World Scientific

International Journal of Cooperative Information Systems \\’
www.worldscientific.com

Vol. 20, No. 3 (2011) 307-356
© World Scientific Publishing Company
DOI: 10.1142/S0218843011002250

MOVING APPLICATIONS TO THE CLOUD: AN APPROACH
BASED ON APPLICATION MODEL ENRICHMENT

FRANK LEYMANN*, CHRISTOPG FEHLING,
RALPH MIETZNER and ALEXANDER NOWAK

Institute of Architecture of Application Systems
University of Stuttgart, Stuttgart 70569, Germany
*frank.leymann@iaas.uni-stuttgart.de

SCHAHRAM DUSTDAR

Distributed Systems Group
Vienna University of Technology
Wien 1040, Austria
dustdar@infosys.tuwien.ac.at

In this paper we describe a method and corresponding tool chain that allows moving
an application to the cloud. In particular, we support to split an application such that
various parts of it are moved to different clouds. This split can be done manually or
by support of optimization algorithms. The split application is then automatically pro-
visioned in the different target clouds. A metamodel for such applications supporting
the proposed method is introduced. The architecture of a supporting tool is described.
Experiences from the usage of the proposed method are reported.

Keywords: Application modeling; metamodels; cloud computing.

1. Introduction

Today, many companies consider moving entire applications or parts of them to the
cloud.!® Applications today are often composite, multi-tier applications, consisting
of application components such as Uls, services, workflows and databases as well as
middleware components such as application servers, workflow engines and database
management systems. When moving such a composite application into the cloud,
decisions must be made about putting which tier and even which component of
such an application to which cloud.® Drivers for these decisions include functional
properties of a cloud such as the possibility to run a specific required middleware and
non-functional properties such as data privacy, cost and offered quality of service
by a specific cloud provider. European enterprises, for example, face difficulties in
putting customer-relevant data into a cloud that has resources that are physically
outside the European Union. They may, however, opt to put other parts of an
application that are not dealing with customer-relevant data into an overseas cloud
that might be cheaper or offers superior quality of service.

307

http://dx.doi.org/10.1142/S0218843011002250

308 F. Leymann et al.

Effectively, moving an application to the cloud is a rearrangement of the appli-
cation’s deployment topology in which component dependencies are captured. Such
a rearrangement of an application is often not only based on criteria like latency
and data transfer, as investigated in distributed systems research in the past, but
also on criteria such as data privacy, legislative compliance or trust, for example.
Thus, an approach is needed to support splitting and scattering (i.e. rearranging)
applications in a generic way to support a variety of reasons for splitting.

The general problem to be solved is then (i) how to rearrange the components
of a multi-tier, multi-component application into disjoint groups of components,
such that (ii) each such group can be provisioned separately to different clouds
while preserving the desired properties of the whole application — we refer to this
problem as the Mowve-to-Cloud problem.

In this paper, we formally transform the Move-to-Cloud problem into a graph
partitioning problem and use existing optimization algorithms such as simulated
annealing to optimize the distribution of components between different clouds. The
main contribution of this paper is thus not a novel optimization algorithm, but the
methodology and a corresponding tool chain that allows application developers and
architects to (i) model their application components and properties and (ii) define
relevant criteria for the splitting. This is done using a variety of diagrams and models
that capture the information relevant for the splitting. The annotated application
models then serve as an input for the optimization algorithms which produce sets of
component groups that can be moved into the same cloud. The presented tools are
integrated with existing provisioning tools to automatically setup the components
in the correct cloud.

One essential property of the presented approach is its general applicability,
i.e. the approach does not depend on one cloud framework, virtualization tech-
nology or programming language, but gives general guidance on how to solve the
Move-to-Cloud problem for a large variety of programming languages, virtualiza-
tion technologies and clouds. Therefore, the presented approach is not limited to
public clouds but is also suitable for private and hybrid clouds and can even be
exploited (with limitations regarding elasticity) for the splitting of applications
that are (partially) run in traditional datacenters.

The presented approach is based on requirements from two projects in concrete
companies the authors have been involved in. These projects dealt with existing
JEE applications as well as process-based service applications on the Web. The
software stacks used in the projects have been corresponding JEE and SOA stacks
including relational database systems, both, from commercial vendors as well as
from open source vendors. In one project, the rearrangement of the application was
based on trust criteria, the other project was focused on costs. The corresponding
modeling of the applications as well as the provisioning in the target clouds have
been prototypically realized based on the tools presented in the paper. Both projects
split their applications across a public cloud and a private cloud, but different clouds
have been used in the different projects.

Moving Applications to the Cloud 309

The paper is structured as follows: Section 2 discusses the conceptual approach
to move applications to the cloud and a running example is given; especially, a
corresponding method and a supporting metamodel are presented. Core concepts
underlying the presented method are formally defined in Sec. 3 and the problem of
automatically deriving cloud distributions is presented as an optimization problem.
The architecture of a prototypical tool suite supporting the proposed method is
described in Sec. 4. Experiences in using the proposed method in a concrete use
case are reported in Sec. 5. The presented approach is compared to related work in
Sec. 6. Finally, Sec. 7 concludes the paper.

2. Conceptual Approach

In this section, we discuss the details of the proposed method called MOCCA (MOve
to Clouds for Composite Applications), its metamodel and its underlying concepts.
A running example is used to demonstrate the major steps of the method.

2.1. First overview of the MOCCA method

The proposed method assumes that for the application to be moved to the cloud
three main artifacts will be provided: (i) an architecture model of the application,
(ii) a deployment model of the application, and (iii) implementation artifacts such
as virtual images of (parts of) the application. As an example for the application
to be moved to the cloud, we exemplarily use a simple order system that is able
to receive and evaluate a user’s order request, process the order and finally make
the results persistent (see Fig. 3). This sample application abstracts the kind of
applications we dealt with in practice: it has a Web frontend, makes use of servlets
and enterprise Java beans, and depends on a Web server, an application server, and
a database system.

Covering the three main artifacts, the architecture model first describes the
architectural components of the application (i.e. the “boxes” of the diagram) and
their relations (i.e. the “arrows” of the diagram). Note that the granularity of the
specified components has an impact on the flexibility and quality of the split of
the application into groups that are provisioned in different clouds (see Sec. 2.7).
The deployment model specifies the runtime containers required by the application
and which component of the architecture is hosted by which of the containers.
Furthermore, deployment relevant parameters must be indicated that will be needed
at provisioning time at the latest. The implementation artifacts of the application
encompass installable units of the application, like executable or virtual images of
(parts of) the application. But it may contain more than that, and the content of
the virtual image has impact on quality of the resulting installation in the cloud
(see Sec. 2.8).

Based on the first two artifacts a fourth artifact is derived called a cloud distri-
bution (see Sec. 3.1). A cloud distribution is a set of architectural components of

310 F. Leymann et al.

the application that are to be moved to the same cloud. As shown later, a cloud
distribution can be specified manually or it can be derived automatically. An auto-
matic derivation of a cloud distribution requires specifying additional information
(so-called “labels”) with the architecture diagram (see Sec. 3.2). Finally, the actual
provisioning of the cloud distribution in the target clouds is performed based on the
automatic creation of a fifth artifact called a provision cluster (see Sec. 3.1). During
provisioning, actual values for the relevant deployment parameters indicated with
the deployment model will be derived or enquired (see Sec. 4.3).

Before describing the MOCCA method in detail (see Sec. 2.6), we discuss the
metamodel underlying the MOCCA method in the following Sec. 2.2. Next, the
sample application of the simple order system is given in detail and modeled using
the proposed metamodel at its architectural level (Sec. 2.3), at its deployment level
(Sec. 2.4) as well as its provisioning and virtual image level (Sec. 2.5).

2.2. The MOCCA metamodel and diagram types

In Ref. 7, we propose a framework for provisioning customizable composite applica-
tions in the cloud. This metamodel has been adapted for the purpose of supporting
MOCCA and is shown in Fig. 1. Note that only those attributes are shown and
discussed here which are relevant in our context.

A customizable application is represented by an instance of the entity type
Application Template. Such a template consists of one or more instances of
the Component entity type. A component may contain other components. Amongst
other attributes a component has a Name and a Type. The latter attribute has no
fixed set of predefined values; for example, a component may be of type Application
Server. A Component is source of as well as target of zero or more Component
Relation entities. The relevant attribute of a Component Relation is its Type
attribute indicating the semantics of the relation between the two associated com-
ponents. Each component relation and each component has zero or more Labels
which are specified as pairs of a Name and a Value attribute of the Label entity
(the role of labels is described in Sec. 3.2).

Each component is realized by exactly one Implementation. The most impor-
tant attribute of the implementation is the Type attribute. This attribute indi-
cates the main manner or technological basis used to realize the implementation
(e.g. whether it has been realized as a BPEL orchestration, or an OVF image
ete.); for example, a Component of Type Application Server may be realized by an
Implementation of Type OVF. If the implementation is of Type Fxternal, it points
to its realization via an Endpoint Reference (EPR)%; if it is of Type Provider Sup-
plied, the actual realization of the component will be provided at a later point in
time by a particular provider (e.g. the provider has it already installed and as basis
for the proper installation and deployment of new components). The middleware
components in the practical exploitations of MOCCA had been of Provider Supplied
implementation type to get experiences with middleware offered in the cloud; the

311

Mowving Applications to the Cloud

<

sulejuod

‘suorjeoridde 991sodwod 10J [opowreIdN T "SI
_ 7 _ 9944 _ _ 1o1dx3 _ 7 Ayadoud -
« 0
_ _ _ | 1oy anjen|A
« 0 awinuny
58U 6uuoisinoag-a.
101820 ulod sey p Anadoud 1uoksInoid-aid
18307 |—ji m m SAlleuIalY anjep
wc._mzv\ Aujiqenepn [T %0 9|qISIA
- aweN
0 0
* anjep
sey| A swepN
1 0 1°ge anjea
sey (A aweN
< -0
R:IThE}
Py %0 JO S1SISU0D sey |a
» sey|a x0
T T] Rl
« 0| 1usuodwo)
_ a014 : __ 1dsm : 1344 4 dh j0
adA] 0
s|J A * (o]
("apod) - swenp\ | | [|REe »w&:ow
Aiouig * « T[+70 T I
0 S1SISU0d
paijddnsiapinoid uojzeyuswa|dw| Aq _umN__mm”_. j1uauodwo) ..UF ! - o1ejdwaL
[puIa1xT -adA) F— 1 4 T « 1 4 x'T| uonedddy
13d9 : =
410 0 k0

312 F. Leymann et al.

implementations of application specific components had been of type BPEL, WSDL
etc. An implementation consists of zero or more Artifacts. An artifact is the gen-
eralization of different kinds of artifacts like BPEL files, WSDL files, and so on up
to BLOBs that contain binaries of actual code. For example, an Implementation
of type BPEL consists of BPEL files (i.e. instances of the BPEL artifact), WSDL
files (i.e. instances of the WDSL artifact) and other corresponding artifacts (e.g.,
deployment descriptors, .. .).

An artifact has zero or more Variability Points. A variability point has a
Name and a Locator attribute. The latter attribute is used to point directly into
the artifact to distinguish the piece within the artifact that may be overwritten;
for example, a locator may be an XPath expression pointing to an operation name
of a port type of a WSDL file. A variability point is associated with zero or more
Alternatives. An alternative has a Name and Value attribute. When binding a
variability point it is assigned a value of exactly one of the alternatives associ-
ated with the variability point. Thus, the set of alternatives associated with a
variability point support users in customizing an application template by provid-
ing a list of potential values to choose from a variability point. There are multiple
types of Alternatives. In our context Explicit alternatives, Free alternatives and
Property alternatives are relevant. An Explicit alternative provides a pre-defined
value that a user can select when binding a variability point. A Free alternative
allows the input of an arbitrary value by a user to bind a variability point. Property
alternatives point to a Visible Property of a Component.

