
Web-Scale Workflow
Editor: Schahram Dustdar • dustdar@infosys.tuwien.ac.at

64 Published by the IEEE Computer Society 1089-7801/11/$26.00 © 2011 IEEE IEEE INTERNET COMPUTING

B usiness process management (BPM) and
workflow systems have had tremendous
success in the past two decades with

respect to both mindshare and deployment. We
can safely consider service-oriented architec-
ture (SOA) — BPM’s most recent manifestation —
to be a “business-as-usual” design practice.
On the other hand, we’re observing enterprises
exploring, if not even embracing, social com-
puting as an alternative for executing more
unstructured yet team-based collaborative,
outcome-based strategies. Gartner predicts that
by 2015, we’ll observe a deeper penetration of
“social computing for the business” as more
enterprises struggle to deal with the rigidity
of business process techniques (www.gartner.
com/it/page.jsp?id=1470115). Such methods are
suitable for menial tasks but inflexible when it
comes to supporting business users who must
deal with more complex decision making. How-
ever, a huge gap clearly exists between BPM’s
technologies, usage patterns, and workflows
on the one hand, and social computing as it’s
known today.

Toward Social Work Styles
Workflow technologies have the ability to moni-
tor and measure the execution of well-defined
work units that lead to a well-defined, repeat-
able outcome. In a way, workflow technolo-
gies are similar to programs, and humans are

an essential element of the instructions used
in those programs. However, workflow tech-
nologies have difficulty supporting more com-
plex business-decision work styles and novel
dynamic interaction patterns. In such patterns,
the process is hard, if not impossible, to define,
and it might include emerging teams of socially
networked groups not known at design time.

On the other hand, current social comput-
ing methods and technologies (instantaneous
information exchange through social network-
ing platforms, microblogging, and so on) work
on the instruction level (of programs) and are
by design suitable for generating more com-
plex outcomes due to their inherent flexibility.
However, businesses have yet to determine how
to integrate such technologies into larger pro-
grams. These Web-scale systems would require
support from the whole spectrum, from ad hoc
collaborations of nimble teams to support for
structured interactions and work styles suited
for today’s global business realities.

These challenges are associated with the
perceived statistical variability of generat-
ing a well-defined outcome juxtaposed with
the deterministic outcomes of business process
workflows. Hence, we argue here that today’s
enterprises are hesitant to bring current social
computing techniques into the mainstream of
their organizations. Our goal is to advance cur-
rent social computing techniques and approaches

The Social Compute Unit

Schahram Dustdar • Technical University of Vienna
Kamal Bhattacharya • IBM Research — India

Social computing is perceived mainly as a vehicle for establishing and maintain-

ing private relationships and thus lacks mainstream adoption in enterprises.

Collaborative computing, however, is firmly established, but no tight integra-

tion of the two approaches exists. Here, the authors look at how to integrate

people, in the form of human-based computing, and software services into one

composite system.

IC-15-03-WSWF.indd 64 4/6/11 12:51 PM

The Social Compute Unit

MAY/JUNE 2011 65

by proposing a novel concept: the
social compute unit (SCU).

Our approach includes both
human- and software-based com-
puting in one coherent conceptual
framework that allows for program-
ming and instantiating composites
of human-provided services (HPSs)
and software-based services (for
example, Web services).1,2 Human-
based computing has tremendous
potential, yet we must be more
descriptive about how to program a
human-based system. At the same
time, we postulate that software will
never be perfect, so it’s imperative to
understand the behavior of a com-
bination of human- and software-
based computing.

Example Scenario
Consider the following simplified
example from IT management. An IT
service provider that manages its cli-
ents’ IT environments employs a set
of human agents to monitor events
emitted from various servers. The
monitoring team’s task is to analyze
events and decide whether any indi-
cate an incident that requires reso-
lution. If so, the agent will issue a
ticket to a system administrator who
can investigate further and eventu-
ally resolve the problem. We must
take several dimensions into account
to assess the task’s complexity:

•	 Number of events. The number
of events published by a single
server could be in the hundreds.
Hence, we can expect thousands
of events emitted by a larger
server farm at any given point in
time.

