
Contents lists available at ScienceDirect
Information Systems

Information Systems 43 (2014) 66–82
0306-43
http://d

☆ This
Creative
distribu
author

n Corr
E-m
URL
journal homepage: www.elsevier.com/locate/infosys
On modeling context-aware social collaboration processes$

Vitaliy Liptchinsky n, Roman Khazankin, Stefan Schulte, Benjamin Satzger,
Hong-Linh Truong, Schahram Dustdar
Distributed Systems Group, Vienna University of Technology, Austria
a r t i c l e i n f o

Available online 7 June 2013

Keywords:
Process modeling
Social context
Collaboration
Visual language
79/$ - see front matter & 2013 The Authors.
x.doi.org/10.1016/j.is.2013.05.007

is an open-access article distributed und
Commons Attribution License, which perm

tion, and reproduction in any medium, p
and source are credited.
esponding author. Tel.: +14258022813.
ail address: v.liptchinsky@infosys.tuwien.ac.a
: http://www.infosys.tuwien.ac.at/ (V. Liptch
a b s t r a c t

Modeling collaboration processes is a challenging task. Existing modeling approaches are
not capable of expressing the unpredictable, non-routine nature of human collaboration,
which is influenced by the social context of involved collaborators. We propose a
modeling approach which considers collaboration processes as the evolution of a network
of collaborative documents along with a social network of collaborators. Our modeling
approach, accompanied by a graphical notation and formalization, allows to capture the
influence of complex social structures formed by collaborators, and therefore facilitates
such activities as the discovery of socially coherent teams, social hubs, or unbiased
experts. We demonstrate the applicability and expressiveness of our approach and
notation, and discuss their strengths and weaknesses.

& 2013 The Authors. Published by Elsevier Ltd. All rights reserved.
1. Introduction

Business process modeling (BPM) allows companies
to describe and document their enterprise processes.
If captured accurately, such knowledge allows to analyze,
improve, and execute those processes with higher effi-
ciency. Although a variety of techniques and tools have
been introduced for BPM, modeling of highly dynamic
non-routine processes, such as human collaboration, is still
a subject of discussion in research and very few
approaches have been proposed so far [1].

While collaboration in general means working together
to achieve a goal [2,3], with the proliferation of collabora-
tion software, such as groupware or wikis, the manner of
human collaboration has taken the form of incremental
contributions to a network of shared documents, e.g.,
Published by Elsevier Ltd. A

er the terms of the
its unrestricted use,
rovided the original

t (V. Liptchinsky).
insky).
source code files, wiki pages and so on. Relations between
documents, actors, and other artifacts may influence the
collaboration process. For example, some tasks should be
done by actors chosen based on social relations, actions on
some documents should not be performed before related
documents reach certain conditions, or a change in a related
document might force to re-do an activity. Moreover, social
structures formed by collaborators affect produced network
of artifacts. Indeed, Conway's law suggests that “organiza-
tions which design systems are constrained to produce
designs which are copies of the communication structures
of these organizations” [4]. For example, socially coherent
teams tend to produce more seamless solutions. Therefore,
a proper modeling of collaboration processes must consider
both semantic structures in networks of artifacts and
structural formations in social networks formed by colla-
borators. Although artifact-based process models have
already been researched [5–7], existing modeling
approaches do not emphasize the relations between arti-
facts and actors, and are not capable of capturing complex
social structures formed by collaborators.

We thus propose a novel modeling approach and a
graphical notation for collaboration processes. The key
idea is to treat each document's evolution as an individual
ll rights reserved.

www.sciencedirect.com/science/journal/03064379
www.elsevier.com/locate/infosys
http://dx.doi.org/10.1016/j.is.2013.05.007
http://dx.doi.org/10.1016/j.is.2013.05.007
http://dx.doi.org/10.1016/j.is.2013.05.007
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2013.05.007&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2013.05.007&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2013.05.007&domain=pdf
mailto:v.liptchinsky@infosys.tuwien.ac.at
mailto:http://www.infosys.tuwien.ac.at/a4.3d
http://dx.doi.org/10.1016/j.is.2013.05.007


V. Liptchinsky et al. / Information Systems 43 (2014) 66–82 67
process that is explicitly influenced by the states of related
documents and patterns in the surrounding social network.
We propose to formalize the relations in line with the data
from collaboration software, e.g., two developers can be
considered related if they committed code to the same
project folder in a source code repository. The amount of
such data will grow with social computing pervading the
enterprise IT,1 thus allowing process modelers to create
richer models of people-intensive processes that support
information-centric, bottom-up and context-aware and
social modeling techniques for collaborative tasks.

The main research contributions of this paper are (i) a
novel approach for modeling context-aware social collabora-
tion business processes, (ii) an expressive formalism that
allows to define complex dependencies as network of
artifacts and people, and (iii) a visual graphical modeling
notation. The visual notation is a result of linking two threads
of research in a novel way by combining graph query
languages and control flow languages. Moreover, with the
introduction of the notion of groups, this combination is
further extended with fundamental concepts of social net-
work analysis by allowing to express such advanced patterns
as clique, k-plex, betweenness centrality, closeness centrality,
structural equivalence and so on [8]. This paper substantially
extends our previous work [9] by (i) introducing the notion
of groups as first class citizen into the modeling approach, (ii)
giving a more detailed discussion of the motivation and
related work, and (iii) discussing additional use cases to
illustrate the benefits of the concept of groups.

The rest of this paper is organized as follows: Section 2
describes the motivation behind the modeling approach
and presents a motivating example. In Section 3 we show
the lack of expressiveness in existing modeling approaches
with regard to the scenario at hand. Section 4 describes
the proposed modeling paradigm and the corresponding
graphical notation. Section 5 demonstrates the usability of
the approach through realistic use cases. Our modeling
approach is critically discussed in Section 6. The paper is
concluded in Section 7.

2. Motivation

Collaboration is a recursive process composed of human
interactions towards realization of shared goals [2,3].
Groupware and social software foster collaboration of
individuals who work across time, space, cultural and
organizational boundaries, i.e., virtual teams [10]. Using this
type of software, people interact through conversations (e.
g., e-mails and instant messages) and transactions (e.g.,
create/modify/assign/restructure a document) in order to
augment a common deliverable, e.g., the documentation of
an idea, a technical specification, a source code file, or a wiki
page. Typically, such interactions are disorganized, non-
routine, and are hard to predict and model. However, as
side-effects they produce semantical and social relations
between actors and artifacts (e.g., authorship, friendship).
Furthermore, artifacts are usually semantically connected
into hierarchical or network structures, e.g., references in
1 http://www.gartner.com/it/page.jsp?id=1470115
wiki pages, or dependencies between software compo-
nents. Likewise, actors contributing to artifacts form com-
plex social or communication formations, whose structure
significantly influences collaboration processes and artifacts
themselves. For example, given that a group of collaborators
can be represented by a graph with edges denoting regular
communication, a group forming a complete graph has
more chances to produce a successful artifact(s) than a
group forming a sparse graph with many isolates. Patterns
of interest differ in artifact and social networks in the sense
that structural patterns in artifact networks focus rather on
types of relations and artifacts, and their states, while
structural patterns in social networks focus on the density
of edges by considering single type of relation, e.g., such
social formations as clique, k-plex, and notions of structural
equivalence, betweenness centrality (broker), and so on [8].

As a motivating example, let us consider in-house software
engineering in a dot-com company. Projects, or ventures, in
such a company can be classified as engineering ventures
(development of new functionality), or analysis ventures
(incident investigation, proof-of-concepts). Both types of ven-
tures produce deliverables, such as source code or technical
documentation. Fig. 1 demonstrates a snapshot of a collabora-
tion process as a directed graph of venture deliverables and
collaborating actors.

Edges connecting ventures represent functional depen-
dencies (i.e., a venture depends on either an investigation
report or a software component produced by other ven-
tures). Edges connecting actors depict social relations, i.e.,
there is a regular communication over instant messaging
channels between them, or they contribute to the same
venture. Contrarily, the edge NO Social Relation

denotes absence of social ties, e.g., actors never worked
on the same venture. Analysis ventures, representing
rather creative and non-routine work, can reside only in
two possible phases, namely In Progress and Finished,
while engineering ventures, representing more struc
tured and long-running work, can reside in more phases,
such as Design, Implementation, Testing, and
Finished.

Now, let us consider a process modeler that possesses
knowledge of the working environment, the culture, and
the scale of the company, and aims at modeling the
following rules (we refer to them as context dependency
rules (CDRs)):
CDR 1.
 A venture project team should be notified of any
changes in the technical documentation of other
ventures it depends on. However, if two functionally
interdependent ventures share any team members,
then enforced communication is not required. This
rule ensures proper knowledge sharing between
functionally interdependent ventures while avoid-
ing overcommunication. For example, any new
technical reports of Analysis Venture 2 should
be communicated to the project team of Engi-

neering Venture 2. However, the same synchro-
nization between Engineering Venture 2 and
Engineering Venture 4 is not critical, because
Engineer 3 is anyway aware of any such changes.

http://www.gartner.com/it/page.jsp?id=1470115


Fig. 1. Software engineering collaboration process snapshot.

V. Liptchinsky et al. / Information Systems 43 (2014) 66–8268
CDR 2.
 Venture technical documentation (i.e., design, or a
report) should be reviewed by an expert from a
functionally dependent venture, socially unrelated
to the venture team members. Moreover, it might
be necessary to find a group of such experts. This
rule tries to avoid biased reviews by finding
socially unrelated experts. For example, it is more
preferable to assign Engineer 4 than Engineer 1,
as a reviewer of Engineering Venture 2, as
Engineer 4 does not have strong social relations
with the Engineering Venture 2 team.
CDR 3.
 An engineering venture can be started if at least one
venture, it depends on, has passed Design phase.
This rule defines a balance between total serial-
ization of dependent ventures Design phases,
which results in a longer time-to-market, and total
parallelization of Design phases, which results in
more iterations. For example, Engineering Ven-

ture 2 was started upon completion of Design

phase of either Engineering Venture 3 or
Engineering Venture 1.
CDR 4.
 Design phase of a venture cannot be finished if any
venture, it depends on, has not passed Design

phase yet. This rule minimizes chances of poten-
tial rework and wasted efforts. For example,
Design phase of Engineering Venture 2 can
be finished only after Engineering Venture 4

switches to Implementation phase.

CDR 5.
 If an engineering venture is in Implementation

phase, and any of the engineering ventures it
depends on has switched back to Design phase,
then the venture should switch back to Design

phase. This rule covers possible redesign cases
and ensures proper handling of late adjustments.
CDR 6.
 For each analysis venture it is preferable to assemble
a socially coherent team. Given that a team can be
represented as a graph, the extremum of social
coherence is a clique, i.e., every two vertices in a
graph are connected by an edge. In practice, how-
ever, cliques are seldom, and a modeler may want
to relax constraints on social coherence by specify-
ing a k-plex, where k-plex can be defined as a
group of size n having each member connected to
at least n−k other members. Such coherent teams
can be selected either for Analysis Venture 1 or
Analysis Venture 2. This rule tries to maximize
communication within the team and good social
atmosphere.
CDR 7.
 If a software engineer stops working on an engineer-
ing venture during Implementation phase, it is
necessary to replace her with a structural equivalent.
A structural equivalent is an engineer that has
almost the same social neighborhood as the for-
mer engineer with respect to dependent project
teams. For example, to replace Engineer 2 it is
preferable to find an engineer socially connected
to both Engineer 1 and Engineer 3. This rule
aims at minimizing on-boarding time and restor-
ing communication structures.
CDR 8.
 If teams working on two interdependent ventures
share no social connections, then it is necessary to
find a liaison (broker), who is socially connected to
more than 50% of the members of each team. For
example, absence of social ties between groups
Experts 1 and Experts 2 may hinder efficient
communication thus delaying Analysis Venture 2.
This rule tries to cover any structural holes in
communication structures formed by collaborating
teams.
As it can be seen from the examples above, CDRs allow
to capture the knowledge about the impact of social and
structural relations on collaboration processes. A formal
specification can help to visualize and improve CDRs, thus



Table 1
Overview of covered aspects in the related work.