A Visible Property is a property of a component that is made visible to
the outside for the purpose of overwriting. A visible property has a Name and a
Value attribute; for example, its Value can be an EPR under which its associated
component can be reached. The Phase attribute of a visible property defines the
point in time when it becomes available for overwriting. The two Phases relevant
for this context are Pre-Provisioning (i.e. the component is not yet provisioned) and
Runtime (i.e. the component is already running). In case a Property alternative
points to a visible property the Value of this visible property serves as the Value of
the Property alternative and is thus used to bind the associated variability point.

Figure 2 summarizes how the metamodel represents the various artifacts
assumed by the MOCCA method are represented by the proposed metamodel. The
corresponding metamodel elements are grouped by dashed lines, and the names of
the corresponding artifacts are given in rectangles with rounded edges. Components
and Component Relations of the metamodel are used to describe the “boxes” and
“arrows” of the architecture diagram of an application (see Sec. 2.3 for an example).
The metrical annotations of a “box” or an “arrow” of an architecture diagram used
to automatically propose a cloud distribution of an application (see Sec. 3.2) are
represented by the Labels associated with the Component representing the “box”
or with the Component Relation representing the “arrow”. At the topological level
deployment models are represented by means of Components and the contains rela-
tionship between components: a container at the middleware level is represented

Moving Applications to the Cloud 313

‘Jepowrejowt pue sod£) [PpoJN ‘7 "S1q

em—=—==—" - T 7 = q uonezusaweley
s 3314 31jdx3 fyazdoay 5 wawhodag -
7 .
4 _ _ _ | lopanjen &
4 v 10 _. ununy
f wm?_n_ e
I Joye20— julog seyp Aypazdouy Bupuoysys
. BAIEWIR
I wEmZ_\ Aupgqenen |07 <0 4 Y 31q1s1A an|ep,
\ BuweN _ - -
- <0 —
.......rl.llul.lm.lll.ll..ll. /wj_mp \..l\..lll”.“.l.l..l.ll.l..l suuzsng)
. - . - .
o= s S~ TR ! pozido
e 1 e 0 12927
y =~ ~ N sey | ﬁ/ - A
/ . 4 —_ = -
VeV <0 10 51515U0D ~ ~ - SeY A .“.
~ sey|a 7 0
b /
“ I uone|Ey \._
// | "ol usuodwon
2dAL /._ Faf, 00 [Ppon
12diey . .
o awepy o Al | emoaupay
10y |1 . >,
\ ~ _ 7/
d Ag peziesd | d =T “ToEisisuoD sie(dwsa)
renstsEItl e PRI T € 1| woneayddy
- 1
- - 1 70 20
uonejieisul . _-" \ 2 Agojodoy
—_ suleyuod
Jnewony e _m—_—=—-—-— Mo 7| wawhojdaq

- — -

314 F. Leymann et al.

as an instance of Component and contains all components it hosts (see Sec. 2.4
for an example). Beyond the topology of a deployment Visible Properties and
Variability Points can be defined for the components of an application to sup-
port the specification of the parameterization aspects of a deployment (see Sec. 2.5
for an example) which will support an automatic provisioning of applications.
To support an automatic installation of an application the Implementation and
Artifacts of a component have to be defined. We employ a very generic metamodel
for various reasons. First of all, this generic approach does not restrict the approach
to a particular platform or programming language. By using a generic orthogonal
variability model we allow all variability of an application to be expressed in one
model. This variability can range from SLAs to functional variability. Having an
orthogonal variability model is necessary as variability in one component (for exam-
ple, the required availability of an application server) might depend on the binding
of other variability points of other components (for example, the required availabil-
ity of the whole application).

Our model allows importing the visible properties of other components in the
model of an application template. This enables providers or middleware vendors
to advertise the visible properties for a component (for example, an application
server), that can then be imported into the model of an application that makes use
of that application server thus allowing to reuse already modeled artifacts.

2.3. Example — architecture level

The application to be moved into the cloud is a simple order system; note again
that the sample application is an abstraction of the applications we dealt with
in practice, but it shows all the major aspects relevant to see how our method
can be used in practice. Its architecture diagram is sketched in Fig. 3; as usual,

Good
Progress

Monitor

Standing
Verifier

Order
Processor

Risk
Assessor

A 4

Stock | Data
Management "I Handler

Fig. 3. Architecture diagram of the order system.

Moving Applications to the Cloud 315

components of the architecture are presented as boxes and interactions between
the components are represented by arrows. The customer request is received by the
Input Entry component. Once the order is received, the Input Entry component
passes appropriate data to the Good Standing Verifier component. Based on the
results returned by the latter component, the Input Entry component asks the Risk
Assessor component to evaluate the risk for accepting the order for certain kinds of
customers. In case the risk is low, the Risk Assessor kicks of the proper processing
the order by using the Order Processor component. The latter component makes use
of the Data Handler component for dealing with the persistence aspects of the actual
order. In parallel, the Order Processor component instructs the Stock Management
component to deal with all stock related aspect of the order. The Stock Management
component too makes use of the Data Handler component for persistency aspects.
The Progress Monitor component allows monitoring the progress of the order at
any time; for that purpose, this component makes use of the status information
about the order available via the Data Handler component. It is important that all
components that should be subject of the movement to a cloud environment are
modeled explicitly. This is the case for both technical and business components.

Within the metamodel the “Architecture Model” part shown in Fig. 2 supports
specifying the corresponding model. For example, the Input Entry component is
an instance of Component with the Name attribute set to Input Entry. The Risk
Assessor is an instance of Component with Name Risk Assessor. The arrow between
these two components is realized by an instance of Component Relation with Type
set to InputEntryusesRiskAssessor. The Input Entry component is source of the
InputEntryusesRiskAssessor Component Relation and the Risk Assessor compo-
nent is target of the InputEntryusesRiskAssessor Component Relation.

2.4. Example — deployment level

The various components of the architecture of the application are realized based
on different technologies: The Input Entry component, the Good Standing Verifier
component, and the Progress Monitor component are implemented as servlets in a
corresponding Web server. The Risk Assessor component and the Order Processor
component are realized as session beans in a JEE application server. Both, the Data
Handler component as well as the Stock Management component are built as stored
procedures directly within a database management system. Figure 4 exemplarily
shows the corresponding deployment of the application. The components are also
annotated by properties (depicted as rectangles) and variability points (depicted
as “bowls”) required being set during deployment in order to support the proper
interactions between the components. These annotations are discussed in the next
section.

Within the metamodel the “Deployment Topology” part shown in Fig. 2 sup-
ports the specification of the corresponding model. For example, the DBMS is
represented as an instance of Component with Type attribute set to DBMS. It

316 F. Leymann et al.

1

Web Good

Standing
Server Verifier

Progress

Monitor

C

L

Ap p Risk Order
Server Assessor Processor

g | Ll

Stock

Management

vyvy |
—
Data

Handler

DBMS

Fig. 4. Sample deployment of the order application.

is connected by an instance of the contains relationship with an instance of
Component with Name set to Stock Management and Type set to Database. This com-
ponent, for example, also has two visible properties with Name set to Username
and Password and a Value set to the corresponding values as well as a Variability
Point with Name set to DatabaseName and a freeAlternative where the database
name can be set.

2.5. Example — deployment parameterization and
automatic installation

In our sample application, we aggregate the middleware components into another
component called MWStack to clearly distinguish middleware aspects and applica-
tion aspects of the architecture of the sample application. Figure 5 shows how this
aggregation is realized by an instance of Component called M WStack. This compo-
nent contains two other components, a component of Type AppServer with Name
WebSphere, and a component of Type DBMS with Name DB2.

Next, the “Automatic Installation” part as well as the “Deployment Parame-
terization” part of the metamodel from Fig. 2 is used to specify further deploy-
ment information beyond the pure middleware containment information. As shown
in Fig. 5, the WebSphere component is realized by an Implementation of
Type OFV. It consists of a BLOB Artifact that points to an element called
MWStack/Websphere.ovf within the OVF file. This is achieved via its FileRef
attribute. The artifact further has a Variability Point with Name hostname.

317

Mowving Applications to the Cloud

‘seSewll [enia Aq peazifeal jusuodwod Yy oysodwod sidwreg G Siq
JO S1SISu0d Aq pazijeas

HAM_M_._M@ < uonejuswa|dw| < jusuodwoy

n0°"Z9a/I0ISMIN N0 sweaa zdda
HENET[E :adA) :adA) dweN
A
sujejuod
Ayiadoud
EERTED 3| d sey jusuoduwiod
awpuisoy|/ \zgasyuoif Suleuod| \yop
“"an|eA |enyoe sapiaoad- :DweN :anjep N v W\w&w._\/_ss\
S DL P . St Janasddy ‘
T :adA)
! sey sey JO S1SISU0d Aq pazijeau
dAIleUIRYY ! julod (a0719)
d d |
Anadoud ... 4 Ajigeriepn <4 1dejluy < voheuswsawl 4 suoduioy
1
awpuisoy <_ awpuisoy uy\sa\~_ \Jno-aiaydsqam/HIa0Ismn N0 2424dsqam
:PweN :anjep :oweN o3 1= lon AN HEWETTE A :2dAL :oweN
AY

~
~

3|y Ul

1
7

p|3if €61 s3urod-

318 F. Leymann et al.

The Locator attribute of this Variability Point points to the “...\wvs\hn” ele-
ment of the MWStack/Websphere.ovf file. A Property Alternative is defined for
the hostname, i.e. the actual value of the hostname will be provided via a Visible
Property. The corresponding Visible Property with Name hostname and Value
franksDB2 has been defined for the DB2 component. This component is realized
by an Implementation of Type OVF too, and this Implementation also consists
of a BLOB Artifact with the FileRef attribute set to MWStack/DB2.ouvf.

As a net effect, the value franksDB2 of the hostname Visible Property of
the DB2 Component becomes the value of the hostname Property Alternative of
the WebSphere Component which represents the hostname of the database system
to be used by the WebSphere Component. At runtime this enables a connection of
WebSphere to the corresponding DB2.

Figure 6 depicts the overall middleware stack required by the application as (a
fragment of) an OVF file.? The VirtualSystemCollection element of the OVF
file consists of three VirtualSystem elements each of which represents the virtual
machine configuration of the particular piece of middleware. The figure is an overlay
of the deployment model in Fig. 4 and the concrete syntax of an OVF file to show
how individual components might point to corresponding OVF Virtual Systems.

<VirtualSystemCollection id="MWStack">
<VirtualsSystem id="Tomcat">

Web
Input Entry
server

</Virtual Systenl't)
<VirtualSystem| id="WebSphere">

Good
Standing
Verifier

Progress
Monitor

Y
Web Risk Order
Server Assessor Processor
</Virtualsystem>
<VirtualSystem Fd="DB2"“>
Ll
. l
Web stock »| DataHandler
Server management
</Virtualsystem>

</VirtualsSystemCollection>

OFV Package

Fig. 6. Sample OVF overlay of the sample application.

