vocations, fault handling statements and directives for asynchronous invocations. In
the figure, input pins are depicted on the left side and output pins on the right side
of an action. We define that each input pin is an action input pin, whose fromAction
association points to a value specification action, which itself references and eval-
uates the value of the input pin. The advantage of this approach is that input pins
can hold (1) constant values (e.g., "//PortingResult..."), (2) variable refer-
ences (e.g., username) and (3) expressions to be evaluated (e.g., r.customer).
In Fig. 3 the input pin values are printed next to the input pin, regardless of which
of the three types the input has. The input and output pins of the loop nodes are the
UML-defined loopVariableInput and loopVariable, respectively. For simplicity, the
bodyOutput pins are omitted; we define that in each iteration of the loop the next
array element of the loopVariableInput is put to loopVariable.

SEPL PADs allow for the use of variables as defined in the UML superstructure
specification. All structured activities (e.g., activities, loop nodes) in the diagram
may hold references to variables that are local to the scope of this activity (indicated
using the activityScope association of the variable). A variable that holds no activity-
Scope association is a global variable. All data dependencies between the actions in
a SEPL protocol are modeled using variables, and object flow edges are not required.
Variables are untyped (i.e., the UML type association is not set) and the type of a
variable and the operations supported by the underlying object are determined by
the SEPL interpreter at runtime (discussed later in Sect. 5). Variables can hold basic
types (e.g., numbers, strings), arrays, object references and XML structures, which
are treated specially in SEPL (see Sect. 2.3). The assignment of values to variables
uses the UML AddVariableValueAction. In the sample this happens either explicitly
with the actions named assign or implicitly when assigning the result of any other
action via an output pin. If the attribute isReplaceAll is set to true, the target vari-
able is overwritten; otherwise the variable is an array and the value gets appended
to the array end. Note that this is not visible in the graphical representation but con-
tained in the metadata of the UML elements. The example uses three array variables:
requests is the activity input and contains the porting requests, callbacks is
used for the output pin of the subscribe action, and result contains all individ-
ual number porting results.

Five globally defined variable names (async,factory,fault,proper-
ties,this) in SEPL are reserved for special purposes and must not be assigned
values (see Table 1). The semantics of these language constructs are explained in the
following subsections.

Distrib Parallel Databases

Table 1 Reserved SEPL
variables Name Purpose

async Interface for Asynchronous Invocations

factory Reference to the Factory Service

fault Reference to a Caught SOAP Fault

properties Container for WSRF Resource Properties

this Reference to the Target Service Instance

Fig. 4 SEPL-to-SOAP mapping

The invocation of a Web service operation in SEPL PADs is modeled using a
CallOperationAction. The associated target is either this (to invoke the target Web
service this protocol applies to) or factory (to invoke the service factory). For il-
lustrative purposes the target is printed in front of the operation name in Fig. 3. An
invocation action contains the name of the WSDL operation as well as a list of param-
eter input pins, and returns a result which can be directly assigned to a variable via an
output pin. Figure 4 depicts the relationship between the graphical representation of
a SEPL invocation, WSDL and SOAP. From the SEPL PAD description the name of
the operation is determined and its definition is looked up in the WSDL. The XML
schema of the operation’s input element is matched with the parameter input pins of
the action to finally construct a SOAP message and send it to the target Web service.

To define the behavior of service protocols, SEPL supports a number of standard
control flow structures (if-then-else branch, loop node, fault handler). The number
porting protocol contains two loop nodes, which iterate over all elements of an ar-
ray input variable (requests and callbacks, respectively). The example also
contains one if-then-else branch with a guard expression !status.isPossible,
which evaluates the output of the check_porting_status service invocation.
A protocol function can return results (e.g., indicating outputs of the service protocol,

Distrib Parallel Databases

returning status codes) using the activity output parameter (result). Intra-service
protocols are not meant to perform heavy computations, but rather to delegate tasks
to existing services and to process their results. Nevertheless, the basic arithmetic,
logic, string processing and comparison operations are supported in SEPL.

2.2 WSRF specific SEPL features

The WSRF set of specifications [27] defines a message exchange model and related
XML definitions to access stateful (computational) resources, which retain a state
between invocations. Influenced by the observation that stateful service computing
has gained considerable importance, the design of SEPL is tailored to specifically
support concepts of the WSRF.

The WSRF builds on WS-Addressing, a standard to uniquely identify Web ser-
vices. WS-Addressing introduced the notion of stateful interactions and provides a
means to address service instances that are created as the result of these interactions.
A service’s EndpointReference (EPR) contains information about the location of the
service as well as instance-specific configuration details. The WSRF suggests the
use of factory services to control the lifetime of service resources (often referred to
as the factory/instance pattern). Upon request, the factory creates a new instance of
a particular service and returns the EPR which holds the details (identifier) of the
new instance. For this purpose, SEPL provides the predefined object named fac-
tory, which acts as a proxy to the factory service. In the scenario, the factory’s
operation createResource is used to create a new resource (see Fig. 3). The
invocation response contains the new EPR, which gets assigned to the predefined
variable this.EPR (not explicitly shown in the UML notation). Finally, the service
instance’s Destroy operation is invoked to destroy the resource.

This concept of stateful services and resources in WSRF is further extended by
the WS-ResourceProperties (WS-RP) specification. In WS-RP, the state of a stateful
service resource (instance) is defined by a set of properties, which are exposed in the
service description (WSDL) and can be retrieved and updated using standardized
operations (GetResourceProperty, SetResourceProperties). Using
the predefined properties object, SEPL allows direct read and write access to
resource properties. In the protocol in Fig. 3 we use resource properties named cus-
tomer and newProvider to specify which customer account should be ported to
which provider. Figure 5 depicts the relationship of SEPL’s UML syntax to WSDL
and SOAP, applied to the example for setting the resource property customer. The
WSDL document of the target service resource contains a definition of the property
and its type. The SEPL command is transformed to a service invocation with a Set-
ResourceProperties SOAP body element. This method is the standardized
way in WSRF to update the value of a resource property.

2.3 Advanced SEPL concepts

A key goal of SEPL is to simplify access to elements and attributes of XML struc-
tures. Assuming a variable var contains an XML structure, an XML sub-element
named element can be directly addressed using var.element. Table 2 shows

Distrib Parallel Databases

Fig. 5 Setting WS-Resource properties

Table 2 XML usage in SEPL

Content of variable a SEPL expression Equivalent to Returns

<a xmlns:ns=“. . .”> a.b.c[0] a.xpath(“b/c[1]/text()”) “text1”

<ns:b num=“1”> a.b.c[1].attr(“id”) a.xpath(“b/c[2]/@id”) “abc”

<c num=“2”>c1</c> a.b.c a.xpath(“b/c”) {“c1”, “c2”}

<c id=“abc”>c2</c> a.b a.xpath(“b”) XML element

</ns:b> a.b.attr(“num”) + a.xpath(“b/@num”) + 3

 a.b.c[0].attr(“num”) a.xpath(“b/c[1]/@num”)

an extended example of how XML elements and attributes can be accessed in SEPL.
SEPL’s convenience syntax to access XML sub-elements is equal to XPath with the
difference that a dot (.) is used instead of a slash (/). The reason for using this dot
syntax is twofold: first, the notation is compliant with the syntax of accessing ob-
ject attributes in UML’s Object Constraint Language (OCL); second, SEPL activity
diagrams are intended to be converted into an object-oriented, executable scripting
language (see Sect. 3) and XML markup is internally represented as an object tree.
The lookup of object associations is integrated in the scripting engine (see Sect. 5)
and slightly faster than applying XPath. XPath expressions may as well be used di-
rectly as can be seen in Table 2. Note that array indices in XPath start at position 1
whereas in SEPL array indices start with 0.