Information-
centric

Bottom-up &
Context-aware

Social

V. Liptchinsky et al. / Information Systems 43 (2014) 66–82 69
reflecting management experience in an organization. We
argue that a modeling approach, suitable for social colla-
boration processes, should encompass the following mod-
eling principles that can be abstracted from the examples
of CDRs above:
Activity-oriented business
process modeling

□ □ □
1.

Artifact-centric workflows □
Case Handling □
Context-aware workflows ⊠ □
Visual graph query
languages

□ □ ⊠

Multiagent systems and
speech acts

□ □ ⊠

supported, ⊠ partially supported, □ not supported.
Information-centric: Collaboration processes should be
represented by network of artifacts that originate from
and evolve due to collaborative activities, following
thus the information-centric perspective. Activity-
oriented approaches are difficult to apply to collabora-
tion processes, because it is hard to pre-define exact
steps to follow [1]. For instance, people interactions,
such as conversations and transactions, in a collabora-
tion process are rather unorganized and unpredictable,
therefore, it is easier to capture collaboration artifacts
and corresponding social and semantic relations as side
effects of interactions. All the exemplified CDRs are
based on the information-centric perspective on colla-
boration processes.
2.
 Bottom-up and context-aware: Modeling an evolvement
of a network of artifacts in a holistic view can be a
daunting task. Contrarily, neglecting relations comple-
tely and modeling the progress of artifacts in isolation
leads to context tunneling [11], and therefore ineffec-
tive models. A suitable modeling approach, therefore,
should model the evolution of each artifact as an
individual process explicitly influenced by its neighbor-
hood (i.e., related artifacts), as it is shown in CDR
examples 1 and 3–5. This approach allows to describe
behavior at the macro-level (network of artifacts) by
means of modeling behaviors at the micro-level (evol-
vement of a single artifact).
3.
 Social: Collaboration processes are influenced by social
and communication structures formed by collaborators.
Often, advanced non-routine activities are involved,
such as discovery of socially coherent teams (CDR
example 6) and structural equivalents (CDR example 7),
or complex decision-making by exploiting social hubs
(CDR example 8), and unbiased experts (CDR example 2).
Therefore, the paradigm should promote not only the
modeling of a network of evolving artifacts, but also of an
evolving network of people. The modeling approach
should be able to express not only social relationships
between actors involved, but also complex patterns in
social networks, such as k-plex, clique, structural equiva-
lence, structural holes and so on.

Moreover, apart from incorporating the mentioned
principles, the modeling approach should be backed up
by a formal definition to support automatic reasoning,
verification, and execution.
2 http://www.bpmn.org/
3 http://www.oasis-open.org/
3. Related work

In this section we discuss the related works with
respect to modeling principles outlined in the previous
section, and show their shortcomings with regard to their
ability to model the exemplified CDRs. To the best of our
knowledge, no existing framework is capable of capturing
the CDRs defined in this work in a formal and visual
manner. In the following, we will discuss activity-oriented
business process modeling (Section 3.1), artifact-centric
workflows and case handling (Section 3.2), context-aware
workflows (Section 3.3), visual graph query languages
(Section 3.4), and other approaches which influence our
work (Section 3.5). In addition, Table 1 provides an over-
view of the general ability of the different related works to
follow the modeling principles presented in Section 2.
3.1. Activity-oriented business process modeling

Traditional activity-oriented business process modeling
approaches like the Business Process Modeling Notation
(BPMN)2 allow to model dependencies between processes
via messages or events. Asynchronous messaging can be
used to partially resemble CDRs, e.g., by sending notifica-
tions to related processes. However, it would not provide
enough expressiveness and flexibility to capture such
rules. Using external events is another way to model such
logic, but it would require the specification of events in
natural language. Moreover, activity-oriented approaches
are difficult to apply for collaboration processes, because it
is hard to pre-define exact steps to follow in collaborative
workflows [1]. In addition, explicit communication and
coordination entities (i.e., events, message channels),
intended for publishing information, do not convey any
functional load and, therefore, complicate and encumber
process models. Agent-based or agent-inspired appro-
aches for coordination of business processes, such as
[12,13], also utilize explicit information publishing entities,
thus sharing the same disadvantages.

The Web Services Business Process Execution Language
(WS-BPEL or just BPEL) is an executable language standar-
dized by OASIS,3 which allows to define business processes
based on Web Services. This means that processes in BPEL
export and import functionality by using Web Service
interfaces exclusively [14]. Major IT companies realized
the lack of human interaction support in service-oriented
systems and proposed the WS-HumanTask [15] and
BPEL4People [16] specifications. While these languages

http://www.bpmn.org/
http://www.oasis-open.org/


V. Liptchinsky et al. / Information Systems 43 (2014) 66–8270
and their extensions (e.g., [17]) allow for interaction with
humans in the setting of an SOA, they are not designed to
capture CDRs.

3.2. Artifact-centric workflows and case handling

Information-centric modeling approaches, such as
Artifact-centric workflows [18,19] and Case Handling [6],
can capture the evolution of collaboration entities into
formal models in order to provide a higher degree of
flexibility than routing-based workflow descriptions are
able to provide. Both approaches are examples of entity-
centric modeling, which puts entities into the focus of
processes and makes use of entity life cycles for dynamic
modeling [19].

As the name implies, Artifact-centric workflows are
based on (business) artifacts instead of the task-centric
approach usually applied in business process modeling
[18]. Artifacts are important (business) objects which have
a life cycle and provide information about their relation-
ships to other artifacts as well as in what way and at what
time tasks can be invoked on them [20]. Hull [18] makes
this more explicit by pointing out that artifact-centric
workflows are not merely concerned with modeling pro-
cess constructs and patterns, but take into account four
explicit dimensions: the artifacts themselves, their
(macro-level) life cycles, services (tasks) running on arti-
facts, and associations/constraints.

For this, Artifact-centric workflows capture the rela-
tions on a conceptual level using Entity-Relationship
models [7], name-value pairs [20], or some Description
[18] or First-Order Logics [7]. Life cycles are often depicted
using some kind of finite state machines, but other
approaches, like the Guard-Stage-Milestone meta-model
for life cycles, which is based on Event-Condition-Action
(ECA) rules, have also been introduced [18,21]. Most
importantly, the association of services and artifacts can
be done either in a procedural [20] (also: imperative) or
declarative style [18,22–24]. In contrast to the explicit
modeling of process constructs as in, e.g., Petri nets, BPEL
and BPMN, declarative languages (e.g., [22,23,25]) do focus
on the goals of the process, i.e., what should be done
instead of how it should be achieved [24]. Example
technologies to describe achievable goals using pre- and
postconditions are the Ontology Web Language for Web
Services (OWL-S) and the Web Service Modeling Ontology
(WSMO) [26,27]. The ConDec language [22], which allows
both an imperative and declarative modeling of business
processes, makes use of Linear Temporal Logic to define
declarative process constraints. Using an according model
checker, it is possible to verify the correctness of processes
and enact it by translating the process into an automaton.
Comparable to our work, ConDec defines a graphical
notation for such constraints. Due to the nature of the
language, this notation is restricted to temporal con-
straints; social relationships are however not foreseen.

Case Handling distinguishes between the possibility to
execute a business process fully automatic (workflow
management) and the necessity of human intervention
during process runtime (Case Handling) [6], thus allowing
a high degree of flexibility and variability. While the
former is based on modeled process control structures,
in the latter a knowledge worker is responsible for actively
finding a way to reach the goal of a case. The Case
Handling system is a dedicated assistant to the knowledge
worker.

(Business) artifacts and cases are based on similar
ideas, but cases are more focused on giving the structure
and state of a case by data objects and therefore describing
these objects in more detail [28]. Data objects are also
intended to represent pre- and postconditions. Cases are
defined by the activities that need to be executed, data
objects, forms which provide activity-based views on data
objects, actors, and roles grouping those actors [6,11].
Associations between single activities are not explicitly
modeled, but activities are attached to cases, and data
objects are linked to activities. By defining mandatory and
restricted data objects, conditions, and precedence rela-
tions for single activities, it is possible to model the
process underlying a particular case. Conditions are based
on data objects’ states and values, and are bound to a
particular activity. During design time, roles can be linked
to both complex cases and activities; during runtime,
concrete actors can be attached to a particular activity.
With regard to the work at hand, the evolvement of
collaboration entities is captured on a conceptual level
using composite cases and ‘is-a’ relationships between
roles.

To the best of our knowledge, condition elements in
neither Artifact-centric workflows nor in Case Handling
approaches do allow to specify CDRs. Conditions in Case
Handling are defined as sets of bindings where a binding is
a set of values for specific data objects. Therefore, it is not
possible to define a condition which examines all the
objects in a specific relation to the object at hand (CDR
example 3), or to specify that all the related objects must
reside in a specific state (CDR example 4). Conditions in
Artifact-centric workflows may be specified in formulas
written in First-Order Logic [7]. However, the specification
is restricted and does not allow to use quantifiers, which is
crucial for expressing CDRs (e.g., CDR examples 3 or 4).
Nevertheless, Artifact-centric workflows present an impor-
tant foundation for our own work, as will be further
discussed in Section 4.

3.3. Context-aware workflows

Both Artifact-centric workflows and Case Handling are
(amongst other reasons) motivated by the assumption that
activity-oriented business process models do not capture
the workflow context in enough detail and therefore may
lead to inefficiencies [6,18]. Of course, this can be directly
traced back to the fact that the modeling perspective in
these approaches focuses on other aspects.

According to Dey [29], “context is any information that
can be used to characterize the situation of an entity”.
Following this definition, workflow context is any information
that can be used to characterize the situation of a workflow.
Accordingly, Rosemann and Recker define business process
context as “The minimum set of variables containing all
relevant information that impact the design and execution
of a business process” [30].



V. Liptchinsky et al. / Information Systems 43 (2014) 66–82 71
As a similar notion is also underlying the work at hand,
in particular regarding context data related to collabora-
tions, it is worthy to discuss further approaches towards
context-aware workflows with regard to the modeling of
social collaboration processes. In general, context-aware
workflow modeling approaches extend modeling and
execution languages like BPMN and BPEL by the means
to define context and make use of this knowledge in
workflow execution. Very often, this is motivated by some
specific domain, e.g., manufacturing [31,32] or e-health
processes [33]. In the following, we will only discuss
different approaches in the field which are important to
the work at hand; for a thorough discussion we refer to the
surveys by Baldauf et al. [34] and Truong and Dustdar [35].

An early, Unified Modeling Language (UML) class
diagram-inspired approach to a visual language for
context-aware business process modeling has been intro-
duced as part of the Systemic Enterprise Architecture
Methodology (SEAM) [36]. As it is the goal of SEAM to
support human reasoning, a formal reasoning framework
is not provided and it is not possible to formally define
rules. Instead, some very basic relationships inspired by
the means to model composition and dependencies in
UML class diagrams are provided. SEAM does not explicitly
take care of collaboration between roles, i.e., it is not
possible to model CDRs. Instead, different roles are related
to each other through actions they are collaborating on.

Saidani and Nurcan [37,38] regard context-awareness
in role-based business process modeling. They allow the
definition of location-, time-, resource-, and organization-
related context data aiming at the identification of fitting
actors for the defined roles. Notably, the authors do allow
to state social relationships between actors, but it is not
possible to explicitly define CDRs. Comparable to the work
at hand, the underlying context model is based on First-
Order Logic. However, the authors do not make use of a
formal definition of their modeling notation as it is
provided in our work. Furthermore, queries are men-
tioned, but the topic is not discussed on a deep technical
level. In general, Saidani and Nurcan do not focus on the
actual modeling tasks and therefore do not provide a
graphical modeling notation. Furthermore, like in SEAM,
they follow a goal-oriented approach while in our work,
we focus on information artifacts. Hence, their work
should be rather seen as a complementary approach than
as a foundation for our modeling notation.

