
View-based model-driven architecture for enhancing maintainability of data
access services

Christine Mayr a,⁎, Uwe Zdun b, Schahram Dustdar a

a Distributed Systems Group, Information Systems Institute, Vienna University of Technology, Austria
b Faculty of Computer Science, Research Group Software Architecture, University of Vienna, Austria

a r t i c l e i n f o a b s t r a c t

Article history:
Received 3 August 2009
Received in revised form 18 May 2011
Accepted 18 May 2011
Available online 27 May 2011

In modern service-oriented architectures, database access is done by a special type of services,
the so-called data access services (DAS). Though, particularly in data-intensive applications,
using and developing DAS are very common today, the link between the DAS and their
implementation, e.g. a layer of data access objects (DAOs) encapsulating the database queries,
still is not sufficiently elaborated, yet. As a result, as the number of DAS grows, finding the
desired DAS for reuse and/or associated documentation can become an impossible task. In this
paper we focus on bridging this gap between the DAS and their implementation by presenting a
view-based, model-driven data access architecture (VMDA) managing models of the DAS,
DAOs and database queries in a queryable manner. Our models support tailored views of
different stakeholders and are scalable with all types of DAS implementations. In this paper we
show that our view-based and model driven architecture approach can enhance software
development productivity and maintainability by improving DAS documentation. Moreover,
our VMDA opens a wide range of applications such as evaluating DAS usage for DAS
performance optimization. Furthermore, we provide tool support and illustrate the
applicability of our VMDA in a large-scale case study. Finally, we quantitatively prove that
our approach performs with acceptable response times.

© 2011 Elsevier B.V. All rights reserved.

Keywords:
Data Access Service
DAS
SOA
Service
DAO
Data Access Object
Repository
Model-driven
MDD
Data model
Data
Database
RDBMS
Tooling
Architecture
Ecore
ORM
View-based
View
EMF
GIS
WFS
Web Feature Services
Geographic
Spatial
Non-spatial
Features
Data access
Data
Model-driven architecture
Views

Data & Knowledge Engineering 70 (2011) 794–819

⁎ Corresponding author.
E-mail addresses: christine.mayr@inode.at, christine.mayr@brz.gv.at (C. Mayr), uwe.zdun@univie.ac.at (U. Zdun), dustdar@infosys.tuwien.ac.at (S. Dustdar).

0169-023X/$ – see front matter © 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.datak.2011.05.004

Contents lists available at ScienceDirect

Data & Knowledge Engineering

j ourna l homepage: www.e lsev ie r.com/ locate /datak

http://dx.doi.org/10.1016/j.datak.2011.05.004
mailto:christine.mayr@inode.at
mailto:christine.mayr@brz.gv.at
mailto:uwe.zdun@univie.ac.at
mailto:dustdar@infosys.tuwien.ac.at
http://dx.doi.org/10.1016/j.datak.2011.05.004
http://www.sciencedirect.com/science/journal/0169023X


1. Introduction

In modern process-driven service oriented architectures (SOAs), process activities can invoke services in order to fulfill
business requirements. A service offers a well-defined interface specified by using a web service description language (WSDL)
[60]. Besides invoking services, process activities can perform human tasks, do transformations and/or invoke other process
activities. Service repositories [20,12] can be used to manage services and support service discovery at runtime. As shown in Fig. 1,
the process activity queries a service repository in order to find a suitable service for dynamic invocation (1). Typically, services
need to read or write data from a database. Nowadays, this data access is done by so-called data access services (DAS). DAS are
variations of the ordinary service concept: They aremore data-intensive and are designed to expose data as a service [54]. They can
either be invoked by another service or by a process activity directly. As depicted in Fig. 1, a service repository returns a service,
that is running on a DAS provider. Eventually, the process activity dynamically invokes the service on a certain DAS provider (2).

In object-oriented environments, DAS commonly use a layer of data access objects (DAOs) to read and write data from a
relational database management system (RDBMS). According to the JEE pattern catalog [43], the DAO pattern abstracts and
encapsulates all access to the data source and provides an interface independent of the underlying database technology. The DAO
manages the connection with the data source to obtain and store data.

1.1. Status quo

A process-driven SOA is an architectural style for developing large business applications. Accordingly, a huge number of
processes, process activities, services, and in particular data access services need to be managed. Nowadays, business process
execution languages such as [37] are used as themissing link to assemble and integrate services into a business process [21]. These
business process execution languages provide higher level control for services as they describe the services to be invoked and
which operations should be called in what sequence. In order to maintain and integrate processes and services, much research
work has been done. However, these business process languages do not integrate the semantics of an invoked service such as
which DAS reads or writes which data. In contrast, they rather regard the process internal data read and written by process
activities.

1.2. Basic problem

Unfortunately, the relationships between the DAS, the underlying DAOs, and the data storage schemes are not sufficiently
explored, yet. Fig. 2 overviews these missing links: The DAS in the service repository are neither associated with the DAS source
code, nor with the service internal documentation, nor with the data storage schemes. Accordingly, the service internal
documentation in the middle of the figure is loosely coupled with the DAS, the DAS source code and the data source schemes.
However, from our experiences, in order to efficiently maintain DAS, a further integration of the DAS, the DAS source code, DAS
documentation, and the data storage schemes is compulsory. In the followingwe describe the related problems experiencedwhen
maintaining, reusing, documenting, tracing and developing data access in a large enterprise in more detail.

1.3. Difficult maintainability

In organizations, usually data storage schemes are subject to changes. In order to efficiently maintain DAS, it is important to
know which DAS are concerned by this change. If a database table schema is redesigned e.g. in case of altering a column, it is
essential to find all DAS that read or write data from this table in order to adapt them. Accordingly, if a table is dropped, some DAS
may be obsolete and should be not be available anymore. Due to lacking integration of DAS and the data storages, further
elaboration to improve maintainability of DAS is required.

Fig. 1. Data access in a process-driven SOA.

795C. Mayr et al. / Data & Knowledge Engineering 70 (2011) 794–819



1.4. Lack of DAS documentation and traceability

Moreover, when maintaining processes in a process-driven SOA, developers need to understand the relationships between
process activities, the invoked DAS, the DAOs, and the used data storages. In order to relate DAOs to data storages, they need the
information which database tables relate to which data objects and which data objects are used by a DAO. Unfortunately,
documentation approaches to trace these relationships usually lack quality. Accordingly, most software engineers do not update
most software documentation in a timely manner. The only notable exception is documentation types that are highly structured
and easy to maintain, such as test cases and inline comments [24].

1.5. Insufficient reuse of data access best practices

DAO implementations use techniques for mapping data objects to relational databases. These object relational mappings
(ORM) have already been subjected to extensive research and development. However, in some cases there are several ways in
which the mapping can be performed, and the resulting design decisions are typically based on performance or other issues.
Attaining good software performance is often a challenging task, involving identifying causal factors for performance problems
and testing potential solutions [61]. Thus, in order to improve development productivity, there is a need to reuse these DAOs in
particular not only within teams and departments, but also within the overall enterprise or between partner organizations.
Though DAOs are critical components in terms of performance, DAOs are hardly reused. A basic reason for this is that finding a
suitable DAO for reuse among hundreds of DAOs usually is a time-consuming task.

1.6. Different stakeholders have different requirements

Moreover, different stakeholders involved in a business process should be able to understand the SOA only from their
perspective. For instance, data analysts require mainly information about which DAOs access which data, service developers
require DAOs rather as interfaces to the data, and software architects require the big picture of service/DAO interconnection.

1.7. Our approach

In smaller environments, development techniques like naming conventions and documentations may be also be useful to
handle the problems above. However, in larger-scale environments, when the number of software components grows, more
sophisticated methods to manage traceability and maintainability are necessary [29]. In this paper we attack these problems by
presenting our view-based model-driven data access architecture (VMDA) built on the following basic concepts.

1.8. Four basic concepts

In order to fulfill the requirements such as dynamic changes of data sources in a process-driven SOA, we support DAS to read
and write data from a data source. In addition, as object oriented programming (OOP) is typically used to implement services, we
focus on DAO integration into the DAS. However our architecture approach can be reused to integrate other types of data access
implementations into DAS. We use the model-driven development (MDD) [59] approach to be able to abstract DAS from a higher
level than the source code layer. Accordingly, our DAS have highly structured DAO implementations that can be used as the basis
for documenting the relationships between DAS, the DAOs and the data storages. Another useful development aspects of MDD, we
can make use of, are automatic source code generation and deployment. As service repositories such as WSRR [20] and UDDI [12]
provide management support for services, we introduce a data access service (DAS) repository storing DAS models and model
instances. More precisely, our DAS repository stores models and model instances of the DAS, the DAOs, the ORMs, the data objects
and the data storage schemes including the relationships between them. The DAS repository provides services to manage DAS/
DAOs, in particular a query service to request DAS and/or DAOs from the DAS repository by diverse search criteria. As a result,
developers can query all DAS and DAOs respectively belonging to a certain data storage schema. The other way around, all
database storage schemes can be retrieved that are used by a given DAS or DAO. In this paper, we also prove, that our DAS
repository offers fast and efficient retrieval of DAS, DAOs and data storage schemes. Our model-driven solution for better

Fig. 2. Missing links between data access services, source code, documentation and data storage schemes.

796 C. Mayr et al. / Data & Knowledge Engineering 70 (2011) 794–819



maintaining DAS in process-driven SOAs is based on the view-based modeling framework (VbMF) introduced in our earlier work
[53]. This framework aims at separating different concerns in a business process into different views. The main idea in our VbMF
approach is to enable stakeholders to understand each view on its own, without having to look at other concerns, and thereby
reduce the development complexity. The data-related extension of VbMF, the view-based data modeling framework (VbDMF),
introduces a layered data model for accessing data in process-driven SOAs [29]. The concept of separation of concerns contributes
to increase maintainability of processes, services, the DAOs and the underlying data storage schemes in process-driven SOAs.

1.9. Summary

To sum-up, our novel contribution combines four basic concepts (DAS, MDD, DAS repository, VbMF/VbDMF) in order to solve
the problems and integration gaps described above. Basically our model-driven architecture aims at improving software
development productivity and maintainability by enhancing traceability, documentation and reuse of DAS. Moreover, our
approach opens a wide range of applications in order to improve maintainability. As an example, a database query analyzer could
be integrated into our model driven data access architecture. The DAS repository could be fed with these query benchmarks in
order to evaluate the DAS and thus improve data access reuse. Furthermore, we have developed an adequate tool support based on
our architectural view concept leading to a highly inter-operable system.

This paper is organized as follows: First, Section 2 describes the related work and discusses how our work distinguishes from
the related work. Next, in Section 3 we give a basic overview of VbMF and VbDMF. In Section 4 we present our view-based model-
driven data access architecture (VMDA). Section 5 looks deeper into the DAS repository, describes the basic architectural decisions,
the underlying DAS repository services, and the data model. Section 6 shows our prototype tooling and hence describes our VMDA
from the user's point of view. In Section 7, we illustrate the applicability of our approach by an industrial case study in the area of
modeling jurisdictional provisions in the context of a district court. Section 8 underlays our approach contributions with
quantitative evidences. Finally, Section 9 concludes and outlines future activities.

2. Related work

In this section we present related work from existing literature, standards, and known uses. We also emphasize the
contribution of our work by explaining how our work compares to these related works. As our approach is composed of four basic
concepts (DAS, repository, views, MDD), we try to compare with representatives of each field. Finally, Table 1 summarizes this
comparison.

2.1. DAS architecture approaches

The most related to our work is probably the architectural approach of Zhu et al. [62]. Like our approach, they use data access
services (DAS) to address the problem of large scale data integration where the data sources are unknown at design time. More
specifically, their architecture approach proposes an integration broker service in order to establish a high level integration of DAS
into the SOA. Likewise, they focus on semantic description and discovery of DAS. However, they do not describe how these
semantic descriptions are linked with the DAS. In contrast, we propose a model-driven view-based approach to describe these
semantic descriptions used to discover DAS in a SOA.Whereas their approach specifies a high-level architecture, we rather present
a continuous approach to develop, maintain and manage DAS.