SEPL supports asynchronous service invocations with WS-BaseNotification [25].
The client subscribes at the service to receive notifications with a certain content
(specified using XPath). SEPL provides a convenient way to handle notification reg-
istrations and events. In Fig. 3, the UML CallBehaviorAction named subscribe
registers a notification subscription and appends the returned callback object to the
array callbacks. Within this subscription, the callback object will receive all noti-
fications matching the XPath given as the first argument input pin. The XPath points

Distrib Parallel Databases

to an XML element with name PortingResult and an attribute customer with
the respective customer identifier. The string $1 is a placeholder for the first argument
after the XPath (r.customer). Further arguments are referenced using $2, $3 etc.
After subscribing for a notification, execution continues until a CallBehaviorAction
named wait is activated, which takes the callback as an input. This action blocks
until the service sends a matching notification. An optional timeout parameter can
be specified to prevent the wait action from blocking endlessly if no notification
arrives. The predefined async object provides access to additional configurations
such as the listening port (not used in the sample).

SOAP Faults, the Web service equivalent to exceptions in ordinary programming
languages, are messages with a well-defined syntax which are sent by services to
indicate that an error occurred while processing a request. A SOAP fault message
contains a fault code, and both a brief and a detailed description of the fault’s reason
and its origin. SEPL provides means to handle SOAP Faults using a UML Excep-
tionHandler. The handler is depicted as an arrow (resembling a lightning bolt) and
points from the action in which the fault may occur to the fault handling action. Fault
handling always happens for a particular fault code (invalidCredentials in
the sample), although it is possible to use a wildcard symbol (*) to catch faults of any
type. Inside the fault handling action the predefined object fault can be used to ob-
tain details about the fault. SOAP Faults can also be thrown from inside the protocol
function using the throw action.

3 Generating executable SEPL code

The model representation of SEPL protocols in the form of UML activity diagrams
provides the required information to generate executable SEPL scripts. In the follow-
ing we present the syntax of this domain-specific script language on the basis of the
scenario protocol. We then define the mapping between UML elements and SEPL
script code. Finally, we briefly discuss the code generation algorithm.

3.1 Scenario Service Protocol

Listing 1 prints the executable SEPL code representation of the sample scenario. The
script is generated from the scenario UML model in Fig. 3. In this section we only
briefly discuss the code syntax. The complete syntax rules for SEPL code in EBNF
(Extended Backus-Naur Form) are listed in Appendix. Line numbers in the following
subsections always refer back to Listing 1.

In line 1 of the listing, the WSDL location of the factory service is set. Note that
the WSDL location is not contained in the UML representation in Fig. 3 but provided
as an additional parameter when the SEPL code gets generated. Line 3 marks the
start of the code of the protocol function port_numbers. First, the factory method
is invoked and the resulting EPR is stored with the predefined object this (line 4).
Lines 5–11 contain the login invocation, along with a fault handling routine in a try
and catch notation similar to the exception handling syntax in traditional program-
ming languages. Lines 12–23 embrace the for loop which handle each item in the

Distrib Parallel Databases

factory.wsdl = “http://infosys.tuwien.ac.at/Factory?wsdl”1
2

function port_numbers(username, password, requests) {3
this .EPR = factory.createResource()4
try {5

login(username, password)6
} catch (invalidCredentials) {7

result = fault.detail8
Destroy()9
return result10

}11
for (r : requests) {12

status = check_porting_status(r . customer, r . newProvider)13
if(!status . isPossible) {14

rollback_all()15
throw Fault(status . details)16

}17
properties . customer = r . customer18
properties . newProvider = r . newProvider19
callbacks[] = async.subscribe(20

“// PortingResult[@customer=‘ ”+ r . customer +“ ‘]”)21
schedule_porting_for(r . time)22

}23
for(c : callbacks)24

result[] = async . wait(c)25
Destroy()26
return result27
}28

Listing 1 Number porting service protocol in SEPL code

array requests. If the status result obtained from the invocation in line 13 is not
affirmative (line 14), the complete number porting operation is rolled back using the
invocation of operation rollback_all (line 15) and a SEPL protocol execution
fault is thrown (line 16). Lines 18–19 set the two WSRF resource properties cus-
tomer and newProvider. The notification subscriptions are added with lines 20–
21 by means of the predefined object async. Note that in the XPath expression the
string $1 occurring in the UML representation has been replaced with the according
parameter (r.customer). After all portings have been scheduled for asynchronous
execution (line 22), the code loops over all callbacks to wait for the result (using the
async object, lines 24–25) returned from the service using WS-BaseNotification.
Finally, the created resource is destroyed (line 26) and the result variable gets re-
turned (line 27). Note that these two lines of code are generated twice (9–10, 26–27),
because in the UML representation the Destroy invocation is accessible both from
the second loop node and the fault handler assign action.

3.2 UML-to-SEPL mapping

Table 3 gives an overview of the mapping between SEPL language constructs and
PAD elements. Column 1 contains the name or purpose of the language construct,
column 2 gives the name of the corresponding UML element, and column 3 shows

Distrib Parallel Databases

Table 3 SEPL-to-UML mapping

Language Construct UML Element SEPL Code (Example)

Protocol Function Activity function f1(param1,param2){ ... }

Service Invocation CallOperationAction login(username,password)

Invocation/Assignment CallOperationAction with result result = login(username,password)

Return Value ActivityParameterNode return result

Simple Assignment AddVariableValueAction i = i + 1

Set Resource Property AddVariableValueAction properties.prop1 = value

Subscribe Notification CallBehaviorAction ‘subscribe’ callback=async.subscribe(“//result”)

Receive Notification CallBehaviorAction ‘wait’ result = async.wait(callback)

If-Branch DecisionNode [& MergeNode] if(var1 < 10) { ... }

If-Else If-Else-Branch DecisionNode [& MergeNode] if(...){ ... }else if(...){ ... }else{ ... }

Array Iteration LoopNode with loopVariable for(r : requests) { ... }

Loop LoopNode with decider while(var1 < 10) { ... }

SOAP Fault Handling ExceptionHandler try{...}catch(invalidCredentials){...}

Protocol Fault CallBehaviorAction ‘throw’ throw Fault(status.details)

the SEPL code representation based on an example. Reserved variable names and
keywords are in bold print.

The main entity of SEPL PADs is the UML activity, which is mapped to a func-
tion in SEPL code. Just as a PAD may contain several activities, a SEPL script
may contain several functions. Service invocations in UML are modeled with Call-
OperationAction elements that are associated with input pins (operation parameters)
and the optional output pin result to assign the result of an invocation to a vari-
able. In SEPL code, invocations resemble a method call in an ordinary programming
language. As has been shown in Fig. 4, upon execution of a protocol service invo-
cation a SOAP message is constructed and sent to the target service; the response is
transformed back to the SEPL code representation and can be directly assigned to a
variable. The return value of a protocol activity in UML is indicated with an output
ActivityParameterNode. In the generated code, a return statement is inserted at the
end of the protocol function. Access to resource properties both in UML and in SEPL
code is provided by the predefined object properties. The assignment construct
follows the standard notation of a AddVariableValueAction in UML, and is mapped to
an assignment expression using an equality sign (=) in SEPL code. The base case is
that a variable gets overwritten, in which case the UML attribute isReplaceAll is
set to true. Otherwise, if this attribute evaluates to false, the corresponding SEPL
code uses a special syntax to append a value to an array, e.g., result[]=... .

