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I n recent years, the quantity of information 
generated by business, government, and sci-
ence has increased immensely — a phenom-

enon known as the data deluge. In business, 
Walmart’s transactional databases are estimated 
to contain more than 2.5 petabytes of data con-
sisting of customer behaviors and preferences, 
network and device activity, and market trends 
data.1 In the military, US Air Force drones col-
lected approximately 24 years’ worth of video 
footage from Afghanistan and Iraq in 2009.1 In 
science, the Large Hadron Collider (LHC) facility 
at CERN produced 13 petabytes of data in 2010.2 
Moreover, sensor, social media, mobile, and 
location data are growing at an unprecedented 
rate. In parallel to this significant growth, data 
are also becoming increasingly interconnected. 
Facebook, for instance, is nearly fully connected, 
with 99.91 percent of individuals on the social 
network belonging to a single, large connected 
component (see http://arxiv.org/abs/1111.4503).

This astonishing growth and diversity have 
profoundly affected how people process and 
interpret new knowledge. Because most of this 
data both originates and resides in the Internet, 
one open challenge is determining how Inter-
net computing technology should evolve to let 
us access, assemble, analyze, and act on big 
data. We believe that data are first-class  citizens 

in the Internet landscape. The collaborative 
interplay between data and computation infra-
structure is vital for enabling low-latency and 
high-throughput analytics on big data.

Advances in social networks and analyt-
ics span many Internet-based computing para-
digms, including cloud and services computing.3 
Currently, most social networks connect people 
or groups who expose similar interests or fea-
tures. In the near future, we expect that such 
networks will connect other entities, such as 
software components, Web-based services, data 
resources, and workflows. More importantly, the 
interactions among people and nonhuman arti-
facts have significantly enhanced data scientists’ 
productivity. Big data analytics can accumu-
late the wisdom of crowds, reveal patterns, and 
yield best practices. For a real-world example, 
in recent events related to the 2013 Boston 
Marathon bombings, social networks of mara-
thon participants and general high- performance 
computational techniques were combined to 
cluster and analyze large sets of candid photos  
and video shots — ultimately leading to the dis-
covery of the perpetrators. This example exem-
plifies how cloud-oriented processing techniques 
can meet computational needs, while analytics 
are enhanced by the special expertise of social 
network participants.
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The astonishing growth and 
diversity in connected data contin-
ues to profoundly affect how people 
make sense of this data. We can 
define this interplay as a virtuous 
circle in which

•	 connected people produce a con-
tinuous data stream that’s depos-
ited into a repository of connected 
data;

•	 individuals or business entities 
might conduct big data analytics 
on these connected data by lever-
aging ad hoc clouds or connected 
computers; and

•	 analytics on the big data from 
these connected computers gen-
erates intelligence that sub-
sequently proliferates back to 
connected people.

As Figure 1 illustrates, this system is 
continually evolving, as is the knowl-
edge that the interaction generates. 
Here, we show that the collabora-
tive interplay of connected comput-
ers and connected people has opened 
new avenues with regard to how 
humans interpret connected data. In 
fact, connected data is the confluence 
where social networks and clouds are 
presented as a solution for big data 
analysis.

Connected People: Social 
Networks and Big Data
Recent social networking websites 
such as Twitter, Facebook, LinkedIn, 
YouTube, and Wikipedia have not only 
connected large user populations but 
have also captured exabytes of infor-
mation associated with their daily 
interactions. Social networking has its 
beginnings in the work of social sci-
entists in the context of human social 
networks, mathematicians and physi-
cists in the context of complex network 
theory, and, most recently, computer 
scientists in the examination of infor-
mation or Internet-enabled social net-
works.4 We can thus separate major 
research challenges into these areas.