Like our approach, Resende uses DAS to manage heterogeneous data sources in a SOA environment [45]. He describes how to
efficiently handle data access using the Service Data Objects (SDO) specification. Like our approach, Resende uses DAS to access the
data. In contrast, in their solution, the DAS are based on the SDO programmingmodel in order to handle data across heterogeneous
data sources fit for a SOA environment. In our approach we use the DAS as a general abstraction layer for integrating data into the
SOA rather than defining a certain implementation technology of the DAS. Accordingly, our approach is more general, because the
DAS can be implemented on top of various service technologies such as SDO or the Java Architecture for XML Binding (JAXB) [56]
to transform XML data formats into objects of object-oriented programming languages. In our approach, for example, these XML-
to-Object transformations are encapsulated by the DAS used for uniformly accessing heterogeneous data sources.

There are several approaches for semantic knowledge discovery e.g. [48,10]. Representatively, we refer to the software
architecture of Cannataro et al. [10] for distributed knowledge discovery. The paper discusses how the Knowledge Grid can be used
to implement distributed data mining services. The services are responsible for the search, selection, extraction, transformation
and delivery (data extraction services) of data to be mined. On the basis of the user requirements and constraints, the services
automate the searching and finding of data sources to be analyzed by the data mining tools. The disadvantage of these semantic
approaches is that the semantic service discovery is more time-consuming due to the additional context and semantic matching
modules [26]. In this paper, we show that our query engine performs much better than these semantic discovery approaches. In
our view-based model-driven data access architecture (VMDA), we store structured model instances. Thus, with our VMDA, there
is no need to extract structured data from free text by semantic services. Moreover, we can reuse the high-structured DAS for
model-to-code and model-to-documentation transformations.

797C. Mayr et al. / Data & Knowledge Engineering 70 (2011) 794–819



Table 1
Comparison of related work.

Representative,
short
description/
requirement

Zhu et al. [62],
DAS architecture

Resende [45],
Service Data
Objects (SDO)

Cannataro et al.
[10], semantic
knowledge
discovery

UDDI [12],
service
repositories

Model
repository
Milanovic
et al. Model
Repository

Nissen and Jarke
[35], Multi-
perspective
modeling and
environments

Min [33],
XTRON: An
XML data
management
system using
relational
databases

Robillard et al.
[46], Concern
extraction

Nuseibeh et al. [36],
Multi-perspective
software
development

Our approach, view-
based model-driven
data access
architecture

Supports Data
Access as a
service

Yes. The integration
broker service
integrates different
data access services
and other functional
services in order to
provide the end-user
with an integrated
uniform view of
the data.

Yes. The DAS
component is
responsible to
provide
access to data
sources.

Yes. The
knowledge
directory service
is responsible for
maintaining a
description of all
the data and tools
used in the
Knowledge Grid.

Yes. A UDDI
registry must
have at least
one node that
offers a Web
service
compliant
Inquiry API set.

Yes, by the remote
access layer of the
BIZYCLE
Repository
Architecture

Not subject of
this work

Not subject
of this work

Not subject of
this work

Not subject of
this work

Yes, the DAS are
specified by
VbDMF, stored in
the DAS repository
and managed by
our VMDA

Supports
management
(CRUD) of
artifacts

Yes Yes Yes Yes Yes Yes Yes Not subject of
this work

Not subject of
this work

Yes

Supports
structured
search of
artifacts

Yes No Yes No Not specified Not specified Yes, by the
standard
XQuery
language

Not subject of
this work

Not subject of
this work

Yes, by our own
proprietary
language

Supports
different
views

Not subject of this
work

Not subject
of this work

Not subject of
this work

Not subject
of this work

Not subject of
this work

No No Yes, the Concern
Mapper extracts
concerns from
the source code

Yes, the viewpoint
concept enables
stakeholders to
concentrate on
different
perspectives

Yes, our view-based
approach is based
on the concept of
separation of
concerns. Different
views are tailored
to the requirements
of certain
stakeholders.

Supports
different
modeling
levels

No No No No No Yes, due to
separation of
multiple
perspectives
(meta – meta
model level,
conceptual
modeling level,
model level,
instance level)

No No No Yes, our VMDA
supports storing
models and model
instances.

Tool support Yes, they developed
two major
prototypes

No NO There are several
UDDI
implementations
e.g. [12]

Yes, the BIZYCLE
repository has
been
prototypically
implemented
using J2EE
technology and
JBOSS as the
application server.

No Yes, by
performing
XQuery in
a GUI

Tool support by
Concern Mapper,
an Eclipse plug-
in for
experimenting
with techniques
for advanced
separation of
concerns.

The Viewer is a
prototype environment
supporting the
ViewPoints framework
developed by the
Distributed Softw
are Engineering
Group at Imperial
College.

Provided by the
view-based
repository client

798
C.M

ayr
et

al./
D
ata

&
K
now

ledge
Engineering

70
(2011)

794
–819



2.2. Service repositories

Our work is inspired by current web service registry standards such as UDDI [12], ebXML [38], WSRR [20], andWSIL [9]. Like our
approach, EbXMLweb service registries [38] have interfaces that enable submission, query, and retrieval of the contents of the registry.
Standards such as UDDI have enabled service providers and requesters to publish and find services of interest through UDDI Business
Registries (UBRs), respectively. However, UBRs are not adequate enough for enabling clients to effectively find relevant web services
due to a variety of reasons [2]. E.g. due to missing key words and unsatisfactory documentation retrieving DAS is often impossible.
Consequently, there is a need toutilize requester and service context during thediscovery process [49]. In our approach,we can search
forDAS bymore sophisticated criteria. Known information about theunderlyingdatabases, tables, columns, andORM frameworks can
be exploited for a more targeted DAS search and thus enable us to achieve better search results in less time. In order to integrate our
DAS repository into a process-driven SOA,we adopted the basic CRUD interface abstractions, used in these approaches, and integrated
them into our DAS repository architecture.Moreover, these service repositories such as UDDI [12] strictly separate the interfaces from
their implementation. In contrast to these approaches, our VMDA integrates the DAS and their implementation, and we can thus
provide a high-quality documentation of currently available and deployed DAS. This documentation can comprise both the DAS,
contingently underlying DAOs encapsulating the database queries, as well as the data storage schemes.

2.3. Model repositories

There are many model repositories that store meta models, models and model instances such as [32,35]. An interesting
approach is the one of Milanovic et al. [32] who present the design and implementation of a repository that supports storing and
managing of various artifacts such as meta-models, models, constraints, meta-data, specifications, etc. They illustrate the
repository's datamodel specifying the stored artifacts and artifact meta-data. Furthermore, they give an overview of the repository
architecture, and describe how to manage artifacts from the repository point of view. However, they do neither specify client–
server interactions nor how to synchronize with other repositories. In our work, we also describe the basic repository services
from a user's point of view.

Nissen and Jarke's encouraging work proposes repository support for goal-oriented inconsistency management in
customizable multi-perspective modeling environments [35]. Their repository approach aims at integrating meta–meta-models,
meta-models, conceptual models, and model instances. Thus, Nissen and Jarke focus on the relationships between the different
modeling levels. Like their approach, our repository approach stores meta models, models and model instances and manages
theses artifacts. However, in contrast to creating new perspectives for each modeling level, we concentrate on creating views
within a specific modeling level in order to enable stakeholders to focus on several sub views of the overall model instance.
According to the concept of separation of concerns, in our work, database administrators can focus on the Physical Data View
describing database tables while DAO developers can focus on describing DAOs of the DAO view. In contrast, Nissen and Jarke's
enable the representation of conflicting perspectives, more precisely of different modeling levels, by adding a separation
mechanism called modules to the formal conceptual modeling language Telos. Consequently, they only present requirement-level
specific views for stakeholders focusing on a concern with a certain modeling levels. Besides supporting modeling-level specific
views, our views can even be domain-specifically tailored to the stakeholder requirements.

Min et al. [33] present an XML data management system using a relational database as a repository that translates a
comprehensive subset of XQuery expressions into a single SQL statement. They provide powerful searching using the standard
XQuery language. However, e.g. in order to create source code from the defined models, the models are often based on a meta-
model. Hence, if the models contain embedded meta-data elements, then using XQuery to query the model elements, might be
very complex for stakeholders who do not know the underlying meta-model. On the contrary, we use a lightweight easy-to-learn
language based on key word search conditions which fulfills the requirement to search viewmodel instances and viewmodels by
different search criteria. Thus, our simple search language supports user-friendly key word search in XML models whereas Min
et. al. 's approach lacks usability, when stakeholders only have a limited knowledge of the meta-data within XML models.

2.4. View-based approaches

To the best of our knowledge, up to now there is no work that explicitly proposes a view-based model-driven architecture for
managing and maintaining DAS. However, there are many approaches using views in order to enhance maintainability and
traceability. In particular, our view-based concept is similar to concerned-based and multi-perspective software development
approaches:

Robillard et al. [46] present a system called ConcernMapper in order to enable a simple view-based separation of scattered
concerns. The basic idea of ConcernMapper is to allow developers to associate parts of a program with high-level concerns. Their
approach supports developers in development and maintenance tasks involving scattered concerns by allowing them to organize
and view the code of a project in terms of high-level abstractions called concerns. Like our approach, an extensible platform is
intended to provide a simple way to store and query concern models. However, the concerns are only subject to developers,
whereas our view-based models can be tailored to the requirements of diverse stakeholders. Moreover, concerns can only be
retrieved, when the relevant source code section has beenmapped to concerns, before. Due to our model-driven approach, we can
retrieve all model elements and their relationships by diverse search criteria. Thus our view-basedmodel instances can be used as
the basis for model-to-documentation transformations.

799C. Mayr et al. / Data & Knowledge Engineering 70 (2011) 794–819



Nuseibeh et al. [36] examined method engineering in the context of multi-perspective software development, as exemplified
by the ViewPoints framework. In order to manage the diversity in composite systems they define ViewPoints, like our views, to be
loosely coupled, locally managed, and distributable objects that encapsulate representation knowledge, development process
knowledge and specification knowledge about a system and its domain. Thus a single ViewPoint contains a partial specification
described in a formal notation and developed by following a particular development strategy. In contrast to our approach, their
view-based solution is an organizational framework. Moreover, our DAS repository is designed to store loosely coupled models
that have defined connection points to support a flexible integration within the models. In addition, due to our model-driven
approach, our model instances can be transformed to other outputs such as source code and documentation.

2.5. Model-driven frameworks and other developmental related work

Nowadays, there is still a missing link between the programming components and the data storage schemes [29]. This gap
results in several object-relational mapping (ORM) problems [17]. There are two common model-driven frameworks, so called
cartridges that, as our approach, can close the gap between the programming components and the data storage schemes. In this
paragraphwe developmentally compare the models, because to the best of our knowledge there is no literature describingmodel-
driven solutions in order to bridge the gap between DAS, DAOs and database queries. As our DAS/DAO models are based on our
VbDMF [53], data access related models in other model-driven frameworks, such as AndroMDA's EJB3 cartridge [3] and the Fornax
platform [16], are also related to our approach. AndroMDA's EJB3 cartridge [3] and the Fornax platform [16] respectively generate a
persistent tier from the DAO models. Each DAO model specifies the DAO operations encapsulating the database queries. These
UML-based modeling frameworks provide elaborated models for specifying DAO operations with Hibernate [18]. However, they
do not focus on supporting different ORM frameworks nor on integrating different-level views tailored to the requirements of
certain stakeholders.