Protocol faults and the actions to subscribe for and receive notifications are mod-
eled as UML CallBehaviorAction elements. Depending on the name of the element
(throw,subscribe,wait) the corresponding SEPL code is produced (see Ta-
ble 3). Decision branches are modeled in UML using a DecisionNode, where each
branch holds a guard expression denoting the associated condition. A MergeNode
may be optionally used to merge two or more branches and to continue with a single
control flow. The corresponding SEPL code contains if and else if blocks with

Distrib Parallel Databases

the conditions of the guard expressions, and optionally an else block for a branch
without guard. UML LoopNodes are used to model both loops and array iterations.
Loops hold a decider output pin, which gets evaluated before each iteration. To iterate
over all elements of an array, the LoopNode holds a loopVariableInput input pin com-
bined with a loopVariable output pin. Loops are represented as while blocks and the
code syntax for array iteration is a for block as indicated in Table 3. Finally, SOAP
fault handling in PADs is modeled using an ExceptionHandler edge, which points
from the protected action node to a handler body node. The protected code is put in a
try block and the instructions of the handler body node are embraced by a catch
block, which specifies the Fault code to be handled (invalidCredentials in
the sample) or a wildcard symbol (*) if any fault should be caught.

3.3 UML2SEPL code generator

In order to create SEPL source code from a PAD (service protocol activity diagram),
we implemented the SEPL code generator (UML2SEPL), which is briefly discussed
in the following. The Eclipse Model Development Tools (MDT) [10] serve as the
platform for SEPL modeling. With MDT, UML models can be saved in an XML for-
mat based on XML Metadata Interchange [24] (XMI). The code generator consists
of two main parts: (1) a UML factory which reads encoded UML files and builds an
in-memory object representation (see Fig. 6) and (2) the actual code writer, which
outputs the relevant SEPL code to an output stream. By making this distinction we
strive for independence from the UML notation (the file format in which the PAD
is saved). New notations can be integrated by implementing an appropriate factory

Fig. 6 Class Diagram of UML PAD In-Memory Representation

Distrib Parallel Databases

class. Our implementation is based on the file format used by the Eclipse Model-
ing Tools [10] (MDT). With MDT, users can graphically design SEPL PADs in the
Eclipse IDE and save the model to a file.

We will not discuss in detail how the in-memory model is created from the MDT
AD file as this involves mainly parsing the XML markup. A complete discussion of
the code writer algorithm is also out of the scope of this paper. In short, the proceeding
of the code writer is similar to the visitor pattern [15]: basically it iterates over all
activities and calls a method visit, which recursively visits all nodes and outputs
corresponding SEPL code.

4 Service protocol hosting

The SEPL client implementation, which is discussed in more detail in Sect. 5.1, al-
lows for the client-side execution of service protocols. Client-side protocol execution
has some drawbacks. For one thing, asynchronous communication with services re-
quires the client to open a separate port to listen for notification messages. Secondly,
client applications require the SEPL client library files, in addition to standard Web
service libraries. We therefore provide a solution for clients to launch a protocol ex-
ecution with a standard SOAP client. This is accomplished by setting up a server on
which the service protocols are published as Web services themselves. We refer to
this part of the framework as SEPL Protocol Host (PH).

Figure 7 depicts the PH providing the number porting protocol introduced in
Sect. 1.2. The number porting Web service is deployed on the service provider side,
and a SOAP client is available on the client side. With the combined information of
the WSDL and SEPL documents the PH generates and publishes the Porting Protocol
Web Service, which provides the protocol function port_numbers. The description
of the protocol service is published in the Porting Protocol WSDL document, which
contains the functions of the SEPL document as WSDL operations. The client uses
a standard SOAP implementation to parse the service protocol WSDL and send an
invocation message to the Porting Protocol Web service. This service receives and
unmarshals the SOAP message and delegates the request to the PH for execution.
Note that the PH is typically published by the service provider, although it is possible

Fig. 7 SEPL Protocol Host

Distrib Parallel Databases

Fig. 8 Service protocol WSDL generation

that the PH remains with a third party (hence the dashed line between PH and the
service).

We identify three main tasks performed by the PH:

(1) generating the service protocol WSDL document from the service’s SEPL and
WSDL documents;

(2) dispatching incoming requests;
(3) executing the protocol and returning the result.

The issue with point (1) is that SEPL function parameters are untyped and that
WSDL, being based on XML, requires XSD type information of operation param-
eters. Therefore, we developed an algorithm that attempts to determine the data type
of parameters and return values of SEPL functions (see Sect. 5.2 for more details).
Using this type information, the WSDL generator outputs a WSDL operation for
each SEPL function, as well as according XML schema definitions. Point (2) is
achieved by using a WS-Addressing Action element of the format <protocol
name>:<function name>, which helps to uniquely identify a service protocol
function. This Action element is included in the portType element of the gener-
ated protocol WSDL contract. WS-Addressing enabled clients will parse the WSDL
and automatically include the appropriate Action header in their SOAP messages.
For point (3), the actual execution of the protocol, we make use of the SEPL execution
client, which will be discussed in more detail in Sect. 5.1.

Figure 8 illustrates the service protocol WSDL generation based on the imple-
mentation of the number porting scenario (compare Sect. 3). The binding style of the

Distrib Parallel Databases

Fig. 9 Connection between the SEPL framework components

Number Porting service’s WSDL is document/literal wrapped [6], i.e., the op-
eration parameter elements in the XSD are “wrapped” in elements having the same
name as the operations they are part of. The details of the message, portType and
binding sections are omitted for brevity. For the WSDL generation, with regards
to the example depicted in Fig. 8, we consider the following:

• The name of the XSD top element (wrapper element) equals the name of the pro-
tocol function (port_numbers).

• The parameters user and pass are passed to the invocation of the operation
login. The XSD types of this operation’s parameters are both string (see the
WSDLs types section), hence the type of the function’s parameters user and
pass are assumed to be of type string.

• The parameter requests is used in a for loop, which indicates that it is an
array (or sequence) of elements. In the generated WSDL this is specified using the
attributes minOccurs and maxOccurs.

• The function port_numbers returns an array of elements which are received
using notifications at run time. Since the type and content of the notification mes-
sages is not known at design time, the type of the return message in the generated
WSDL document is any.

5 Framework implementation

In this section we discuss the implementation of the SEPL framework. Firstly, we
take a look at the “big picture”, i.e., how the framework components are connected
with each other, and the details will be explained in the subsections to follow. Fig-
ure 9 illustrates the implementation of the example scenario presented in Sect. 1.2.

Distrib Parallel Databases

Fig. 10 SEPL client architecture

The scenario is based on the functionality of the Number Porting Web service
which supports porting of mobile numbers across providers. The static interface of
this service is defined in the WSDL contract, the functionality is laid down in an
according SEPL document. The SEPL Protocol Host (PH) is responsible to execute
the SEPL protocol and to expose its functionality to a SOAP Client (which represents
the end-user) in the form of invokable WSDL operations. The PH is implemented
as a Java Web Application [35] and is deployed in a Tomcat application server.1

The WSDL Generator is responsible to generate a WSDL definition containing the
Web service interface of the protocol functionality. The UML2SEPL Code Generator
converts SEPL activity diagram (PAD) models into SEPL code—an optional prepro-
cessing step which is necessary in case the Number Porting service is configured
with a PAD model instead of a SEPL source document.