Wieland et al. define context-aware workflows by
advocating the augmentation of workflow modeling and
execution with information about the physical world [31].
For this, context events, context queries, and context
decisions (context-based transition conditions) are added
to a workflow model, allowing to define and search
context data as well as changes of the control flow. The
authors make use of BPMN for process modeling and
extend WS-BPEL 2.0 into Context4BPEL. An XML-based
language is used to express context dependencies. Ardis-
sono et al. present the Context Aware Workflow Execution
Environment (CAWE), which is a complete Service-oriented
Architecture extended by capabilities to achieve context
awareness [33]. With regard to the work at hand, the
context-based adaptation policies are the most interesting
aspects of CAWE, as they allow to alter the flow of a
workflow execution. These policies are modeled using
declarative rules and based on Boolean, context-based
preconditions. Abstract activities are used in order to
define the generic behavior of a task, thus resembling
Artifact-centric workflow modeling languages and Case
Handling as discussed above. Furthermore, the authors
introduce dedicated models (Role Model, User Model, and
Context Model), but do not take into account collaboration
issues in them.

In theory, both the work by Wieland et al. and Ardis-
sono et al. could be used as a foundation for drafting and
implementing CDRs. However, both frameworks do not
explicitly model collaboration dependencies. As a conse-
quence, a resulting model would be somewhat confusingly
extensive and therefore hardly intuitive to comprehend.
Instead, we decided to draft an independent and therefore
lightweight modeling notation as presented in Section 4.
The inclusion of explicit information about (social) colla-
boration allows a much more specific and therefore
comprehensible modeling approach.
3.4. Visual graph query languages

Conditions in CDRs can be intuitively represented as
queries over graph-structured data. Over 25 years, graph
query languages have been investigated for expressing
graph patterns in various domains such as biological and
transportation networks, Semantic Web and many others
[39,40]. In recent years a number of graph query languages
have been proposed also for the domain of social networks
[41–44]. Graph query languages do not incorporate any
control flow structures, being thus incapable of expressing
(business) processes. We review, however, the expressive-
ness of various graph query languages with respect to
complex structural formations.

Many prominent graph query languages, such as G [45],
GraphLog [46], Lorel [47], StruQL [48], UnQL [49], NAGA
[50], Cypher [51] and SPARQL 1.1 [52], are based on
Conjunctive Regular Path Queries (CRPQs), which are in
their turn based on Conjunctive Queries (CQ). A simple
example of CQ for finding persons who work on both
artifacts Evaluation and Documentation is x worksOn
Evaluation ∧ x worksOn Documentation. CRPQs extend
CQs by allowing to query for nodes that are connected
by a path satisfying a regular expression rather than
relying solely on static paths. Being capable of expressing
many graph patterns, CRPQs cannot capture groups of
varying size or with inexact topology.

Among non-CRPQ languages greater variability can be
observed with respect to graph patterns that can be
expressed. For example, GraphQL [53] with repetition of
graph motifs allows to define cycles and trees. PQL [54],
used for biological networks, can capture along nodes also
their neighborhoods of a specified radius. BiQL [42] unifies
nodes and edges, which makes it possible to capture even
more complex patterns. In QGraph [43], a visual query
language employed for social networks data mining
tool Proximity [55], graph patterns can have numeric
annotations, e.g., “Find all directors that had at least 2



V. Liptchinsky et al. / Information Systems 43 (2014) 66–8272
movies each of themwinning at least 3 awards”. The Social
Networks Query Language (SoQL) [41] is the only graph
query language that can describe groups of flexible topol-
ogy and varying size up to some degree. For example, it is
possible to select a clique by specifying a condition on a
group as depicted in Listing 1.

Listing 1. Selection of a clique using SoQL.

SELECT GROUP

FROM GROUP(DISTINCT(X,Y,Z) IN G2)

⋯
WHERE

⋯
ALL SUBGROUPS(U,V) IN G2 SATISFY

(PATH(U TO V AS P1)

COUNTðP1:edges:nÞo ¼ 1Þ
This query language, however, is not capable to capture
more advanced graph patterns, like k-plex. None of the
discussed graph query languages has groups as first-class
citizens, i.e., it is not possible to specify relations between
two or more groups, nor are they designed for CDRs.

3.5. Other noteworthy approaches

Several frameworks have proposed for modeling func-
tional or social relations between actors, for example
DEMO [56], I⋆ [57], EKD-CMM [58], Speech acts [59,60],
or social commitments in multiagent systems [61,62].

Frameworks modeling functional relations between
actors, such as I⋆ and EDK-CMM, typically rely on different
pre-defined dependency models. I⋆ exploits intentional
and strategic relationships among actors [57]. It supports a
Strategic Dependency model for capturing dependencies
among actors for a specific business process design.
Dependencies can be due to tasks, resources, goals and
soft-goals. Based on that, one can reason how to improve
the process/activity. I⋆ enables functional relations among
actors and it could be used to model the relationships
between actors and artifacts but it does not really consider
dynamic and social context in our scenario, such as actors
are working in the same projects or the evolution of
artifacts in connection to other ones. The enterprise model
of EKD-CMM supports business processes built atop three
main (sub)models: actor/role, role/activity and objects.
It focuses on functional relations so static dependencies
among actors and artifacts could be modeled. But it does
not support social relations and context that links actors
and artifacts in particular collaborative tasks. Furthermore,
pre-defined actor/role and role/activity models are not
well-suited for dynamic relations that we also support in
our framework.

Speech acts and social commitments in multiagent
systems could be used to model functional relations taken
by actors in the form of high-level communication actions.
They aim to support both human actors and intelligent
software agents so specific languages for human cooperative
tasks [59], communicative acts [56], or social commitment
protocols [61,62] have been introduced. But, they are mainly
designed for modeling actions, via communication mes-
sages, between two individual collaborators. Thus, they do
not support well high-level, context-aware interaction pat-
terns among groups like our approach. For example, we
could use them to model the request from an actor to
another actor, but we could not use them to model the
context in which several actors are working on the same
document (artifact). Furthermore, they require precise mod-
eling of semantics and action flows to be carried out by
collaborators. Due to the inherent ad hoc nature of commu-
nication and interactions in collaborations, this would
prevent us from modeling dynamic information-centric
collaboration actions.

In [63], so-called batch-taskswere proposed to allow for
a task that is executed for multiple workflow instances at
the same time. Other similar approaches can be found in
[64]. Some simple CDRs can be covered by batch-tasks,
e.g., CDR example 4. For more complex rules, however, this
approach is not flexible enough, e.g., because they do not
consider artifacts. Team Automata [65,66] use communi-
cation via shared action spaces. Transitions, which include
the same external action, are fired simultaneously in these
Automata. Alike to batch-tasks, it does not provide the
needed flexibility.

While not directly related to our work, the PENELOPE
(Process ENtailment from the ELicitation of Obligations
and Permissions) language [67] allows to define timing
constraints in a manner that could be helpful to define
CDR examples 3–5. Interestingly, PENELOPE also allows to
automatically generate a state space from the defined
timing constraints—this feature has not been foreseen in
our work, but would be an interesting aspect for the future
work. Finally, the COREPRO modeling framework [68]
proposes to model the dependencies between states of
related processes via so-called external state transitions.
Again, it provides limited expressiveness for describing the
dependencies, as it allows to specify only exact external
state transitions.
4. Modeling paradigm

As discussed in the previous section, related works
provide some interesting links and foundations, but none
of them provides a holistic approach encompassing all
modeling principles and CDR examples discussed in
Section 2.

4.1. Modeling framework

Our modeling framework is defined as a set of basic
modeling elements that a business process modeler can
operate with in order to reflect CDRs within business
process models:
1.
 Collaboration artifacts and their states: Artifacts should
represent various aspects and deliverables of collabora-
tion process (e.g., a software component, or a technical
design). The states should represent the possible
phases of collaborations. Artifacts and their states
may be modeled using existing information-centric
approaches, such as Artifact-centric workflows [7],
making thus our approach rather complementary than



V. Liptchinsky et al. / Information Systems 43 (2014) 66–82 73
stand-alone. Actors in the modeling framework are
modeled as collaboration artifacts as well. This unifica-
tion simplifies modeling of collaboration processes, as
it is easier to predict types (or roles) of involved actors
and their states rather than possible actions that
comprise collaboration.
2.
Fig. 2. Integration of Context elements into statecharts.
Relations: Relations can be pre-defined (e.g., functional
or structural dependency) or dynamic (e.g., temporal or
social relations), i.e., produced as side effects of inter-
actions and transactions. Proliferation of groupware
and social software boosts the quantity and quality of
dynamic relations data, thus empowering process
modelers.
3.
 Groups: Groups can be defined as sets of artifacts or
people shaped by relations into formations exhibiting
complex structural characteristics.
4.
 Context-aware state transitions: Context-aware state
transitions define what Relations, Artifacts and Groups
are relevant for a business process at various steps of its
execution.
In order to better demonstrate how the framework's
basic modeling elements can be put together to model a
business process, we present a graphical notation for the
modeling framework. The notation is an extension of the
conventional statecharts visual formalism [69]. The choice
of statecharts is justified by their information-centric
nature and widespread adoption as part of UML.4 Being a
natural visual representation of the state machine math-
ematical model, statecharts include the following basic
elements: (i) clustered and refined states; (ii) state transi-
tions composed of events (external happenings such as
user input or timeout), conditions (Boolean expressions
over events and state) and actions (e.g., sending an e-mail,
or assigning a person to a task).

Our graphical notation, dealing with explicit modeling
of relations, extends conventional statecharts with a new
element Context, graphically depicted as a hexagon. A
Context element, being inseparable to a State element,
defines relations and artifacts, relevant to a particular
state. Each Context element contains a specification of
the neighborhood of the artifact (i.e., related artifacts and
people) describing the presence of a specific pattern.
Essentially, a Context element is a formalization of
statecharts' conditions, usually expressed in free-text. Each
Context can have several Transition elements
attached: If the pattern, described in the context specifica-
tion, is found in the neighborhood, then all transitions
attached to the respective Context element are enabled,
otherwise disabled. Similar to State elements in state-
charts, Context elements can be clustered using logical
AND/OR/XOR operations.

Fig. 2 demonstrates the overall integration of Context
element into statecharts (the context specifications are
omitted in this figure for the sake of simplicity). Two of the
4 http://www.omg.org/spec/UML/
three transitions in the figure are enabled by Context

elements. By default, we assume that transitions attached
to Context elements have a higher priority over other
transitions, but generally it is up to a modeler to define the
priorities. Below are enlisted possible transitions in the
default prioritization order:
1.
 If Event 1 is fired and a pattern described in Context

1 is found, then the state machine switches to state B.

2.
 If Event 1 is fired and a pattern described in Context 1

is not found, then the state machine switches to state C.

3.
 If a pattern described in Context 2 is found, then the

state machine switches to state D. Here we can see that
an event element is optional, and if absent, then the
transition is activated at once.
When modeling the behavior of multiple interdependent
concurrent process instances, a modeler should assume
that state transitions are synchronized, i.e., every Context

element is evaluated before activation of any state transi-
tion in any process. Thus, if a process switches to state A

and then instantly to some other state, the fact that it has
been in state A will be considered.

We believe that graphs a priori are rather a natural
visual medium for describing artifact networks and rela-
tions. Therefore, we define a visual graph query language,
which is used to define neighborhood specifications in
Context elements. A query in the visual language is a
directly connected multigraph with labeled edges and
nodes. Labels can either denote atomic relations/states/
types, or expressions over atomic entities based on pro-
positional calculus expressions. Additionally, labels may be
absent in general, denoting a placeholder (e.g., any rela-
tion/state/type). An edge direction in a graph is used to
depict a non-commutative relation. Query graphs always
have one initialized primary element, therefore, graph
queries should be interpreted outwards: starting from
the central primary element towards most distant nodes.
For example, context specifications depicted in Fig. 3 can
be interpreted as follows:
�
 Context 1: If the primary document is in state A, and
there are no documents, related by content or author to
the primary one, residing either in state A or state B,
then the attached transition is enabled.

http://www.omg.org/spec/UML/


Fig. 3. Example of context specifications in Context elements.