Humanistic Social Networks
Stemming back to the 1920s, social 
scientists have investigated interper-
sonal relationships as they relate to the  
larger network topography of soci  etal  
groups of interrelated humans. These 
studies have attempted to sys tem-
atically devise relationships’ strength 
and have implicitly determined how 
trust plays into those relationships’ 
interconnections. In managing these  
networks, social scientists and socio-
logists have employed several meth-
ods.5 Modeling approaches include 
network-oriented data collection, block  
modeling, network-oriented data sam-
pling, diffusion models, and models  
for longitudinal or emerging data. 
Measurements include centrality mea-
sures for groups, cross-network assess-
ment or correspondence analysis for 
two-mode networks, and statistical 
assessment of the p* model.

Complex Network Theory 
Mathematicians and physicists per-
form some of the same analysis as 
social scientists but concentrate on 
the network structure’s more quan-
titative aspects.6 The emergence of 
social behavior is derived from the 
natural quantitative connections 
between nodes and links within a 

network. Given that network structure 
is irregular, complex, and dynam-
ically evolving in time, the main 
focus for complex network theory 
is the development of principled, 
mathematical approaches that assess 
networks of millions of nodes. Fur-
thermore, mathematicians and phys-
icists derive insight from biological 
systems that form in nature. A sig-
nificant vehicle for deriving these 
networks’ behavior is the analysis 
of path lengths and the clustering 
of related path structures. Com-
plex networks can be represented 
in their most fundamental forms 
as graphs or small-world networks, 
but more intricate topographies are 
represented as weighted, random, 
power-law, or spatial networks. One 
common approach for managing 
these networks that’s shared with 
computer scientists is spectral graph 
partitioning, which determines the 
minimal number of edges between 
two sets of vertexes within a graph. 
Hierarchical clustering is an effec-
tive method for networks in which 
a priori knowledge of the number 
of communities is lacking. This 
approach attempts to divide nodes 
into clusters where the connections 
within the cluster are more closely 

Figure 1. The virtuous circle. Connected people produce a data stream that’s 
analyzed by connected computers, and the intelligence such an analysis 
generates proliferates back to connected people.
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related than the connections to 
nodes assigned to a different cluster. 
Other approaches attempt to look for 
the largest distance between nodes 
until clusters are naturally formed.

Information Networks  
and Social Networking
Computer scientists and information 
engineers have combined the initial 
work on social and complex networks 
and mapped them onto networks 
representing information-systems-
oriented environments. Many studies 
investigate a fundamental question: 
“Do online social networks resemble 
or behave in similar ways as people 
in real-world situations?” Computer  
scientists have employed hybrid assess-
ment approaches similar to the tradi-
tional methods used in sociology and 
computational sciences. Web graph  
analysis, for instance, attempts to inte-
grate the nuances of the Web when 
considering network analysis.

Social Networks as Big Data
Understanding social networks evolves 
into a big data problem when busi-
ness, management, or information 
systems specialists hope to predict 
behavior to ultimately enhance mar-
keting, sales, and online commerce. 
Many social networking sites have 
between 10 and 200 million users, 
so data sampling is central to most 
studies. Although significantly time-
consuming, gaining insight from the 
entire dataset might provide the most 
optimal solutions. Big data is usually 
characterized by the “three Vs” — that 
is, volume, velocity, and variety.7 In 
terms of volume, at the end of 2011, 
Facebook had 721 million individu-
als and 68.7 billion friendship edges 
(see http://arxiv.org/abs/1111.4503). In 
terms of velocity, Twitter and Face-
book respectively generate 7 Tbytes 
and 10 Tbytes of data daily. These 
data also need to be processed at the 
speed of thought. For example, on 
11  November 2012, a sales event at 
TaoBao, the largest online shopping 

marketplace in China, generated 100 
million transactions and reached a 
peak transaction rate of 205,000 per  
minute (see http://tech.sina.com.cn/i/ 
2012-11-12/00207788375.shtml). In 
terms of variety, data today come from 
various sources, ranging from surveil-
lance videos, to satellite images, to 
mobile tweets, to sensors and meters 
in the power grid.