If the end-user decides to execute a protocol function, a regular SOAP client is
used to parse the Protocol WSDL and to send an according SOAP message to the
PH. The Request Processor receives the SOAP message and dispatches it. Then the
request is delegated to the SEPL Client which is embedded in the Web application.
The SEPL client reads the SEPL document and executes the protocol by invoking
operations of the Factory and the Number Porting Web services. When the
execution reaches a wait statement, the SEPL client waits until the service sends a
notification message, which is received by the Notification Receiver and handed to
the SEPL client. The result of the protocol execution is handed back to the request
processor, which returns it to the SOAP client.

5.1 SEPL execution client

The SEPL client implementation has been developed in the Java programming lan-
guage. Figure 10 illustrates the structure of the engine and the responsibility of the
separate parts, in the context of the example Number Porting Web service and
the service factory. In preparation of SEPL documents for interpretation, the Code

1http://tomcat.apache.org.

Distrib Parallel Databases

Preprocessor reads SEPL protocol files and applies the necessary modifications to
convert the DSL constructs into the format of a concrete host language (i.e., SEPL
is a hybrid between embedded and external DSL [34]). The modified source code
is interpreted by a Code Interpreter, which directs the control flow of the protocol
and maintains the state of the variables. Currently, Pnuts2 is used as the host lan-
guage and the interpreter is implemented as an extension of the Pnuts scripting en-
gine. All Web service specific tasks—as part of the Core Execution—are delegated
by the code interpreter to the respective specialized parts of the client. The WSDL
Parser reads WSDL documents and parses them for operations, their parameters and
for WSRF resource property definitions. The SOAP Stack performs all Web service
invocations and mediates between the SOAP messages on network level and Java ob-
jects at high level. The SOAP stack is implemented by Daios, an efficient framework
for dynamic Web service invocation, which has been measured against other popu-
lar Web service clients with good results [18]. In the figure, arrows point from the
execution engine to the target Web service and the factory Web service to illustrate
the direction of invocation. The arrow in the opposite direction signifies the flow of
WS-BaseNotification messages which are received and processed by the WSN Pro-
cessor.

The Code Interpreter is based on the Java scripting engine Pnuts, which is extensi-
ble in so far that it supports the definition of new object types with classes that imple-
ment the interface pnuts.lang.AbstractData. These custom classes can be
seen as the DSL-specific extension to the Pnuts core. Pnuts is responsible to parse and
interpret SEPL code, whereas the SEPL extension performs domain-specific tasks
such as WSDL parsing, Web service invocations, XML processing and so forth. In
order for Pnuts to interpret SEPL code, the source needs to be adapted by the Code
Preprocessor. Pnuts cannot handle, for instance, faults in the way they are syntacti-
cally defined in SEPL catch-blocks. As a solution, the preprocessor dynamically
defines exception classes which represent the SOAP fault codes. Moreover, all string
occurrences are wrapped with a call to an initialization method, which creates an XML
instance in case a string contains valid XML markup.

5.2 SEPL protocol host

The SEPL Protocol Host (PH) is a Java Web Application based on the Web Services
Engine Axis2.3 But, unlike in Axis2 where services are statically configured, SEPL
configures all required Web services dynamically on deployment. A file sepl.xml
contains the PH configuration, which, among other things, defines the host and port
on which the PH runs, the endpoint of the notification service to be used and a list of
service protocols which are handled by this PH. Each service protocol is described as
a tuple (name,wsdl, sepl) containing its unique name, the URL of the target service’s
WSDL file and the location of the SEPL specification (either in source code or as a
UML model).

2https://pnuts.dev.java.net.
3http://ws.apache.org/axis2/.

Distrib Parallel Databases

Fig. 11 Determining the return type of a function

Upon initialization of the PH Web application, the WSDL generator is used to
construct the WSDL documents of all configured protocols. As has been mentioned
in Sect. 4, a specialized algorithm tries to determine the data types of parameters and
return values by means of a static analysis of the SEPL code. Figure 11 depicts a
flowchart containing the programmatic decisions made to determine the return type
of a SEPL function from the source code. Firstly, the source code is checked with
a regular expression to find out the number of return statements contained therein.
If more than or less than one return statement exists, the return type is set to any
(unknown). Otherwise, the (single) return statement is syntactically analyzed. If
the statement returns the result of an operation, the functions return type is the return
type of the operation (which can be extracted from the WSDL). If the statement
returns a constant value (a string, numeric value or boolean value) then the return
type is the type of the constant. If the statement returns a variable, we have to make
another case distinction. If the variable gets assigned exactly once in the function (and
assumingly before the return statement), a recursive call is made and the assigned
variable is further analyzed. If the variable gets assigned more than one time, we set
the return type to any. If no assignment to the variable in question is found in the
function, the variable must be a function parameter, in which case the return type of
the function equals the type of the respective parameter.

Determining the types of function parameters is less complicated than the types of
return values. We mentioned in Sect. 2 that parameters are final, thus an assignment
to a parameter variable is invalid and the type of parameters is preserved throughout

Distrib Parallel Databases

the function. It is therefore sufficient to find one Web service invocation instruction
in which the function parameter is used as a parameter to the invocation. This is
implemented in the PH with the aid of Java regular expressions. If a parameter type
cannot be determined by this means, its XSD type in the WSDL is set to any.

Once the protocol WSDL has been generated and published, clients use it to con-
struct SOAP invocations to the PH. The Request Processor component intercepts all
invocations, reads the WS-Addressing Action header (which contains the protocol
name) from the incoming message and delegates the request to a SEPL client instance
for execution.

6 Evaluation

In this section we perform an evaluation of the work presented in this paper. The
evaluation targets two aspects: one part is concerned with qualitative and quantita-
tive characteristics of the approach in general. In this part we spotlight the size and
readability of SEPL service protocols, as well as efficiency criteria (e.g., speed of
development, ease of maintenance). The second part analyzes the SEPL framework
performance based on an end-to-end scenario implementation, and compares the per-
formance to other possible solutions.

6.1 Qualitative and quantitative characteristics of SEPL

In the following we compare the characteristics of the SEPL language and execu-
tion framework to other possible solutions for specifying and executing intra-service
protocols.

Consider the example number porting service protocol presented in Sect. 1.2. In
principal, this scenario protocol could be specified in various ways. Our evaluation
compares the following possible techniques to solve the scenario, which target the
same goal but nonetheless constitute very diverse methods:

• hardcoding the solution, i.e., creating a client which implements the business logic,
or extending the service itself by adding a new operation. Note that a hardwired
solution may be generally undesired since it contradicts the SOA paradigm of loose
coupling [29].

• defining the protocol using the Web Services Conversation Language [36]
(WSCL). WSCL extends the static description of Web services (WSDL) and allows
to define conversational aspects such as the order in which messages need to be
exchanged. WSCL is not an executable protocol, but a guideline for the interaction
with a service (for details see related work in Sect. 7).

• creating a WS-BPEL process, which implements the functionality. The process is
decoupled from the target service and deployed in a WS-BPEL engine, which is
responsible for execution the protocol functionalities.

• developing and publishing the protocol in SEPL as described in the course of this
paper.

Distrib Parallel Databases

Table 4 Comparison of service protocol implementation variants

Client Impl./ WSCL WS-BPEL SEPL

Extend WS

Syntax GPL XML-based XML-based UML / script

Executable � × � �
Graphical tools × × � �
WSRF support client library × × �
Standardization × � � ×
Modularization possible × × � (functions)

Development speed slow medium slow fast

Maintenance recompile unconstrained redeploy ad-hoc

Dyn. correlation tailor-made × × �
Loose coupling × � � �
Impl. size (ex.) >70 LOC ∼40 constructs ∼50 constructs ∼20 constructs

An overview of the comparison is printed in Table 4. An important distinction is
that protocols expressed in WSCL are not directly executable, whereas the other vari-
ants provide all necessary details for execution. The fact that WS-BPEL and WSCL
are accepted industry standards indicates that a lot of experts are trained in these lan-
guages. However, for a person with some (Web) programming background SEPL can
be learned with reasonably low effort.