Finally, SVN/CVS version management systems are closely related to our approach. These systems can act as a DAS repository
by historicizing all versions of DAS/DAO model instances. However, this approach has some major limitations: When developers
want to reuse committed source code from the version management system, they have to check-out the specific components,
provided that they know exact names (or at least roughly the names) of the components that should be reused. However, if they
do not know the exact name of a component to be reused, all DAS/DAOs have to be checked-out from the version management
system. Hence, a local full text search is necessary to find DAS/DAOs by a keyword, e.g., by a column of a database table. In contrast,
our DAS repository provides searching mechanisms to retrieve suitable DAS/DAOs by diverse search criteria with acceptable
response times.

3. The view-based data modeling framework

In this section, we present our view-based datamodeling framework [29] used tomodel the viewsmanaged by our view-based
model-driven data access architecture (VMDA).

3.1. Motivation

When the number of services as well as the data access services (DAS) in a process-driven SOA grows, the complexity increases
along with the number of process elements. When developing and maintaining data access services (DAS), stakeholders are
interested in different concerns. System architects typically focus on the system's runtime configuration and thus concentrate on
the business process execution endpoint of the process flow e.g. described by BPEL [37], the service endpoints, and the database
connections. On the contrary, business process developers need an overview of the elements of a process flow such as the process
activities. As process activities can invoke DAS, business process developers, like the DAS developers, are also interested in basic
DAS description elements such as DAS operations, endpoints of running services, the messages, and the data types. When
implementing DAS, the DAS developers also need to view descriptions of the underlying DAO operations in order to invoke them.
In addition, they need to know available database connections in order to test the DAS. In contrast, DAO developers focus more on
the DAO operations with the objection relational mappings (ORMs) between the database tables and the data objects. For this,
they also need an overview of the data storage schemes. In order to test the DAOs, like the DAS developers, the DAO developers
need to know available database connections. Database administrators are primarily interested in the database connections of a
DAS. Finally, database designers typically only need a view of the data storage schemes in order to describe the data model. The
concept of separation of concerns aims at reducing this complexity by enabling stakeholders to focus on their own concerns. In our
approach, we apply the concept of separation of concerns and use a view-based modeling framework specifying views tailored to
the requirements of different stakeholders. Accordingly, stakeholders can concentrate on their own concerns without keeping
themselves busy with unnecessary details [53].

3.2. Basic overview of the view-based modeling framework

The view-based data modeling framework (VbDMF) is an extension of the view-based modeling framework (VbMF). VbDMF
contains the basic views, for modeling DAS in a process-driven SOA. Fig. 3 illustrates the relationships between VbMF and VbDMF:
The rectangles in Fig. 3 display the basic models of VbMF whereas the ellipses denote the data-related models of VbDMF. In VbMF

800 C. Mayr et al. / Data & Knowledge Engineering 70 (2011) 794–819



and VbDMF new architectural views can be designed, existing models can be extended by adding new features, views can be
integrated in order to produce a richer view, and using transformations platform-specific code or documentation can be generated.
VbMF basically consists of the following views:

• The Core View model is the basic VbMF model and is derived from the Ecore meta-model [50].
• The Flow View model describes the control-flow of a process.
• The Collaboration View model basically describes the service operations.
• The Information View model specifies the service operations in more detail by defining data types and messages.
• The Service Repository View model specifies a combined view by integrating the Collaboration View and the Information View.

As displayed by the dashed lines in Fig. 3 the view models of VbDMF extend the Information View model of VbMF. The dotted
lines in the figure are used to display view integration that is used by the DAS Repository View to integrate the Collaboration View,
the Information View, the ORM View, the User View, and the Data Object View to produce a combined view.

3.3. View-based Data Modeling Framework (VbDMF)

In the following, we specify the VbDMF models, shown in Fig. 3, in more detail. Please note, that, in this paper, the DAOs are
only one representative for all other types of DAS implementations. As nowadays, the object-oriented programming (OOP)
paradigm is typically used to implement services, we use the DAO pattern as exemplary DAS implementation of use throughout
the paper. Moreover, as our VMDA is intended for use in larger environments, we propose ORM instead of the more primitive Java
Database Connection (JDBC) interface to access the data.

3.3.1. Database (DB) Connection View model
The Database Connection View model describes the database connections, each comprising a list of user-defined connection

properties. Typically, they are the system architects and database administrators who need an overview about the database
connections.

3.3.2. Physical Data View model
This view model is primarily intended for database designers, and DAO developers who rely on detailed physical data design.

The Physical Data View integrates the Database Connection View.

Fig. 3. VbMF and VbDMF.

801C. Mayr et al. / Data & Knowledge Engineering 70 (2011) 794–819



3.3.3. Data Object View model
In object-oriented programming languages, data to be defined are ordinary objects [57]. We provide a conceptual, technology-

independent model integrated by the ORM View model and the DAO View model. The Data Object View is typically used by the
DAO developers.

3.3.4. Object Relational Mapping View model
The Object Relational Mapping (ORM) View model is a technology-dependent model that provides the basis for specifying

object relational mapping mechanisms in VbDMF typically specified by the DAO developers. In order to support special features of
ORM frameworks such as Hibernate [18] and Ibatis [19], developers should specify a new technology-dependent model by model
extension. The basic model specifies a mapping between the Data Object View and the Physical Data View.

3.3.5. DAO View model
The DAO Viewmodel basically specifies the DAO operations to read andwrite from a data storage. The view integrates the Data

Object View and is typically used by the DAO developers.

3.3.6. User View model
The User View model gives an overview of the registered and published DAS, and the users who registered and published the

DAS.

3.3.7. DAS Repository View model
The DAS Repository View model is a combined view model. The DAS Repository View integrates the Collaboration View, the

Information View, the Object Relational Mapping (ORM) View, the Data Object View and the User View. As a result of this view
integration, a DAS repository service can process arbitrary queries for retrieving a specific DAS operation or an underlying DAO
operation by joining elements from different views.

To summarize, VbMF and VbDMF focus on reducing the development complexity in process-driven SOAs. By exploiting the
concept of separation of concerns, we enable stakeholders to concentrate on tailored views. By themechanism of view integration,
it is possible to combine these tailored views. In this way, we can, in particular, connect the DAS, DAOs and data storage schemes.

4. Architecture overview

In this section we present the big picture of our view-based model-driven data access architecture (VMDA). As already
mentioned in Section 1, our VMDA unifies the following four contributions:

1. Using DAS to be independent of the underlying data sources
2. Specifying DAS models/model instances making use of the advantages of MDD
3. Applying VbMF/VbDMF to separate the DAS models/model instances into different view models/views
4. Establishing a DAS repository to manage the DAS view models and views

In the following we explain the VMDA components depicted in Fig. 4: There are many solutions of use based on model
repositories to efficiently manage structured elements [22,8]. In this paper, we also take advantage of a model repository to
manage both the DAS/DAO view models specifying the view model instances and the view model instances describing the DAS and
DAOs. By the way, we use the term view to refer to view model instances throughout the paper. Our data access service (DAS)
repository is the main part of our VMDA, as it is used to manage the view model instances and view models of the DAS, DAOs, the
underlying data storage schema, and the relationships between them.

In order to manage these view models and view model instances properly, the DAS repository provides a query service to
discover the DAS and the underlying DAOs by different search criteria. Via the query service both view models and view model
instances can be retrieved. Our query service uses a query pre-/post-processor to perform query transformations to translate
proprietary query languages into valid database queries. One of many possible implementations to translate proprietary, platform-
independent query languages into platform-dependent languages can be found in [6]. In Section 6.2.1 we define our own
proprietary query language that is used by our prototype implementation to query view models and views by different search
criteria.

The registration service stores the viewmodels and viewmodel instances in the DAS repository. After registering a viewmodel
or view model instance, only a limited group of persons is permitted to query the registered information. In order to enable this
group to test the registered views, the registration service can invoke the build/deploy service in order to make the DAS views
available on a certain data access service (DAS) provider. In order to give another few developmental aspects, the build/deploy
service uses a view-to-code transformator in order to generate source code from the defined view model instances. For source
code generation, we use the Xpand language of the Eclipse Model To Text (M2T) project [51]. After source code generation, the
DAS can be automatically built and deployed on a certain DAS provider. The DAS provider information can be optionally set by the
client or by the DAS repository's build/deploy service.

After successfully testing a DAS/DAO, the views can be published to selected persons, teams, departments, or companies. In
order to accomplish this, DAS repository clients have to publish the DAS views via the publication service. Once a DAS is published,
it can be queried by extended user groups. In addition, once deployed, users of other repositories such as service repositories can

802 C. Mayr et al. / Data & Knowledge Engineering 70 (2011) 794–819



be informed about the deployed services. Besides views, users can publish viewmodels in order to provide them to other users and
groups. Hereto, the publication service invokes the synchronization service that publishes the DAS to the other repositories. The
synchronization service handles synchronization problems arisingwhen data synchronized to the other repository does notmatch
the data currently at the constituent repository [1]. This may occur, for instance, if a DAS endpoint, stored redundantly in both the
DAS repository and in a service repository, changes. If so, there is a need to replicate the new DAS endpoint from the service
repository to the DAS repository or inversely. The synchronization service synchronizes viewmodel instances, but no viewmodels.
The reason for this is that the view models specify the view model instances and are thus dedicated only to the DAS repository. In
addition, besides publishing the DAS views to the service repository, we could also replicate views to other repositories. In
example, storage schema relevant views such as the Physical Data View could be synchronized with a schema repository [7].

The business process application can invoke the deployed DAS running on a specific DAS provider endpoint. Moreover,
according to a process-driven SOA, a business process can dynamically query suitable services from the service repository and
invoke these deployed services on a certain DAS provider. By the way, in this paper we do not focus on dynamic invocation of
services, however, in order to describe our approach we keep the whole SOA in view. In order to enable users to comfortably
specify the view models/views and to access the repository services, we use a view-based repository client based on VbMF and
VbDMF. The view-based repository client exploits the concept of separation of concerns and hereby improves maintainability of
the data accesses in process-driven SOAs [47]. We present our view-based repository client implementation in Section 6.

In this section we have given a basic overview of our VMDA. In the next section we describe the central DAS repository in more
detail.

5. The Data Access Service (DAS) repository

As the DAS repository is the central component of our VMDA,we go deeper into the basic architectural decisions that have to be
made while designing a DAS repository. Secondly, we present the services for querying, registering, publishing and synchronizing
the DAS repository artifacts in more detail. Finally, we focus on the entities of the repository's view-based data model.

5.1. Basic architectural decisions

5.1.1. Stored artifacts
During the design of a DAS repository, a variety of architectural decisions have to be made. A basic architectural decision is

whether to store viewmodels and/or viewmodel instances in the DAS repository. In order to quantify the number of viewmodels
and viewmodel instances in the DAS repository, as shown in Fig. 3, in the current version of VbMF/VbDMF, a DAS can be described
using 12 views, and each view is described by a view model. Thus, in order to describe 100 DAS, 1200 views and 12 view models

Fig. 4. View-based Model-driven Data access Architecture (VMDA).

803C. Mayr et al. / Data & Knowledge Engineering 70 (2011) 794–819



have to be stored in the DAS repository. In this case, the number of viewmodels stored in the DAS repository accounts for 1% of the
views.

We decided to store both the viewmodel instances and the viewmodels for the following reasons: Storing the viewmodels in
the repository enables important development aspects such as validating the view model instances. We store the view model
instances because they contain the basic elements that can be, in particular, applied to generate the runnable DAS.