Connected Computers: 
Advances in  
Scale-Out Systems
Given the astonishing amount of 
data being produced and the need to 
store and process them economically, 
organizations are widely adopting 
scale-out rather than scale-up sys-
tems to acquire and interpret data. 
Key features of the scale-out pattern 
include commodity server clusters, 
share-nothing architecture (no shared 
memory, storage, and so on), a TCP/
IP network connection, and a paral-
lel programming framework such as 
MapReduce. Cloud computing, which 
offers scale-out and on-demand com-
puting resources in a pay-per-use 
manner, is an ideal technology to 
enable big data for mainstream uses. 
For example, Netflix stores movies 
and TV shows, and Dropbox stores 
customers’ files, both in Amazon’s 
Simple Storage Service (S3). Yelp not 
only uses Amazon’s storage but also 
Amazon Elastic MapReduce to power 
its user-behavior analytics. Microsoft 
Windows Azure and IBM SmartCloud 
Enterprise+ offer similar functions. 
Startup companies such as Cloudera, 
Hortonworks, and MapR Technologies 
are building value-added software 
and solutions on top of the Apache 
Hadoop ecosystem.

In recent years, scale-out data 
stores, popularly referred as NoSQL 
systems,8 are rapidly gaining popu-
larity as a potential solution to sup-
port Internet-scale applications. These 
stores include commercial systems 
such as Amazon’s DynamoDB, Google’s 
BigTable, and Yahoo’s PNUTS, as well 

as open source ones such as Cassandra, 
HBase, and MongoDB. These stores 
usually provide limited APIs (create, 
read, update, and delete operations) 
compared to relational databases, and 
focus on scalability and elasticity on 
commodity hardware. Such platforms 
are particularly attractive for applica-
tions that perform relatively simple 
operations while needing low-latency 
guarantees as they scale to large sizes. 
NoSQL stores offer flexible schema 
and elasticity to overcome relational 
databases’ limitations. However, in 
doing so, they trade off full ACID 
guarantees. Clearly, several challenges 
exist for computational systems that 
process big data.

Data Models and  
High-Level Abstraction
Relational models and SQL provide 
an abstraction layer between the 
database’s physical layer and the 
application layer. This feature lets 
users specify a query in a language-
dependent and declarative manner, 
while a query engine schedules and 
optimizes its execution. No similar 
solution exists for big data analysis. 
Instead, NoSQL data stores offer var-
ious forms of data structures — such 
as document, graph, row-column, 
and key-value pair — that are directly 
exposed to users. So, users must 
understand data’s physical organi-
zation and employ vendor-specific 
APIs to manipulate these data. Cur-
rent state of the art attempts to 
devise a SQL layer on top of NoSQL, 
but without an abstract data model, 
this effort is ad hoc and limited to 
the underlying technology.

Incremental Processing  
and Approximate Result
Volume and velocity impose contra-
dictory requirements on big data sys-
tems. A large volume of data is injected 
into such a system at a high speed, 
while analysis and  interpretation must 
occur at the same pace. In traditional 
business intelligence (BI)  analytics,9 
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transactional data is processed ini-
tially on an online transaction pro-
cessing (OLTP) system before flowing 
through an extract, transform, load 
(ETL) process in a batch mode. Even-
tually, data are loaded into an online 
analytical processing (OLAP) data 
warehouse, where they’re analyzed to 
provide strategic insights. This OLTP-
ETL-OLAP approach trades timeliness 
for accuracy, given that a long delay 
occurs between when data becomes 
available and insight generation.

In some big data applications, 
such as financial fraud detection and 
market promotion, long delays aren’t 
tolerable. A newly emerged paradigm 
called stream computing enables con-
tinuous queries over streaming data 
such as social media feeds and call 
data records. Stream computing opens  
a gateway to real-time analytics, but  
a few challenges remain. One is 
the interplay between building the  
batch mode model and sensing the real- 
time streams. On one hand, the accu-
mulated historical data in the data  
warehouse can help information spe-
cialists build a statistical model to 
guide stream processing — for exam-
ple, decide which features to observe 
and help set the reacting threshold. 
On the other hand, the newly arrived 
data from the stream system should 
be leveraged to tune the model to 
reflect the recent trends. An incre-
mental data processing and model-
tuning mechanism is vital to this 
interplay. 