•	 Event variability. Event variabil-
ity poses a cognitive challenge
on those people receiving the
events for the following reasons.
First, each server with a differ-
ent OS might emit a different type
of event for the same problem.
Second, servers with the same
OS might not be standardized on

the type of events they publish.
Finally, we might receive events
that are the result of event correla-
tions configured on the server OS.

•	 Change and growth. Upgrading
existing systems and on-boarding
new ones require increasing invest-
ment to manage the environment.
Change might necessitate train-
ing agents to deal with new event
types and structures, and growth
might require hiring new agents.
Both factors can inhibit the
enterprise from reaching econo-
mies of scale.

Passing events unfiltered from the
systems to the agent is challenging
with respect to all three dimensions.

A software unit can alleviate some
pain points. As Figure 1 illustrates,
a software solution with pre-defined
rules filters events by classifying
them with respect to importance
and issuing warnings to the human
agents if the software detects a
potential problem. This approach
reduces the information content
passed on to the agents from a large
number of events to a smaller num-
ber of warnings. The complexity of
dealing with variability is further-
more programmatically subsumed
by the rules.

The change and growth aspect,
however, remains an issue. The
humans designated to configure the
software solution in our example

Figure 1. IT management monitoring. A service provider manages system
operations by monitoring events directly or through software that
automatically evaluates the events and sends out warnings as required.
A social compute unit is a team of experts that know both how to interpret
events and how to configure the software.

<T1|W1> <T2|W2>

Monitoring agents

Event log

Social compute unit

Strong ties
Weak ties

{W
1,

 W
1,

 …
, W

n}

W1 = [E1 � E3] Wn = EnSoftware W2 = [E3 � Ei]

Se
rv

er

Se
rv

er

Se
rv

er

Se
rv

er

Se
rv

er

Se
rv

er

Se
rv

er

Se
rv

er

Se
rv

er

IC-15-03-WSWF.indd 65 4/6/11 12:51 PM

Web-Scale Workflow

66 www.computer.org/internet/ IEEE INTERNET COMPUTING

possess domain knowledge compris-
ing both the event interpretation and
rules implementation. We must view
the complexity of the overall eco-
system of agents, servers, software,
and resolution teams reacting to the
tickets as an intricately connected
environment that jointly delivers
the service to the client in an opti-
mal fashion. Missing in this picture
is a team that brings together vari-
ous aspects of domain knowledge to
adjust the software as change and
growth demand.

Change and growth in the server
environment are hard to predict;
hence, maintaining a dedicated team
on standby is challenging from a
cost perspective. Expecting the soft-
ware vendor to provide resources
that understand the event-based
requirements is unrealistic. By the
same token, expecting a sufficient
quantity of monitoring agents to be
knowledgeable about the software
is unrealistic as well. Finally, in
the spirit of autonomic computing,
we could envision a system with insight
into the entire value chain — from
event generation to resolution — that
learns to adapt itself by creating new
rules as required. This is unrealistic
not so much because of technical
feasibility but owing to the sys-
temic uncertainty inherent to many
delivery environments. The event as
such is only one aspect of the entire
life cycle of the problem resolution.
Understanding the actual resolu-
tion of an event requires us to trace
the resulting ticket from creation to
resolution. This information is in
principle available, but it could be
almost impossible to extract consis-
tently. For all practical purposes, the
software won’t be able to correlate
an event the system emits with the
resolution of the potential problem
about which the event has alerted
the monitoring agents.

The SCU addresses these chal-
lenges. It consists of a loosely cou-
pled, virtual, and nimble team of

resources with skills in the prob-
lem domain (event analysis, in our
example) or the system domain (con-
figuring the filtering software). Each
agent isn’t a dedicated resource but is
willing to invest a certain amount of
time whenever the requirement
comes up. For example, a monitoring
agent might willingly invest spare
time in improving his or her work
processes and offer help defining
new rules. Similarly, a resource with
knowledge in the software domain
might offer his or her time as well.
The team’s mission is to augment the
configuration rules both proactively
(based on their collective insight
into the subject matter) and reac-
tively (based on requirements the
monitoring teams have noted). The
SCU members are rewarded based on
the outcome produced (for example,
technical leadership or number of
rules configured). An SCU requestor
compiles the SCU depending on
the problem domain’s requirements
and sources it from descriptions of
individual resources’ capabilities.
Depending on the strength of all the
SCU team’s facets, we can calculate a
compute power for the SCU.