Moving Applications to the Cloud 319

However, the OVF file does not contain the model, but the model may point to
the OVF artifacts. It graphically depicts that the VirtualSystem Tomcat hosts the
application components Input Entry, Good Standing Verifier and Progress Monitor.
The VirtualSystem WebSphere hosts the Risk Assessor and the Order Processor
component. Finally, the VirtualSystem DB2 hosts the Stock Management and
Data Handler Component. The fact that the WebSphere component is provided
within an OVF file in the VirtualSystem WebSphere has been specified by means
of the metamodel as sketched before.

2.6. MOCCA method details

The main idea behind the method proposed is that an architecture model of the
application is enriched by additional information and that this enriched model
becomes the basis for automatically rearranging the application and provisioning
the rearranged application in different clouds. Figure 7 shows the major artifacts
created by following the MOCCA method.

One kind of additional information represents deployment information: the
architecture model is combined with a deployment model of the application, and
deployment relevant parameters are added. The other kind of additional infor-
mation is about implementation units such as virtual images of the application
that are associated with the components of the combined model. Finally, addi-
tional information may specify data associated with the architectural compo-
nents and the interactions in-between these architectural components, and this
data can be used to decide on an optimal rearrangement of the application
(see Sec. 3.2).

The enriched architecture model is the basis for determining which part of the
application is moved to which cloud, i.e. it is the basis for determining how the appli-
cation should be rearranged. The rearrangement of the architectural components
into groups of components is referred to as a cloud distribution; Fig. 7 indicates a
cloud distribution in its lower left part. A cloud distribution is a disjoint partition
of the set of all architectural components of the application into groups that are
built according to the “cohesiveness” of the components. Cohesiveness is decided
based on the third kind of additional information mentioned before that may be
added to the architecture model and determines whether components have to be
provisioned in the same cloud (see Sec. 3.1).

After deriving the cloud distribution for an application, the implementation
units associated with each component of a group within the cloud distribution
are bundled with the corresponding group of components. This result is called a
prouvision cluster; Fig. 7 indicates a provision cluster in its lower part. Each such
bundle of a provision cluster can be automatically provisioned (in a different cloud).
As the result of provisioning, the overall collection of provisioned bundles is set
up based on the deployment relevant parameters captured before such that the
rearranged application is operable again.

320 F. Leymann et al.

"poTIem YOOOIN U3 Jo sIrJIIIR 10[Ry

“Eeons ano

4 A

205?-.?!5:» TemITAS>
£ aﬂaﬂ!uu;‘.u

L M
Fa—
BRI TPRITTAS
SASTINATTAL>

PAGIT|

ebeyova 240

<ucTIoRTTOOWeILASTENIZTAS>
wenekgTemiara/>

B0
L] iaEa |
1 1
ﬁ «.,29.&:@25.323

sAsTeRaITA/>

] T s

ey
n B La S |

(¥)

.=PT WIBASTEAITTA>
¥ uoTasert 33TA>

/ qum:_u UoISIAOIg

~

(¥)

’ \ 1
1 v —
] A 1
\ N
\ ———— \
. v |
v
! ! o |
I Jossanug LY sossassy 1
I smo Ty o I
1 oy ._
O L ' h
1 N ’
| \ e —— - |
’ - 1
1 o,
e v " u
I B topos e 8 !
1 4 s pass I _
’ ||||||||||||||

/ co_u_,_o__(_um_o pnoio \
(€)

4)

'y
L <.929udSqeN . =PT [Wo3sASTENIITA>
SASTeNATTA/>

L <, 3voWOL,.=PT WeanAsTENIITA>
< ADWISHH.=PT UOTIIBT[OIWNI FASTEAITTA>

/B_cj co_chmEm_aE(

(2)

\ gy | | oty
e swaa
sl
in] ﬁ]
Janas
ddy
m]
—— JETNETS
Ttong
qam
1
r |

/Emcmm_n_ Em8>o_amok

(T)

e Jseven
weg [1w
Jmssadaig sossassy
P N e
sy
Jo3iuo Ay
e Bupuers I
ssasBoig et anduy

/Emgmm_n_ cY SUEEE,QK

Mowving Applications to the Cloud 321

Note that an implementation unit that is (part of) a virtual machine may have
to be split or copied in the course of building a provision cluster because it may
be associated with different components assigned to different bundles in a cloud
distribution. For example, in Fig. 6 the fragment of the OVF file shown contains the
VirtualSystem with identifier WebSphere. The two architectural components Risk
Assessor and Order Processor are hosted by WebSphere as shown by the overlay
of the architecture model and the OVF file in Fig. 6. Assume that Risk Assessor
and Order Processor are decided to be moved to different clouds, i.e. they are
assigned to different groups in the cloud distribution derived (as indicated in the
box called “Provision Cluster” in Fig. 7). Since both, Risk Assessor as well as Order
Processor will still require to be hosted by WebSphere after being moved to different
clouds, the corresponding virtual machine has to be copied and bundled with the
corresponding group in the resulting provision cluster. Section 3.1 and especially
Definition 4 defines this precisely.

In a nutshell, the MOCCA method consists of the following major steps pro-
ducing and combining artifacts resulting in a rearrangement and provisioning of an
application in the cloud (see Fig. 7):

(i) As the basis, an architecture model of the application to be moved to the cloud
has to be provided.

(ii) Furthermore, a deployment model of the application is required. Transition (1)
in Fig. 7 represents the enrichment of the architecture model with deployment
information.

(iii) Also, the architecture model is rearranged into groups of components that
belong into the same cloud. Figure 7 depicts this as transition (3) that creates
a cloud distribution from the architecture model. Note, that the creation of the
cloud distribution and the deployment model can be performed in any order,
even in parallel.

(iv) To support automatic provisioning, all implementation units must be provided
that are required to actually run the application. Transition (2) in Fig. 7 indi-
cates that this implementation information is added to the combined architec-
ture/deployment model.

(v) Finally, the cloud distribution and the combined architecture/deployment
model annotated with the required implementation units are combined into
a provision cluster: the joint transition (4) in Fig. 7 represents this step. The
provision cluster represents all the information needed to provision the rear-
ranged application into its target clouds.

The creation of these artifacts can be supported by corresponding tools: in Sec. 4
we present the architecture of a corresponding tool suite and describe the individual
tools of this suite; the appendix shows screenshots of the implementation of these
tools. But it should be explicitly noted that the MOCCA method itself is indepen-
dent of any specific tool: it provides a procedure of steps to be done and artifacts to
create in order to move an application to the cloud. The artifacts could be created

322 F. Leymann et al.

by any tool: for example, the architecture model could be drawn by pencil on a
sheet of paper, could come as a set of power point slides, could be modeled via the
ACME tool,'? the Cafe tool” or the VBMF tool,'' as a UML model and so on. But
the tool suite presented in Sec. 4 supports the proposed method seamlessly. In the
prototypical experiments performed in practice, all steps of the MOCCA method
have been executed.

Figure 8 shows the procedural details of the MOCCA method as a BPMN!2
process model. The process begins with a task that provides an architecture model.
This architecture model might already exist and is simply retrieved, or it is explic-
itly created by this task. Next, the cloud distribution of the application has to be
determined and deployment information is to be provided: the process model rep-
resents these activities as expanded subprocesses with corresponding names. These
two subprocesses may be performed in parallel or in any order.

The Determine Cloud Distribution subprocess begins with a decision whether
or not the cloud distribution is derived by manually partitioning the architectural
components of the architecture model or not. If a manual partitioning is performed
the Provide Cloud Distribution task outputs the cloud distribution. If an automatic
partitioning is chosen, the architecture model must be labeled by appropriate infor-
mation within the corresponding task shown. Once the labels have been provided,
the cloud distribution is automatically computed by the following task (Secs. 3.2
and 3.3 detail how this is achieved). The usage of MOCCA in practice was based on
manual partitioning because the practitioners have been skeptical about automatic
partitioning; nevertheless, the manual distribution chosen could be confirmed by
the automatic partitioning afterwards.

The Provide Deployment Information subprocess starts with a task that pro-
vides the deployment model of the application; again, this model might already exist
and is simply retrieved by the task, or the deployment model is created by that task.
If some of the artifacts that represent implementation units are (part of) virtual
images, these virtual images are provided in a separate task. As mentioned before,
the practical usages exploited Provider Supplied types of Implementations of mid-
dleware components, i.e. the task Provide Virtual Images has not been performed.
In any case, the task Define Implementation Artifacts associated the architectural
components as well as the deployment components with their implementation units;
especially, components whose implementation is provided as virtual images are
linked to the corresponding VirtualSystem elements in OVF files (assuming OVF
as format). Finally, the deployment relevant parameters are defined.

Once the cloud distribution as well as the deployment information is available,
the implied provision cluster is automatically computed. Based on this informa-
tion, the appropriate provision flows are automatically generated (see Sec. 4.3).
Finally, the provisioning flow is executed resulting in the installation and proper
deployment of the rearranged application in the cloud.

As indicated before, the method we propose can be used in a whole spectrum
of scenarios each of which relate to a different degree of automation for moving

Moving Applications to the Cloud 323

hd

Buuosiaoug
ajnoaxy

T

mMol4
Buuosiaoud

‘porjewr oY} Jo uolyejuasardol [opout $s0001g R "SI
uonnquisig pnoi) suluusiag & Buuonney
uonnquisig -
|enuep
pnojo +
apioid

co__z_r__w._i ﬁ 1apo
projy e—1 eimospyosy
¢ Buiionnied
andwon _ ﬁ |aqe B

EIEIETCT)

T

138N|0
uoISInCId
ayndwoy

|

O

uoneuuoju| jJuswlojdeq apinoid

uonez
-Jg|8WeIE
wiopad

SjoejYy
Juswapdw)|
auysg

>—3

[enuiA
apIroIg

Lsabew| [enup
Ul SPOBJY awos

1epo
ABojodo)
apiAolg

324 F. Leymann et al.

an application to the cloud: it is possible to move an application to the cloud
without any tool support at all, or by supporting some of the steps of the method
by tools, or by using an environment that supports all of the steps of the method
by corresponding tools.

At the low end of the spectrum our method can be used without any tool
support, i.e. it is then considered as a guideline for the major steps to be performed
when moving an application to the cloud. In this case, all of these steps have to
be performed manually relying completely on the skills and knowledge of human
beings performing these steps. At the high end of the spectrum an environment
build by a tool suite on top of Cafe is used (see Sec. 4), i.e. the major steps of
our method are supported by the environment guiding users through these steps.
Some of these steps require user input and while other steps will be executed by
the environment in an automatic manner. The practical work of the authors has
been at this high end of the spectrum, i.e. it has been supported by tools.

Furthermore, the granularity of the architecture model and of the virtual image
provided significantly influences the flexibility of spreading the application across
different clouds as well as the reuse of componentry across applications moved to
clouds (see Sec. 2.7 for a more detailed discussion). Similarly, if the virtual image
consists of the collection of images of the individual middleware elements without
any of the proper application components to be deployed into and hosted by these
middleware elements, the same middleware elements can easily become containers
for components of different applications (see Sec. 2.8 for a more detailed discussion).

2.7. Impact of application architecture model granularity

Obviously, the finer the granularity specified in the architecture model (i.e. the more
components are specified) the more possibilities to split and scatter the application
exist. More components typically means to have more detailed and more specific
metrical information about the interaction between the components, which in turn
typically results in more optimization options and better optimization results in
splitting the application (see Sec. 3.2).