V. Liptchinsky et al. / Information Systems 43 (2014) 66–8274
�
 Context 2: If the primary document is in state A, and
every single document, related by content to the
primary one, must reside in state B and have two
socially unrelated Authors that contributed to it, one
of which is Active, then the attached transition is
enabled.
As depicted in Fig. 3, single line edges correspond to
existence quantifiers, while double line and crossed
dashed edges correspond to universal quantifiers. Nodes
in query graphs may be labeled with variables that can
later be reused in Conditions and Activities of correspond-
ing Transitions. Since multiple occurrences of a context
pattern may be found in the neighborhood, Activities/
Conditions may be also extended with quantifiers, i.e.,
send e-mail to any/every related contributor. Interpreta-
tion of the exemplified graph query naturally corresponds
to the way we read First-Order Logic expressions.
First-Order Logic with its subsets form a solid foundation
for many modeling frameworks and query languages. For
our purposes we, however, introduce two extensions that
allow for expressing CDRs as introduced in Section 2.

First, we introduce counting and fractional quantifiers
that may annotate double line edges. Fractional quantifiers
define ratio, while counting quantifiers define exact num-
ber of artifacts satisfying given condition. Counting and
fractional quantifiers should always be defined with com-
parison operators f≥;≤; ¼ g, which define, respectively, at
least, at most, and exactly conditions. For example, double
line edge in Context 2 in Fig. 3 annotated with fractional
quantifier ≥70%would be interpreted as “… at least 70% of
documents, related by content or author…”.

Universal and existential quantifiers can be considered
as special cases of fractional and counting quantifiers
respectively, i.e., at least 100% artifacts and at least 1
artifact. Since counting quantifiers are inherently similar
to existential quantifiers, one might think of having only
one type of edges. We, however, for the sake of simplicity
and clarity, consider double line edges to correspond to
plural existence of artifacts, while single line edges to
singular existence. Similarly, we introduce crossed dashed
edges as a special case of double line edges with ¼0
countable quantifier.

Second, as a means of modeling complex structural
formations we introduce the Group element, which
defines a set of artifacts or people. Group elements
naturally extend graph query notation exemplified so far
in the same way as Monadic Second-Order Logic (MSOL)
extends First-Order Logic. MSOL allows only existential
quantifiers to be applied to set variables. Likewise, groups
in our notation can only be defined existentially. Therefore,
quantifiers, correspondent to single line, double line and
crossed dashed edges adjacent to Group element, are
applied to elements of the corresponding group, but not
to the group itself. Similarly, state and type labels annotat-
ing Group element are also applied to group members
(e.g., all group members reside in state A). Double line
edges connecting two Group elements may be annotated
with two quantifiers as they are adjacent to two plural
entities. Along with set variables MSOL introduces the
atomic formula t∈S, where t is a first-order term and S is
a set variable. Considering practical usefulness of this
formula, we introduce an additional edge type, which
defines membership. The shape of such edges resembles
aggregation association in UML, and the meaning of this
type of edges is similar to a weak “has a” relationship.

Let us consider the example depicted in Fig. 4, which
shows the selection of a group exhibiting certain structural
characteristics. The query described by the example can be



Fig. 4. Example of using Group elements.

V. Liptchinsky et al. / Information Systems 43 (2014) 66–82 75
interpreted as a conjunction of the following three
statements:
�
 Exists a group X of size 3 to 8 members, such that every
member of the group is of type User, and in state
Available, and is socially related to at least 2 other
group members.
�
 Every document Z related to the primary one is in state
Finished and was edited by a member of the group.
�
 An owner of the primary document is a member of the
group X, and is socially related to at least 30% of the
group members.
Interpretation of the exemplified graph query naturally
corresponds to the way we read Monadic Second-Order
Logic expressions. For simplicity, during interpretation it is
necessary to define groups before the edges adjacent to
them. Quantifiers annotating a loop edge should be inter-
preted in the order specified by a small arrow attached to
the edge.

The success of a modeling approach depends, to a great
extent, on the level of simplicity offered. Therefore, we
favor simplicity over completeness and impose the follow-
ing constraints on the queries expressed in the visual
language:
�
 Unlike artifacts, which can be defined with universal
quantification by double line edges, groups can be only
defined with existential quantification. Being more
expressive, universal quantification for groups is rather
complex to comprehend.
�
 Only basic operators from proposition calculus are
allowed as literal expressions attached to edges and
nodes: conjunction, disjunction and negation. Even
though, conditional and biconditional operators may be
expressed via the former ones, more complex operators
may decrease understanding and make reasoning
about the model more difficult.
�
 Under the Open World Assumption [70], negation may
introduce ambiguity, therefore only negation as a fail-
ure is allowed, i.e., negation on an edge can be used
only if nodes connected by the edge are transitively
connected to the central node with non-negative edges.
�
 During our experiments with the modeling notation we
observed that edges with universal (fractional) quanti-
fication adjacent to Artifact elements may introduce
ambiguity in query graphs with cycles. We can define
node level as a length of the shortest path from the
node to the primary element. If a double line edge is
part of a cycle, then one of its adjacent Artifact

nodes should have the lowest level among the nodes in
the cycle. In other words, since query graphs are
interpreted outwards starting with the primary ele-
ment, we can say that double line edges adjacent to
Artifacts can appear only in those places where they
can be interpreted first among edges in the cycle. This
rule is not applied to edges with universal quantifica-
tion adjacent to Group elements, as groups are always
defined with existential quantification avoiding thus
any ambiguities.

4.2. Formal definition

A formal definition of our modeling notation is given
below. In order to keep the definition succinct, we omit a
formal definition of statecharts, as it is available elsewhere,
e.g., in [71]. The formal definition supports automatic
reasoning about consistency and correctness of a process



V. Liptchinsky et al. / Information Systems 43 (2014) 66–8276
at design time, e.g., detection context specifications that
can never be reached. Moreover, it enables various opti-
mization techniques, e.g., conversion of a workflow defini-
tion to a more compact and simple one.

Definition 1. Labels L in a query graph representing
relations R, types T and states S of artifacts are defined as

Label L¼defAtomic Conditionj Placeholder
jL ∧ L jL ∨ Lj :L;
Placeholder denotes any value ðnoconditionÞ ð1Þ

Definition 2. Edges in a query graph can have one or two
attached quantifiers. Beyond standard quantifiers ∀ and ∃
the modeling notation allows generalized quantifiers,
similar as proposed in [72]. All extended quantifiers refer
to a certain set, which is a whole domain of discourse or a
single group in case of Artifact or Group elements
respectively. In the following, we define the quantifiers
we use by showing the mapping they signify with relation
to some arbitrary set M:

Universal : ∀M ¼ fMg
Existential : ∃M ¼ fSDM : S≠∅g
Counting : ∃Mð⊙nÞ ¼ fSDM : jSj⊙ng;

⊙∈f4 ;≥; ¼ ;≤; og;n∈N
Fractional : ∃Mð⊙p%Þ ¼ fSDM : jSj⊙pjMj=100g;

⊙∈f4 ; og; p∈½0;100� ð2Þ
We use capital Greek letters Ξ and Ψ as placeholders for
universal, counting, and fractional quantifiers, i.e.,
Ξ;Ψ∈f∀; ∃ð⊙nÞ; ∃ð⊙p%Þg.

Definition 3. Edges in a query graph, along with adjacent
Artifact elements, are interpreted in First-Order Logic,
extended with generalized quantifiers, as follows:

ðaÞ ðT ; SÞ ¼def∃x : Rða; xÞ∧TðxÞ∧SðxÞ ð3Þ

ðaÞ ΞðT ; SÞ ¼defΞx : Rða; xÞ∧TðxÞ-SðxÞ ð4Þ

ðaÞ ðT ; SÞ ¼def∄x : Rða; xÞ∧TðxÞ∧SðxÞ ð5Þ

where, given that graph queries are interpreted outwards
from the central primary element (vertex), a denotes an
already interpreted vertex. Predicates T and S describe
type and state of suitable artifacts respectively. The result
of a query graph interpretation is a logical conjunction of
the First-Order Logic formulas corresponding to graph
edges. Higher priority of edges with universal quantifica-
tion ensure that the formulas corresponding to these
edges always appear at the beginning of the resulting
logical conjunction. For double line edges ∀ quantification
should be assumed as a default one, i.e., an absence of
quantifier annotation is interpreted as ∀ quantifier.

Definition 4. Query graph nodes representing Group

elements can be interpreted as follows:

ððT ; SÞÞ½m−n� ¼def∃G : ∀gðg∈G-TðgÞ∧SðgÞÞ
∧no jGjom ð6Þ
½m−n� annotation defines constraints on the group size,
where both n and m can be optional defining thus absence
of upper or lower limits. We use capital letters for vari-
ables identifying sets (e.g., G), and lower case for variables
denoting single objects (e.g., g).

Definition 5. Edges in a query graph, adjacent to Group

elements, are interpreted in Monadic Second-Order Logic,
extended with generalized quantifiers, as follows:

ðaÞ ððGÞÞ ¼def∃g∈G : Rða; gÞ ð7Þ

ððAÞÞ ððGÞÞ ¼def∃g∈G; ∃a∈A : Rða; gÞ ð8Þ

ðaÞ ΞððGÞÞ ¼defΞg∈G : Rða; gÞ ð9Þ

ððAÞÞΨ ΞððGÞÞ ¼defΞg∈G;Ψa∈A : Rða; gÞ ð10Þ

ðaÞ ððGÞÞ ¼defRða; gÞ-g∉G ð11Þ

ððAÞÞ ððGÞÞ ¼defRða; gÞ-a∉A∨g∉G ð12Þ

Here, similar to previous definition, a enclosed into single
and A enclosed into double round brackets denote an
already interpreted artifact or group respectively. Also, ∀
is a default quantifier for double line edges.

Definition 6. In addition to edges defined above, member-
ship and subgroup relations in a graph query can be
defined as

ðaÞ−⋄ððGÞÞ ¼def∃G : a∈G ð13Þ

ððAÞÞ−⋄ððGÞÞ ¼def∃G : A⊂G ð14Þ

Definition 7. Query graph Q is a triple defined as follows:

Q ¼defða; E;VÞ; graph Q is connected;
a is the pre�defined central primary vertex ðartifactÞ;
V is a set of vertices ðT ; SÞ and ððT ; SÞÞ½m−n�; a∉V ;
E is a set of edges EDfag � f ; ; g � ðVÞ
∪V � f ; ; g � V ð15Þ

Definition 8. Context element CTX in the modeling nota-
tion is a composition of query graphs CQ:

CQ ¼defQ jCQ ′ AND CQ″j CQ ′ OR CQ″
j CQ ′ XOR CQ″;
CQ ′¼ ða′; E′;V ′Þ;
CQ″¼ ða″; E″;V″Þ;
a′¼ a″; E′∩E″¼∅;

V ′∩V″¼∅ ð16Þ

Definition 9. Transition element CT, attached to Context
element CTX, can be defined as

CT ¼defðCTX; E;C;ACÞ;
E is an external event;



V. Liptchinsky et al. / Information Systems 43 (2014) 66–82 77
C is a condition;C : QU � ID-ftrue; falseg;
AC is an activity;AC : QU � ID-∅;

ID is a set of identifiers attached
to vertices in CTX graph;

QU is a set of quantifiers;QU ¼ fAny;Every;Allg
ð17Þ

In the next section we demonstrate the expressiveness of
the defined modeling notation by means of several
use cases.

5. Use cases

This section describes four collaboration process use
cases which demonstrate the application of our modeling
approach to various collaboration issues. As it can be seen,
the approach allows to easily express the dependency of a
process on complex relations in its environment, and to
compactly capture the dynamic co-influence between
instances of the same process in one model. For clarity,
in the use cases we attach to each Context element a free
text description of its specification.

5.1. Use case—design game

Goal: The goal in this use case is to coordinate a design
of a complex system consisting of interrelated projects.
A set of expert virtual teams thus collaborate to reach a
consensus. The assignment relation between teams and
projects is one-to-one, but teams can share members. As
some projects are dependent, it can happen that changes
in the design of one project can be the reason for changes
in the design of other ones. Finally, all project designs
should be consistent with their dependent ones.