5.1.2. Data redundancy and synchronization
Another decision is whether the viewmodel instances, logically belonging to other repositories, shall be redundantly stored in

both the owner repository and in the DAS repository, or solely in the owner repository. For instance, the web service description
language (WSDL) is usually owned by a service repository. If the view model instances (basically the Collaboration and the
Information View), specifying a WSDL, are registered to the DAS repository, there are two possibilities in regard to storing these
view model instances: The DAS repository can either store the view model instances redundantly in the DAS repository and
delegate the request to the service repository, or the DAS repository can only delegate the request to the service repositorywithout
storing the view model instances in the DAS repository. In both cases, as illustrated in Fig. 4, before delegating the registration
request to the service repository, the DAS repository registration service has to transform the views according to the service
specification of the service repository. Unfortunately, the service repository specification does not support structured elements.
Accordingly, without structured elements, we cannot support structured queries of view elements, which is a main contribution of
our architecture concept. For this reason we decided to store the view model instances redundantly both in the owner repository
and in the DAS repository instead of storing the data solely in the service repository. As already mentioned in Section 4, this
synchronization is only done for view model instances, but not for view models. Again, we do not need to store the view models
redundantly, because they are only DAS repository internally used basically in order to specify our DAS repository view model
instances. Below, in Section 5.2.5 we specify the synchronization service used to synchronize the data between the DAS repository
and the other related repositories.

5.1.3. Version management
When designing a repository, architects have to decide whether to add version information or not [30]. We support version

management for view models and view model instances stored in the DAS repository. Like source code in a source code version
management system has to comply with a certain version of programming language, our view model instances have to comply
with certain model versions.

With our approach, if a model lacks some features, stakeholders can register and publish a revised version of this model to the
DAS repository. Then, a lot of other developers can reuse this model, and developmodel instances complying with this newmodel.

During the publication process, a view model instance version is transferred to other repositories that are connected with the
DAS repository. In case of the service repository, we use the UDDI tModel structure to store the versioning information. The service
repository model contains a structure known as tModelInstanceInfo which in turn contains instanceDetails. The instanceDetails
data structure is extensible and allows us to add version number for the service being registered. Adding a version number to
instance details enables tModels to communicate service versioning information alongwith other information used to describe the
service [15]. Furthermore we support change log meta-data about which user inserted or updated a certain repository model and
view alternatively [30].

By the way, we do not manage different versions of the Ecore meta-model [50] that is used to specify the view models, as
mentioned before. If a new Ecore meta-model version shall be used, all view models and view model instances have to be
upgraded to comply with this new Ecore meta-model version.

5.1.4. Version compatibility
In contrast to managing view model instances of the same model version, managing view model instances belonging to

different model versions comes along with consistency problems. If a model element of a new model version has been deleted or
renamed, the query service needs to support different view model versions. As a result, querying view model instances can
become very complex. In addition, if a model element of a new view model has been renamed, search results can become worse,
because two different model elements of the older model version and the new model version, respectively, can contain the same
values.

Thus, we decide that new versions of models have to be downward compatible with previous versions. Accordingly, we permit
new viewmodel elements in order to being able to improve viewmodel definitions to be able to search for these new viewmodels
and view model instances. However we do not allow renaming and deleting view model elements, because this results in a
complex query service and worse search results. Although, this downward compatibility comes along with a limited flexibility to
define new models. For instance, if a certain element is not necessary anymore, it must not be deleted. Otherwise the new view
model version would not have been downward compatible with the previous versions. Hence, we recommend to regularly
upgrade viewmodel instances to comply with the newest viewmodels if the viewmodel version changes. Accordingly, as soon as
all view model instances are upgraded to the newest model version, it is no more necessary for the view models to be downward
compatible with older view model versions.

804 C. Mayr et al. / Data & Knowledge Engineering 70 (2011) 794–819



5.2. Services

In the following we explain the DAS repository services in more detail. Please note that all services support both view models
and view model instances.

5.2.1. Query service
The query service is the most powerful part of the DAS repository's service interface. If a column of a database table has to be

modified, how to find out which DAS need to be redeployed? Typically, the modified column is part of the object-relational
mapping that in turn is encapsulated by a DAO invoked by a DAS. Thus, in order to best-possibly connect the DAS, DAOs, the object-
relational mappings, and the columns and table of data storages schemes, a structured search is necessary. The basic idea of the
query service is to retrieve DAS by different search criteria. E.g. by the query service, we can query DAS not only by the DAS name,
but by implementation, data storage schema and meta-data artifacts. Examples of these implementation artifacts are the member
variables of data objects that can be mapped to columns of database tables by object-relational mapping (ORM) frameworks.
Another example of implementation artifacts is DAO operations that encapsulate the data access queries in object-oriented
languages. Examples of data storage schema artifacts include data storage components such as columns, tables, and databases.
Moreover, meta-data artifacts such as affiliation and version information can be used to enable better search results [30].
Furthermore, all entities of the VbDMF model can be used as search criteria. Thus the query service is flexibly extensible for view
model changes. In Section 6.2 we present our lightweight query language used by our prototype implementation in order to query
view models and view model instances.

5.2.2. Registration service
Via the registration service, developers can register new view models/view model instances and adapt existing view models/

viewmodel instances. Still, we use viewmodel instances and views as synonyms. As shown in Fig. 5(a), the models and views are
validated. In more detail, the views are validated against their view models and the view models are validated against their view
meta-models. After successfully validating the views and models, they are stored in the DAS repository. In case of registering view
model instances, the registration service can invoke the build/deploy service in order to being able to deploy and test the DAS view
model instances on a certain DAS provider.

5.2.3. Build/deploy service
By using the build/deploy service, DAS can be deployed on a DAS provider. As shown in Fig. 4, the passed viewmodel instances

can be transformed to source code by a view-to-code transformator. Afterwards, by a build process, the source code can be
transformed to runnable code running on a DAS provider. When developing DAS, developers should firstly register and deploy the
service via the registration service. After successfully testing the DAS, they should publish the DAS to other users and repositories
via the following publication service.

5.2.4. Publication service
The view models and view model instances can be published using the publishing service. During the publishing process, the

view model instances can be registered to other repositories as well as to selected persons, teams, departments, or companies.
Fig. 5(b) depicts a basic activity workflow of our publication service implementation. Moreover, it illustrates the relationships
between the DAS repository and the service repository: If the view is a service-related view that is part of the VbMF, the view is

Fig. 5. Registration service and publication service.

805C. Mayr et al. / Data & Knowledge Engineering 70 (2011) 794–819



registered to the service repository. In this case, the publication request is delegated to the synchronization service. Likewise, data-
related views can be synchronized to a schema repository [7]. Again, the service-related views of VbMF describe the DAS whereas
the data-related views of VbDMF describe the underlying DAOs, ORMs, data objects, physical data, and database connection data.
After this synchronization process, the DAS repository's internal viewmodel instances are marked as synchronized and published.

5.2.5. Synchronization service
As we store data redundantly in both the DAS repository and other repositories such as the service repository, we have to deal

with synchronization problems. The synchronization service is used to replicate viewmodel instances between the DAS repository
and other repositories. Hereto, new view model instances have to be replicated from the DAS repository to the other repositories.
Likewise, related data from the other repositories need to be transferred to the DAS repository.

On one hand, frequent data replications have to be done to synchronize the repositories, but it is inefficient if the repository
data seldom change during a certain interval. On the other hand, without frequent crawling, the repository content may become
inconsistent with the other repository [1]. Therefore, our DAS repository synchronization service acts as a Push Model Data
provider to directly push publication requests from the DAS publication service to other repositories such as to service repository
side. In example, when the DAS endpoint in the Collaboration View has been adapted, the adapted Collaboration View is published
to the DAS repository, and finally the new DAS endpoint need to be replicated to the service repository. In contrast to these service
repositories such as UDDI [12], that cannot delegate incoming registration requests to other repositories [62], the DAS repository
synchronization service can actively replicate DAS repository data to other repositories. Hereto, the DAS repository
synchronization service transforms the view model instances to comply with the Application Programming Interface (API) of
the other repository services.

In literature several approaches for repositories to implement better synchronization [1,13] are proposed. In all these solutions,
best estimation and syndication can be reached with the pull based model [1]. The problem is, that the UDDI [12] service
repository, such as many other repositories, implement no synchronization model, neither the pull-based nor the push-based
synchronization model. Thus, our DAS repository uses active monitoring mechanisms to transfer changes from other repositories
such as fromUDDI to the DAS repository. By these activemonitoringmechanisms, the DAS repository synchronization servicemay
find the latest information of UDDI transparently and conveniently [13]. During this periodic monitoring, the synchronization
service checks, if there exist newer data or newer versions of data in the UDDI. Afterwards, the new UDDI data is re-engineered
into the DAS repository.

Above we have described the services from an architecture point of view. For how to use the services from the user's point of
view please refer to our Tooling Section 6. Moreover, in our Case Study Section 7 we apply the DAS repository services using
concrete use cases.

5.3. The DAS repository view model

In Section 3, we have given a basic overview of VbMF and VbDMF. In this section we present our DAS Repository View model
with a decisive goal in the context of this paper: by supporting introspection of DAS model instance data, underlying DAO model
instance data, dependent ORM-specific model instance data and database configuration model instance data, it enables to bridge
the gap between these data in order to improve documentation and maintainability.

In the following we go deeper into describing the model entities of the DAS Repository View model. As already mentioned
before, our VbMF/VbDMF can be used tomodel arbitrary DAS implementations. However, in this paper, we use DAOs as exemplary
DAS implementation for object-oriented environments.

In Fig. 6, we display the relationships between the model entities and their related VbMF and VbDMF views as a UML diagram.
The Database class comprises a list of connection properties e.g. database url and name. So we can query all DAS from the DAS
repository that belong to a database running on a certain location such as a host system. A Database consists of zero or more
Tables that in turn holds a list of Columns. These relationships allow us to query the DAS repository for all database operations
that read or write certain tables or columns. In object-oriented programming languages information is stored in data object
member variables. Our data model conforms to the object-oriented paradigm and contains a class Data Object Typewhich holds
a list of Member Variables. As DAOs are typically based on ORM frameworks, our model provides an object-relational mapping of
the Data Object Type to a database table (Table) using the mapping class ORM Table. The mapping class ORM Column allows for
a more specific mapping between Member Variable and Column of a table. Using this additional ORM-specific information, we
can generate the DAO source code. Furthermore we can retrieve all DAS/DAOs that are based on a certain ORM framework. Each
DAO consists of one or moreDAO Operations. Each DAO Operation holds an attribute that stores the type of SQL statement
(select, insert, update, delete). Furthermore it holds an Output Parameter and a list of Input Parameters. A parameter (Input
Parameter or Output Parameter) can either be associated with a Data Object Type or with a simple type. A simple type is
modeled as an attribute in the superclass Parameter. As a consequence of these relationships, we can query all DAO operations
from the DAS repository that read or write certain data object types and member variables. The Parameter class of the DAO View
is associated with a Business Object, of the Information View. Each Business Object has a Type and is an integration point,
that can be used to combine a specified Collaboration View with an Information View and with a DAO View respectively.
Business Objects of the Information View might go through some Transformations that convert or extract existing data to
form new pieces of data. These Transformations are performed inside a DataHandling object. The source or the target of a
transformation is an ObjectReference class that holds a reference to a certain BusinessObject. The Business Object can be

806 C. Mayr et al. / Data & Knowledge Engineering 70 (2011) 794–819



combinedwith the Message class of the Collaboration Viewmodel. The Message class basically specifies amessage, described by a
service description language e.g. [60]. The details of the Message class such as parameter types are not defined in the Collaboration
View but by a Business Object of the Information View. Therefore the Message class becomes an integration point and can be
combinedwith a Business Object of the Information View. In the Collaboration Viewmodel, the Service class exposes a number
of Interfaces. Each Interface provides some Operations. An Operation represents an action that might need some inputs and
produces some outputs via correspondent Channels. Each Channel holds a reference to a Message class. When an Operation of
the Collaboration View is related to a DAO Operation of the DAO View, the Operation class acts as an integration point of the
Collaboration View and the DAO View. The Operation class of the Collaboration View specifies the operation from the service
point of view, whereas the DAO View specifies DAO Operations from the DAO point of view with its DAO input and output
parameters. As shown in Fig. 6, each Service holds a list of Registrations and Publications. The Registration class has a
n:1 relationship with the User class because a user typically registers more than one DAS at a time. After registering a DAS, the
user can publish it. As shown in the data model, the class Publication has a n:1 relationship with the class User and with the
class Affiliation, respectively. Thus, authorizations for a certain publication can be given to affiliations or/and users. The class
Affiliation can consist of zero or more User classes.