Coarse grained models such as ACME models'® tend to capture the high-level
logical components (“building blocks”) of an application. However, in order to auto-
matically split and especially provide an application later on, more fine grained
models such as the ones employed in Cafe” are needed. These fine grained models
go deeper than modeling the high-level logical components of an application and
their relationships by capturing also technical components relevant for distribut-
ing and hosting the application (“deployment architecture”).!® Such deployment
architecture models add deployment-relevant components and cross-component
configuration needs.

Deployment-relevant components are components that explicitly specify their
deployment needs. The advantage of deployment-relevant components is that they
often can be automatically deployed, while logical components typically require

Moving Applications to the Cloud 325

manual intervention because their opaque, not explicitly modeled different parts
must be deployed on different middleware stacks. When explicitly modeling the
deployment-relevant components and their dependencies (i.e. component X must
be configured with the IP address of component Y') the provisioning infrastructure
can then interpret the respective model when provisioning the application which is
not possible for the coarse grained models.

Thus, refinement of logical components is advantageous. When being refined,
logical components are typically split into multiple deployment-relevant components
each of which is separately represented in the refined model. For example, a Web
Portal logical component of a coarse grained architecture model might consist of
both, a Portal Engine as deployment-relevant component that must be deployed on
an application server, as well as a Portal Database deployment-relevant component
that must be deployed on a DBMS. Specifying these two deployment relevant com-
ponents explicitly in the architecture model allows to automatically provide and
deploy them.

2.8. Impact of virtual image content

The content of the virtual images that get overlaid has impact on the quality of
the installation, potentiality of security threats, licensing issues etc. For example,
if the virtual image of an application server contains EJBs that are not needed
by the application to be moved to the clouds, the installation will be polluted.
Components that are not required for an installation may open up security holes.
Finally, components that are not needed by an installation may require unnecessary
payments of license fees. Obviously, superfluous components generate management
efforts because corresponding management processes (ITIL processes) automati-
cally take care of them, for example.

Thus, the balance is between a set of pre-defined “empty” virtual images and
application-specific images containing both the middleware and the application
components. The advantage of employing images that contain only the middleware
stack is their reusability. Instances of such images can be reused across different
applications that have the same middleware requirements without being burdened
by superfluous components that are not needed in that particular application. In
addition to that, one instance of such an image can be reused in multiple appli-
cations and thus the amount of instances of such images can be greatly reduced.
Furthermore management and maintenance overhead of the images can be reduced
if only a predefined set of virtual images can be used in applications.

However, limiting the amount of usable images to a set of predefined middleware
images also imposes a set of challenges: To ensure usability of the predefined images
in multiple scenarios the middleware images must be highly configurable which
again makes their definition and use very cumbersome as a lot of configuration
options must be defined and bound before they can be used. As a consequence,
not all possible configuration options can be captured in a configuration model

326 F. Leymann et al.

for these images. Thus, application components that can be deployed on top of
these images must be able to live with the possible configuration options. This
may be a viable option for application components that are developed with these
restrictions in mind. However, when moving existing legacy applications into the
cloud these may be “by chance” compliant to one of the possible configurations but
may also not be compliant. In addition to that, when using predefined virtual images
the corresponding provisioning infrastructure must be able to deploy application
components on top of these virtual images. In case of virtual images that contain
both the middleware components and the application components representing the
complete application, this is not necessary.

To capture the advantages of both worlds, Cafe” employs an approach where
pre-defined virtual images can be reused across multiple customers and applica-
tions. Additionally, the Cafe application metamodel allows the inclusion of custom
virtual images that may have special combinations of middleware and application
components that cannot be decoupled into a predefined image and an application
component.

3. Formal Aspects

In this section, we describe some formal aspect of the MOCCA method. First, we
provide a formal model of provision clusters (see Sec. 3.1). Next, we describe the
derivation of cloud distributions and provision clusters as an optimization problem
(Cloud Distribution Problem) in Sec. 3.2. Finally, in Sec. 3.3, we give an example
for such an optimization problem and sketch a tool for automatically solving the
cloud distribution problem.

3.1. Provision clusters

The core concept underlying the MOCCA method is that of a provision cluster (see
Definition 4). To prepare its formal definition we need to define formally what cloud
distributions (see Definition 1) and middleware deployments (see Definition 2) are.

Informally, a cloud distribution is a partitioning of the architectural components
of an application (see bottom left model of Fig. 7). The partitions are determined
based on some criteria (“labels” in Definition 6) that allow evaluating the cohesive-
ness of the corresponding components. For example, business logic components very
frequently accessing a particular database handler component and exchanging lots
of data with the database handler might be put into a single joint partition together
with the database handler to minimize latency and data transfer cost by putting
the whole partition in the same cloud or even onto the same machine. A set of
such placements considering also the middleware required by the partitioned archi-
tectural components is called a provision cluster (see Definition 4). For example,
the business components above require an application server and the mentioned
database handler component requires a database system, i.e. the corresponding
partition of the components of the provision cluster includes an application server
and a database system (see bottom center model of Fig. 7).

Moving Applications to the Cloud 327

Definition 1. (a) Let A be an application and C(A) = {C1,...,C,} be the set of
architectural components of A. A disjoint partition D = {P1,..., Py} C p(C(A))
of C(A) is called a cloud distribution of A (where p(M) denotes the powerset of a
set M).

(b) A cloud distribution D is derived based on a set of criteria that are rep-
resented by a function A that evaluate the cohesiveness of elements of C(A) =
{C1,...,C,} with respect to having to belong to a joint single cloud. When this is
important to emphasize the cloud distribution is denoted as D = A(C(A)).

A may cover a large spectrum of types of criteria reaching from “gut feeling”
over “best practices” to the use of algorithms. For example, an architect may sim-
ply “know” based on experience which components must be put into one and the
same cloud. Another option may be the use of patterns for determining which
components must be placed jointly into a single cloud. Also, optimization algo-
rithms for determining the best placement of each component can be used based
on metrical information associated with each component (see Sec. 3.2); in this case,
A = (Q,P,0) is a triple consisting of labels Q, node-labeling map ®, and edge-
labeling map ¥ (see Definition 6).

Definition 2. Let A be an application and M(A) = {Mi,..., M.} be the set
of middleware components hosting at least one of the architectural components
C; € C(A) of A. M(A) is perceived as a disjoint partition M(A) C p(C(A)) by
defining M; = {C;|C; € C(A) A C; is hosted by M;} for 1 < i < r. M(A) is
called middleware deployment of A. M; € M(A) is called the container of the
architectural components of A it hosts.

Let the components C(A) of an application A be rearranged into the cloud
distribution A(C(.A)) based on the criteria A. In general, components C; and C}
originally belonging to the same container M; will be assigned during the rear-
rangement to different Py and P; of the partition A(C(A)), i.e. C; € Py N My, and
C; € P, N Mj. The meaning of M, N Py # O and M), N P, # O is that some compo-
nents of Ps as well as some components of P; require after the rearrangement still
to be hosted by a container “of the same kind” M.

To crisply define the situation we introduce the following set operation:

Definition 3. Let T', T/ C (M) be two non-empty sets of subsets of the set M.
The deep intersection of T and T" is defined as T M T :={tNt'[t e TAt' € T'} - O.

I.e. the deep intersection “@” of two sets of sets T and T” is not the intersection
of the two sets themselves but it is the set of pairwise intersections of sets contained
in the encompassing sets T' and 7”. Based on this definition, the set of middleware
components required to host the rearranged set of components of an application A
is the deep intersection of the middleware deployment and the cloud distribution

of A:
MA)MACA)) ={M;NPJI1<i<rAl1<j<m}—0. (1)

328 F. Leymann et al.

—— P
_______________ . 2m=ma
7 \ "M
I \ 1
\
c » C T C
{ LS LS T 3
Pll' ST == /
1 ’ - -

T Sy ~mame=—

lI " // : MZ
:] "E:4 G |}

] ! 3, i

1 \ N !

: R T — g

i \ I

1 H g \

1 3
o ™
3 V&

'. v
i]
H ! T ——— 4 ,'/" P3
T 7
\ C8 1 ,,,
\ ! \ -

N / < -

Fig. 9. Sample (a) Cloud distribution and (b) Provision cluster.

Figure 9 (a) shows a sample cloud distribution of an application. The underly-
ing deployment topology shows which component C; within the architecture model
of the application is contained in (a.k.a hosted by) which middleware container
Mjp,. The partitions P, of the cloud distribution are represented by components
C; surrounded by dashed lines and containers of the middleware deployment are
represented by rectangles. Intuitively, the partitions of the cloud distribution “tear
apart” the containers, e.g. M; is split into M7, and Mis. Thus, the rearranged
application requires two copies M7; and Mo (drawn as rectangles with dashed-
bulleted lines in part (b) of Fig. 9) of the original middleware container M;. While
M originally hosted C7, Cs, and Cjs, after rearrangement M7, will host Cy and
Cy, and My will host Cs. Part (b) of the figure groups those application compo-
nents that can be provisioned into separate clouds together with the middleware
containers required to host the corresponding components by lines with narrow
dashes.

The following definition introduces this formally:

Definition 4. Let A be an application, M(A) = {Mi,...,M,} be the set of
containers hosting at least one architectural component of A and A(C(A)) =
{P1,..., Py} be a cloud distribution of A. Then, the deep intersection of M(A)
and A(C(A)), i.e.

MA)MAC(A) ={M;NPj1<i<rand1<j<k}-0 (2)
is the set of containers required to host the components of the rearranged application

A. The pair II(A) := (A(C(A)), M(A) m A(C(A))) is called a provision cluster
of A.

Moving Applications to the Cloud 329

3.2. Cloud distribution problem: Computing cloud distributions
and provision clusters

A cloud distribution of an application A can be computed by evaluating metrical
annotations (or “labels”) of the architecture model of A. This implies that a provi-
sion cluster of A can be automatically proposed by computing the deep intersection
of the computed cloud distribution and the given middleware deployment of A.

The problem of computing a cloud distribution is mapped to a combinatorial
optimization problem, more precisely to a variant of the graph partitioning prob-
lem'* in which partitions do not necessarily have similar size.

In order to formalize the problem of computing a cloud distribution of an appli-
cation A, the notion of an architecture model of A is defined as a directed graph the
nodes of which are the components of A and the edges of which are the interactions
between the components of A.

Definition 5. Let A be an application, C(A) = {C4,...,C,} be the set of architec-
tural components of A and R(A) C C(A) x C(A) be the set of interactions between
the architectural components of A. The directed graph G(A) = (C(A), R(A)) is
called the architecture model of A.

To decide on the cohesiveness of architectural components of an architecture
model, the model must be instrumented by different kinds of metrical informa-
tion (collectively referred to as “labels”). Metrical information might be associated
with the components of the architecture model (i.e. C(\A): the nodes, architectural
components or “boxes”, respectively), with its interactions (i.e. R(A): the edges,
interactions or “arrows”, respectively) or even with both. For example, when the
overall cost of hosting an application is to be evaluated, the cost of hosting each
architectural component of the application will be assigned as label to the nodes of
the architecture model. When the amount of data transferred across the network
is to be evaluated, the amount of data exchanged between two components will be
assigned as metrics to each edge of the architecture model.