Model: Each project of this system is regarded as a
separate process (see Fig. 5). In the beginning, it is in In

Progress state, indicating that the team is currently
working on its design. When the team makes some
changes to the design and commits it, the process goes
into Updated state. If no changes to the design were
made, i.e., the existing version was examined and con-
sidered valid, then the process switches to Finalized

state. The states Updated and Finalized together repre-
sent superstate Wait Input, which means that the project
design is currently awaiting for some external actions.
Fig. 5. Use case—
If the team suddenly decides to update the design (e.g., a
better idea emerged), the process goes back into In

Progress state.
Now, if the process is in Wait Input state, and if all the

related projects are also in Wait input state and at least
one is Updated, then the team should check the design of
their project against inconsistencies with updated pro-
jects. Thus, the updated documents are sent to the team
and the state is switched to In Progress. An exception is
the case when the project team shares a common expert
with the team of an updated project (relation Socially
related), who is expected to foresee any inconsistencies
beforehand. Waiting the related projects to be in Wait

Input ensures that all the updates of related documents
will be taken into account.

When in Updated state, and if all the related projects
are finalized, the process goes into the finalized state,
which ensures that if a document spawned no updates
among related documents, it will not stay in Updated

state.
The system may be considered in the final state when

all the projects are in Finalized state.
Advantages: This use case demonstrates the modeling

of collaboration as ordered iterative communication of
project teams towards reaching a consensus. It shows that
our modeling approach, as opposed to existing modeling
approaches (see Section 3), is capable of expressing uni-
versal and existential quantification.
5.2. Use case—social selection

Goal: The goal of this use case is to support a software
development process with the selection of appropriate
actors (e.g., developer, adviser, reviewer) based on rela-
tions with the other tasks and among the actors. Tasks are
related if they belong to the same project, employees are
related if they collaborated before.

Model: Fig. 6 depicts the software development process.
At first, the task is in the Ready for Implementation

state and is waiting for an appropriate developer to be
assigned. Any available developer from a related task is
assigned for this role, as he/she is expected to be more
productive because of being familiar with some related
concepts. Alternatively, a manual assignment is performed.
In either case, the process goes to the Implementation

in Progress state. An impediment can occur during the
design game.



Fig. 6. Use case—social selection.

V. Liptchinsky et al. / Information Systems 43 (2014) 66–8278
implementation (Impediment pending state), in which
case an adviser is needed for assistance. An adviser is
preferably selected as being related to the developer
employee who contributed to a related task, because of
joint work experience. Otherwise, any related task con-
tributor is chosen. If the adviser is found, the process goes
into Resolution in Progress state, from where it can
either go either back to Implementation in Progress

or Impediment Pending states, depending on whether
the impediment has been resolved. Also, the developer can
resolve the impediment by herself if no adviser was found.
After the implementation is finished, the reviewers are
selected (Ready For Review state): they are desired to
have experience with related tasks but be unrelated to
each other, which assures unbiased reviews. After the
review process (Review In Progress state), either the
implementation needs to be revised, or the task is con-
sidered finished.

Advantages: This use case demonstrates expressiveness
of the modeling approach when visualizing a social net-
work environment, allowing thus to model processes that
require discovery (e.g., compose a socially coherent team),
unbiasedness (e.g., involve independent people), and
negotiation (e.g., by exploiting of social hubs). It shows
expressiveness of the graphical notation with regards to
modeling discovery in a surrounding social network.
Contrarily, existing modeling approaches fall short of
expressing such patterns in a visual and formal manner
(see Section 3).
5 http://scrummethodology.com/
scrum-effort-estimation-and-story-points/
5.3. Use case—dependent components

Goal: The goal is to coordinate the development and
testing of a software product, which consists of manifold
components, some of which depend on others (we assume
no cyclic dependencies). The development a component
should proceed only when the components it depends on
have reached certain progress.
Model: Fig. 7 depicts the process which corresponds to
a single component. It starts in Open state and switches
over to Implementation Phase in either of the two
cases: it does not depend on any components, or at least
one component which it depends on is in Testing Phase.
This ensures some minimal basis for the development.
After Implementation Phase, the component is ready to
switch over to Testing Phase, but, first, it should wait for
all the components it depends on to be implemented, so
the testing covers the combined functionality. The testing
phase can reveal some flaws so the component will return
into Implementation Phase for fixing those. If, while
the component is in Testing Phase, any of the compo-
nents it depends on suddenly goes into Implementation

Phase, then the testing should be stopped in order not to
waste the testing effort on outdated components. Lastly, if
the component is in Ready to Finalize state, and all the
components it depends on are Finalized, then the
component can be finalized.

Advantages: This use case demonstrates the suitability
of the modeling approach for expressing the coordination
of project teams towards ensuring consistency and cor-
rectness of a complex product. It shows the expressiveness
of our modeling notation if comparing it to existing
modeling approaches that would capture process coordi-
nation either in a text form or via events (see Section 3).
5.4. Use case—teams and groups

Goal: The goal of this use case is to compose effective
teams based on social connections and internal company
structure. This use case exemplifies a composition of a
development team, a replacement search for a key role
(here: SCRUM Master5), and the formation of independent
expert groups.

http://scrummethodology.com/scrum-effort-estimation-and-story-points/
http://scrummethodology.com/scrum-effort-estimation-and-story-points/


Fig. 7. Use case—dependent components.

Fig. 8. Use case—teams and groups.

V. Liptchinsky et al. / Information Systems 43 (2014) 66–82 79
Model: Fig. 8 shows a simplified software development
process with focus on team creation and support. The
process starts in Team Formation state where a develop-
ment team of five people and a product owner are chosen.
The product owner should be socially related to at least
half of the future users of the product at hand, which
ensures more efficient communication of requirements
and feedback. The product owner should also know at
least one of the developers, so a better contact with the
team can be established. Developers in turn should have
the skills necessary for the project and should know each
other to some extent for easier integration, so the rule
states that each developer in a team should be related to at
least two others.
To specify the requirement that all the customers that
will use the product must be included in the group, we
need to use an advanced pattern, because having only a
double edge from the primary element is insufficient: that
would mean that there exists a group of customers, all of
whom will use a product, but does not imply that all such
possible customers will fall into this group. We thus need
to use an additional single Customer element defined
with a universal quantification, which means that each
customer who uses the product is included in the group.
The double edge from the primary element should remain
to state that the group is restricted only to the customers
who will use the product. The similar technique is used in
the context with SCRUM Masters.



V. Liptchinsky et al. / Information Systems 43 (2014) 66–8280
Once the team is formed, the development phase starts
and the process goes into Development state. During this
phase it might happen that some member leaves a team
for an arbitrary reason, and a replacement has to be found.
The use case illustrates such a situation with the team's
SCRUM Master. A criterion for the new SCRUM Master is
that she should share at least half of the connections of the
leaving SCRUM Master to managers of collaborating
departments. This rule aims to retain the pace of issue
resolution, should any occur while collaborating with the
other teams. After the development phase is over, the
process goes into Ready for review state where evalua-
tion teams are composed. Two teams of four to five people
should be independent, i.e., a member of one team should
not have any connections to the members of the other
team, to assure unbiased evaluation. The process can then
switch to Evaluation phase and eventually be finished.

Advantages: This use case demonstrates the capabilities
of the framework to express advanced patterns in social
networks, such as 2-plex (development team), broker
(product owner), and structural equivalence (new SCRUM
Master), as well as conditions involving multiple teams.

6. Discussion

Compared with existing approach, the main strengths
of our modeling notation are its expressivity and flexibility.
First, the modeling notation is capable of capturing com-
plex graph patterns inherent to social networks. Second,
the modeling notation goes in line with statecharts by
avoiding any domain-specific constructs, making it applic-
able outside of the social networks domain. Third, it allows
to capture the evolution of a network of artifacts, as well as
a network of people. Our modeling approach is supported
by a formal definition, enabling thus design time reason-
ing, verification, optimization and efficient execution.

The absence of explicit communication entities (events
or messages) in the modeling approach is a strength
regarding the clarity of the resulting model, but also a
weakness. It allows to provide simple processes coordina-
tion and secure encapsulation: a process can modify only
its own state, it cannot impact related processes explicitly,
similar to Cellular Automata (CA) [73]. However, a modeler
cannot immediately see what parts of a business process
(states) other processes rely upon. Given that definitions of
events and messages represent a process interface, a
modeler will not be able to remove or change process
states without a certain risk of affecting other models.
However, this problem can be remedied with state cluster-
ing available in statecharts.

Unlike CRPQ-based languages (see Section 3.4), our
visual notation does not have notion of paths defined with
regular expressions. Seamless integration of paths requires
further investigation with respect to usefulness in the
scope of context-aware processes, and is part of our future
work. Also, we envision that other additional elements
might be added, like aggregation operators to describe the
accumulated state of the entire neighborhood. Moreover,
among our major interests are the possibility of sharing
context elements between parallel processes along with
zoom in and zoom out capabilities for group elements.
Our modeling framework unifies active and passive
entities, i.e., actors and artifacts, and considers them from
the perspective of classification (type) and possible states.
Correspondingly, our graphical modeling notation employs
a single type of shapes for both actors and artifacts in line
with statecharts. This approach emphasizes the viewpoint
of groupware and collaborative software, where actors are
represented simply as user profiles, which are, essentially,
also documents. The unification affects slightly the intui-
tiveness of the modeling notation, as it is not immediately
visible which entities are active and which are passive.
However, this unification allows for greater flexibility, e.g.,
it is possible to specify an actor as a central element,
modeling thus evolvement of a user profile, or express a
semantically coherent group of artifacts. Moreover, it
enables a broader use of the framework and potential
application to other domains. For example, it is possible to
introduce actors that represent software agents, or other
types of social entities, such as organizations.

According to the formal definition (see Section 4), our
modeling notation incorporates relation as a modeling
element, but neither types nor semantics of relations are
formalized. This makes sociality of the modeling notation
somewhat implicit, coming rather from the ability to
express common patterns in social networks and their
influence on collaboration processes. Being highly depen-
dent on the target domain, semantics of relations between
collaborators are left to be defined by the modeler, as well
as possible problems to infer those relations. Absence of
specific semantics behind relations, again, allows for
greater flexibility, enabling a modeler to define and adjust
many specific types of relations, such as colleagues,
acquaintances, relations denoting mutual dislike or past
conflicts and so on. To avoid this, a context taxonomy
[37,74] could be extended to incorporate information
about different social relationships.
7. Conclusion

This paper proposes a modeling approach and a corre-
sponding graphical notation for creative human collabora-
tion processes. The applicability of the approach was
demonstrated through several use cases, and its strengths
and weaknesses were discussed.

Comparing to existing approaches, our contribution has
two main distinguishable features: it is capable of captur-
ing complex patterns in network of artifacts and people,
and it advocates a communication model where a process
can modify only its own state and cannot explicitly impact
related processes. We have shown that these features are
naturally suitable for modeling of social collaboration
processes. Although our approach was designed with this
focus, we do not exclude its applicability in other areas.

In [75], we first presented an execution framework for
our modeling approach in the form of a coordination
language. In the future we plan to extend this execution
framework with the notion of groups in order to allow for
coordination of collaboration processes based on complex
formations in social surroundings.



V. Liptchinsky et al. / Information Systems 43 (2014) 66–82 81
Acknowledgment

This paper is an extended version of the work men-
tioned in [9]. This work is partially supported by the
Austrian Science Fund (FWF): P23313-N2.

References

[1] S. Nurcan, A survey on the flexibility requirements related to
business processes and modeling artifacts, in: Proceedings of the
41st Annual Hawaii International Conference on System Sciences,
HICSS '08, IEEE Computer Society, Washington, DC, USA, 2008,
pp. 378–388.

[2] G.W. Dickson, G. DeSanctis, Information Technology and the Future
Enterprise: New Models for Managers, Prentice Hall PTR, Upper
Saddle River, NJ, USA, 2000.

[3] I.J. Martinez-Moyano, Exploring the Dynamics of Collaboration in
Interorganizational Settings, Jossey-Bass, San Francisco, 2006
(Chapter 4).

[4] M. Conway, How do committees invent, Datamation 14 (4) (1968)
28–31.

[5] J. Sanz, Entity-centric operations modeling for business process
management—a multidisciplinary review of the state-of-the-art,
in: 2011 IEEE 6th International Symposium on Service Oriented
System Engineering (SOSE), 2011, pp. 152–163.