With respect to the volume-veloc-
ity challenges, another perspective is 
to provide approximate, just-in-time 
results to queries, or prioritize differ-
ent queries by allocating a varying 
amount of resources.10 As such, differ-
ent data consistency levels are possible 
in which queries can be either accurate 
but slow or best-effort but fast.

NoSQL, Scalable SQL, and NewSQL
To address the big data challenge, 
NoSQL proponents limit ACID 
 constraints, provide fully scalable 

solutions with preliminary database 
features, and then slowly add back 
the relational database management 
system (RDBMS) features such as 
index and transaction support. We 
can observe this trend in Google’s 
BigTable to Spanner evolution.

On the other end of the spectrum, 
the RDBMS community is rethinking 
its systems’ design and is attempting to 
scale them in a share-nothing environ-
ment. These approaches add the abil-
ity to autopartition and autoscale data 
while offering more options for trad-
ing off consistency for performance. 
Moreover, other NewSQL11 projects 
seek to modernize the RDBMS archi-
tecture to provide the same scalable 
performance of NoSQL while preserv-
ing the ACID guarantees of a tradi-
tional, single-node database system.

Connected Data: New 
Challenges for Clouds and 
Social Networks
Research has shown that users pri-
marily employ social networking 
sites to articulate and make visible 
their existing social networks.12,13 
In other words, users on these sites 
aren’t usually trying to connect with 
strangers but are primarily commu-
nicating with people who are already 
part of their direct or extended social 
network. This observation implies 
that a level of trust already exists 
between social network users, and 
that these users share at least one 
aspect of their lives: career, hobbies, 
political views, and so on. We envi-
sion that these characteristics are 
vital to enabling interesting opportu-
nities, including establishing security 
policies that leverage existing trust 
relationships, promoting data and 
resource sharing within networks 
of people with similar interests, and 
optimizing data analytics by lever-
aging the fact that people in the 
same network potentially share the 
same interests and will thus submit 
similar queries. Finally, we propose 
leveraging the wisdom of socially 

connected individuals to build and 
maintain service reputation systems. 
Clouds comprising social network 
connections open numerous research 
opportunities.

Resource Sharing
Social networking on the cloud 
could enable resource sharing based 
on the social relationship between 
users. This would potentially build on 
technologies such as volunteer com-
puting, which is a distributed comput-
ing model in which connected users 
donate computing resources to a proj-
ect. Storage@home14 and Boinc15 are 
two examples. In these cases, the com-
puting resources are owned by indi-
viduals and can be shared in return 
for access to other resources. This 
could potentially change the cloud’s 
economics and raises questions 
related to reliability and quality-of-
service (QoS) guarantees. Again, we 
can leverage the social aspect to build 
reputation for users and establish their 
corresponding resource reliability.

Locality of Reference  
in the Cloud
The cloud’s big data aspect constitutes 
a challenge for both efficient data 
analysis and mining. From a perfor-
mance perspective, the cloud’s social 
aspect can be leveraged to compute, 
cache and share the analytics results 
within a circle of connected users. 
These users are potentially interested 
in the same patterns, so computa-
tions would exhibit high locality of 
reference, which can help to optimize 
performance.

Privacy-Preserving Data Analytics
On the other hand, privacy-preserv-
ing statistical techniques, such as dif-
ferential privacy, can be employed in 
conjunction with social links to max-
imize query result accuracy without 
revealing private data. Privacy lev-
els and accuracy can be defined dif-
ferently within a social setting. For 
example, privacy  constraints can be 
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relaxed depending on the number 
of  links between sets of users in a 
social graph. Differential privacy 
techniques must also be refined to 
deal with incremental data that has 
social annotations.

Cross-Domain Data Analytics
Aggregating data from multiple 
social networks enables data analyt-
ics that correlate the datasets’ various 
networks. Given that social network-
ing vocabulary varies from one net-
work to another, we anticipate the 
need for cross-domain vocabulary 
mapping as a data preprocessing step. 
For example, the Twitter glossary 
defines terms such as “followers” and 
“tweet.” Facebook defines terms such 
as “friends” and “status.” Google Plus 
uses “circles” and “hangout.” To per-
form cross-domain data analytics, we 
must develop and maintain a com-
mon ontology that will capture the 
differences and similarities in ter-
minologies and define relationships 
between terms within and across the 
network.