The following definition introduces labeling of directed graphs formally:

Definition 6. Let G = (N, E) be a directed graph and let = {Qy,...,Q,} be a
set of non-empty sets, where each €; is called set of labels of a certain type. A label
feQ;, 1<i<n,isafunction f: Dy — R, where Dy denotes the domain of f. If
a non-empty set Q(N) C Q —) and a map
o:N— X w (3)
weQ(N)
has been defined, G is called a node-labeled graph, ® is called node-labeling map,
QU(N) is the set of node labels. If a non-empty set Q(E) C Q — @ and a map
V:EFE— X w (4)
weQ(E)
has been defined, Gy is called an edge-labeled graph, U is called edge-labeling map,
QU(E) is the set of edge labels. Go v is called a labeled graph if it is both, node-labeled
as well as edge-labeled with node-labeling map ¢ and edge-labeling map V.

330 F. Leymann et al.

Architecture models are directed graphs and, thus, can be turned into (node-,
edge-) labeled graphs by annotating the architectural components C(A) or the
interactions R(A) of the model with corresponding metrical information (i.e. with
labels). Examples for labels of architectural component are average response time
of a component, the cost of hosting a component, or the trust sensitivity of a
component. Examples of interaction labels are number of calls the source of the
interactions performs on the target of the interaction, or the amount of data trans-
ferred between the components. Within the MOCCA metamodel (Fig. 1) labels are
specified as instances of the Label entity type. An instance of Label is assigned to
a Component (i.e. architectural component) or a Component Relation (i.e. inter-
action) via the corresponding has relationship type.

Note that a label f that is a constant function (i.e. f(z) = c for all € Dy) is
considered as fixed value c. For example, each interaction r € R(A) can be associ-
ated with the average amount of data d, transferred per hour across ras a label (that
is fixed, i.e. that is a constant function), i.e. ¥(r) = d,.. This example also shows
that ; is typically really a set with many elements: each interaction is likely asso-
ciated with at different value d,., and these values are of the same type “data trans-
ferred per hour” and are thus grouped into a corresponding set of labels Qgata/hour-
Another example of a set of labels is the set of cost functions fprovider €ach of which
returns the cost of hosting a piece of software at a certain provider. This cost is
based on a set of parameters like size of the image of the software, number of invo-
cations per hour making up the domain of fyrovider, and these parameters may be
different for different providers. Thus, a single cost function is not sufficient to deter-
mine the cost of hosting a partition of the components of an application at different
providers, but a set QcostFunction 0f provider dependent cost functions is needed.

For each type of label ; we assume a corresponding aggregation function «(€2;)
(or a; for short) that is used to appropriately aggregate a set of label values of
nodes {m;(®(m))|m € M C N} (where m; is the projection of a tuple onto its i-th
component) or label values of edges {m;(U(m))|m € F C E}. If ; is a set of node
labels, «(€2;) is a function

a($i) : p(N) — R; (5)
if Q; is a set of edge labels, a(€2;) is a function

(%)) : p(E) — R. (6)
For example, if §2; represents the cost for hosting an architectural component C(.A),

the aggregation function a(€2;) (or a; for short) is simply the sum of all the hosting
costs associated with all the architectural components within M C N:

Q) (M) = a; (M) = Y mi(@(m)). (7)

meM

In general, each node and each edge of a labeled graph is associated with more than
one label (the mapping of all labels to real values is here used due to simplification
reasons and to focus on the MOCCA tool-chain). For example, an architectural
component may be associated with the cost of its hosting and its trust sensitivity.

Moving Applications to the Cloud 331

Typically, different types of labels have different importance (i.e. different priori-
ties); for example, the trust level achieved when hosting a component with a certain
provider may be more important than its low hosting cost offered. The different
priorities of the different types of labels €2; is reflected by associating a particular
priority 0(£2;) € R (or p; for short) with each particular €2,. However, sometimes
users may not have clear what their priorities are. In the case that users cannot
determine their exact priorities or that there are no priorities given by the user at
all, they all can be set to the same value and the proposed method will continue to
work anyways. We will further provide different priorities within the same type of
label in future work.

When partitioning the nodes of a directed graph G = (N, E) a corresponding
partition of the edges of G can be defined in a canonical manner: all edges pointing
to a particular set of nodes are grouped into one and the same set of edges. More
precisely, for each disjoint partition of nodes {Pi,..., Pn} C o(N) the induced
edge partition {Q1,...,Qm} C p(E) is defined via Q; = {e € E|m(e) € P;},
1<j<m.

With this terminology the problem of computing a cloud distribution can be
defined as follows.

Definition 7 (Cloud Distribution Problem). Let Q = {Qy,...,Q,} be a
set of node labels, {a(f1),...,a(2,)} be corresponding aggregation functions,
and {o(Q1),...,0(2,)} be priorities of the labels. Furthermore, let Go ¢(A) =
(C(A),R(A)) be a corresponding labeled architecture model with node-labeling
map ® and edge-labeling map W. The Cloud Distribution Problem is to find a
disjoint partition { Py, ..., Py} C p(C(A)) such that

Yol DY swa@@)+ Y pw) - aw)(@) (8)
i=1 \weQ(C(A)) weQ(R(A))
becomes a minimum. Such a partition {Py,...,P,} is a cloud distribution of
Go,w(A).
In the formula above (which is referred to as target function), {Q1,...,Qm}

denotes the edge partition induced by {Pi,..., Py}, Q(C(A)) C Q2 are the node
labels of Gg w(A), and Q(R(A)) C Q are the edge labels of Go w(A).

3.3. Example and experiments: Solving the cloud
distribution problem

Next, we describe a solution of the cloud distribution problem by using simulated
annealing'® as well as a combination of multiple optimization methods. An imple-
mentation of our solution is provided as an adaptation of a tool that we introduced
in Ref. 16 (for implementation details see there). To automatically compute an opti-
mized cloud distribution we exploit (i) hillclimbing, (ii) simulated annealing, (iii) an
evolutionary algorithm and, (iv) a hybrid approach containing elements from (i) and
(ii). We extended the prototype from Ref. 16 with a new data structure covering

332 F. Leymann et al.

both, architecture models as appropriate graphs and cloud structures; furthermore,
the algorithms have been adapted to solve the cloud distribution problem.

We continue our running example and define labels and associate them with the
components and component relations of the architecture diagram from Fig. 3 as
shown in Fig. 10. Each label is defined as an instance of Label (see the metamodel
in Fig. 1) with appropriate Name and Value attributes. For example, compute units
labels are instances of Label having their Name attribute set to ComputeUnits;
and a ComputeUnits label with actual value 2 is an instance of Label having its
Value attribute set to 2. Labels are associated with Components and Component
Relations by means of instantiating the appropriate has relationship. In Fig. 10,
all components and component relations of the architecture diagram from Fig. 3
have been labeled.

Clouds are modeled as tuples of properties relevant for deciding the cloud dis-
tribution problem. Which properties to use, i.e. to decide which properties are
appropriately characterizing the cloud candidates, are dependent on the specific
situation. In our example, we characterize a cloud by four properties: (i) com-
puteUnitCosts represents the amount of money charged for each compute unit,
(ii) cloudSecurityLevel represents the security level a corresponding cloud can pro-
vide, (iii) innerEdgeDataThroughputCosts represents the amount of money to be
paid per data unit transferred within the corresponding cloud, and (iv) outerEdge-
DataThroughputCosts represents the amount of money to be paid per data unit out
of and into the corresponding cloud. The concrete property values of two different
clouds used as basis for our example are shown in Table 1.

Let T' be the search space that represents a set of valid cloud distributions,
x,y € T two valid cloud distributions and U(z) = I'\{z} the environment of z;
then the heuristic hillclimbing algorithm can be sketched as follows: the algorithm
first selects a random element x from the given search space I' and calculates the
initial fitness of this element (see step 1 in Algorithm 1); the “fitness” of an element
x is represented by the value of the target function (Definition 7) for this element.
In our scenario, some of the labels associated with a component or a component
relation are in fact formulas having as parameter the value of the label as well as
one of the characteristic properties of the potential target clouds. For example, the
label ComputeUnits represent the computing units consumed by a component, but
its value must be multiplied with the corresponding cloud compute unit costs (com-
puteUnitCosts) being a characteristic property of a particular cloud. Similarly, the
label dataThroughput represent the data throughput of a component relation, but
its value is multiplied with either innerEdgeDataThroughputCosts or outerEdge-
DataThroughputCosts depending on where the communication partner is located.
In our use data traffic within a single cloud is assumed to be free of charge while
incoming and outgoing data traffic is with costs. This way, each term of the sum
of the target function is evaluated and the total fitness value of a specific cloud
distribution considering all labels is calculated as defined in Definition 7. At the
end the cloud distribution with minimal fitness is selected as optimal solution (see
steps 6 and 7 in Algorithm 1).

333

Mowving Applications to the Cloud

‘ydei8 ainjoeiryoae o) jo Surjeqe] o[dwreg ‘(0T "S1q

7= v:o__uuwbn:m..;

ﬁ €= u,_._nf..m,:o.:_._.muml

12|p

— {=pnomi=iie ._._

e1eq

£ u_w..,.w._..ﬁt:qu

JUaWageuen
2015

UueH g = mH_:_JE:a:_o“L

— £ =[2A271A11IND34

— t = syunEndwes

ﬁ 7 =1ndysEnouye1ep

/= v:o_uuwmgm.;

Wz

ﬂ._.nfmzokﬁﬁm.%T

105522004

me@wmfﬂ\ L= v.u__r:.amu:u_&C_OU

— [/=pno _m_ﬁwm._m.._.T/

—] LR Pl B LT

= syunEndwoer

\

‘..w._Bt:ng

—

\‘/ g = Ear_mq._of._.ﬁm.l

J2pI0

451

TN S

ﬁ £= uznfm_._oh_._.mum.l r= ﬁ#fm:oh_._.muml

7 = syupEnd we

\\

7 = syunEindwo

ﬁ 7= ﬁ._nfmzoh_._.muml

SN N
10JIUOIN] LA Anu3
mmo‘._n@oi aupuels nduy - ;
= o128 40 " T=pno|Dizdie]
r f=pnojoiesie] poon
— T=[2A27A31UN03% T=| ,.m._htzuw..;

ﬁ 7= v:o_upwm._m._ui\

f 7 =[2A27AIN0ES

/

ﬁ ¢ = spupEindwo

334 F. Leymann et al.

Table 1. Cloud definition.

Cloud property Cloud 1 Cloud 2
computeUnitCosts 0.5 0.4
cloudSecurityLevel 5 5
innerEdgeDataThroughputCost 0.0 0.0
outerEdgeDataThroughputCost 0.2 0.5

Algorithm 1 Hillclimbing

1 select x€ ' and calculate fitness(x)
2 i=0

3 while (i < Number of Steps) do

4 select neighbor: yeU(x)

5: calculate fitness (y)

6 if fitness (y) < fitness (x)

7 X =3

8 end if

9: i=1i+1

10: end while

To determine a valid neighbor of in U(x) to compare the calculated fitness
values to (see step 4 in Algorithm 1) we additionally introduced two evaluation
constraints named targetCloud and securityLevel implemented as node labels (see
Fig. 10). The first one verifies if a component had to be stored on a specific or arbi-
trary cloud by comparing the node label with the corresponding cloud definition,
and the second one verifies if the components security level (securityLevel) is less
or equal the clouds provided security level (cloudSecurityLevel). We decided to use
a securityLevel range between 0 and 5 (0 indicates lowest and 5 highest security
level) to calculate the aggregation function introduced in Definition 7. Furthermore,
this allows users to manipulate the cloud distribution based on their know-how or
legislative guidelines, for instance. All labels including their concrete values and
cloud properties can be found in Fig. 10 and Table 1, respectively.