[6] W.M. van der Aalst, M. Weske, D. Grünbauer, Case handling: a new
paradigm for business process support, Data & Knowledge Engineer-
ing 53 (2) (2005) 129–162.

[7] K. Bhattacharya, R. Hull, J. Su, A data-centric design methodology for
business processes, in: Handbook of Research on Business Process
Modeling, 2009, pp. 503–531 (Chapter 23).

[8] J.P. Scott, Social Network Analysis: A Handbook, 2nd edition, SAGE
Publications, 2000.

[9] V. Liptchinsky, R. Khazankin, H.L. Truong, S. Dustdar, A novel
approach to modeling context-aware and social collaboration pro-
cesses, in: International Conference on Advanced Information Sys-
tems Engineering (CAiSE'12), 2012, pp. 565–580.

[10] A. Powell, G. Piccoli, B. Ives, Virtual teams: a review of current
literature and directions for future research, SIGMIS Database 35
(2004) 6–36.

[11] W.M. van der Aalst, M. Stoffele, J. Wamelink, Case handling in
construction, Automation in Construction 12 (3) (2003) 303–320.

[12] W. van der Aalst, P. Barthelmess, C. Ellis, J. Wainer, Workflow
modeling using proclets, in: P. Scheuermann, O. Etzion (Eds.),
Cooperative Information Systems, Lecture Notes in Computer
Science, Springer, Berlin, Heidelberg, 2000, pp. 198–209.

[13] C. Hagen, G. Alonso, Beyond the black box: event-based inter-
process communication in process support systems, in: 19th IEEE
International Conference on Distributed Computing Systems, 1999.
Proceedings, 1999, pp. 450–457.

[14] F. Curbera, Y. Goland, J. Klein, F. Leymann, S. Weerawarana, et al.,
Business Process Execution Language for Web Services (BPEL4WS)
Version 1.1, 2003.

[15] A. Agrawal, M. Amend, M. Das, M. Ford, C. Keller, M. Kloppmann,
D. König, F. Leymann, R. Müller, G. Pfau, et al., Web Services Human
Task (ws-humantask), version 1.0, available at 〈http://incubator.
apache.org/hise/WS-HumanTask_v1.pdf〉.

[16] M. Kloppmann, D. Koenig, F. Leymann, G. Pfau, A. Rickayzen, C. von
Riegen, P. Schmidt, I. Trickovic, Ws-bpel extension for people—
bpel4people, Joint white paper, IBM and SAP, 2005.

[17] D. Schall, B. Satzger, H. Psaier, Crowdsourcing Tasks to Social
Networks in BPEL4People, World Wide Web.

[18] R. Hull, Artifact-Centric Business Process Models: Brief Survey of
Research Results and Challenges, in: On the Move to Meaningful
Internet Systems (OTM 2008), Lecture Notes in Computer Science,
vol. 5332, Springer, 2008, pp. 1152–1163.

[19] J.L.C. Sanz, Entity-centric operations modeling for business process
management—a multidisciplinary review of the state-of-the-art, in:
IEEE 6th International Symposium on Service Oriented System
Engineering (SOSE 2011), 2011, pp. 152–163.

[20] A. Nigam, N.S. Caswell, Business artifacts: an approach to opera-
tional specification, IBM Systems Journal 42 (3) (2003) 428–445.

[21] R. Hull, E. Damaggio, F. Fournier, M. Gupta, F.T. Heath, S. Hobson,
M.H. Linehan, S. Maradugu, A. Nigam, P. Sukaviriya, R. Vaculín,
Introducing the guard-stage-milestone approach for specifying
business entity lifecycles, in: 7th International Workshop on Web
Services and Formal Methods, Lecture Notes in Computer Science,
vol. 6551, Springer, 2010, pp. 1–24.

[22] M. Pesic, W.M.P. van der Aalst, A declarative approach for flexible
business processes management, in: Business Process Management
Workshops 2006, Lecture Notes in Computer Science, vol. 4103,
Springer, 2006, pp. 169–180.

[23] C. Fritz, R. Hull, J. Su, Automatic construction of simple artifact-based
business processes, in: 12th International Conference on Database
Theory, ACM International Conference Proceeding Series, vol. 361,
ACM, 2009, pp. 225–238.

[24] D. Fahland, J. Mendling, H.A. Reijers, B. Weber, M. Weidlich, S. Zugal,
Declarative versus imperative process modeling languages: the
issue of maintainability, in: Business Process Management Work-
shops 2009, Lecture Notes in Business Information Processing, vol.
43, Springer, 2009, pp. 477–488.

[25] K. Bhattacharya, C.E. Gerede, R. Hull, R. Liu, J. Su, Towards formal
analysis of artifact-centric business process models, in: 5th Interna-
tional Conference on Business Process Management, Lecture Notes
in Computer Science, vol. 4714, Springer, 2007, pp. 288–304.

[26] D. Fensel, H. Lausen, A. Polleres, J. de Bruijn, M. Stollberg, D. Roman,
J. Domingue, Enabling Semantic Web Services: The Web Service
Modeling Ontology, Springer-Verlag, New York, Inc., Secaucus, NJ,
USA, 2006.

[27] D. Martin, M. Burstein, D. McDermott, S.A. McIlraith, M. Paolucci,
K.P. Sycara, D.L. McGuinness, E. Sirin, N. Srinivasan, Bringing Seman-
tics to Web Services with OWL-S, World Wide Web 10 (3) (2007)
243–277.

[28] R. Liu, K. Bhattacharya, F.Y. Wu, Modeling business contexture and
behavior using business artifacts, in: Proceedings of the 19th
International Conference on Advanced Information Systems Engi-
neering, CAiSE'07, Springer-Verlag, Berlin, Heidelberg, 2007,
pp. 324–339.

[29] A.K. Dey, Understanding and Using Context, Personal and Ubiqui-
tous Computing 5 (1) (2001) 4–7.

[30] M. Rosemann, J. Recker, Context-aware process design: exploring
the extrinsic drivers for process flexibility, in: Seventh Workshop on
Business Process Modeling, Development, and Support (BPMDS'06)
at the 18th International Conference on Advanced Information
Systems Engineering (CAiSE'06), CEUR Workshop Proceedings,
CEUR-WS.org, vol. 749, 2006, pp. 149–158.

[31] M. Wieland, O. Kopp, D. Nicklas, F. Leymann, Towards context-aware
workflows, in: CAISE'07 Proceedings of the Workshops and Doctoral
Consortium vol. 2, 2007.

[32] S. Schulte, D. Schuller, R. Steinmetz, S. Abels, Plug-and-play virtual
factories, IEEE Internet Computing 16 (5) (2012) 78–82.

[33] L. Ardissono, R. Furnari, A. Goy, G. Petrone, M. Segnan, The context
aware workflow execution framework, International Journal of
Autonomous and Adaptive Communications Systems 5 (1) (2012)
58–76.

[34] M. Baldauf, S. Dustdar, F. Rosenberg, A survey on context-aware
systems, International Journal of Ad Hoc and Ubiquitous Computing
2 (4) (2007) 263–277.

[35] H.L. Truong, S. Dustdar, A survey on context-aware web service
systems, International Journal of Web Information Systems 5 (1)
(2009) 5–31.

[36] P. Balabko, A. Wegmann, Context based reasoning in business
process models, in: 2003 IEEE International Conference on Informa-
tion Reuse and Integration (IRI-2003), IEEE Computer Society,
Washington, DC, USA, 2003, pp. 120–128.

[37] O. Saidani, S. Nurcan, Towards context aware business process
modelling, in: 8th Workshop on Business Process Modeling, Devel-
opment, and Support (BPMDS'07) at the 19th International Con-
ference on Advanced Information Systems Engineering (CAiSE'07),
Springer, Berlin, Heidelberg, 2007.

[38] O. Saidani, S. Nurcan, Context-awareness for adequate business
process modelling, in: 3rd IEEE International Conference on
Research Challenges in Information Science (RCIS 2009), IEEE
Computer Society, Washington, DC, USA, 2009, pp. 177–186.

[39] P.T. Wood, Query languages for graph databases, SIGMOD Record 41
(1) (2012) 50–60.

[40] R. Angles, C. Gutierrez, Survey of graph database models, ACM
Computing Surveys 40 (1) (2008) 1:1–1:39.

[41] R. Ronen, O. Shmueli, Soql: A language for querying and creating
data in social networks, in: Proceedings of the 2009 IEEE Interna-
tional Conference on Data Engineering, ICDE '09, IEEE Computer
Society, Washington, DC, USA, 2009, pp. 1595–1602.

[42] A. Dries, S. Nijssen, L. De Raedt, A query language for analyzing
networks, in: Proceedings of the 18th ACM Conference on