Socializing Access Control Policies
Security is a major concern that we 
must address when coupling social 
networks with the cloud. User groups, 
roles, and access control policies must 
be in place to govern users’ access to 
cloud resources. To facilitate this pro-
cess, we could leverage social rela-
tionships to build an evolving access 
control system that self-adapts to 
the addition, deletion, and update in 
users and their relationships. Some 
work has proposed semantically 
annotating these relationships and 
using semantically described rules 
to infer relationships between users 
and resources.16–18 These relation-
ships can then help to establish trust 
and form the basis of access control 
policies. Because cloud resources are 
largely dynamic, self-adapting policy 
rules are needed to determine users’ 
access rights as new resources become 
available and new users connect to 
the social network. These rules can 
use just-in-time data classification 
schemes to infer access rules for new 
data items as they’re digitally born 

within the cloud. As Figure 2 shows, 
the outcome is a social graph over-
laid with security groups and policies; 
based on their social links, new users 
can be automatically classified into 
groups as they join the network.

Service Reputation Frameworks
Cloud computing reaches its poten-
tial when software is implemented 
as services that can be mixed and 
matched over the cloud to address 
users’ requirements. Automatic ser-
vice discovery and composition can 
occur based on services’ reputation. 
A service reputation can be built 
from users’ feedback and by audit-
ing a service invocation and execu-
tion. The service reputation is hence 
a function of both the QoS a service 
delivers, measured over the histori-
cal execution log, and the explicit 
community’s feedback.

Some generic frameworks propose 
incorporating service reputation as a 
selection criterion when composing 
services.19 Incorporating the social 
dimension can largely enrich these 
frameworks. Consider a travel res-
ervation website that composes and 
invokes different services to find the 
best deals on air tickets. By binding 
this functionality to a social network, 
not only can we effectively build a ser-
vice reputation by incorporating com-
munity wisdom, but a consensus for 
evaluating services will exist among 
users because they’re potentially of 
the same mindset. For example, some 
communities would appreciate price 
over the length of a flight, others a 
service’s response time over result 
quality. Consequently, the reputation 
value calculated within social settings 
is a more accurate measure of satis-
faction within a user community.

Classification for  
Social Networks 
The success of Facebook and Linked In 
demonstrates that the Web’s power 
can not only foster but can also 
capitalize on a social network. Such 

Figure 2. Overlaying the social graph with security groups, roles, and policies. 
Based on their social links, new users can be automatically classified into 
groups as they join the network.
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networks, both for the general pub-
lic and specifically for the scientific 
community, are changing user com-
munication and practices. We clas-
sify all social networks using two 
criteria: level of generality and abil-
ity to execute.20 In the level of gen-
erality dimension, we distinguish 
a social network for general and 
specific purposes. In the ability to 
execute dimension, we distinguish 
informative and executable (that is, 
able to run computation) social net-
works. We show this classification 
in light of scientific networks, but it 
applies to nonscientific ones as well.

Informative vs. Executable
When considering the overlap of 
social networking techniques and 
commodity or cloud computation, a 
distinct difference exists between 
the system being informative or 
being executable.

General-purpose social network-
ing sites have aspects of both:

•	 Informative. General-purpose social  
networks such as Facebook and 
LinkedIn have been harnessed to 
cultivate communication and col-
laboration.2 For example, major 
scientific associations such as 
the American Association for the 
Advancement of Science (AAAS) 
and the IEEE have set up groups 
on both Facebook and LinkedIn. 
In these major community groups 
and many smaller ones, members 
can share research progress, search 
for jobs, and seek collaborations. 

•	 Executable. Besides these infor-
mative social networks, many 
websites provide open and col-
laborative platforms to search 
for executable mashups, Web 
services, and so on. This cate-
gory includes ProgrammableWeb 
(www.programmableweb.com), 
an online community for Web 
APIs and mashups, and Ama-
zon Elastic Compute Cloud (EC2; 
http://aws.amazon.com/ec2).