Concerning the syntax, SEPL comes in two flavors: graphical UML representation
and script code. WSCL and WS-BPEL use an XML-based syntax, and the custom
client implementation may be developed in a general purpose programming language
(GPL) such as Java. SEPL code is more light-weight and requires less instructions to
implement a protocol compared to the alternative solutions. For the presented number
porting functionality, SEPL requires only around 20 language constructs (compare
Table 3), as opposed to the hardcoded client-side implementation (using the Daios
framework) with more than 70 lines of code (LOC), the WS-BPEL process with
roughly 50 instructions and the WSCL rules with roughly 40 language constructs.
The XML-based syntax of WS-BPEL is harder to read for humans, but XML is well
suited to be processed by machines. Graphical development tools exist for WS-BPEL
and SEPL (editor for UML activity diagrams), but are generally not available for the
other variants.

SEPL has built-in support for WSRF (resource creation/destruction, identification
using WS-Addressing, access to resource properties). WSCL does not take WSRF
into account, and also WS-BPEL has no direct support for WSRF, which has been
addressed in previous works [8, 12].

Modularization is easy with SEPL, since SEPL protocols can be split up into
functions, which can be invoked from one another. WS-BPEL does not explic-
itly allow for the use of subprocesses. However, since they are also exposed as Web
services, WS-BPEL processes are recursively composable. As far as maintenance in
concerned, developers face different degrees of flexibility when a modification in an

Distrib Parallel Databases

Table 5 SEPL versus
WS-BPEL language constructs SEPL WS-BPEL

Service invocation <invoke .../>

Return value <reply .../>

Sequential control flow <sequence>...

Simple assignment <assign><copy>...

If-Else If-Else-branch <if>...

Array iteration <forEach ...>...

Loop <while ...>...

SOAP fault Handling <faultHandlers>...

Protocol fault <throw ...>...

Scope (StructuredActivity) <scope>...

Protocol function (<process>...)

Set resource property (<invoke .../>)

Subscribe notification (<invoke .../>)

Receive notification (<receive .../><if>...)

(Receive notification) <pick>...

n/a <partnerLinks>...

n/a <flow>...

n/a <correlations>...

n/a <wait>...

n/a <validate ...>...

existing service protocol function becomes necessary. Custom client or Web service
implementations usually require recompilation of the affected code parts, and a mod-
ified WS-BPEL process needs to be redeployed in the execution engine. As WSCL
is not executable but merely descriptive, no runtime constraints need to be consid-
ered. Since the script code representation of SEPL protocols is directly interpreted,
changes can be incorporated in an ad-hoc fashion at runtime. Our experience with
development of service protocols has shown that SEPL brings an enhancement in de-
velopment speed and productivity, a characteristic that is in general often attributed
to DSLs [34]. Custom implementations of service protocols or WS-BPEL implemen-
tations contain many subtle technological challenges, e.g., related to XML, XPath
or Web service technologies. SEPL abstracts from these implementation details and
provides a more readable, easy to use DSL.

Concerning asynchronous invocations, WS-BPEL imposes a difficulty: in order
for the execution engine to correlate an incoming notification message with a certain
process instance, the process definition needs to define a correlationSet with
correlation properties. However, the number of correlation property instances needs
to be defined at design time, which complicates the implementation of dynamic cor-
relations. Such correlations for asynchronous invocations are provided by the SEPL
callback mechanism.

As a final aspect of the qualitative evaluation we compare the language features
of SEPL and WS-BPEL in Table 5. The left part of the table lists features that

Distrib Parallel Databases

are available in a similar fashion in both languages, e.g., the service invocation in
SEPL and the WS-BPEL invoke element. The right part of the table lists the lan-
guage differences: features that are only partly available or can be achieved using
a workaround are printed in parentheses, and features that are not available are in-
dicated with n/a. SEPL protocols can be split up into functions, whereas BPEL
does not support explicit modularization. Manipulating WSRF resource properties
has to be performed manually in WS-BPEL by invoking the according getter/setter
operations. Similarly, notification subscriptions are achieved using custom invoca-
tions. To receive a notification with a certain message content, WS-BPEL requires a
rather cumbersome combination of receive and if elements. Additionally, mes-
sage correlation has to be manually defined, which is often prone to errors. The WS-
BPEL pick activity is used to wait for one of several possible messages, which in
SEPL can only be solved using a workaround with notifications. Finally, a number
of WS-BPEL language constructs are not available in SEPL. Selecting from differ-
ent service endpoints (partnerLinks) is not required in intra-service protocols,
parallel execution (flow) is not beneficial. Message correlations are a feature
for long-running business process conversations and deliberately not supported in the
light-weight SEPL language. Also the WS-BPEL activities wait and validate
are not provided in SEPL.

6.2 Framework performance

In the following we evaluate the SEPL framework based on the performance tests
that we carried out. The aim of the tests is to determine how much overhead
the (dynamic) interpretation of SEPL code causes, in comparison to (static) im-
plementation of the protocol directly using a SOAP client (Daios) and in com-
parison to an implementation using WS-BPEL. We consider the example proto-
col presented in Sect. 1.2 in a slightly modified version, leaving out the asyn-
chronous messaging part (subscription and notification of finished portings). The
tests are executed in seven levels with an increasing number N of number port-
ing requests (N ∈ {10,50,100,200,400,700,1000}). All tests have been run ten
times and the numbers presented in the following are average values. The test ex-
ecution has been performed on a computer with a quad core 2.8 GHz processor
and 4 GB RAM, under the Linux operating system Ubuntu 9.104 (Linux kernel
2.6.31-17). The WS-BPEL implementation of the process has been deployed in a Sun
Glassfish5 application server (version 2.1.1) using the sun-bpel-engine mod-
ule.

The results of the test runs are listed in Table 6 (average run times and standard de-
viations) and depicted as trendlines in Fig. 12. Daios denotes the time consumed by
the Web service invocation framework. The difference between the values for SEPL
and Daios reflects the overhead of the SEPL client, including SEPL code prepro-
cessing, data transformation and the actual SEPL code interpretation. The figures for

4http://www.ubuntu.com.
5https://glassfish.dev.java.net/.

Distrib Parallel Databases

Table 6 Performance test results

Daios SEPL SEPL PH ↔ WS-BPEL

Avg. S.D. Avg. S.D. Avg. S.D. t Avg. S.D.

10 52.1 7.6 327.6 14.9 874.8 158.8 1.8 1140.7 418.3

50 277.6 79.1 588.5 88.1 1044.6 156.4 2.2 1388.6 439.0

100 482.7 98.3 829.0 117.3 1288.0 164.8 2.6 1692.6 436.2

200 873.8 34.8 1295.9 54.2 1781.3 171.0 3.2 2298.0 452.7

400 1761.9 48.8 2370.3 77.5 2853.9 134.9 4.6 3526.0 421.9

700 3039.2 68.4 3903.2 92.5 4412.3 153.2 5.4 5463.6 562.3

1000 4501.4 461.1 5515.7 127.0 6000.5 315.4 9.6 7712.9 433.3

Fig. 12 Execution time trendlines for scenario protocol

SEPL PH are slightly above those for SEPL, a difference that results mainly from
the network transfer as well as (de-)serializing of the messages exchanged between
the client and the SEPL PH.