Table 2 summarizes the measurements by using the different optimization meth-
ods we used in our experiments for one setting of label values: all optimization meth-
ods resulted in the same cloud distribution with the same fitness. This computed
cloud distribution is shown in Fig. 11.

Table 2. Algorithm execution times.

Execution Fitness (in
Algorithm time (in ms) Parameter monetary units)
Hillclimbing 296 Number of steps =50 13,2
Simulated Annealing 767 Number of steps =200 13,2
Hybrid 869 Number of steps =50 13,2

Evolutionary 3224 Number of steps =50 13,2

335

Mowving Applications to the Cloud

‘uornqrIjsip pnop pondwos sdureg T ‘S1q

ﬁ [=pnojoieiie]

f I e TR ETS

f ¥ = sHunEIndwes

ﬁ J=pnom=iie]

f 7 =|3A27A314N0ES

f ¥ = sHunEIndwos

ﬁ J=pnojmeiie]

f T =|2A2 1A UN23S

ﬁ 7 = suunEindwo’

zpnop | o
P = T - - mnv:o_uuwm._m._._
/ r muuzaﬁzo._f.ﬂml RN
i - mu_w..,_w._itjwwm_
I d2|pueH JuaWageue| m_uﬂ_zjwujnrco_u_
g eied 32015 |
\ I
| — 7 =ndyiEnoayejep - ’
| _—————— e = = -~ .mnvjo_uuwm._m._._
l i i =
1 Nu_w_,.w._ﬁtjuwm_
! 105523014 1055355y muﬂ_cjmﬁ:n_rcou_
T_\ 12pIo IS1y |
T_\\\\\ \ == ——-—-_ :
. L]
| \f 9= H:nfm:o.__._._.muml — £= uza;m:o.f._.m.pm.l t= ﬁi;m:o.f._.ﬂml
_ e — 1) _
: IEINER ¥ ! I
[J0MUOA] nc_.. _c3m LI AU ;
. o
ssalgold P I ndu = _so_uﬁ?i
poon Iy
/.lll.||||||.I||| |||.\\ . - . Hu_w_,.w._itjwwm_
no
— 7 =pnoDizdie] — 7= uzﬁfm:o.f._.ﬁml Tpnop 7= ﬂ__._pr:a_.cou_

— 7 =[2na14un03g

— £ = spupEIndwos

336 F. Leymann et al.

Additionally, we repeated the computations with various combinations of label
values, and the different optimization methods always produced the same result.
Thus, from a pure result perspective the concrete optimization method chosen was
irrelevant in our experiments. But significant differences in execution time could be
observed, which we ascribe to the various complexities of the different algorithms.
Decreasing the number of steps each algorithm runs through up to a certain thresh-
old the hillclimbing algorithm is performing even better than the others (i.e. it finds
the optimal solution faster).

This tendency may change when increasing the number of architectural compo-
nents or component relationships significantly, because of the well-known disadvan-
tages of hillclimbing as local search algorithm. Then, the other algorithms may take
the advantage of finding the global optimal solution instead of finding a single local
optimal solution based on hillclimbing. Certainly the execution time will increase
as well and maybe more calculation steps are necessary to find an optimal solution.

One project from practice rearranged an application based on trust aspects.
These aspects correspond to securityLevel lables and cloudSecurityLevel labels
above. Another project rearranged an application based on costs of hosting individ-
ual components of the application. These costs had been derived by licensing costs
of the middleware components as well as corresponding hosting costs of the cloud
provider. The cloud distributions had been specified manually by the practitioners,
which could be reproduced algorithmically. If more labels and especially a mixture
of labels of different kinds will be used (e.g. costs, times, availability, security etc.)
it is expected that manually determined cloud distributions will often fails to be
optimal and the automatically determined cloud distributions will be “better”: But
this has not be verified in practice yet.

4. The MOCCA Tool

In this section, we describe the architecture of a tool supporting the MOCCA
method and concepts. Especially, the overall architecture is given and the individ-
ual components of the tool are described. Finally, the role and use of the Cafe
environment” is sketched.

4.1. QOwverall architecture

Figure 12 shows the overall architecture of the MOCCA tool. The tool consists
of several components supporting the various artifacts of the method proposed.
Architecture models (Definition 5) are modeled using the Architecture Modeler.
Deployment topologies and models, middleware deployments (Definition 2) as well
as deployment relevant parameters and installation relevant artifacts are specified
by means to the Deployment Modeler. The cloud distribution (Definition 1), i.e.
the split of the application is derived via the Cloud Distributor. Based on the cloud
distribution and the middleware deployment the Provision Preparation component

Moving Applications to the Cloud 337

Architecture Modeler Deployment Modeler Provision Preparation
Architecture Model Topology Arnf.a.ct Provision Clustering
Model Definition
Diagram Labels Image Pa.rarqeter— CAR Generation
Overlay ization :

Cloud Distributor /—\ Provisioning
v Provisioning Flow

Manual Automatic R . Generator
Assignment Derivation epository

Customization Flow
v Generator

Fig. 12. Tool architecture.

Suluoisinoag

determines the corresponding provision cluster (Definition 4). Together, this enables
the Provisioning component to provision the split (i.e. rearranged) application in
the various clouds.

The components exchange data via a shared repository. Basically, the schema
of this repository is the metamodel described in Sec. 2.2. Note that the Provision-
ing component is basically the core of the Cafe environment. Since Cafe defines
its own exchange format (Cafe ARchive, called CAR files) the Provision Prepara-
tion component supports the generation of CAR files in order to allow using Cafe
implementations not sharing the same repository.

4.2. Component descriptions

The Architecture Modeler consists of two components, namely the Architec-
ture Diagram component and the Diagram Labels component. The Architecture
Diagram component supports the graphical modeling of architecture models, i.e.
the architectural building blocks of an application as well as the relations between
them; this component instantiates the “Architecture Model” part of the metamodel
in Fig. 2. The Diagram Labels component is used to define properties (i.e. “labels”
in Definition 6) relevant for deciding on the cohesiveness of architectural building
blocks. Cohesiveness is decided based on properties of components or properties
of interactions between components. Since interactions are represented by relations
between architectural building blocks, these properties are associated with relations
or with components of an architecture model as corresponding metrical informa-
tion. Together, this results in instances of the “Optimized Clustering” part of the
metamodel in Fig. 2. The use of the Diagram Labels component is required when
cloud distributions should be proposed automatically by MOCCA.

The Deployment Modeler consists of the Deployment Diagram component
that allows to graphically create the corresponding models, the Artifact Definition

338 F. Leymann et al.

component, the Image Overlay component and the Parameterization component.
The Deployment Diagram component supports the graphical modeling of the
deployment topology of an application, i.e. it instantiates the “Deployment Topol-
ogy” part of the metamodel in Fig. 2; especially, the middleware deployment of
an application can be modeled. The Artifact Definition component allows specify-
ing details about the implementation artifacts required to install a component in
its runtime environment; this component instantiates the “Automatic Installation”
part of the metamodel in Fig. 2. The artifacts needed are essentially the code files
or packages (such as WAR files, or OVF images) that implement the component.
These can be reused across different applications, for example the implementation
of a Web service can be used in several applications. Depending on its implemen-
tation type, an artifact may be deployable on components of different types, i.e. a
WAR file might be deployable on a component of type Apache Tomcat, or a com-
ponent of type JBOSS. By defining artifacts representing virtual images (or parts
thereof) as implementations of application components, the Image Overlay compo-
nent supports overlaying the architecture of an application and virtual images. The
Parameterization component allows defining both, deployment relevant properties
and variability points of a component as well as the relations between them. Thus,
this component is used to instantiate the “Deployment Parameterization” part of
the metamodel in Fig. 2.

The Cloud Distributor is used to determine a cloud distribution for a given
application. A cloud distribution can be defined manually by using the Manual
Assignment component. If the Diagram Labels component has been used to anno-
tate the architecture model of an application with cohesion relevant properties, the
Automatic Derivation component can be used: it will automatically propose a cloud
distribution based on the optimization algorithms described in Sec. 3.2.

The Provision Preparation component especially derives the provision clus-
ter of an application based on the middleware deployment determined by using the
Deployment Modeler and the cloud distribution determined by the Cloud Distrib-
utor. The corresponding deep intersection is computed by the Provision Clustering
component of the Provision Preparation. As a result, the application template of
the rearranged application is build. Furthermore, the “CAR Generation” compo-
nent could be used to generate the CAR file for the rearranged application, i.e. the
file format used by the Cafe tool and a proposed interchange format for composite
cloud applications.

The Provisioning component is a subset of the Cafe environment as used in
MOCCA; the corresponding functionality is described in Sec. 4.3 (see also Ref. 17).
Basically, the Customization Flow Generator generates a customization workflow
that derives the properties required for provisioning and deployment of the rear-
ranged application. This is an important step in the provisioning process as the cus-
tomization flow gathers the required values to bind variability points either from
a user or from the associated visible properties and overwrites the configuration
settings of the corresponding artifacts as indicated by the locators. For example,

Moving Applications to the Cloud 339

EPR values or JNDI properties of components are overwritten with concrete val-
ues obtained from the visible properties of other components. The customization
workflow is used by the provisioning workflow generated by the Provisioning Flow
component. The provisioning flow is enacted by the Provisioning Engine to finally
install the rearranged application in the target cloud environments.

4.3. Usage of Cafe for performing actual deployment

Cafe maps OVF artifacts like virtual systems to separate components. Currently,
Cafe assumes that a single OVF file represents a single component. Thus, in case a
provisioning cluster contains an OVF file that contains the virtual image of more
than one component (i.e. more than one virtual systems), this file must be split
into separate OVF files manually. A straightforward extension of Cafe will either
perform this split automatically (thus, using the existing Cafe unchanged) or will
support OVF files with virtual images of multiple components.

From the deployment parameterization of an application (which is called “vari-
ability model of an application template” in Cafe) the Cafe infrastructure generates
a so-called customization flow that deals with the binding of the variability points
contained in the deployment parameterization. The provisioning flow is a workflow
that represents the variability points, their alternatives, their enabling conditions
and the dependencies between the variability points. The provisioning flow ensures
a complete and correct customization of the application during deployment. “Com-
plete and correct” means that (i) each variability point is bound and (ii) the rules
imposed on the binding of variability points, i.e. which alternatives may be selected
and in which order the variability points are bound, are followed. The generation
of customization flows from variability models is described in detail in Ref. 17.

The deployment topology and the automatic implementation artifacts of an
application (called “application model” in Cafe) as well as the dependencies between
components induced by the deployment parameterization are interpreted by the
Cafe provisioning environment in the following way: First a so-called “provisioning
order graph” is generated. The provisioning order graph specifies in which order
the components of the application must be provisioned. Three rules apply here:
(i) before a component can be provisioned all components that transitively contain
this component must be provisioned; (ii) before a component can be provisioned, all
its variability points that must be bound at pre-provisioning time must be bound.
Thus, all components to which a given component is connected via a property
alternative whose associated visible properties become only available at runtime
must be provisioned before the given component; (iii) components that do not have
any dependencies on each other can be provisioned in parallel.

A provisioning flow can be generated from the provisioning order graph that
performs the provisioning in the right order as follows: For each node in the graph
so-called “provisioning activities” are added to the workflow model, these are con-
nected via control connectors that represent the dependencies. This way the three

340 F. Leymann et al.

rules above are ensured. The provisioning activities then contain activities to bind
the pre-provisioning variability points of a component by calling the provisioning
flow who will then either prompt the user for inputs if the deployment parameteri-
zation requires it or queries the already provisioned components for their respective
visible properties. These are always already available as the ordering of the provi-
sioning of the components follows rule (ii) above.