http://refhub.elsevier.com/S0306-4379(13)00076-8/othref0005
http://refhub.elsevier.com/S0306-4379(13)00076-8/othref0005
http://refhub.elsevier.com/S0306-4379(13)00076-8/othref0005
http://refhub.elsevier.com/S0306-4379(13)00076-8/othref0005
http://refhub.elsevier.com/S0306-4379(13)00076-8/othref0005
http://refhub.elsevier.com/S0306-4379(13)00076-8/sbref2
http://refhub.elsevier.com/S0306-4379(13)00076-8/sbref2
http://refhub.elsevier.com/S0306-4379(13)00076-8/sbref2
http://refhub.elsevier.com/S0306-4379(13)00076-8/sbref3
http://refhub.elsevier.com/S0306-4379(13)00076-8/sbref3
http://refhub.elsevier.com/S0306-4379(13)00076-8/sbref3
http://refhub.elsevier.com/S0306-4379(13)00076-8/sbref4
http://refhub.elsevier.com/S0306-4379(13)00076-8/sbref4
http://refhub.elsevier.com/S0306-4379(13)00076-8/othref0010
http://refhub.elsevier.com/S0306-4379(13)00076-8/othref0010
http://refhub.elsevier.com/S0306-4379(13)00076-8/othref0010
http://refhub.elsevier.com/S0306-4379(13)00076-8/othref0010
http://refhub.elsevier.com/S0306-4379(13)00076-8/sbref6
http://refhub.elsevier.com/S0306-4379(13)00076-8/sbref6
http://refhub.elsevier.com/S0306-4379(13)00076-8/sbref6
http://refhub.elsevier.com/S0306-4379(13)00076-8/sbref6
http://refhub.elsevier.com/S0306-4379(13)00076-8/othref0015
http://refhub.elsevier.com/S0306-4379(13)00076-8/othref0015
http://refhub.elsevier.com/S0306-4379(13)00076-8/othref0015
http://refhub.elsevier.com/S0306-4379(13)00076-8/sbref8
http://refhub.elsevier.com/S0306-4379(13)00076-8/sbref8
http://refhub.elsevier.com/S0306-4379(13)00076-8/othref0020
http://refhub.elsevier.com/S0306-4379(13)00076-8/othref0020
http://refhub.elsevier.com/S0306-4379(13)00076-8/othref0020
http://refhub.elsevier.com/S0306-4379(13)00076-8/othref0020
http://refhub.elsevier.com/S0306-4379(13)00076-8/sbref10
http://refhub.elsevier.com/S0306-4379(13)00076-8/sbref10
http://refhub.elsevier.com/S0306-4379(13)00076-8/sbref10
http://refhub.elsevier.com/S0306-4379(13)00076-8/sbref11
http://refhub.elsevier.com/S0306-4379(13)00076-8/sbref11
http://refhub.elsevier.com/S0306-4379(13)00076-8/sbref12
http://refhub.elsevier.com/S0306-4379(13)00076-8/sbref12
http://refhub.elsevier.com/S0306-4379(13)00076-8/sbref12
http://refhub.elsevier.com/S0306-4379(13)00076-8/sbref12
http://refhub.elsevier.com/S0306-4379(13)00076-8/othref0025
http://refhub.elsevier.com/S0306-4379(13)00076-8/othref0025
http://refhub.elsevier.com/S0306-4379(13)00076-8/othref0025
http://refhub.elsevier.com/S0306-4379(13)00076-8/othref0025
http://refhub.elsevier.com/S0306-4379(13)00076-8/othref0030
http://refhub.elsevier.com/S0306-4379(13)00076-8/othref0030
http://refhub.elsevier.com/S0306-4379(13)00076-8/othref0030
http://refhub.elsevier.com/S0306-4379(13)00076-8/othref0035
http://refhub.elsevier.com/S0306-4379(13)00076-8/othref0035
http://refhub.elsevier.com/S0306-4379(13)00076-8/othref0035
http://incubator.apache.org/hise/WS-HumanTask_v1.pdf
http://incubator.apache.org/hise/WS-HumanTask_v1.pdf
http://refhub.elsevier.com/S0306-4379(13)00076-8/othref0040
http://refhub.elsevier.com/S0306-4379(13)00076-8/othref0040
http://refhub.elsevier.com/S0306-4379(13)00076-8/othref0040
http://refhub.elsevier.com/S0306-4379(13)00076-8/othref0045
http://refhub.elsevier.com/S0306-4379(13)00076-8/othref0045
http://refhub.elsevier.com/S0306-4379(13)00076-8/othref0050
http://refhub.elsevier.com/S0306-4379(13)00076-8/othref0050
http://refhub.elsevier.com/S0306-4379(13)00076-8/othref0050
http://refhub.elsevier.com/S0306-4379(13)00076-8/othref0050
http://refhub.elsevier.com/S0306-4379(13)00076-8/othref0055
http://refhub.elsevier.com/S0306-4379(13)00076-8/othref0055
http://refhub.elsevier.com/S0306-4379(13)00076-8/othref0055
http://refhub.elsevier.com/S0306-4379(13)00076-8/othref0055
http://refhub.elsevier.com/S0306-4379(13)00076-8/sbref20
http://refhub.elsevier.com/S0306-4379(13)00076-8/sbref20
http://refhub.elsevier.com/S0306-4379(13)00076-8/othref0060
http://refhub.elsevier.com/S0306-4379(13)00076-8/othref0060
http://refhub.elsevier.com/S0306-4379(13)00076-8/othref0060
http://refhub.elsevier.com/S0306-4379(13)00076-8/othref0060
http://refhub.elsevier.com/S0306-4379(13)00076-8/othref0060
http://refhub.elsevier.com/S0306-4379(13)00076-8/othref0060
http://refhub.elsevier.com/S0306-4379(13)00076-8/othref0065
http://refhub.elsevier.com/S0306-4379(13)00076-8/othref0065
http://refhub.elsevier.com/S0306-4379(13)00076-8/othref0065
http://refhub.elsevier.com/S0306-4379(13)00076-8/othref0065
http://refhub.elsevier.com/S0306-4379(13)00076-8/othref0070
http://refhub.elsevier.com/S0306-4379(13)00076-8/othref0070
http://refhub.elsevier.com/S0306-4379(13)00076-8/othref0070
http://refhub.elsevier.com/S0306-4379(13)00076-8/othref0070
http://refhub.elsevier.com/S0306-4379(13)00076-8/othref0075
http://refhub.elsevier.com/S0306-4379(13)00076-8/othref0075
http://refhub.elsevier.com/S0306-4379(13)00076-8/othref0075
http://refhub.elsevier.com/S0306-4379(13)00076-8/othref0075
http://refhub.elsevier.com/S0306-4379(13)00076-8/othref0075
http://refhub.elsevier.com/S0306-4379(13)00076-8/othref0080
http://refhub.elsevier.com/S0306-4379(13)00076-8/othref0080
http://refhub.elsevier.com/S0306-4379(13)00076-8/othref0080
http://refhub.elsevier.com/S0306-4379(13)00076-8/othref0080
http://refhub.elsevier.com/S0306-4379(13)00076-8/sbref26
http://refhub.elsevier.com/S0306-4379(13)00076-8/sbref26
http://refhub.elsevier.com/S0306-4379(13)00076-8/sbref26
http://refhub.elsevier.com/S0306-4379(13)00076-8/sbref26
http://refhub.elsevier.com/S0306-4379(13)00076-8/sbref27
http://refhub.elsevier.com/S0306-4379(13)00076-8/sbref27
http://refhub.elsevier.com/S0306-4379(13)00076-8/sbref27
http://refhub.elsevier.com/S0306-4379(13)00076-8/sbref27
http://refhub.elsevier.com/S0306-4379(13)00076-8/othref0085
http://refhub.elsevier.com/S0306-4379(13)00076-8/othref0085
http://refhub.elsevier.com/S0306-4379(13)00076-8/othref0085
http://refhub.elsevier.com/S0306-4379(13)00076-8/othref0085
http://refhub.elsevier.com/S0306-4379(13)00076-8/othref0085
http://refhub.elsevier.com/S0306-4379(13)00076-8/sbref29
http://refhub.elsevier.com/S0306-4379(13)00076-8/sbref29
http://refhub.elsevier.com/S0306-4379(13)00076-8/othref0090
http://refhub.elsevier.com/S0306-4379(13)00076-8/othref0090
http://refhub.elsevier.com/S0306-4379(13)00076-8/othref0090
http://refhub.elsevier.com/S0306-4379(13)00076-8/othref0090
http://refhub.elsevier.com/S0306-4379(13)00076-8/othref0090
http://refhub.elsevier.com/S0306-4379(13)00076-8/othref0090
http://refhub.elsevier.com/S0306-4379(13)00076-8/othref0095
http://refhub.elsevier.com/S0306-4379(13)00076-8/othref0095
http://refhub.elsevier.com/S0306-4379(13)00076-8/othref0095
http://refhub.elsevier.com/S0306-4379(13)00076-8/sbref32
http://refhub.elsevier.com/S0306-4379(13)00076-8/sbref32
http://refhub.elsevier.com/S0306-4379(13)00076-8/sbref33
http://refhub.elsevier.com/S0306-4379(13)00076-8/sbref33
http://refhub.elsevier.com/S0306-4379(13)00076-8/sbref33
http://refhub.elsevier.com/S0306-4379(13)00076-8/sbref33
http://refhub.elsevier.com/S0306-4379(13)00076-8/sbref34
http://refhub.elsevier.com/S0306-4379(13)00076-8/sbref34
http://refhub.elsevier.com/S0306-4379(13)00076-8/sbref34
http://refhub.elsevier.com/S0306-4379(13)00076-8/sbref35
http://refhub.elsevier.com/S0306-4379(13)00076-8/sbref35
http://refhub.elsevier.com/S0306-4379(13)00076-8/sbref35
http://refhub.elsevier.com/S0306-4379(13)00076-8/othref0100
http://refhub.elsevier.com/S0306-4379(13)00076-8/othref0100
http://refhub.elsevier.com/S0306-4379(13)00076-8/othref0100
http://refhub.elsevier.com/S0306-4379(13)00076-8/othref0100
http://refhub.elsevier.com/S0306-4379(13)00076-8/othref0105
http://refhub.elsevier.com/S0306-4379(13)00076-8/othref0105
http://refhub.elsevier.com/S0306-4379(13)00076-8/othref0105
http://refhub.elsevier.com/S0306-4379(13)00076-8/othref0105
http://refhub.elsevier.com/S0306-4379(13)00076-8/othref0105
http://refhub.elsevier.com/S0306-4379(13)00076-8/othref0110
http://refhub.elsevier.com/S0306-4379(13)00076-8/othref0110
http://refhub.elsevier.com/S0306-4379(13)00076-8/othref0110
http://refhub.elsevier.com/S0306-4379(13)00076-8/othref0110
http://refhub.elsevier.com/S0306-4379(13)00076-8/sbref39
http://refhub.elsevier.com/S0306-4379(13)00076-8/sbref39
http://refhub.elsevier.com/S0306-4379(13)00076-8/sbref40
http://refhub.elsevier.com/S0306-4379(13)00076-8/sbref40
http://refhub.elsevier.com/S0306-4379(13)00076-8/othref0115
http://refhub.elsevier.com/S0306-4379(13)00076-8/othref0115
http://refhub.elsevier.com/S0306-4379(13)00076-8/othref0115
http://refhub.elsevier.com/S0306-4379(13)00076-8/othref0115
http://refhub.elsevier.com/S0306-4379(13)00076-8/othref0120
http://refhub.elsevier.com/S0306-4379(13)00076-8/othref0120


V. Liptchinsky et al. / Information Systems 43 (2014) 66–8282
Information and Knowledge Management, CIKM '09, ACM, New
York, NY, USA, 2009, pp. 485–494.

[43] H. Blau, N. Immerman, D. Jensen, A visual language for querying and
updating graphs, Technical Report 2002-037, Department of Com-
puter Science, University of Massachusetts, 2002.

[44] G. Erétéo, M. Buffa, F. Gandon, O. Corby, Analysis of a real online
social network using semantic web frameworks, in: Proceedings of
the 8th International Semantic Web Conference, ISWC '09, Springer-
Verlag, Berlin, Heidelberg, 2009, pp. 180–195.

[45] I.F. Cruz, A.O. Mendelzon, P.T. Wood, A graphical query language
supporting recursion, SIGMOD Record 16 (3) (1987) 323–330.

[46] M.P. Consens, A.O. Mendelzon, Graphlog: a visual formalism for real
life recursion, in: Proceedings of the Ninth ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems, PODS '90,
ACM, New York, NY, USA, 1990, pp. 404–416.

[47] S. Abiteboul, D. Quass, J. McHugh, J. Widom, J.L. Wiener, The Lorel
query language for semistructured data, International Journal on
Digital Libraries 1 (1) (1997) 68–88.

[48] M. Fernández, D. Florescu, A. Levy, D. Suciu, Declarative specification
of web sites with strudel, The VLDB Journal 9 (1) (2000) 38–55.

[49] P. Buneman, M. Fernandez, D. Suciu, Unql: a query language and
algebra for semistructured data based on structural recursion, The
VLDB Journal 9 (1) (2000) 76–110.

[50] G. Kasneci, F.M. Suchanek, G. Ifrim, S. Elbassuoni, M. Ramanath,
G. Weikum, Naga: harvesting, searching and ranking knowledge, in:
Proceedings of the 2008 ACM SIGMOD International Conference on
Management of Data, SIGMOD '08, 2008, pp. 1285–1288.

[51] N. Team, The neo4j Manual. URL 〈http://docs.neo4j.org/〉.
[52] Sparql 1.1 query language—w3c working draft 05 January 2012. URL

〈http://www.w3.org/TR/sparql11-query/〉.
[53] H. He, A.K. Singh, Graphs-at-a-time: query language and access

methods for graph databases, in: Proceedings of the 2008 ACM
SIGMOD international conference on Management of data, SIGMOD
'08, 2008, pp. 405–418.

[54] U. Leser, A query language for biological networks, Bioinformatics 21
(Suppl 2) (2005) ii33–ii39.

[55] D. Jensen, J. Neville, Data mining in social networks, in: Dynamic
Social Network Modeling and Analysis: Workshop Summary and
Papers, 2003, pp. 287–302.

[56] J.L. Dietz, Demo: towards a discipline of organisation engineering,
European Journal of Operational Research 128 (2) (2001) 351–363.

[57] E.S.K. Yu, J. Mylopoulos, From e-r to “a-r”—modelling strategic actor
relationships for business process reengineering, in: P. Loucopoulos
(Ed.), ER, Lecture Notes in Computer Science, vol. 881, Springer,
1994, pp. 548–565.

[58] S. Nurcan, J. Barrios, Enterprise knowledge and information system
modelling in an evolving environment, in: First International Work-
shop on Engineering Methods to Support Information Systems
Evolution, 2003.

[59] T. Winograd, A language/action perspective on the design of
cooperative work, in: Proceedings of the 1986 ACM conference on
Computer-supported cooperative work, CSCW '86, ACM, New York,
NY, USA, 1986, pp. 203–220.
[60] R. Kibble, Speech acts, commitment and multi-agent communica-
tion, Computational and Mathematical Organization Theory 12 (2–3)
(2006) 127–145.

[61] M.P. Singh, An ontology for commitments in multiagent systems,
Artificial Intelligence and Law 7 (1) (1999) 97–113.

[62] C. Carabelea, O. Boissier, Coordinating agents in organizations using
social commitments, Electronic Notes in Theoretical Computer
Science 150 (3) (2006) 73–91.