To check the statistical significance of the results, most importantly of the differ-
ence between SEPL PH and WS-BPEL, we performed a t-test for two independent
samples [19]. The t-test assumes that the test data is normally distributed. Hence,
we conducted a Anderson-Darling goodness-of-fit test [7], which revealed that, with
a 95% confidence interval, it is unlikely that the data is not normally distributed. To
compare implementation versions A and B , we calculate the value t, which is de-
fined as t := x̄A−x̄B√

(sA)2+(sB)2

n

, where x̄A and x̄B are the average (mean) run times of A

and B , sA and sB are the estimated standard deviations of the run times of A and B ,
respectively, and n is the number of iterations (10). The value of t is compared to the
critical value of t, which is obtained from the t-distribution. We target a 95% confi-
dence interval and the degree of freedom is (n−1)+ (n−1) = 18. Hence, the critical
value of t is t(0.95, 18) = 1.734. As can be seen in Table 6, the calculated
value of t is greater than the critical value (1.734) in all test levels, hence the differ-
ence in runtime of SEPL PH versus WS-BPEL is significant in this test scenario. The

Distrib Parallel Databases

value of t increases with rising test level, which suggests that the SEPL PH scales at
least as good as or even better than the WS-BPEL engine for large requests. It should
be noted that, despite the fact that SEPL performs best in our evaluation scenario,
we do not claim that SEPL is generally superior for all types of protocols and all
WS-BPEL implementations.

7 Related work

The problem of service protocol definition as discussed in this paper is essentially a
subset of the service composition problem. Modeling and description of both service
protocols and compositions can be achieved in various ways. For example, [33] mod-
els business protocols using finite state machines. To that end, a business workflow is
divided into a set of states with one initial state and a set of final states. A transition
relation defines which states are accessible from a source state and which message is
consumed when a new state is reached. Also the service protocols in [3] are modeled
as state machines. Based on a formal model to express protocols, the paper focuses on
commonalities and differences between protocols (protocol management operators)
and compatibility issues when combining or replacing different protocol definitions.
In contrast to this theoretical and foundational work in terms of its general applica-
bility, the focus of SEPL is to define directly executable protocols tailored to Web
services and XML data. State machines are not well suited for our purpose because
SEPL protocols need to exactly define the input-output transformations of data passed
from one operation to another. For modeling service protocols SEPL therefore relies
on UML activity diagrams which provide both the desired abstraction and level of
granularity.

The approach in [17] uses a Petri net based algebra as a theoretical framework for
composition of Web services. Each place represents a state, the transitions are the
operations of a service and directed arcs define the flow relation between two states.
A similar Petri net based approach has been introduced in [37]. The advantage of
Petri nets lies in the support for many flow concepts (e.g., choice, parallelism, itera-
tion) and its formal foundation. Well-known algorithms can be applied to prove the
correctness (e.g., termination, reachability of places) even for very complex compo-
sitions. On the other hand, Petri nets are unhandy to use and can grow unmanageably
large even for small or mid-size scenarios. Similar problems arise when using formal
process models based on the pi-calculus [32] for composition or protocol specifica-
tion.

The most prominent, de-facto standard service composition language is WS-BPEL
[26], which offers a broad spectrum of operations using an XML-based syntax. WS-
BPEL has a broad vendor support and is popular for its applicability to most com-
position and protocol definition scenarios. Unfortunately, WS-BPEL falls short of
supporting stateful service resources, especially their creation using factories, in an
appropriate way. [8, 12] state that WS-BPEL does not define a standard way to store
the resource identifier returned by a factory service and automatically use it in sub-
sequent invocations on the created resource. In [8] a WSRF-specific gridInvoke
operation is suggested to overcome this issue.

Distrib Parallel Databases

Other related works have been published in the field of service mashups [4], which
create new functionalities by combining services and data from heterogeneous Web
resources. For instance, the IBM Sharable Code platform presented in [20] provides a
structured DSL for defining, sharing and executing Web service mashups. The rise of
service mashups constitutes a trend towards an open programmable Web. The basis
for mashup development is an exact description of the static and dynamic service
interface, for which service protocols play an important role. Whereas mashups are
tailor-made applications and usually created in a community-driven fashion, SEPL
service protocols are an integral part of the service description that can be (re-)used
by mashup platforms and clients directly.

The authors of [13] present XL, an XML programming language for Web service
specification and composition. It is argued that current Web service implementations
have integration deficiencies: host programming languages such as Java or Visual
Basic in combination with XML documents and back-end (relational) database man-
agement systems build up a heterogeneous environment with difficulties. XML data
must be converted to Java objects and vice versa. Java objects must be marshaled
through database management interfaces (e.g., JDBC). XL attempts to address these
issues and provides features to specify Web service implementations. Similar to SEPL
functions, XL defines operations which describe service functionalities using control
flow directives (if, switch, while, for), invocations of (external) service
operations and input-output transformation. XL and SEPL are similar in the way they
handle XML data as both languages directly integrate XML processing in the syn-
tax. Both languages support XPath to access certain elements and attributes of XML
markup. SEPL additionally supports a “dot-syntax” which resembles the syntax to
access class members in object-oriented programming. XL supports XQuery state-
ments, which operate on XML data sources and serve as a replacement for queries
to external databases. In general, XL is designed to contain much of the business
logic and does not necessarily require an existing target service whereas SEPL docu-
ments are rather slender and delegate most tasks to the target service. XL and SEPL
use different conversation patterns: XL requires a conversation-URI header in each
exchanged SOAP message to identify which conversation the message belongs to,
which imposes requirements on the clients’ capabilities; SEPL, on the other hand,
creates new service instances where needed and publishes the functions as state-
less operations which do not require clients to consider any conversation-specific
aspects. XL allows for parallel execution which is not supported in SEPL. In SEPL
it is possible to perform asynchronous invocations, which XL does not directly sup-
port.

The Web Services Conversation Language (WSCL) [36] is an effort to extend
the standard Web service description (WSDL) by conversational aspects. The WSCL
specification declares that “defining which XML documents are expected by a Web
service or are sent back as a response is not enough”. Beyond the mere description
of the input and output messages, WSCL defines the order in which they may be
exchanged. WSCL is helpful to model intra-service dependencies in a general way
and to lay down the order in which interactions may occur, but fails to specify how
the interactions are connected, i.e., how the result of one interaction can become part
of the input to the next interaction. In SEPL this is possible—input and output can be

Distrib Parallel Databases

transformed directly and arbitrarily. Furthermore, WSCL allows only for distinctions
concerning the type and not the actual content of messages. In total, WSCL does not
define executable protocol functionalities but is rather a guideline for the interaction
with a service.

In WSDL 2.0 the concept of Message Exchange Patterns (MEPs) has been intro-
duced. MEPs can be seen as simple general-purpose intra-service protocols and are
therefore related to our work. However, the MEPs predefined in WSDL 2.0 are rather
simplistic (in-out, in-only, robust-in-only, . . .). Additionally, in WSDL 2.0 MEPs are
described in an informal human-readable format, and are not suitable for machine in-
terpretation. The concept of MEPs has been extended in SSDL [30], where arbitrarily
complex MEPs are used to define protocols and contracts between services. However,
SSDL has a rather different focus than the work we present in this paper—SSDL has
been proposed as an alternative to service composition languages such as WS-BPEL,
and seems not well-equipped to specify the intra-service message exchange of single
services as discussed in this paper.