All already provisioned components in Cafe are represented by so-called “com-
ponent flows” that provide a unified interface of components at different providers
to the provisioning infrastructure. In order to deploy a component on an already
deployed component, the deploy operation of the component flow of this compo-
nent is called with the location of the repository in which the component that must
be deployed is located. In case the component to be deployed is a virtual image
(for example an OVF image) the component flow that represents the hypervisor of
the provider that will later run the OVF image is called along with the repository
location in which the customized OVF image is deployed. This operation is then
mapped by the component flow to a hypervisor-specific operation that starts a new
virtual image from a virtual image package such as OVF. When starting the new
virtual image the hypervisor also starts the activation engine which starts the corre-
sponding scripts contained in the virtual image. In case other components must be
deployed on the infrastructure contained in the virtual machine, the component flow
for the hypervisor starts a component flow that can deploy other components on
the middleware component contained in the virtual machine. This component flow
can be developed specifically for the virtual image or can be a standard component
flow that makes use of the deployment interface of the component in the virtual
machine, for example, a standard component flow could copy a Web application
archive to a specific directory in the virtual machine or could deploy a process
archive via the deployment Web service of the BPEL!® engine contained in the
virtual machine. Thus a component flow that implements the deploy operation for
components that must be deployed on the middleware component in the virtual
machine must be deployed in the Cafe environment before the corresponding appli-
cation can be provisioned.

5. Case Study

In this section, we report about the actual move of the sample application intro-
duced in Sec. 2.3 into the cloud. First, the implementation of the architecture
components is described followed by their corresponding Deployment Parameteri-
zation used by Cafe for the actual provisioning of the application. The associated
Cafe artifacts and their relevance for the MOCCA method are described.

5.1. Application components

All components of the sample applications depicted in the architecture diagram
(see Fig. 3) have been prototyped (with basic functionality only) by using open

Moving Applications to the Cloud 341

source software. To facilitate their provisioning using Cafe a set of properties and
Variability Points as well as their dependencies were identified. The Input Entry
component offers customer interaction through Java Server Pages. It also contains
Web service clients implemented in Java to interact with the Good Standing Ver-
ifier and the Risk Assessor components. Those clients are initiated from the Java
Server Pages and their output is displayed to the customer. The Progress Monitor
constitutes another component used for customer interaction. It is also realized as
a Java Server Page using a Web service client to obtain a list of all processed orders
from the Data Handler component. The good standing of a customer is evaluated
by the Good Standing Verifier component which is implemented as a Web ser-
vice and is called by the Input Entry component. The Risk Assessor component is
implemented as a BPEL process, assessing the risk computed by the Good Stand-
ing Verifier. If the risk is acceptable, the Risk Assessor initiates the processing of
the order by the Order Processing component. The Order Processing component
(another BPEL process) handles the actual ordering of an item. First, it verifies
that the item is available by accessing the Stock Management component. If so, it
removes the item from the stock and stores the order information using the Data
Handler component. The Stock Management component is realized as a Web ser-
vice. It manages the items available to the ordering application. The Data Handler
component manages the persistent information about all orders processed. It is also
implemented as a Web service.

The general package format for all application components are WAR, files with
the exception of the BPEL processes which are packaged as ZIP files. The Input
Entry, Progress Monitor, and Good Standing Verifier are deployed on Apache Tom-
cat, the Risk Assessor and Order Processing on Apache ODE, and the Stock Man-
agement and Data Handler on JBoss which allows them to access a Hyper SQL
Database (HSQLDB) through Hibernate. The required middleware is provided as
three virtual machine images. Corresponding to MOCCA’s deployment model, the
first virtual image contains Apache Tomcat, the second contains Apache ODE,; and
the third contains JBoss and HSQLDB.

5.2. Deployment parameterization used by Cafe

In order to be provisioned using the Cafe environment Variability Points of the
components have to be identified and made accessible to Cafe. Cafe may access and
manipulate any XML file within the component package during the provisioning
process. The Cafe metamodel does currently not include Visible Properties but
it treats them as Variability Points that are filled by the provisioning infras-
tructure. All properties (i.e. instances of Property) of the application components
are thus transformed into Variability Points for the usage in Cafe. Instead of
allowing to import Visible Properties for a component of a specific type, Cafe
allows the import of the Variability Points for a component type, i.e. a con-
crete application server. For the sample application these Variability Points are

342 F. Leymann et al.

the addresses (e.g. URLs) of the components themselves as well as the addresses
of accessed components since they are unknown until after provisioning. For the
Item Manager and Data Handler components an additional property is the address
of a Hyper SQL Database. To ensure that Cafe can process Variability Points
they have to be accessible, i.e. may not reside in compiled source files. Web services
offered and accessed by the components are therefore configured through WSDL
files. During the provisioning process Cafe may adjust the SOAP addresses of the
WSDL ports in those files. To configure the database access Hibernate also offers
configuration through an XML file that can be set automatically by the Cafe pro-
visioning infrastructure.

5.3. Provisioning the application using Cafe

Utilizing MOCCA tools, the application architecture model is modeled and the
cloud distribution is computed as described in Sec. 3.3 and based on the labels
discussed there. This information is then used to create the Cafe artifacts necessary
for provisioning. Semantics and usage of these artifacts have been discussed in
Sec. 4.3. Please consider that in practical settings these tools will import existing
models.

Since MOCCA and Cafe use the same metamodel regarding the models for
deployment topology, automatic installation, and deployment parameterization
depicted in Fig. 2, Cafe tools integrate with those of the MOCCA architecture
almost seamlessly. Its application model can be obtained from the MOCCA deploy-
ment model. However, to provision the sample application this model needs to
conform to the provision cluster. Currently, Cafe does not support to overlay an
application model with the hyper edges of a cloud distribution to obtain provision
clusters. This is due to the fact that Cafe originally does not support the notion
of multiple clouds and considers every modeled component to be instantiated only
once. Therefore the splitting of middleware components across different clouds, as
described by Definitions 3 and 4, has to be made explicit in Cafe’s application model.
Respective to the provision cluster of the sample application shown in Fig. 13 the
Apache Tomcat component is split into two components. One contains the Input
Entry component and is hosted in Cloud 1. The other contains the Good Standing
Verifier and Progress Monitor components and is hosted in Cloud 2. Other middle-
ware components do not have to be split up since only one single instance is required
of those. Note, that a Cafe application model can be derived from a MOCCA deploy-
ment model by making the distribution explicit. However, the round-trip back is
not possible. Thus the Cafe application model must be extended with information
that allows split components to be reassembled again as required by the MOCCA
deployment model.

The application model is further used to map components to their implemen-
tation by referencing deployment packages such as WAR and ZIP files or OVF
Images. Access to Variability Points is possible through the definition of XPath

I l Cloud 1 !

Mowving Applications to the Cloud

P —————

343

1
Apache | StGr?gi: Progress 1
Tomcat ! anding Monitor !
1 Verifier 1
1 \ T = - - !
I A |
- — LI
| \ |
Apache | Risk Order 1 !
ODE '| Assessor Processor " :
1
5 Ll
I
JBOSS+ Stock Data :
HSQLDB Management Handler |
1

Fig. 13.

Provision cluster of the sample application.

expressions altering the XML files inside those packages. A screenshot of the
application diagram modeler is shown in the appendix.

In addition to the application model, a so-called component binding is needed.
The component binding is used to associate component flows with the components.
These are needed to perform the actual provisioning of components as described
in Sec. 4.3. They are specified by End Point References through which the flow
may be accessed. Since the application model represents the provision cluster, each
component may have an individual component flow depending on the cloud to which
is it provisioned. A screenshot of the component binding modeler is shown in the
appendix.

The final task before provisioning the application is providing the neces-
sary deployment parameterization by specifying the Variability Points and
their dependencies. The Variability Points of the sample application consist
of addresses of the Web services offered and accessed by the components. Respect-
ing the dependencies of these Variability Points, the provisioning flow for the
application is computed automatically. The provisioning flow then performs the
provisioning by executing the component flows of the individual components in
the right order, respecting the dependencies of components’ Variability Points.
Regarding the variability model created using the variability modeler tool, depicted
in appendix the following flow is generated (sketched only in what follows). First
middleware components are provisioned which allow the computation of application
components’ addresses. Circular dependencies are supported by the configuration
of components during runtime. Second, the Stock Management, Data Handler, and
Good Standing Verifier are provisioned in parallel since they do not depend on

344 F. Leymann et al.

any other component. Then the Variability Points of the Progress Monitor and
Order Processor are known and they can be deployed subsequently. Afterwards, the
Risk Assessor and last the Input Entry component are provisioned.

5.4. Application management in Cafe

Cafe allows provisioning instances of different applications. To make an applica-
tion (called application template in Cafe) known to the Cafe system, it must be
uploaded to the Cafe system via the Cafe portal. Before uploading, all generated
artifacts (code, application model, variability model and component bindings) must
be packaged into a Cafe Application Archive (CAR) file. This file can then be
uploaded to a Cafe environment. To provision a new instance of an application, a
customer selects one of the available templates in the Cafe portal. Then the cus-
tomer must bind all Variability Points that require decisions by the customer.
During the binding of the Variability Points the customer is guided by the
customization flows generated from the Variability Point. Once all customer-
related Variability Points have been bound, the corresponding provisioning flow
is executed that makes use of the component flows and the customization flows that
bind provisioning-related Variability Points, to setup the whole application.

6. Related Work

Given the focus of this paper, related work can be clustered into two main categories:
infrastructure topologies and composite application approaches as well as resource
optimization approaches in Grids and Clouds.

6.1. Infrastructure topologies and composite applications

Several approaches that aim at describing and provisioning complex infrastructure
topologies exist. Virtual images as basic building blocks for deploying complex
middleware topologies on top of TaaS clouds (Infrastructure as a Service) are inves-
tigated in Ref. 19: the conclusion is that individual virtual images are not powerful
enough to capture complex infrastructure requirements such as multiple application
servers that communicate with authentication servers and databases, for example.
Thus, Ref. 19 introduces a so-called “virtual appliance model” that allows defining
solutions that are composed of multiple configurable virtual images that can be
automatically deployed and run in separate IaaS clouds such as Amazon EC2.2°
The approach presented in Ref. 19 differs from our approach presented in this paper:
while Ref. 19 focuses solely on reusable virtual images and their composition, our
approach focuses on existing applications and shows how they can be split (in an
optimal manner) and moved to (multiple) clouds. Furthermore, virtual images in
our approach are optional, i.e. we can also move applications to the cloud with-
out assuming virtual images but deploy applications on top of middleware already
available in the cloud. The approach presented in Ref. 19 is based on the approach

Moving Applications to the Cloud 345

presented in Ref. 21 which offers a semantically rich metamodel to model complex
deployment models similar to those, that we allow to model in MOCCA. How-
ever, the difference is, that their approach employs a very rich metamodel while we
employ a simple, generic metamodel. While their focus is to capture existing mid-
dleware in templates, which requires the complex definition of the template before
applications can be modeled. Our model allows to only define those variabilities
that are absolutely needed to configure and deploy an application. However, in case
complex component types are needed and offered by providers, application mod-
elers can import the variability models of the component types and can integrate
them in the application variability model, thus reusing the work of the provider
and having the same effect as the approach in Ref. 21.