Research-oriented social net-
works tend to be naturally integrated 
with informativeness and execution 
capabilities:

•	 Informative. Various social net-
working sites exist for general 
academia, such as CiteULike (www.
citeulike.org) and Nature Network 
(http://network.nature.com). These 
websites are based on author-pub-
lication-citation networks and can 
be used to identify connections 
among authors, publications, and 
research topics. Sites also exist 
for specific communities, such as 
life scientists (http://prometeonet 
work.com) and doctors (www.doc 
tors.net.uk).

•	 Informative-executable. Many sites 
go beyond just bringing  people 
together. Rather, they enable 
re searchers to share data and 

 protocols that describe methodol-
ogies for conducting experiments 
and obtaining data. OpenWetWare 
(http://openwetware.org) is such 
an example for biology.

•	 Executable. Some research-specific 
social networks are computation-
oriented — that is, they facilitate 
the sharing of executable compu-
tational components. For example, 
myExperiment (www.myExperi 
ment.org) offers a curated registry 
of scientific workflows and a plat-
form on which to execute them; 
nanoHub21 provides a nanotech-
nology research gateway hosting 
not only user groups and tutorials, 
but also simulation tools. 

Figure 3 lists social networks for 
scientists. Each one is positioned 
based on its relative level of generality 
(the x-axis) and ability to execute (the 

Figure 3. Social networks for scientists. Each network is positioned based on 
its relative level of generality and its ability to execute. (Some online services 
included in this figure, such as Amazon EC2, Globus Online, Galaxy, and 
caGrid, are arguably social networks by themselves. However, we list them 
here because they all provide an open collaborative environment that’s very 
close to a social network and can rapidly evolve toward that direction.)
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y-axis). To understand how big data 
research is overlapping with cloud 
computing research, Figure 4 shows a 
word cloud generated from more than 
60 recent research papers on cloud 
computing and big data in the last 
two years. Based on the frequency of 
words, we can see that resource man-
agement and performance issues are 
gaining the community’s attention. 
Technologies such as MapReduce 
and Hadoop are becoming the lead-
ing examples in this field. Research 
has also started addressing energy 
issues related to the cloud. Interest-
ingly, social and mobile domains 
aren’t gaining the expected attention 
despite the popularity of social net-
working and mobile devices.

W ith beginnings in social science, 
mathematics, physics, and now 

computer science, social interactions 
among humans have been widely in- 
vestigated. However, the vast amount 
of  data available in  digital form, 
coupled with larger, well- organized 
groups of users, facilitate a significant 
enhancement in  collective human intel-
ligence and knowledge derived from 

collective data. We can summarize 
this as the overlap of social networks 
for big data analysis. This area pres-
ents a wealth of new research opportu-
nities for engineers and scientists.

Engineers will need to introduce 
new distributed data analysis frame-
works in which users have access to 
subsets of the “big data” datasets as 
well as situational awareness into 
global processing. This framework 
should enable engineers to share com-
putational resources while leveraging 
them on desktops, servers, and mobile 
phones. Big data analysis over clouds 
can’t be done by trial and error, but 
rather will require just-in-time assess-
ments. Consequently, the operational 
research community must investigate 
new simulation techniques for predic-
tive decision support when deciding 
when or if to initiate a new analysis. 
Data will no longer reside in standard 
relational databases, but in more dis-
tributed data stores spanning users 
of a larger network. As such, new 
comprehensive cross-network, cross-
cloud data models must be developed 
that are designed to optimize per-
formance based on the distribution 
of information and users. Finally, 

 conventional security and access con-
trol systems, such as the active directory, 
are based on the tree-structured organi-
zation of users. In a socially connected 
world, however, these policies must 
leverage interconnected, graph-based 
social relationships. A need will exist for 
highly self-configurable security policies 
to protect users’ security and privacy 
while also preserving privacy embedded 
within the data. These and other tech-
niques will significantly enhance and 
extend the information age. 
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