The system notion of an SCU
implies a structured architectural
approach to integrating socially
enabled work styles, which we exam-
ine next.

Social Compute
Unit Features
An SCU is a cloud-like virtual con-
struct that exists only for the time
required. It has a fundamental notion
of computing power, where com-
puting is executed through socially
networked humans. Additionally, an
SCU enables elasticity through its
interaction with the underlying prob-
lem domain. Let’s elaborate on these
three fundamental aspects of an SCU.

Programmability
The SCU is a construct that comes
into existence only on request.

The requestor could be the prob-
lem domain’s business owner or
the software itself. This implies
that an SCU’s components are both
discoverable and composeable, and
that the composition is descriptive
yet generic enough to be discover-
able based on requirements across
problem domains. The SCU is thus
specific enough that we can pro-
gram it. Program execution isn’t
static as with a regular program; a
certain statistical uncertainty will
be associated with the generated
outcome.

Compute Power
The SCU has a certain compute
power that’s appropriate for solv-
ing a given problem. Each requestor
will always want the “best” team to
solve the problem, but this can come
at a cost. In the same way that we
request hardware resources in a
cloud based on the requirement to
keep costs down, we expect a request
for compute power from an SCU to
be commensurate within a cost–
requirement scope.

The notion of the SCU’s com-
pute power is specific to the prob-
lem domain. A team that performs
well in the agent-based monitoring
domain might not be suitable for a
different domain. Thus, its compute
power, based on its inherent skills,
could be high for one domain and
low for another.

At the same time, compute power
will depend on the requirements.
Consider a requirement to solve a
given problem in 10 days for a spe-
cific domain. The best resources
might not offer the time required
to solve the problem in the required
time frame; so, you could likely get a
partial solution, but not everything.
Despite forming the SCU based on
the best-skilled resources, you might
still end up with lower compute
power.

We must keep in mind that even
an SCU with a very high compute

IC-15-03-WSWF.indd 66 4/6/11 12:51 PM

The Social Compute Unit

MAY/JUNE 2011 67

power won’t guarantee the desired
outcome at 100 percent certainty.
Uncertainty will always be involved,
which is reflected in the compute
power notion. But the SCU structure
will let organizations reason about
compute power, providing a risk
assessment for the resolution of the
tasks at hand.

Elasticity
The SCU, through its interaction with
the underlying problem domain,
facilitates elasticity. By elasticity,
we mean the transient SCU’s ability
to enhance or reduce the capability
of the system it assimilates with (for
instance, the software in the exam-
ple provided earlier). The SCU by
itself doesn’t have a notion of elas-
ticity, in the same way an applica-
tion isn’t elastic unless enabled by a
mechanism that scales it up or down
as required.

Solution Design
Let’s next examine an SCU’s struc-
ture and behavior.

Life Cycle
An SCU goes through the following
states, as Figure 2 illustrates:

•	 Request — a client requests an
SCU for a specific domain.

•	 Create — the SCU is compiled and
matched to the specific problem
domain.

•	 Assimilate — the SCU becomes
familiar with the strategic tasks
and receives sufficient details
about the problem domain.

•	 Virtualize — the SCU is installed
on the problem domain in a
two-step process. First, a social-
collaboration space is provided
to ensure effective communica-
tion between resources. This will
reside on a cloud. Second, a test
environment on the cloud is pro-
vided that represents the problem
domain’s system manifestation
(for instance, a test instance of

the software in our example). In
cases in which no system compo-
nent exists, this step might not be
required.

•	 Deploy — the SCU is now produc-
ing results that it can deploy from
the virtual environment into the
physical production environ-
ment. The SCU’s actual outcome
might be either directly deployed
or processed through an external
governance process.

•	 Dissolve — the SCU is released
from its task and rewarded for
its work, if a measurable outcome
exists that’s commensurate with
initial expectations.

The virtualize step in the life cycle
has some interesting architectural
considerations. First, the notion of a
collaboration space and a test envi-
ronment is important to the SCU’s
performance (or compute power).
Second, the process of traversing the
life cycle requires further thought on
how to discover and request an SCU.
We examine these two aspects next.