6. Tooling: the view-based repository client

Our view-based repository client prototype, shown in Fig. 7, has been implemented as an Eclipse Plug-in to comfortably
supporting developers in modeling DAS. In the following we describe our view-based repository client in more detail.

6.1. Using the view-based repository client

The view-based repository client accesses the DAS repository by invoking its services. A detailed description of the service
interface is given in Section 5.2. The UML activity diagram displayed in Fig. 8 illustrates the interaction of the view-based
repository client and the DAS repository in more detail. We present a typical activity flow performed by stakeholders when
modeling new or adapting existingmodels. Our view-based repository client, depicted in Fig. 7, consists of several Eclipse views. In
order to connect the Eclipse views in Fig. 7 to the activities of Fig. 8, the Eclipse views and the activities are labeled with
corresponding numbers. In the following, we describe each of the depicted activities from the view-based repository client's point
of view.

• Retrieve views/models manually: Usually, if stakeholders are not firm with the DAS models and model instances, they first
acquaint themselves with the models of the Eclipse DAS repository Model View (1), before they search for a specific view. The
Eclipse DAS Repository Model View (1) lists all view models stored in the DAS repository. Stakeholders can find views and view
models manually by traversing the Eclipse DAS Repository Instance View (1), that lists all views stored in the DAS repository.

Fig. 6. DAS repository view model.

807C. Mayr et al. / Data & Knowledge Engineering 70 (2011) 794–819



• Retrieve views with search criteria: Alternatively, in order to more comfortably query views for reuse, stakeholders can use the
Eclipse Query View (2) that provides a query editor to express simple queries. On submit, a service operation request is sent to the
DAS repository query service. As a result, a response with zero or more DAS repository views is returned. With our prototype
implementation, the views are delivered as SOAP attachments from the DAS repository to the view-based repository client. The
resulting view is an Ecore XMI model instance [50]. Up-to-now, our prototype view-based repository client only supports
structured querying for views, because, from our experience in larger enterprises, the number of view models is normally much
lesser compared to the number of views (b0.5%).

• Check result set: After the views have been retrieved from the DAS repository, stakeholders such as developers can consider and
check the result set in the Eclipse Query Result Set View (3). The view-based repository client features the Eclipse-embedded
Sample Ecore Model Editor (4) in order to view models and views. When a desired view that best possibly meets their
requirements is displayedwithin the result set, developers can reuse it. Otherwise they either have to create a new view by using
the Sample Ecore Model Editor (4) or to search again for suitable views using the Eclipse Query View (2) or the Eclipse DAS
Repository Instance View (1).

• Reuse: In order to reuse a view, developers have two possibilities:
– Adapt views/models: In case of error corrections or to meet changing requirements, it may be necessary to adapt a view/model.

Editing existing views and models can be comfortably done by the Eclipse-embedded Sample Ecore Model Editor (4).
– Reuse as it is: In case of developers find a desired view/model, they can reuse it without adapting it.

• Model new views/models: If developers do not find a suitable view/model, they can model a new view/model according to their
requirements. An approach to develop newmodels from user requirements and to apply model transformations as a base for the
implementation can be found in [31]. The view-based repository client features the Eclipse-embedded Sample Ecore Model Editor
that allows developers for comfortably specifying new view model instances. We provide an overview of our modeling
framework in Section 3. If developers do not intend to model their own models, they can re-query for a desired view by the
Eclipse Query View (2), the Eclipse DAS Repository Instance View (1), and the Eclipse DAS Repository Model View (1), respectively.

• Request registration: Developers can register new DAS/DAO models and views by sending a service operation request with a
model/view as a SOAP attachment to the DAS repository (see Fig. 4). Registering a model or view is possible by right-clicking on
the context-menu within the Eclipse-embedded Sample Ecore Model Editor (4). Views neither adapted nor created are not subject
for registration. After registering the DAS/DAO views/models, they are persistently stored in the DAS repository. We use the
Xpand language of the EclipseM2T project for source code generation from the definedmodel instances. The DAS themselves are

Fig. 7. View-based repository client GUI (Eclipse Plug-in).

808 C. Mayr et al. / Data & Knowledge Engineering 70 (2011) 794–819



generated from the Information View, the Collaboration View, and the Core View. The DAOs are generated from the various
VbDMF views, the DAO View, the ORM View, and the Data Object View. As the DAO interfaces contain no ORM details, DAO
interfaces are automatically generated simply from the DAO View and the Data Object View.

• Test views/models: In order to test the views, they have to be be deployed on a test environment. After successfully testing the
views, the deployed DAS can be invoked by a business process application. In order to test themodels, developers can specify test
cases written in a conceptual schema testing language [52]. If the test fails, developers have to re-adapt the views and models in
order to fulfill their test requirements for the views/models. Afterwards, they can be published to other users and repositories. If
the test was not successful, the views/models have to be adapted to meet the test quality criteria. In this case, consequently, the
views and models have to be both re-registered and re-tested.

• Request publication: After registering a DAS/DAO, it can be published to selected persons, teams, departments, or companies (see
Fig. 4) so that they can query them. After successfully publishing the views andmodels, the authorized employees can view these
DAS/DAO views and models in the Eclipse DAS Repository Instance View (1) and in the Eclipse DAS Repository Model View (1),
respectively.

6.2. Using the query service

Finding models and model instances is a key functionality of the DAS repository. Hence, in this section we focus on how to use
the query service from the view-based repository client's point of view. For this, we, in particular, define the query language used
by our prototype implementation and secondly we analyze further support of a view-based repository client required when
querying the DAS repository.

Fig. 8. DAS repository: activity flow diagram.

809C. Mayr et al. / Data & Knowledge Engineering 70 (2011) 794–819

image of Fig.�8


6.2.1. Query language
Traditional database query languages, such as SQL and XQuery, are highly expressive but hard to learn. On the contrary,

keyword queries are easy to use but lack the expressive power [11]. We chose to define our own language to query views and
models by certain key word elements. Our lightweight technology-independent query language does not require stakeholders to
be familiar with the specific characteristics of the underlying modeling language. Likewise, in order to search for views,
stakeholders need not to be up-to-date with the Ecore meta model elements. Though, they need an overview of the view model
elements and the relationships between them. For this, in the following Section 6.2.2, we provide some GUI support.

We developed our Query Language using the Eclipse ANTLR Plug-in [4]. Fig. 9 contains a visual presentation of our Query
Language in BNF notation. Rules displayedwith an upper-case label are lexer rules, whereas the lower-case labeled rules are parser
rules. [4]. As shown, our language consists of simple conditions (see Fig. 9(d)) and boolean operators (see Fig. 9(e)). As illustrated
in Fig. 9(c), these simple conditions and operators can be used in sequence within an expression. An expression in turn can be
nested within a rule (Fig. 9(b)). Finally, the rule_with_end of Fig. 9(a) contains a rule and represents the root rule of our Query
Language Definition to be verified.

When such a query is transmitted to the DAS repository by the query service, the service can return the relevant views and
models matching the query. A project is a set of views or models belonging together. This lightweight query language is very
simple, requires minimum of training effort and fulfills the requirement to find views and models by different search criteria.

6.2.2. Further support: model element generator
In order to query views from the DAS repository by different search criteria, stakeholders need to know the view model

elements. A common problem when querying reusable objects lies in the handling of misspelled words, synonyms and
semantically equivalent words [44]. One way of addressing these issues is to limit the vocabulary, and to only allow queries drawn
from this simple controlled vocabulary [27]. Hence, our DAS repository client proposes view model elements used for the search.
The following Table 2 shows an extract of these viewmodel elements. These viewmodel elements are generated by the Function 1.

(f) MODELELEMENT_KEY (g) STRING (h) DIGIT (i) WHITESPACE

(c) expression (d) condition (e) operator

(a) rule_with_ end (b) rule

Fig. 9. Query language definition in BNF notation.

Table 2
Model element generator: result extraction.

Key word

PhysicalDataView.table.prefix
PhysicalDataView.table.name
PhysicalDataView.table.column.primaryKey.name
PhysicalDataView.table.column.type.name
DaoView.dao.type.prefix
DaoView.dao.type.name
DaoView.dao.daoOperations.name
DaoOperations.daoOperation.inputParameter.name

810 C. Mayr et al. / Data & Knowledge Engineering 70 (2011) 794–819



The function recursively steps through a view and outputs all elements from the view model itself, from its parent view models,
and from its view model references. The output gives an overview about all possible key words within a view model.

In contrast to extracting elements from viewmodels, extracting model elements from the underlying Ecore meta-model of the
EclipseModeling Framework (EMF) [50] is much simpler. The reason for this is, that the elements have only be extracted from one
Ecore meta-model instead of from several related view models.

7. Case study

7.1. Business environment

In this case study we show how our approach can be applied to Geographic Information Systems (GIS) [25]. GIS are large-scale
information systems making huge amount of spatial as well as non-spatial data available over the Internet [55]. A GIS data model
usually consists of a large number of entities [25]. There are several international standards produced by the ISO/TC 211 group that
describe data models for geographic information, information management and information services. In particular, the ISO 19119
specification [39] provides a framework for specifying individual geographic information services. On top of this specification, the
Open Geospatial Consortium (OGC) establishes several OGC Web Service (OWS) standards for spatial data. One example is the
OGC web feature service (WFS) specification [40]. WFS allows a client to retrieve and update spatial and non-spatial geographic
data, encoded in Geography Markup Language (GML) [42], an XML grammar for expressing geographical features. Such
geographical features are e.g. restaurants, hotels, sights, indoor swimming pools, cinema, schools, gas stations, shops etc. Examples
of spatial data include coordinates, height and width. Examples of non-spatial data are the school building type or the average
water temperature of indoor swimming pools. According to the OpenGIS WFS implementation specification [40], each WFS
basically provides three operations: The operation GetCapabilities indicates serviceable feature types, the operation
DescribeFeatureService provides the structure of serviceable feature types, and the GetFeature operation is able to provide
a specification of certain feature instances by certain spatial and non-spatial search criteria. Optionally a WFS can provide a
Transaction operation in order to service feature modifications.

7.2. Applying our approach to Web Feature Services

In the following we apply our architecture approach to WFS in order to enhance documentation, traceability and
maintainability of data access of WFS.

At first, there is a need to relate WFS terminology to the DAS terminology of this paper:

1. WFS vs. DAS: A WFS can read and write spatial and non-spatial data from an RDBMS. Consequently, we define WFS as
specialization of DAS.

811C. Mayr et al. / Data & Knowledge Engineering 70 (2011) 794–819



2. Web catalogue service vs. service repository: The service repository, defined in this paper, manages DAS meta-data and
provides a query service enabling business process applications to find suitable DAS by different search criteria. Accordingly, a
web catalog service is a service repository managing spatial and non-spatial WFS meta-data.

3. WFS provider vs. DAS provider: Whereas DAS are available on a DAS provider, the more particular WFS are deployed on a WFS
provider.

As shown in Fig. 10, business process applications can find suitableWFS by querying aweb catalog service [41]. Theweb catalog
service manages WFS meta-data enabling business process applications to retrieve WFS by diverse search criteria. After having
found a suitable WFS from the web catalog service, the business process application can invoke this WFS. Each WFS can either
process a request by its own or it delegates the request to another WFS. In order to process a request by its own, the WFS usually
reads or writes spatial and/or non-spatial data from a geographic database.