8 Conclusion

In this paper we presented the SEPL framework as a solution to the problem
of intra-service protocol specification and execution. SEPL is a DSL whose fea-
tures to specify service protocols range from basic control flow directives and syn-
chronous/asynchronous invocations to fault handling and easy access to WSRF re-
source properties or elements in XML markup. Based on the definition of the
DSL, we presented the design and implementation of the three main compo-
nents of the SEPL framework: the UML-based SEPL development facilities, the
SEPL execution engine, and the SEPL protocol host (PH). The PH host offers a
convenient way to expose protocol functions as Web service operations, thereby
shifting the protocol execution responsibility from clients to the service provider
or an intermediary. The qualitative evaluation of the framework indicates that
SEPL allows efficient development of service protocols and fosters readability and
maintainability. The performance evaluation has shown that SEPL protocols ex-
ecute with a minor overhead compared to static implementation of the protocol
logic.

As part of our future work we intend to develop a suitable way to include SEPL
protocols in the WSDL definition of services, e.g., linking to a SEPL file or by embed-
ding SEPL code directly. Another possible method to communicate SEPL protocols
to service clients would be the use of WS-MetadataExchange [2]. Furthermore, we
plan to improve the algorithms to generate SEPL code and the protocol WSDL. We
also envision alternative ways to identify protocol execution instances, e.g., by means
of a conversation identifier in the SOAP header.

Acknowledgements The research leading to these results has received funding from the European Com-
munity’s Seventh Framework Programme [FP7/2007-2013] under grant agreement 215483 (S-Cube).

The authors would like to thank the anonymous reviewers for their valuable comments and suggestions
for improvement.

Distrib Parallel Databases

Appendix: SEPL syntax rules in EBNF

PROTOCOL = {ASSIGNMENT} FUNCTION {FUNCTION} ;1
FUNCTION = “function” IDENTIFIER FUNC_PARAMETERS BLOCK ;2
EOL = “\r” | “\n” | “\r\n” ;3
FUNC_PARAMETERS = “(” [FUNC_PARAM { “,” FUNC_PARAM }] “)” ;4
FUNC_PARAM = IDENTIFIER ;5
BLOCK = BLOCK2 | EXPRESSION {“;” [EXPRESSION] } ;6
BLOCK2 = “{” [EXPRESSION_LIST] “}” ;7
EXPRESSION_LIST = EXPRESSION { (“;” | EOL) [EXPRESSION] } ;8
EXPRESSION = ASSIGNMENT | STATEMENT_EXPR ;9
ASSIGNMENT = IDENTIFIER “=” ASSIGNABLE ;10
ASSIGNABLE = INVOCATION | CONSTRUCTOR | (XML “;”) | PRIMARY_EXR;11
STATEMENT_EXPR = IF_STMT | WHILE_STATEMENT | DO_STATEMENT |12

FOR_STATEMENT | “break” | “continue” | RETURN |13
INVOCATION | TRY_STATEMENT | “throw” EXPRESSION ;14

IF_STMT = “if” “(” EXPRESSION “)” BLOCK {ELSEIF_NODE} [ELSE_NODE] ;15
ELSEIF_NODE = “else” “if” “(” EXPRESSION “)” BLOCK ;16
ELSE_NODE = “else” BLOCK ;17
WHILE_STATEMENT = “while” “(” EXPRESSION “)” BLOCK ;18
TRY_STATEMENT = “try” BLOCK2 { CATCH_BLOCK } [FINALLY_BLOCK] ;19
CATCH_BLOCK = “catch” “(” IDENTIFIER “)” BLOCK2 ;20
FINALLY_BLOCK = “finally” BLOCK2 ;21
DO_STATEMENT = “do” BLOCK2 “while” “(” EXPRESSION “)” ;22
FOR_STATEMENT = “for” “(” (IDENTIFIER “:” EXPRESSION) |23

({ASSIGNMENT} “;” [CONDITION] “;” {ASSIGNMENT}) “)”24
BLOCK ;25

RETURN = “return” [ASSIGNABLE] ;26
NUMBER = INTEGER | FLOATING_POINT ;27
DIGIT = “0”..“9” ;28
INTEGER = DIGIT { DIGIT };29
FLOATING_POINT = INTEGER “.” INTEGER [EXPONENT] | INTEGER EXPONENT ;30
EXPONENT = (“e” | “E”) [“+” | “-”] INTEGER ;31
LETTER = “a”..“z” | “A”..“Z” | “_” ;32
IDENTIFIER = LETTER { LETTER | DIGIT } ;33
NOT_QUOTATION_MARK = “\x0020”..“\x0021” | “\x0023”..“\xffff” ;34
STRING = “\’ ” {NOT_QUOTATION_MARK | “\\\” ”} “\’ ” ;35
STRING_ANY = {NOT_QUOTATION_MARK | “\’ ”} ;36
NCNAME = IDENTIFIER [{IDENTIFIER | “-”} IDENTIFIER] ;37
XML = “<” [NCNAME “:”] NCNAME38

{ [NCNAME “:”] NCNAME “=” STRING } “>”39
(XML | STRING_ANY) “</” [NCNAME “:”] NCNAME “>” ;40

PRIMARY_EXPR = STRING | NUMBER | IDENTIFIER | MATH_EXPRESSION;41
INVOCATION = IDENTIFIER “(” PARAMETERS “)” ;42
PARAMETERS = “(” [PARAM { “,” PARAM }] “)” ;43
PARAM = IDENTIFIER | STRING | MATH_EXPRESSION ;44
MATH_EXPRESSION = STRING | NUMBER | IDENTIFIER | UNARY_EXPRESSION |45

BINARY_EXPRESSION | “(” MATH_EXPRESSION “)” ;46
UNARY_EXPRESSION = (“!” | “-” | “ ˜ ”) MATH_EXPRESSION ;47
BINARY_OPERATOR = (“+” | “-” | “*” | “/” | “%” | “<” | “<=” | “>” | “>=” | “||” | “&&”) ;48
BINARY_EXPRESSION = MATH_EXPRESSION BINARY_OPERATOR MATH_EXPRESSION;49
CONSTRUCTOR = IDENTIFIER “(” PARAMETERS “)” ;50
CONDITION = MATH_EXPRESSION ;51

Listing 2 SEPL syntax rules in EBNF

References

1. Atkinson, C., Kuhne, T.: Model-driven development: a metamodeling foundation. IEEE Softw. 20(5),
36–41 (2003)

2. Ballinger, K., et al.: Web Services Metadata Exchange (WS-MetadataExchange). http://specs.
xmlsoap.org/ws/2004/09/mex/WS-MetadataExchange.pdf (2006)

http://specs.xmlsoap.org/ws/2004/09/mex/WS-MetadataExchange.pdf
http://specs.xmlsoap.org/ws/2004/09/mex/WS-MetadataExchange.pdf

Distrib Parallel Databases

3. Benatallah, B., Casati, F., Toumani, F.: Representing, analysing and managing web service protocols.
Data Knowl. Eng. 58, 327–357 (2006)

4. Benslimane, D., Dustdar, S., Sheth, A.: Services mashups: the new generation of web applications.
IEEE Internet Comput. 12(5), 13–15 (2008)

5. Beran, P.P., Habel, G., Schikuta, E.: SODA a distributed data management framework for the Internet
of services. In: GCC ’08: Proceedings of the 2008 Seventh International Conference on Grid and
Cooperative Computing, pp. 292–300. IEEE Computer Society, Washington (2008)

6. Butek, R.: Which style of WSDL should I use? http://www.ibm.com/developerworks/webservices/
library/ws-whichwsdl/ (2003). Visited: 2010-02-03

7. D’Agostino, R.B., Stephens, M.A. (eds.): Goodness-of-fit Techniques. Marcel Dekker, New York
(1986)

8. Dörnemann, T., Friese, T., Herdt, S., Juhnke, E., Freisleben, B.: Grid workflow modelling using grid-
specific BPEL extensions. In: Proceedings of German e-Science Conference 2007, pp. 1–9 (2007)