Architecture
We propose conceptualizing an SCU
as an information system. SCUs con-
sist of a core processing unit compris-
ing a network of human resources
with the appropriate skill sets. The
core processing unit requires a plat-
form that facilitates communication
between its nodes — for example, a
social networking platform that sup-
ports the processing unit’s funda-
mental organization.

The platform supporting the
resource network can have sig-
nificant impact on its perfor-
mance. Imagine the platform to be a
telephone — this will inhibit the
team from communicating in written
form and from storing information
permanently. A flexible platform
might provide more means for com-
municating but might also inhibit
the SCU’s compute power because
it might not provide guidance as to

the best way to communicate. This
discussion is an important aspect of
SCU design, but is out of this article’s
scope. The communication platform
should also facilitate access to key
devices, such as information reposi-
tories that might contain generic
information (such as employee data)
or problem-specific information.

Core Processing Unit Metadata
We envision the SCU core processing
unit as following a model of distrib-
uted participatory design. The team
can be distributed over various loca-
tions and business units. Team mem-
bers will follow strategic directives
but are sufficiently trusted to make
team-based, implementable deci-
sions. Based on the team composi-
tion’s structure3,4 and trust among
team members5 — which is automati-
cally determined by an SCU compiler —
you might require an additional con-
trol unit during ramp-up time — for
example, if the team expertise isn’t
sufficient to make implementable
decisions. The challenge in the

Figure 2. Social compute unit (SCU)
life cycle. This life cycle indicates
the construct’s transient nature.
After creation, the compiled unit
assimilates with the problem domain
until the domain owner provides a
proper environment for SCU solutions
tests. Once provided, the SCU can
do its work, solve the problem, and
deploy into production, after which
the members (assuming success) will
be rewarded, and the SCU dissolves.

Dissolve Request

Virtualize Assimilate

Deploy Create

IC-15-03-WSWF.indd 67 4/6/11 12:51 PM

Web-Scale Workflow

68 www.computer.org/internet/ IEEE INTERNET COMPUTING

solution design is to formulate a
model for SCUs that’s generic enough
to apply to various domain-specific
contexts. Table 1 contains a first
attempt to describe an SCU’s model-
ing elements.

We must also specify the domain.
We can envision leveraging domain-
specific modeling or simply provid-
ing a flexible search method as an
algorithm to compile SCU resources.

The AppStore
Given that we view the SCU as a
structured entity, we propose to uti-
lize an AppStore model for resource
registration and solution instantia-
tion. The idea is that the AppStore

allows individuals to offer their ser-
vices. The AppStore has access to the
appropriate information for compil-
ing an SCU. Figure 3 shows the reg-
istration process.

A human (resource) registers
herself using an AppStore client.
The data about her contains two
parts: static data, such as name and
employee status, which the AppStore
can also utilize for security purposes,
and dynamic data, which includes
information such as her social net-
work, among other things (see Table 1).
The SCU compiler assesses the
dynamic data the assessment unit
creates, as well as static data that the
verification unit verifies.

Figure 4 illustrates an SCU’s
instantiation process in a defined
problem domain. The requestor for-
mulates the problem using the
modeling elements from Table 1 to
describe a domain-specific problem
as well as its underlying solution —
for instance, that a team of special-
ists is needed who exist at a given
location and have a certain amount
of dedicated time and expertise, as
well as envisioned roles with appro-
priate reputations. The SCU compiler
matches these requirements to a set
of possible resources (for instance,
by utilizing algorithms discussed
elsewhere3–5) and stores those in the
AppStore. The installer is responsible
for installing and configuring the
appropriate SCU platform (that is,
the right team with the right set of
software tools), as well as a virtu-
alized replica in a cloud infrastruc-
ture, that the team will instantiate in
order to work on the given problem.

T he SCU signifies a change in the
way we integrate social team-

based computing with workflow-
type applications. The interaction
patterns between the resources in
an SCU determine the unit’s archi-
tectural style. The interaction pat-
tern with the problem domain,
manifested as software or a system,
determine the future of leveraging
team-based work styles with tradi-
tional workflow systems. We pro-
pose the SCU as one framework for
elaborating on behavioral and archi-
tectural styles to bring socially net-
worked computing into the business
mainstream.