WFS operations such as the GetFeature operation, can handle diverse feature requests. In contrast, a DAS operation is more
proprietary by processing one single data access request. Moreover, aWFS is able to delegate a request to anotherWFS, if it cannot
fulfill the request itself. As a result, we have to extend our VbDMF model by defining new view model elements for WFS. In the
following we illustrate the necessary steps to extend VbDMFwith newWFS viewmodels and to create viewmodel instances from
these new views:

• Model new views/models: By using the Eclipse-embedded Sample Ecore Model Editor, developers can comfortably specify newWFS
viewmodels and views. In the following, we extend VBDMF by creating a new viewmodel, theWFS Information View, shown in
Fig. 11, describing specific WFS features. This WFS Information View consists of a WFS Feature Type List that is derived from the
Business Object entity of the Information View. Hence, like a Business Object entity, a Feature Type List entity corresponds to a
Parameter of the DAO View. Each Feature Type List consists of a list of Feature Type entities. Each Feature Type in turn comprises
zero or more Property Type entities and is related to a Parameter entity of the DAO View. As WFS are able to delegate requests to
another WFS, each Feature Type entity is related to zero or one Service Operation entities. Based on the VbMF and VbDMF view
models, stakeholders can model new views in order to describe specific WFS. During the modeling process the DAS repository's
view-to-code transformator has to be extended in order to generate source code from the specified WFS views. Moreover, the
queries of a WFS feature request need to be mapped to the SQL-based DAO operations [58]. This WFS Query-to-DAO translation
needs to be part of the resulting source code.

• Request registration: Developers can register the newly createdWFS views/models by sending a service operation request to the
DAS repository (see Fig. 4). After registering theWFS/DAO views/models, they are persistently stored in the DAS repository. As a
result, the view-to-code transformator generates WFS source code from the views. Furthermore, the DAS repository's build/
deploy service builds the WFS source code and deploys the resulting WFS on a certain WFS provider.

• Test views/models: Once the newly registered views and models have been successfully tested on the WFS provider, they can be
published.

• Request publication: After successfully registering new views/models, they can be published to selected persons, teams,
departments, or companies (see Fig. 4) so that they can query them.

7.3. Making use of the DAS repository

GIS usually have to manage a very large number of WFS. Moreover, eachWFS consists of different features with specific spatial
and non-spatial feature attributes. These feature attributes are stored in a geographic database. During our studies, we detected a
documentation gap between the DAOs, the underlying object-relational mappings and the underlying data storage schemes. This
makes it difficult for stakeholders such as system architects and database administrators to inspect the relationships between
these different layers. As we provide a full-blown model of the WFS, we can use this information to document the relationships
between the data storage schemes, the DAOs, and the WFS. Moreover, our approach provides the basis to view relevant parts of a

Web Feature Service (WFS) Provider

Spatial data xy 01

Non-spatial data xy 0001

Non-spatial data xy 0002

...

Non-spatial data xy 9999

Spatial data xy 02

...

Spatial data xy 99

Web Catalog Service

Database

Registration

WSDL

Query

Web
Feature
Service

Web
Feature
Service

Web
Feature
Service

Business
Process

Application

Fig. 10. Case study: WFS in OpenGIS Service Architecture.

812 C. Mayr et al. / Data & Knowledge Engineering 70 (2011) 794–819



WFS tailored to the requirements of the stakeholders at first sight. By using our view-based repository client, stakeholders can
search for particular WFS by different search criteria such as tables, columns, data objects etc.:

1. Retrieve views with search criteria: Developers can look for WFS by diverse search criteria, e.g. they can query WFS that read or
write a certain database table of certain database schema. For this purpose, stakeholders can write a query within the view-
based repository client's Eclipse Query View, in example: (PhysicalDataView.table.name=schoolBuilding AND
DBConnectionView.connectionProperties.schema=GIS). After entering the submit button, the view-based repository
client invokes the DAS repository query service.

2. Check result set: As a result, as shown in Fig. 7, a DBConnectionView and a PhysicalDataView matching the search criteria are
returned and can be viewed in the Eclipse Query Result View. The developer can acquaint himself with the WFS and, for
example, contact the WFS owner. If the desired PhysicalDataView or DBConnectionView is in the result set, the WFS can be
reused. Otherwise, a new search can be started.

Next, we show, how the DAS repository's query interface and the view-based repository client can be exploited in order to
selectively adapt existing views. Let us assume that the database connection settings of several WFS change, e.g. because the
underlying geographic database is transferred from one server to another server. Usually, these database connection settings are
part of the WFS/DAO source code. With our approach, database administrators can adapt the settings without help of the WFS/
DAO developers by performing the following steps:

1. Retrieve views with search criteria:Database administrators ask the DAS repository's query service via the view-based repository
client if there exist any WFS accessing a database running on a certain server. Hereto, they type the following query in the
Eclipse Query View: (DBConnectionView.connectionProperties.server=http://192.168.1.11:8080)

2. Check result set Afterwards, the query service returns a list of DBConnectionView views matching the query.

Fig. 11. Case study: extending VbDMF by the WFS information view.

813C. Mayr et al. / Data & Knowledge Engineering 70 (2011) 794–819

http://192.168.1.11:8080


3. Adapt views: The database administrators use the view-based repository client to adapt the existing view model instances.
By using the Eclipse-embedded Sample Ecore Model Editor, they can change the value of the DBConnectionView.

connectionProperties.server model element from http://192.168.1.11:8080 to http://192.168.1.12:8080.
4. Request Registration: Afterwards, database administrators have to register, build and deploy the adapted WFS by invoking the

register service with the new DBConnectionView as SOAP attachment.
5. Test: Then, the WFS with the newly configured database connection need to be tested.
6. Publish new DAOs: After registering the successfully tested WFS, database administrators publish the WFS views to the same

group as before.

Hence, as by using DAS, by using WFS, applications can read and write data from a higher level than the DAO layer. When an
underlying technology changes, concerned stakeholders can focus on the specific view and perform the adaptionwithout the need
to involve other stakeholders. In the following Section 8 we illustrate further use cases in order to quantitatively evaluate our
approach.

8. Evaluation

In this sectionwe describe illustrative use cases in order to quantitatively evaluate our approach. In particular, each of these use
cases looks for geographic web feature services (WFS) by certain search criteria. We have already introduced WFS of large-scale
GIS applications in Section 7.

According to the analysis of Banker et al. [5] who analyzed the evolving repositories of two large firms, programmers arewilling
to bear extremely low search costs before choosing to just write their own objects. Moreover, improved product performance
provides maximum satisfaction to the customers [34]. Accordingly, developers that are not fully positive about the performance of
the DAS repository would not use it. Thus the response time of the DAS repository is one of the key non-functional requirements
that needs to be fulfilled, so that developers can gain the best-possible benefit from the DAS repository. As querying the DAS
repository is the key functionality in our VMDA, we quantify the response time and the scalability of exemplary use cases invoking
the DAS repository's query service.

There are two main approaches in order to map models to an RDBMS [30]: an XSD model mapping approach and a domain
model mapping approach. According to [30], an XSD model mapping approach should be preferred to using a domain-based
mapping approach. In our example this means, we should use an XMI-basedmapping approach tomap Ecore elements to database
tables. However, we will show that even a common domain-model-based approach shows acceptable performance results. Thus
each entity of the VbDMF models displayed in Fig. 6 is physically mapped to a database table. This basic mapping from entities to
tables is done both for the view model entities and for the Ecore meta-model entities, so that we can both support structured
querying for views and view models.

In the following, we solely describe the cases frequently fulfilled by stakeholders developing and maintaining geographic WFS
when using our DAS repository. These use cases firstly result from our study of analyzing data access in service-oriented
environments in a large enterprise and secondly from analyzing WFS of commercial [14] and open-source [28] GIS. They
demonstrate how the relationships between theWFS, the DAOs, and the data storage schemes can be exploited to query data from
the DAS repository.

A Java-based test client application performs each use case query by invoking the DAS repository's query service by the given
search criteria. After invoking the query service, our test client application receives the according result set. As we want to test the
scalability of our repository, for each exemplary use case, we invoke different query service implementations, each accessing a
certain repository database of 10, 100, 1000, 10,000, and 100,000WFS viewmodel instances respectively. We assume that each of
WFS view consists of 10 WFS features. After each service invocation we restart the MySQL Server service to avoid caching effects
during our measurements.

8.1. Use cases

For each use case, we describe the table joins performed by the query service. We choose one representative use case query for
each number of table joins. Surely, there are other queries that might be useful to find appropriate WFS. However, we chose those
use cases that, according to our experiences and studies, are most likely to be used by developers.

• Use Case Query 1 (Query by Database): If database administrators intend to migrate a database from one database server to
another server, they can use a query by database connection to find all WFSmodeling a relation to this database connection. This
type of query does not require a table join, because only the Database table is selected.

• Use Case Query 2 (Query by Table, Column): If database developers need to knowwhichWFS access a certain column of a table,
developers can ask the DAS repository. In order to perform this query, joining the Table and the Column table is necessary. The
two conditions should be concatenated with the boolean AND operator.

• Use Case Query 3 (Query by Database, Table, Registration): In case a specific database table fails, stakeholders such as system
architects or database administrators might want to inform the relevant WFS providers about this failure. However, only some
WFS providers have registered to be kept informed of system failures. In order to find the resulting WFS, the query service joins
the tables Database, Table and Registration. Again, the conditions could be concatenated with the boolean AND operator.

814 C. Mayr et al. / Data & Knowledge Engineering 70 (2011) 794–819

http://192.168.1.11:8080
http://192.168.1.12:8080


• Use Case Query 4 (Query by FeatureType, PropertyType, ORM Table, ORM Column): Database developers use this query, when
they want to understand which WFS features access which database tables. In order to process this query, database developers
insert both the name of a certain FeatureType and of a certain PropertyType into the search condition. In example, the
feature type could be a bus station and the property type could be a spatial data type that describes the distance from the current
position. The tables ORM Table and ORM Column define the mapping between a feature type and a table and the mapping
between a feature property and a table column respectively. Thus, these mapping tables should also be included into the join.
The specific search conditions should be linked with the boolean AND operator.

• Use Case Query 5 (Query by Registration, Publication, User, Affiliation, Feature Type): By using this query, developers can find
WFS, they have registered or published within a certain time period. In particular, they use this query, when they only know the
name of the registered and published feature and the month of registration/publication date. Thus, developers have to find all
published or registered WFS at a certain date by a certain user of a certain affiliation with a specific feature. Hereto, both the
boolean OR and AND operator can be used to join the tables involved, namely the Registration table, the Publication table,
the User table, the Affiliation table and the FeatureType table.

• Use Case Query 6 (Query by DAO, DAO Operation, Output Parameter, Input Parameter, Data Object Type, ORM Table): Database
developers and database administrators can use this query in order to document which DAO operations access which database
tables. For this purpose, stakeholders specify the name of the DAO, the DAO Operation, the Input Parameter, the Output
Parameter, and the Data Object Type. In order tomap a data object type to a specific database table, the ORM Table has also be
included into the join. As a result, they get the database tables accessed by this DAO operation.

• Use Case Query 7 (Query by User, Registration, Publication, Affiliation, FeatureType, Operation, PropertyType): In addition to
Query 5, stakeholders can add the Operation table as additional search criteria in order to search for WFS with specific
operations e.g. for transaction WFS, that support the transaction operation. Moreover, if stakeholders know the specific
PropertyType of a FeatureType they have registered and published, they can add the PropertyType table to the search
condition by using the boolean operator AND or OR.

• Use Case Query 8 (Query by DAO, DAO Operation, Output Parameter, Input Parameter, Data Object Type, ORM Table, Member
Variable, ORM Column): Developers use this query in order to find the database columns mapped to a certain member variable
as part of a certain DAO operation. In addition to Use Case Query 6, stakeholders can add the Member Variable table as
additional search criteria. In order to map member variables to table columns, the query service has to include the ORM Column

table in the join.
• Use Case Query 9 (Query by User, Registration, Publication, Affiliation, FeatureType, Operation, PropertyType, Database, Table):
If, in addition to the search criteria in Query 7, the name of the database and table is known, developers can put both the
Database table and Table table into the table join.