[63] P. Barthelmess, J. Wainer, Workflow systems: a few definitions and a
few suggestions, in: Proceedings of Conference on Organizational
Computing Systems, COCS '95, ACM, New York, NY, USA, 1995,
pp. 138–147.

[64] F. Casati, S. Ceri, B. Pernici, G. Pozzi, Conceptual modeling of
workflows, in: M. Papazoglou (Ed.), OOER '95: Object-Oriented and
Entity-Relationship Modeling, Lecture Notes in Computer Science,
vol. 1021, Springer, Berlin, Heidelberg, 1995, pp. 341–354.

[65] C. Ellis, Team automata for groupware systems, in: Proceedings of
the International ACM SIGGROUP Conference on Supporting Group
Work: The Integration Challenge, GROUP '97, ACM, New York, NY,
USA, 1997, pp. 415–424.

[66] G. Engels, L. Groenewegen, Towards team-automata-driven object-
oriented collaborative work, in: W. Brauer, H. Ehrig, J. Karhumäki,
A. Salomaa (Eds.), Formal and Natural Computing, Lecture Notes in
Computer Science, vol. 2300, Springer, Berlin, Heidelberg, 2002,
pp. 247–255.

[67] S. Goedertier, J. Vanthienen, Designing Compliant Business Pro-
cesses with Obligations and Permissions, in: Business Process
Management Workshops 2006, Lecture Notes in Computer Science,
vol. 4103, Springer, 2006, pp. 5–14.

[68] D. Müller, M. Reichert, J. Herbst, Data-driven modeling and coordi-
nation of large process structures, in: R. Meersman, Z. Tari (Eds.), On
the Move to Meaningful Internet Systems 2007: CoopIS, DOA,
ODBASE, GADA, and IS, Springer, Berlin, Heidelberg, 2007,
pp. 131–149.

[69] David Harel, Statecharts: a visual formalism for complex systems,
Science of Computer Programming 8 (3) (1987) 231–274.

[70] R. Reiter, On Closed World Data Bases, Morgan Kaufmann Publishers
Inc, San Francisco, CA, USA300–310.

[71] D. Latella, I. Majzik, M. Massink, Towards a formal operational
semantics of uml statechart diagrams, in: Proceedings of the IFIP
TC6/WG6.1 3rd International Conference on Formal Methods for
Open Object-Based Distributed Systems (FMOODS), Kluwer, 1999, p.
465.

[72] A. Mostowski, On a generalization of quantifiers, Fundamenta
Mathematicae 44 (1957) 12–36.

[73] J.V. Neumann, Theory of Self-Reproducing Automata, University of
Illinois Press, Champaign, IL, USA, 1966.

[74] M. Rosemann, J. Recker, C. Flender, P. Ansell, Understanding context-
awareness in business process design, in: 17th Australasian Con-
ference in Information Systems (ACIS 2006), Association for Infor-
mation Systems, Atlanta, GA, USA, 2006.

[75] V. Liptchinsky, R. Khazankin, H.-L. Truong, S. Dustdar, Statelets:
coordination of social collaboration processes, in: M. Sirjani (Ed.),
Coordination Models and Languages, Lecture Notes in Computer
Science, vol. 7274, Springer, Berlin, Heidelberg, 2012, pp. 1–16.

http://refhub.elsevier.com/S0306-4379(13)00076-8/othref0120
http://refhub.elsevier.com/S0306-4379(13)00076-8/othref0120
http://refhub.elsevier.com/S0306-4379(13)00076-8/othref0125
http://refhub.elsevier.com/S0306-4379(13)00076-8/othref0125
http://refhub.elsevier.com/S0306-4379(13)00076-8/othref0125
http://refhub.elsevier.com/S0306-4379(13)00076-8/othref0130
http://refhub.elsevier.com/S0306-4379(13)00076-8/othref0130
http://refhub.elsevier.com/S0306-4379(13)00076-8/othref0130
http://refhub.elsevier.com/S0306-4379(13)00076-8/othref0130
http://refhub.elsevier.com/S0306-4379(13)00076-8/sbref45
http://refhub.elsevier.com/S0306-4379(13)00076-8/sbref45
http://refhub.elsevier.com/S0306-4379(13)00076-8/othref0135
http://refhub.elsevier.com/S0306-4379(13)00076-8/othref0135
http://refhub.elsevier.com/S0306-4379(13)00076-8/othref0135
http://refhub.elsevier.com/S0306-4379(13)00076-8/othref0135
http://refhub.elsevier.com/S0306-4379(13)00076-8/sbref47
http://refhub.elsevier.com/S0306-4379(13)00076-8/sbref47
http://refhub.elsevier.com/S0306-4379(13)00076-8/sbref47
http://refhub.elsevier.com/S0306-4379(13)00076-8/sbref48
http://refhub.elsevier.com/S0306-4379(13)00076-8/sbref48
http://refhub.elsevier.com/S0306-4379(13)00076-8/sbref49
http://refhub.elsevier.com/S0306-4379(13)00076-8/sbref49
http://refhub.elsevier.com/S0306-4379(13)00076-8/sbref49
http://refhub.elsevier.com/S0306-4379(13)00076-8/othref0140
http://refhub.elsevier.com/S0306-4379(13)00076-8/othref0140
http://refhub.elsevier.com/S0306-4379(13)00076-8/othref0140
http://refhub.elsevier.com/S0306-4379(13)00076-8/othref0140
http://refhub.elsevier.com/S0306-4379(13)00076-8/othref0145
http://docs.neo4j.org/
http://refhub.elsevier.com/S0306-4379(13)00076-8/othref0150
http://www.w3.org/TR/sparql11-query/
http://refhub.elsevier.com/S0306-4379(13)00076-8/othref0155
http://refhub.elsevier.com/S0306-4379(13)00076-8/othref0155
http://refhub.elsevier.com/S0306-4379(13)00076-8/othref0155
http://refhub.elsevier.com/S0306-4379(13)00076-8/othref0155
http://refhub.elsevier.com/S0306-4379(13)00076-8/sbref54
http://refhub.elsevier.com/S0306-4379(13)00076-8/sbref54
http://refhub.elsevier.com/S0306-4379(13)00076-8/othref0160
http://refhub.elsevier.com/S0306-4379(13)00076-8/othref0160
http://refhub.elsevier.com/S0306-4379(13)00076-8/othref0160
http://refhub.elsevier.com/S0306-4379(13)00076-8/sbref56
http://refhub.elsevier.com/S0306-4379(13)00076-8/sbref56
http://refhub.elsevier.com/S0306-4379(13)00076-8/sbref57
http://refhub.elsevier.com/S0306-4379(13)00076-8/sbref57
http://refhub.elsevier.com/S0306-4379(13)00076-8/sbref57
http://refhub.elsevier.com/S0306-4379(13)00076-8/sbref57
http://refhub.elsevier.com/S0306-4379(13)00076-8/othref0165
http://refhub.elsevier.com/S0306-4379(13)00076-8/othref0165
http://refhub.elsevier.com/S0306-4379(13)00076-8/othref0165
http://refhub.elsevier.com/S0306-4379(13)00076-8/othref0165
http://refhub.elsevier.com/S0306-4379(13)00076-8/othref0170
http://refhub.elsevier.com/S0306-4379(13)00076-8/othref0170
http://refhub.elsevier.com/S0306-4379(13)00076-8/othref0170
http://refhub.elsevier.com/S0306-4379(13)00076-8/othref0170
http://refhub.elsevier.com/S0306-4379(13)00076-8/sbref60
http://refhub.elsevier.com/S0306-4379(13)00076-8/sbref60
http://refhub.elsevier.com/S0306-4379(13)00076-8/sbref60
http://refhub.elsevier.com/S0306-4379(13)00076-8/sbref61
http://refhub.elsevier.com/S0306-4379(13)00076-8/sbref61
http://refhub.elsevier.com/S0306-4379(13)00076-8/sbref62
http://refhub.elsevier.com/S0306-4379(13)00076-8/sbref62
http://refhub.elsevier.com/S0306-4379(13)00076-8/sbref62
http://refhub.elsevier.com/S0306-4379(13)00076-8/othref0175
http://refhub.elsevier.com/S0306-4379(13)00076-8/othref0175
http://refhub.elsevier.com/S0306-4379(13)00076-8/othref0175
http://refhub.elsevier.com/S0306-4379(13)00076-8/othref0175
http://refhub.elsevier.com/S0306-4379(13)00076-8/sbref64
http://refhub.elsevier.com/S0306-4379(13)00076-8/sbref64
http://refhub.elsevier.com/S0306-4379(13)00076-8/sbref64
http://refhub.elsevier.com/S0306-4379(13)00076-8/sbref64
http://refhub.elsevier.com/S0306-4379(13)00076-8/othref0180
http://refhub.elsevier.com/S0306-4379(13)00076-8/othref0180
http://refhub.elsevier.com/S0306-4379(13)00076-8/othref0180
http://refhub.elsevier.com/S0306-4379(13)00076-8/othref0180
http://refhub.elsevier.com/S0306-4379(13)00076-8/sbref66
http://refhub.elsevier.com/S0306-4379(13)00076-8/sbref66
http://refhub.elsevier.com/S0306-4379(13)00076-8/sbref66
http://refhub.elsevier.com/S0306-4379(13)00076-8/sbref66
http://refhub.elsevier.com/S0306-4379(13)00076-8/sbref66
http://refhub.elsevier.com/S0306-4379(13)00076-8/othref0185
http://refhub.elsevier.com/S0306-4379(13)00076-8/othref0185
http://refhub.elsevier.com/S0306-4379(13)00076-8/othref0185
http://refhub.elsevier.com/S0306-4379(13)00076-8/othref0185
http://refhub.elsevier.com/S0306-4379(13)00076-8/sbref68
http://refhub.elsevier.com/S0306-4379(13)00076-8/sbref68
http://refhub.elsevier.com/S0306-4379(13)00076-8/sbref68
http://refhub.elsevier.com/S0306-4379(13)00076-8/sbref68
http://refhub.elsevier.com/S0306-4379(13)00076-8/sbref68
http://refhub.elsevier.com/S0306-4379(13)00076-8/sbref69
http://refhub.elsevier.com/S0306-4379(13)00076-8/sbref69
http://refhub.elsevier.com/S0306-4379(13)00076-8/sbref70
http://refhub.elsevier.com/S0306-4379(13)00076-8/sbref70
http://refhub.elsevier.com/S0306-4379(13)00076-8/othref0190
http://refhub.elsevier.com/S0306-4379(13)00076-8/othref0190
http://refhub.elsevier.com/S0306-4379(13)00076-8/othref0190
http://refhub.elsevier.com/S0306-4379(13)00076-8/othref0190
http://refhub.elsevier.com/S0306-4379(13)00076-8/othref0190
http://refhub.elsevier.com/S0306-4379(13)00076-8/sbref72
http://refhub.elsevier.com/S0306-4379(13)00076-8/sbref72
http://refhub.elsevier.com/S0306-4379(13)00076-8/sbref73
http://refhub.elsevier.com/S0306-4379(13)00076-8/sbref73
http://refhub.elsevier.com/S0306-4379(13)00076-8/othref0195
http://refhub.elsevier.com/S0306-4379(13)00076-8/othref0195
http://refhub.elsevier.com/S0306-4379(13)00076-8/othref0195
http://refhub.elsevier.com/S0306-4379(13)00076-8/othref0195
http://refhub.elsevier.com/S0306-4379(13)00076-8/sbref75
http://refhub.elsevier.com/S0306-4379(13)00076-8/sbref75
http://refhub.elsevier.com/S0306-4379(13)00076-8/sbref75
http://refhub.elsevier.com/S0306-4379(13)00076-8/sbref75

	On modeling context-aware social collaboration processes
	Introduction
	Motivation
	Related work
	Activity-oriented business process modeling
	Artifact-centric workflows and case handling
	Context-aware workflows
	Visual graph query languages
	Other noteworthy approaches

	Modeling paradigm
	Modeling framework
	Formal definition

	Use cases
	Use case—design game
	Use case—social selection
	Use case—dependent components
	Use case—teams and groups

	Discussion
	Conclusion
	Acknowledgment
	References