References
1. D. Schall, S. Dustdar, and M.B. Blake,

“Programming Human and Software-

Based Web Services,” Computer, July

2010, pp. 82–85.

2. D. Schall, H.-L.Truong, and S. Dustdar,

“Unifying Human and Software Ser-

vices in Web-Scale Collaborations,” IEEE

Table 1. Modeling elements for a social compute unit (SCU).

Modeling element Description

Resource ID A unique identifier for resources that participate in the SCU

Expertise A description of expertise (for example, a key/value pair of
skill area/expertise level)

Reputation A description of reputation (excellent, very good, average,
or poor)

Connectedness A description of the resources network

Time supply The time the resource is willing to provide

Cost The resource’s cost

Reward request Money, time, or glory

Incentive Money, time, or glory

Envisioned role Leader, specialist, or moderator

Context Context information — for example, where the resource is
physically located

Figure 3. Resource registration. An AppStore offers a registration process
that on-boards a potential social compute unit (SCU) resource. The AppStore
verifies the user and assesses the resource’s capability. The SCU compiler
assigns the newly on-boarded resource to an SCU.

AppStore
client

register onBoard SCU
compiler

preCache
AppStore

assess

Resource

Verication
unit

Assessment
unit

verify

assess

IC-15-03-WSWF.indd 68 4/6/11 12:51 PM

The Social Compute Unit

MAY/JUNE 2011 69

Internet Computing, vol. 12, no. 3, 2008,

pp. 62–68.

3. D. Schall and S. Dustdar, “Dynamic

Context-Sensitive PageRank for Exper-

tise Mining,” Proc. 2nd Int’l Conf. Social

Informatics (SocInfo 10), Springer, 2010,

pp. 160–175.

4. C. Dorn and S. Dustdar, “Composing

Near-Optimal Expert Teams: A Trade-Off

between Skills and Connectivity,” Proc.

18th Int’l Conf. Cooperative Informa-

tion Systems (CoopIS 10), Springer, 2010,

pp. 27–29.

5. F. Skopik, D. Schall, and S. Dustdar,

“Modeling and Mining of Dynamic Trust

in Complex Service-Oriented Systems,”

Elsevier Information Systems J., vol. 35,

no. 7, 2010, pp. 735–757.

Schahram Dustdar is a full professor of com-

puter science (informatics) with a focus

on Internet technologies and heads the

Distributed Systems Group, Institute

of Information Systems, at the Vienna

University of Technology (TU Wien).

Dustdar is an ACM Distinguished Sci-

entist. Contact him at dustdar@infosys.

tuwien.ac.at; www.infosys.tuwien.ac.at/

Staff/sd.

Kamal Bhattacharya is a senior manager at

IBM Research — India, where he manages

the NextGen Services team. His research

targets core technical aspects of data cen-

ter consolidation, cloud computing, service

delivery for infrastructure, and applica-

tion management, and includes efforts to

investigate how new socially enabled work

processes can impact services delivery

in the enterprise. Bhattacharya has a

PhD in theoretical physics from the Georg-

August University Goettingen, Germany.

Contact him at kamalb@us.ibm.com; www.

research.ibm.com/people/k/kbhattacharya.

Figure 4. Instantiation of a social compute unit (SCU). An SCU can be
instantiated from the AppStore, which will compile the SCU and install it, here
illustrated in a model where it automatically provides a compute platform and
the virtual test domain.

AppStore
client

compileSCU
AppStore

SCU
compiler

identifySCU compileSCU

Requestor installSCU

retrieveAppDescriptor

notify
Assessment

unitInstaller

installApp

matchSCU2Domain

Social compute
platform

Virtual test
domain

Selected CS articles and columns
are also available for free at http://

ComputingNow.computer.org.

IEEE Software seeks practical,

readable articles that will appeal

to experts and nonexperts alike.

The magazine aims to deliver reliable

information to software developers

and managers to help them stay on

top of rapid technology change.

Author guidelines: www.computer.org/
software/author.htm
Further details: software@computer.org

www.computer.org/software

Call for Articles

IC-15-03-WSWF.indd 69 4/6/11 12:51 PM