8.2. Test requirements

Table 3 shows the numbers of data rows imported into each of the tables used for the measurement. According to Table 3, we
define that a WFS consists of 5 operations and of 10 features. Each feature comprises 10 feature properties and corresponds to one
DAO. We further assume the simple case that eachDAO accesses one table. A table is mapped by ORM table to exactly one data object
type. A table consists of 10 columns. And ORM column maps each column to exactly one member variable. Each member variable
corresponds to one simple data object type. Each DAO contains 5 DAO operation. Each DAO operation in turn contains one input
parameter and one output parameter. Each output parameter and each input parameter are always mapped to one possible complex

Table 3
Experiment: number of table rows related to number of WFS.

Table 10 WFS 100 WFS 1000 WFS 10,000 WFS 100,000 WFS

Affiliation 20 200 2000 20,000 200,000
Column 1000 10,000 100,000 1,000,000 10,000,000
DAO 100 1000 10,000 100,000 1,000,000
DAO Operation 500 5000 50,000 500,000 5,000,000
Data Object Type 100 1000 10,000 100,000 1,000,000
Database 2 20 200 2000 20,000
Feature Type 100 1000 10,000 100,000 1,000,000
Input Parameter 500 5000 50,000 500,000 5,000,000
Output Parameter 500 5000 50,000 500,000 5,000,000
Member Variable 1000 10,000 100,000 1,000,000 10,000,000
Operation 50 500 5000 50,000 500,000
ORM Column 1000 10,000 100,000 1,000,000 10,000,000
ORM Table 100 1000 10,000 100,000 1,000,000
Property Type 1000 10,000 100,000 1,000,000 10,000,000
Publication 1000 10,000 100,000 1,000,000 10,000,000
Registration 2000 20,000 200,000 2,000,000 20,000,000
Table 100 1000 10,000 100,000 1,000,000
User 10 100 1000 10,000 100,000

815C. Mayr et al. / Data & Knowledge Engineering 70 (2011) 794–819



data object type or a simple data object type. Simple data object types are disregarded in Table 3 because for our measurements the
number of simple types is rather unimportant. We estimated that each user can belong to two different affiliations during their
employee membership. For this test, we estimated further that a WFS is registered a 2000 times and published a 1000 times in
average, and 10 em users publish and register one specific WFS.

In Table 4 we summarize the settings of our test machine. Please note that our performance measurements are based on a fully
normalized data model that does not contain any redundant column data.

8.3. Results

Wemeasured the response times for queries related to the number of WFS and the number of table joins necessary to perform
the query. Fig. 12 displays the use case queries on the x-axis and the response time in milliseconds on the y-axis. The resulting
curve is approximately proportional with the number of table joins. However, the curve is not exactly linear. We think this non-
linear functional behavior results (among others) from the following reasons:

• Different queries are optimized to a different degree
• Randomized search criteria can lead to faster or slower results
• Different queries with different tables joining various numbers of rows as described in Table 3

As shown in Fig. 12, our repository offers acceptable response times even for a large number of WFS. To illustrate this, let us
come back to our case study in Section 7. GIS usually manage several thousand features provided by several hundred WFS. As
shown in Fig. 12, the performance for querying views from 100,000WFS and 1,000,000 available WFS features in the repository is
acceptable. Fortunately, in practice, the number of search criteria, and thus the number of table joins, is usually low
(approximately 1–4), therefore, resulting in a very good overall performance.

Our approach scales well with increasing numbers of WFS. Figs. 13 and 14 show the query response times and the logarithmic
query response times respectively with an increasing number ofWFS. Again, the y-axis displays the response time inmilliseconds.
In contrast to Fig. 12, the x-axis displays the number ofWFS. As shown in Fig. 14, from up to 1000WFS, for all queries, the response
time values increase virtually linearly with increasing number of WFS.

The reason why querying 10 WFS results in quicker response times than querying 100 WFS is that indices are ignored by the
database query optimizer when there are only very few rows in a table. For numbers of at least 1000 WFS the optimizer uses the
indices to perform the queries.

9. Conclusion and outlook

In this paper we identified a documentation gap between the data access services (DAS), the underlying DAS implementations
such as data access objects (DAO), and the data storage schemes. With our approach, we mainly improve documentation of the

Fig. 12. Experiment result: response time against number of table joins.

Table 4
Experiment settings.

Processor: Intel(R) Core(TM)2 Quad CPU 2.4 GHz
RAM: 4 GB
Operating System: Windows 7 (64 bit)
Database: MySQL Server 5.1
Java Version: 1.6.0_10
MySQL Server Type: Developer Machine

816 C. Mayr et al. / Data & Knowledge Engineering 70 (2011) 794–819



relationships between DAS, DAOs and data storage schemes and thus contribute to a higher software development productivity
and maintainability. For example, our VMDA documents which user provides which DAS, which DAOs are related to the DAS and
which database tables are read and written by the DAS and DAOs.

Moreover as the number of software components grows, data development complexity increases with the number of DAS. So
retrieving a particular DAS can be complex and time-consuming. In order to tackle these issues and to enable better
maintainability, we specified a view-based model-driven data-access architecture (VMDA) managing the views, models and
relationships between them. This service-oriented architecture is composed of well-known concepts such as a model-driven
repository and a view-based repository client. Though, we combine these concepts in order to efficiently develop, maintain, trace
and deploy DAS in a process-driven SOA. In order to reduce the complexity of managing DAS, we separate the DAS into different
views, namely the Collaboration View, the Information View, the ORM View, the DAO View, the Physical Data View, the Database
Connection View, and the User View. The DAS repository stores DAS models and views, and consists of several services providing
basic functionalities to query, register, publish DAS. Due to the structured nature of the DAS views and models, we can query DAS
by implementation, data storage schema and meta-data artifacts. However, further work is necessary to coping with other
important repository's requirements such as event notification, configuration control, and security. As working with models in a
tool still lacks refinement [23], we continue focusing on developing suitable tool chains for DAS repositories. Furthermore,
advanced searching capabilities, such as those that can be provided on top of our approach, are desirable. The selective use of
ontologies could improve the quality of the retrieved result set. Moreover, in order to synchronize data from other repositories to
the DAS repository, a sophisticated data re-engineering is necessary, that is also part of our future work. Finally, runtime aspects
such as dynamic invocation of DAS need to be discussed and defined.

Acknowledgment

This work was supported by the European Union FP7 project COMPAS, grant no. 215175.

References

[1] X.L., K. Maly, M. Zubair, M.L. Nelson, Repository synchronization in the OAI framework, JCDL, 2003, pp. 191–198.
[2] E. Al-Masri, Q.H. Mahmoud, Discovering the best web service, WWW '07: Proceedings of the 16th international conference on World Wide Web, ACM,

New York, NY, USA, 2007, pp. 1257–1258.
[3] AndroMDA.org, EJB3 Cartridge, http://www.andromda.org/docs/andromda-cartridges/andromda-ejb3-cartridge/, (Copyright © 2006–2011).
[4] ANTLR v3, ANTLR IDE. an eclipse plugin for ANTLRv3 grammars, http://antlrv3ide.sourceforge.net/, (Retrieved June, 2010).

Fig.13. Experiment result: response time against number of WFS.

Fig. 14. Experiment result: logarithmic response time against number of WFS.

817C. Mayr et al. / Data & Knowledge Engineering 70 (2011) 794–819

http://www.andromda.org/docs/andromda-cartridges/andromda-ejb3-cartridge/
http://antlrv3ide.sourceforge.net/


[5] R.D. Banker, R.J. Kauffman, D. Zweig, Repository evaluation of software reuse, IEEE Trans. Software Eng. 19 (4) (1993) 379–389.
[6] S.N. Bhatti, A.M. Malik, An XML-based framework for bidirectional transformation in model-driven architecture (MDA), SIGSOFT Softw. Eng. Notes 34 (May

2009) 1–5.
[7] H. Bounif, R. Pottinger, Schema repository for Database Schema Evolution, DEXA Workshops, IEEE Computer Society, 2006, pp. 647–651.
[8] BrainML, Neurodatabase Construction Kit, Repository Server, http://brainml.org, (Retrieved April, 2011).
[9] P. Brittenham, Web Services Inspection Language (WS-Inspection) 1.0, http://www-106.ibm.com/developerworks/webservices/library/ws-wsilover/

#resources, June 2002.
[10] M. Cannataro, D. Talia, P. Trunfio, Distributed data mining on the grid, Future Generat. Comput. Syst. (FGCS) 18 (8) (2002) 1101–1112.
[11] Y. Chen, W.W., Z. Liu, X. Lin, Keyword search on structured and semi-structured data, SIGMOD Conference, 2009, pp. 1005–1010.
[12] L. Clement, A. Hately, C. von Riegen, T. Rogers, UDDI Version 3.0.2, UDDI Spec Technical Committee Draft, http://www.uddi.org/pubs/uddi_v3.htm, Oct 2004.
[13] Z. Du, J. Huai, Y. Liu, Ad-UDDI: an active and distributed service registry, TES, 2005, pp. 58–71.
[14] ESRI, esri ArcGIS, http://www.esri.com/software/arcgis/index.html, (Retrieved April, 2011).
[15] R. Fang, L. Lam, L. Fong, D. Frank, C. Vignola, Y. Chen, N. Du, A version-aware approach for web service directory, ICWS, 2007, pp. 406–413.
[16] Fornax-Platform, Cartridges, http://fornax.items.de/confluence/display/fornax/Cartridges, (Retrieved April, 2011).
[17] M. Fowler, Patterns of Enterprise Application Architecture, Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2002.
[18] Hibernate, Hibernate, http://www.hibernate.org, (Retrieved April, 2011).
[19] Ibatis, Ibatis, http://www.ibatis.org, (Retrieved April, 2011).
[20] IBM, WebSphere Service Registry and Repository, http://www-01.ibm.com/software/integration/wsrr/, (Retrieved April, 2011).
[21] M.B. Juric, Business Process Execution Language for Web Services BPEL and BPEL4WS, 2nd edition Packt Publishing, 2006.
[22] F. Kiefer, K. Arnold, M. Künzli, L. Bordoli, T. Schwede, The SWISS-MODEL repository and associated resources, Nucleic Acids Res. 37 (2009) 387–392

(Database-Issue).
[23] J. Koehler, R. Hauser, J. Küster, K. Ryndina, J. Vanhatalo, M. Wahler, The role of visual modeling and model transformations in business-driven development,

Electron. Notes Theor. Comput. Sci. 211 (April 2008) 5–15.
[24] T.C. Lethbridge, J. Singer, A. Forward, How software engineers use documentation: the state of the practice, IEEE Softw. 20 (6) (2003) 35–39.
[25] P.A. Longley, M. Goodchild, D.J. Maguire, D.W. Rhind, Geographic Information Systems and Science, 3rd Revised edition John Wiley & Sons, August 2006.
[26] S.A. Ludwig, S.M.S. Reyhani, Semantic approach to service discovery in a grid environment, Web Semant. 4 (1) (2006) 1–13.
[27] X. Ma, C. Wu, E.J.M. Carranza, E.M. Schetselaar, F.D. van der Meer, G. Liu, X. Wang, X. Zhang, Development of a controlled vocabulary for semantic

interoperability of mineral exploration geodata for mining projects, Comput. Geosci. 36 (December 2010) 1512–1522.
[28] D. Masclet, Gisgraphy, http://www.gisgraphy.com/index.htm, (Retrieved December, 2010).
[29] C. Mayr, U. Zdun, S. Dustdar, Model-driven integration and management of data access objects in process-driven soas, ServiceWave '08: Proceedings of the

1st European Conference on Towards a Service-Based Internet, Springer-Verlag, Berlin, Heidelberg, 2008, pp. 62–73.
[30] C. Mayr, U. Zdun, S. Dustdar, Reusable architectural decision model for model and metadata repositories, FMCO, 2008, pp. 1–20.
[31] J.-N. Mazón, J. Trujillo, J. Lechtenbörger, Reconciling requirement-driven data warehouses with data sources via multidimensional normal forms, Data Knowl.