9. Dustdar, S., Schreiner, W.: A survey on web services composition. Int. J. Web Grid Serv. 1(1), 1–30
(2005)

10. Eclipse Foundation: Model Development Tools (MDT) (2011). http://www.eclipse.org/uml2
11. Erl, T.: Service-Oriented Architecture. Concepts, Technology, and Design. Prentice Hall, New York

(2005)
12. Ezenwoye, O., Sadjadi, S.M., Cary, A., Robinson, M.: Grid service composition in BPEL for scientific

applications. In: OTM Conferences (2), pp. 1304–1312 (2007)
13. Florescu, D., Grünhagen, A., Kossmann, D.: XL: an XML programming language for Web service

specification and composition. Comput. Netw. 42(5), 641–660 (2003)
14. Foster, I., Kesselman, C.: The Grid 2: Blueprint for a New Computing Infrastructure. Morgan Kauf-

mann, San Francisco (2003)
15. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable Object-

Oriented Software. Addison-Wesley, Reading (1995)
16. Gao, Z., Luo, S., Lin, Y., Ding, D.: A grid-based integration model of heterogeneous database systems.

In: Proceedings of the International Conference on Information Technology and Computer Science,
pp. 126–129. IEEE Computer Society, Washington (2009)

17. Hamadi, R., Benatallah, B.: A Petri net-based model for web service composition. In: ADC ’03:
Proceedings of the 14th Australasian database conference, pp. 191–200. Australian Computer Society,
Darlinghurst (2003)

18. Leitner, P., Rosenberg, F., Dustdar, S.: DAIOS—efficient dynamic Web service invocation. IEEE
Internet Comput. 13(3), 72–80 (2009)

19. Lowry, R.: t-Test for the significance of the difference between the means of two independent samples.
http://faculty.vassar.edu/lowry/ch11pt1.html. Visited: 2010-03-05

20. Maximilien, E., Ranabahu, A., Gomadam, K.: An online platform for Web APIs and service mashups.
IEEE Internet Comput. 12(5), 32–43 (2008)

21. Menasce, D.: Qos issues in web services. IEEE Internet Comput. 6(6), 72–75 (2002)
22. Newcomer, E., Lomow, G.: Understanding SOA with Web Services. Addison-Wesley Professional,

Reading (2004)
23. Object Management Group: OMG Unified Modeling Language (OMG UML), Superstructure, V2.1.2.

http://www.omg.org/spec/UML/2.1.2/Superstructure/PDF/
24. Object Management Group: MOF 2.0/XMI Mapping, Version 2.1.1. http://www.omg.org/cgi-bin/

apps/doc?formal/07-12-01.pdf (2007)
25. Organization for the Advancement of Structured Information Standards (OASIS): Web Services Base

Notification 1.3 (WS-BaseNotification). http://docs.oasis-open.org/wsn/wsn-ws_base_notification-
1.3-spec-os.pdf (2006)

26. Organization for the Advancement of Structured Information Standards (OASIS): Web Ser-
vices Business Process Execution Language Version 2.0. http://docs.oasis-open.org/wsbpel/2.0/OS/
wsbpel-v2.0-OS.html (2006)

27. Organization for the Advancement of Structured Information Standards (OASIS): Web Services Re-
source Framework. http://www.oasis-open.org/committees/wsrf (2006)

28. Organization for the Advancement of Structured Information Standards (OASIS): Web Ser-
vices Resource Properties 1.2 (WS-ResourceProperties). http://docs.oasis-open.org/wsrf/wsrf-
ws_resource_properties-1.2-spec-os.pdf (2006)

29. Papazoglou, M.P., Traverso, P., Dustdar, S., Leymann, F.: Service-oriented computing: state of the art
and research challenges. Computer 40(11), 38–45 (2007)

http://www.ibm.com/developerworks/webservices/library/ws-whichwsdl/
http://www.ibm.com/developerworks/webservices/library/ws-whichwsdl/
http://www.eclipse.org/uml2
http://faculty.vassar.edu/lowry/ch11pt1.html
http://www.omg.org/spec/UML/2.1.2/Superstructure/PDF/
http://www.omg.org/cgi-bin/apps/doc?formal/07-12-01.pdf
http://www.omg.org/cgi-bin/apps/doc?formal/07-12-01.pdf
http://docs.oasis-open.org/wsn/wsn-ws_base_notification-1.3-spec-os.pdf
http://docs.oasis-open.org/wsn/wsn-ws_base_notification-1.3-spec-os.pdf
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://www.oasis-open.org/committees/wsrf
http://docs.oasis-open.org/wsrf/wsrf-ws_resource_properties-1.2-spec-os.pdf
http://docs.oasis-open.org/wsrf/wsrf-ws_resource_properties-1.2-spec-os.pdf

Distrib Parallel Databases

30. Parastatidis, S., Woodman, S., Webber, J., Kuo, D., Greenfield, P.: Asynchronous messaging between
Web services using SSDL. IEEE Internet Comput. 10(1), 26–39 (2006)

31. Peltz, C.: Web services orchestration and choreography. Computer 36, 46–52 (2003)
32. Puhlmann, F., Weske, M.: Using the pi-calculus for formalizing workflow patterns. In: Business Pro-

cess Management, pp. 153–168. (2005)
33. Ryu, S.H., Saint-Paul, R., Benatallah, B., Casati, F.: A framework for managing the evolution of busi-

ness protocols in Web services. In: Proceedings of the Fourth Asia-Pacific Conference on Conceptual
Modelling (APCCM’07), pp. 49–59 (2007)

34. Strembeck, M., Zdun, U.: An approach for the systematic development of domain-specific languages.
Softw. Pract. Exp. 39(15), 1253–1292 (2009)

35. Sun Microsystems Inc.: JSR-000154 JavaTM Servlet 2.4 Specification. http://jcp.org/aboutJava/
communityprocess/final/jsr154/

36. (W3C), W.W.W.C.: Web Services Conversation Language (WSCL) 1.0. http://www.w3.org/TR/
wscl10/ (2002)

37. Zhang, J., Chang, C.K., Chung, J.Y., Kim, S.W.: WS-Net: a Petri-net based specification model for
Web services. In: Proceedings of the IEEE International Conference on Web Services (ICWS) (2004)

38. Zhu, F., Turner, M., Kotsiopoulos, I., Bennett, K., Russell, M., Budgen, D., Brereton, P., Keane, J.,
Layzell, P., Rigby, M., Xu, J.: Dynamic data integration using web services. In: ICWS ’04: Pro-
ceedings of the IEEE International Conference on Web Services, p. 262. IEEE Computer Society,
Washington (2004)

http://jcp.org/aboutJava/communityprocess/final/jsr154/
http://jcp.org/aboutJava/communityprocess/final/jsr154/
http://www.w3.org/TR/wscl10/
http://www.w3.org/TR/wscl10/

	SEPL-a domain-specific language and execution environment for protocols of stateful Web services
	Abstract
	Introduction
	Motivation
	Example scenario
	Contribution

	SEPL-the Service Protocol Language
	Scenario service protocol
	WSRF specific SEPL features
	Advanced SEPL concepts

	Generating executable SEPL code
	Scenario Service Protocol
	UML-to-SEPL mapping
	UML2SEPL code generator

	Service protocol hosting
	Framework implementation
	SEPL execution client
	SEPL protocol host

	Evaluation
	Qualitative and quantitative characteristics of SEPL
	Framework performance

	Related work
	Conclusion
	Acknowledgements
	Appendix: SEPL syntax rules in EBNF
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