Eng. 63 (December 2007) 725–751.
[32] N. Milanovic, R. Kutsche, T. Baum, M. Cartsburg, H. Elmasgünes, M. Pohl, J. Widiker, Model&metamodel, metadata and document repository for software and

data integration, MoDELS '08: Proceedings of the 11th international conference on Model Driven Engineering Languages and Systems, Springer-Verlag,
Berlin, Heidelberg, 2008, pp. 416–430.

[33] J.-K. Min, C.-H. Lee, C.-W. Chung, XTRON: an XML data management system using relational databases, Inf. Softw. Technol. 50 (5) (2008) 462–479.
[34] K.B. Misra, Handbook of Performability Engineering—Quality Engineering and Management, Springer, London, 2008.
[35] H.W. Nissen, M. Jarke, Repository support for multi-perspective requirements engineering, Inf. Syst. 24 (2) (1999) 131–158.
[36] B. Nuseibeh, A. Finkelstein, J. Kramer, Method engineering for multi-perspective software development, Inf. Softw. Technol. 38 (4) (1996) 267–274.
[37] OASIS Web Services Business Process Execution Language (WSBPEL) TC, Web services business process execution language version 2.0, http://docs.oasis-

open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html, April 2007.
[38] OASIS/ebXML Registry Technical Committee, Registry Services Specification v2.0, http://www.ebxml.org/specs/ebrs2.pdf, Dec 2001.
[39] Open Geospatial Consortium, Inc, Topic 12: OpenGIS Service Architecture, http://www.opengeospatial.org/standards/as, January 2002.
[40] Open Geospatial Consortium, Inc, OpenGIS Web Feature Service (WFS) Implementation Specification, http://www.opengeospatial.org/standards/wfs,

May 2005.
[41] Open Geospatial Consortium, Inc, OpenGIS Catalogue Services Specification, http://www.opengeospatial.org/standards/specifications/catalog, Februrary

2007.
[42] Open Geospatial Consortium, Inc, OpenGIS Geography Markup Language (GML) Encoding Standard, http://www.opengeospatial.org/standards/gml, August

2007.
[43] Oracle Corporation and/or its affiliates, Core J2EE Patterns — Data Access Object, http://java.sun.com/blueprints/corej2eepatterns/Patterns/DataAccess

Object.html, (Copyright © 2010).
[44] K.Q. Pu, X. Yu, Keyword query cleaning, PVLDB 1 (1) (2008) 909–920.
[45] L. Resende, Handling heterogeneous data sources in a SOA environment with service data objects (SDO), SIGMOD '07: Proceedings of the 2007 ACM SIGMOD

international conference on Management of data, ACM, New York, NY, USA, 2007, pp. 895–897.
[46] M.P. Robillard, F. Weigand-Warr, Concernmapper: simple view-based separation of scattered concerns, Eclipse '05: Proceedings of the 2005 OOPSLA

workshop on Eclipse technology eXchange, ACM, New York, NY, USA, 2005, pp. 65–69.
[47] C. Sant'anna, A. Garcia, C. Chavez, C. Lucena, A.v. Staa, On the reuse andmaintenance of aspect-oriented software: an assessment framework, Proceedings XVII

Brazilian Symposium on Software Engineering, 2003.
[48] A. Shaikh Ali, S. Majithia, O.F. Rana, D.W. Walker, Reputation-based semantic service discovery: research articles, Concurr. Comput. Pract. Exper. 18 (8)

(2006) 817–826.
[49] L. Steller, S. Krishnaswamy, J. Newmarch, Discovering relevant services in pervasive environments using semantics and context, IWUC, 2006, pp. 3–12.
[50] The Eclipse Foundation, Eclipse Modeling Framework Project, http://www.eclipse.org/modeling/emf/, (Copyright © 2011).
[51] The Eclipse Foundation, Model To Text M2T, http://www.eclipse.org/modeling/m2t/, (Copyright 2011).
[52] A. Tort, A. Olivé, An approach to testing conceptual schemas, Data Knowl. Eng. 69 (June 2010) 598–618.
[53] H. Tran, U. Zdun, S. Dustdar, View-based and model-driven approach for reducing the development complexity in process-driven SOA, in: W. Abramowicz, L.A.

Maciaszek (Eds.), Business Process and Services Computing: 1st International Conference on Business Process and Services Computing (BPSC'07),
September 25–26, 2007, Leipzig, Germany, volume 116 of LNI, GI, 2007, pp. 105–124.

[54] M. Turner, D. Budgen, P. Brereton, Turning software into a service, Computer 36 (2003) 38–44.
[55] L. Vaccari, P. Shvaiko, M. Marchese, A geo-service semantic integration in spatial data infrastructures, Int. J. Spat. Data Infrastruct. Res. 4 (2009) 24–51.
[56] S. Vajjhala, J. Fialli, The Java Architecture for XML Binding (JAXB) 2.0, http://jcp.org/aboutJava/communityprocess/final/jsr222/index.html, April 2006.
[57] R.P. van de Riet, Twenty-five years of mokum: for 25 years of data and knowledge engineering: correctness by design in relation toMDE and correct protocols

in cyberspace, Data Knowl. Eng. 67 (2) (2008) 293–329.
[58] V.M.P. Vidal, F.C. Lemos, F. Feitosa, Translating WFS query to SQL/XML query, GeoInfo, 2005, pp. 174–190.
[59] M. Völter, T. Stahl, Model-Driven Software Development: Technology, Engineering, Management, Wiley, 2006.
[60] W3C, Web Services Description Language (WSDL) 1.1, http://www.w3.org/TR/wsdl, March 2001.
[61] J. Xu, Rule-based automatic software performance diagnosis and improvement, Perform. Eval. 67 (August 2010) 585–611.
[62] F. Zhu, M. Turner, I. Kotsiopoulos, K. Bennett, M. Russell, D. Budgen, P. Brereton, J. Keane, P. Layzell, M. Rigby, J. Xu, Dynamic data integration using web

services, ICWS '04: Proceedings of the IEEE International Conference on Web Services, IEEE Computer Society, Washington, DC, USA, 2004, p. 262.

818 C. Mayr et al. / Data & Knowledge Engineering 70 (2011) 794–819

http://brainml.org
http://www-106.ibm.com/developerworks/webservices/library/ws-wsilover/#resources
http://www-106.ibm.com/developerworks/webservices/library/ws-wsilover/#resources
http://www.uddi.org/pubs/uddi_v3.htm
http://www.esri.com/software/arcgis/index.html
http://fornax.items.de/confluence/display/fornax/Cartridges
http://www.hibernate.org
http://www.ibatis.org
http://www-01.ibm.com/software/integration/wsrr/
http://www.gisgraphy.com/index.htm
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://www.ebxml.org/specs/ebrs2.pdf
http://www.opengeospatial.org/standards/as
http://www.opengeospatial.org/standards/wfs
http://www.opengeospatial.org/standards/specifications/catalog
http://www.opengeospatial.org/standards/gml
http://java.sun.com/blueprints/corej2eepatterns/Patterns/DataAccessObject.html
http://java.sun.com/blueprints/corej2eepatterns/Patterns/DataAccessObject.html
http://www.eclipse.org/modeling/emf/
http://www.eclipse.org/modeling/m2t/
http://jcp.org/aboutJava/communityprocess/final/jsr222/index.html
http://www.w3.org/TR/wsdl


Christine Mayr received her Master's degree in Information Science from the Vienna University of Technology in 2002. She has
10 years of working experience in the field of software analysis, design, development andmanagement. Currently she is working as an
IT‐Analyst in the Federal Computing Centre of Austria. One major part of her work is data modeling and database design for service‐
based applications. In addition, she is a Ph.D. student at the Distributed Systems Group of Vienna University of Technology. Her
research interests are in particular how to efficiently handle data in service‐oriented environments including model‐driven
development, and architectural decisions.

Prof. Dr. Uwe Zdun is a full professor for software architecture at the Faculty of Computer Science, University of Vienna. Before that,
Uwe worked as an assistant professor at the Vienna University of Technology and the Vienna University of Economics respectively. He
received his doctoral degree from the University of Essen in 2002. His research focuses on architectural decision, software patterns,
modelling of complex software systems, service‐oriented systems, domain‐specific languages, and model‐driven development. Uwe
has published more than 100 articles in journals, workshops, and conferences, and is co‐author of the books “Remoting Patterns —

Foundations of Enterprise, Internet, and Realtime Distributed Object Middleware” (J. Wiley & Sons) and “Software-Architektur.”
(Elsevier/Spektrum). He has participated in R&D projects such as INDENICA, COMPAS, S‐CUBE, TPMHP, Infinica, SCG, and Sembiz. Uwe
is European Editor of the journal Transactions on Pattern Languages of Programming (TPLoP) published by Springer, and Associate
Editor-in‐Chief for design and architecture for the IEEE Software magazine.

Prof. Dr. Schahram Dustdar (ACM Distinguished Scientist) is Full Professor of Computer Science at the Vienna University of
Technology (TU Wien). His research focuses on Internet Technologies and he is head of the Distributed Systems Group. From 1999 to
2007 heworked as the co‐founder and chief scientist of Caramba Labs Software AG in Vienna (acquired by Engineering NetWorld AG),
a venture capital co‐funded software company dealing with software for collaborative processes in teams. He is Editor in Chief of
Computing (Springer) and on the editorial board of IEEE Internet Computing, as well as author of some 300 publications. More info can
be found on his homepage: www.infosys.tuwien.ac.at/Staff/sd.

819C. Mayr et al. / Data & Knowledge Engineering 70 (2011) 794–819

Unlabelled image
Unlabelled image
http://www.infosys.tuwien.ac.at/Staff/sd

	View-based model-driven architecture for enhancing maintainability of data access services
	1. Introduction
	1.1. Status quo
	1.2. Basic problem
	1.3. Difficult maintainability
	1.4. Lack of DAS documentation and traceability
	1.5. Insufficient reuse of data access best practices
	1.6. Different stakeholders have different requirements
	1.7. Our approach
	1.8. Four basic concepts
	1.9. Summary

	2. Related work
	2.1. DAS architecture approaches
	2.2. Service repositories
	2.3. Model repositories
	2.4. View-based approaches
	2.5. Model-driven frameworks and other developmental related work

	3. The view-based data modeling framework
	3.1. Motivation
	3.2. Basic overview of the view-based modeling framework
	3.3. View-based Data Modeling Framework (VbDMF)
	3.3.1. Database (DB) Connection View model
	3.3.2. Physical Data View model
	3.3.3. Data Object View model
	3.3.4. Object Relational Mapping View model
	3.3.5. DAO View model
	3.3.6. User View model
	3.3.7. DAS Repository View model


	4. Architecture overview
	5. The Data Access Service (DAS) repository
	5.1. Basic architectural decisions
	5.1.1. Stored artifacts
	5.1.2. Data redundancy and synchronization
	5.1.3. Version management
	5.1.4. Version compatibility

	5.2. Services
	5.2.1. Query service
	5.2.2. Registration service
	5.2.3. Build/deploy service
	5.2.4. Publication service
	5.2.5. Synchronization service

	5.3. The DAS repository view model

	6. Tooling: the view-based repository client
	6.1. Using the view-based repository client
	6.2. Using the query service
	6.2.1. Query language
	6.2.2. Further support: model element generator


	7. Case study
	7.1. Business environment
	7.2. Applying our approach to Web Feature Services
	7.3. Making use of the DAS repository

	8. Evaluation
	8.1. Use cases
	8.2. Test requirements
	8.3. Results

	9. Conclusion and outlook
	Acknowledgment
	References