Elastra?? and Rightscale?® offer cloud management services on top of IaaS
clouds. Elastra for example provides special languages (ECML, EDML) to describe
the infrastructure components of an application such as application servers,
databases and their connections. However, concrete resources must be manually
assigned to these components, and application modules must be manually installed
on top of the components. 3tera3’ offers modeling and deployment of applications
based on pre-defined virtual images that can then be deployed in a data center. All
of these approaches focus on the management of resources and applications assum-
ing that both are modeled for and managed within a particular target environment.
In contrast, our approach is focused on rearranging existing composite applications
such that they can be moved to the cloud and can be automatically provisioned
across different providers; especially, our approach is independent from particular
target environments.

The application packaging standard (APS)?* focuses on the description of Web
applications including, for example, Ul components, databases and configuration of
Web servers. APS is limited to Web applications and does not allow the annotation
of parameters to individual components that would allow the partitioning of the
application across multiple Web servers and thus is unsuitable for the purpose of
MOCCA. Several approaches exist such as those described in Refs. 25-27 that deal
with the description of composite service-oriented applications in terms of composite
services that consist of a set of other services. However, all these approaches do
not allow the modeling of infrastructure components and thus are unsuitable to
describe the infrastructure components of different clouds on which different parts
of an application must be deployed.

6.2. Resource optimization approaches in grids and clouds

In MOCCA we treat the distribution of application and infrastructure components
across different clouds as an optimization problem that solves the task of finding
an optimal distribution of components given a set of parameters.

In the Grid?® the optimization of the distribution and scheduling of jobs across
the available resources is an important problem. The component to deal with this

346 F. Leymann et al.

optimization is the resource broker or resource scheduler.?8 3% Grid users can send,
for instance, job submissions to the broker. The broker then decides which resources
will perform the job based on various criteria such as resource utilization, cost of
non-functional properties of different resources. Different algorithms exist that opti-
mize the scheduling of the required resources. In Ref. 31, an overview and compar-
ison of these optimization algorithms is given. The problem of job scheduling in a
Grid is different from the MOCCA approach, as in MOCCA the distribution across
different infrastructure resources is done pre-deployment and not when a request for
computation is submitted to an application. Thus the algorithms commonly used in
resource brokers focus on the optimization of the distribution of all jobs submitted
to a Grid over the available infrastructure. The framework presented in Ref. 32 can
act as such a resource broker for application resources in a cloud as it allows to plug-
in several algorithms to optimize the distribution of tenants in a cloud application.
An approach based on game theory is taken by Lee et al.3* to optimize the allocation
of resources for distributed applications in a single cloud given a constrained set of
available resources. In Ref. 35, the OpenNebula virtual infrastructure management
framework is introduced that includes the Haizea resource scheduling manager to
schedule workload across different virtual machines. The Eucalyptus cloud manage-
ment framework3® contains similar resource allocation algorithms that allow users
of the framework to start and stop virtual machines without having to deal with
the concrete resource allocation and scheduling. All these approaches operate at a
lower level than the MOCCA approach as they focus on single clouds and Grids and
how to optimize the resource allocation in a single cloud or Grid, whereas MOCCA
helps architects with the decision how to split applications across different clouds
and thus has a different focus. The resource allocation algorithms researched for
Grids and clouds can then be used by the individual cloud providers to optimize
the resource allocation for the components they have been given to host by the
application architects as a result of applying the MOCCA method.

7. Conclusion

In this paper, we proposed a method (the MOCCA method) for solving the move-
to-cloud problem. This method has been described in terms of the various steps
to be performed and artifacts to be created in order to move an application to
the cloud. A metamodel has been presented that formally describes these artifacts
and their relations. The artifacts are mainly application models that are enriched
by deployment information and labels. The move-to-cloud problem especially sub-
sumes the problem of rearranging the components of an application into groups
that might be provisioned into different clouds: this problem has been formalized
as an optimization problem (cloud distribution problem) and a solution for solving
this problem has been worked out.

We presented the architecture of a tool suite that supports the modeling of the
artifacts of the MOCCA method. Also, it supports the automatic derivation of cloud

Moving Applications to the Cloud 347

distributions and provision clusters, i.e. it solves the cloud distribution problem.
Finally, the provision clusters are automatically provisioned into their target clouds.
Thus, the MOCCA method and accompanying tool suite solves the move-to-cloud
problem in practical situations. A sample application has been implemented and
moved to the cloud to verify the viability of the MOCCA method and tools.

Appendix A. Screenshots

The tool architecture shown in Fig. 12 has been realized based on both, graphical
tools as well as tree-based tools (or tree-based tools, respectively). The graphical
tools lean more towards domain experts while the tree-based tools are more geared
towards supporting expert development personnel. The following subsections show
some screenshots of both kinds of tools.

A.1. Graphical tools

The graphical tools have been realized based on the Cafe framework,” which in
turn is based on EMF and GMF. These Eclipse-based technologies support the
development of editors for arbitrary metamodels and graphical representations of
these. The Cafe metamodel is defined in EMF while GMF is used to specify the
graphical representation of metamodel elements.

Figure 14 shows the implemented editor for specifying application models. On
the upper left an Eclipse project containing the models and other artifacts, such

= Resource - MoccaPrototype/moccaad_diagram - Ecl 18
Fle Edit Diagram Navigate Search Project Run Window Help
ri- R N LIRS R R o=y
Tahoma 9 B /|A-&v. sv—>v|@|Riv-dviav]|r| B~ 3 v |[100%
L[Project Explorer 1% ‘& | & ¥ 7 B|[@ "moccaad_diagram T =8
ject Expl & g
4 5 MoccaPrototype & Ctos | palette b
[2) ISP _InputEntry.war PR
) JsP_progressMonitorswsr DescriptionCompartment
Iogo, ImplementationCompartment Compeonent
go.pg
Iy (@ {http://catelproviderSupplied
b R mocca.ad 4 Description
i FileCe rtment
4+) moccaad_dagram fieCompartmen @ lptementaion
+ @ voccsrotope i,
% mocea.ch = (C TtemManager C OrderManager o]
.vd I rt
b @ mocca DescriptionCompartment || DescriptionCompartment & Impo
v il mocca.vd_diagram
1) OrderProcessoraip e mpartment I Mpartment
[*~4 [*~4
|1} RiskAssessor.zip
B WS GoodStandingVerifierwar FileCompartment FileCompartment
- 9 " W51 ELS
S JtemManager.war
S_OrderManager.war =
b & OdeTomcatEC2Test = ComponentCompartment || ComponentCompartment
04 CDO Sessions 5 # =0
utline 53 B Ta;kLl;q @B 7 7 B| € TomcatWithod
DescriptionCompartment
ImplementationCompartment
(8 {http://<catelprovidersupplied
FileCompartment
ComponentCompartment
(C GoodstandingVerifier (C Inputéntry (€ ProgressMonitor (C OrderProcessor
DescriptionCompartment DescriptionCompartment DesariptionCompartment DescriptionCompartment |
mpartment mpartment fonCompartment mparim.
(£ {http://cafeWarFile (@ {http://cafelWarFile (& {httpy// cafe}WarFile (8 {hitp://cafe]BPELPacka
— FileCompartment FileCompartment FieCompartment File Compartment
= 'WS5_GoodStandingVe... JSP_InputEntry.war it E5 ip
Camnanant tCamnartmant Camnanant FCAMNAAMANt | CammsmameCamasmant Camnnnan ACamnartmant
< in v
B Tosks | Properties 5 =~ =0
o® mocca.ad_diagram - MoccaPrototype

Fig. 14. Modeling the Cafe application diagram.

348 F. Leymann et al.

as code, of the sample application is shown. The representation of the applica-
tion model is opened in the main view. On the top the JBoss middleware compo-
nent is modeled. It contains the Stock Manager and Order Manager components.
The implementation of the JBoss component is specified as ProviderSupplied. The
contained components reference the WAR files which hold their implementation
artifacts. These files are also visible in the project explorer on the left side.
Variability Points of the components and their dependencies are modeled in
the variability diagram shown in Fig. 15. The Variability Point of the Apache
Tomcat component (TomcatEPR) representing the end point reference of the
Apache Tomcat servlet container is visible on the top left in the main view. It
has one free Alternative as described in Sec. 2.2 which is the hostname of the
Apache Tomcat instance. It is filled during the provisioning process. Since the
Good Standing Verifier is hosted on the Apache Tomcat component as seen in
Fig. 14 the URL of the offered service (represented by the Variability Point
GSERP) depends on the TomcatEPR Variability Point. It is filled once the
TomcatEPR Variability Point is known. The Variability Point of the Input
Entry (InputEntryGSEPR) depends on the URL of the Good Standing Verifier

2 Resource - MoccaProtgiype/maceavd diagram - Ecipse Platform =
File Edit Diagram Navigate Search Project Run Window Help
i Ur BAr R oo o)
e — B g o | B B BT B g- -
2] moccand moccavd_diagram 53 =
=
= [« 1BossEPR
Sz | [TomesttPR TotatorCompartm
g LocatorCompartment e
AlternativeCompartment e frt
Freg, freeAlt
&
m [EnablingConditionsCon
EnablingConditionsCompartmen
[OrderManagerePR
<5 GSEPR [RiskAssessorEPR. [<55 OrderProcessorEPR. b ERLTEE A |
TocatorCompartment
LocatorCompartment TocatorCompartment LocatorCompartment | e
AfternativeCompartme
AlternativeCompartment AlternativeCompartment AlternativeCompartment eop, coleulateOMEPR
op, expratt Frop, calculateRAEPR Fxop, calculateOPEPR.
[ErablingConaitionsCompa
EnablingConditionsCompartment| [EnablingConditionsCompaiment| ~ [EnablingConditionsCompartment] e
<5 InputEntryGSEPR <5 InputEntryRAEPR 5 RokheessorOPEPR [ProgressMoniorOMEPR | [65 OrderProces
Locaforomparment Locyieronpariment] LocatorCompartment LocatorCompartment LocatorCon
I Q document("#J5P_InputEn... Q4 document("2JSP_InputEn... Q document("*RiskAssess.. Q document("#I5P_Progr... @ document(*:
|
I AlternativeCompartment AlternativeCe ‘AlternativeCompartment AlternativeCompartment AlternativeCt
SO, expraltGSEPR FPR exprAltRAEPR xop, opEPRCalculation g, exprAltOMPMEPR g eAOPOME
EnablingConditionsC EnablingConditionsCompartment| |gn5pjingConditionsCompartme. . [EnablingConditionsCompartm...| | EnablingConditia
ol i v
vy s & B

Fig. 15. Modeling the variability diagram of the sample application.

Moving Applications to the Cloud 349

= Resource - MoccaPrototype/mocca.ch - Ecli r=t;
[Ele Edi Navigate Search Project Run BndingsEdior Window Help |
o L Y E T PP o ()
[Project Explorer 2 5 %| & 7 = B @ "moccaad diagram f@ moccach 2 “mecca.vd_diagram } =0
= MeetingManager + || 5 Resource Set
= thﬂpmtmpe) platform:/resource/MoccaPrototype/mocca.ch
() JSP_InputEntry.war < Document Root
2] JSP_ProgressMonitor.war 4 Component Bindings List Type
?\c lego,pg 4+ Component Binding Type TomeatWithOde
4 mocca.ad 4 Component Binding Type JBoss

mocca.ad_diagram
) MoccaPrototype

& mocca.ch

1§ moccavd

moccavd_diagram

|1 OrderProcessorzip

|, RiskAssessorzip

[El Ws_GoodsStandingVerifierwar

=) WS_ltemManager.war

[2] W5_OrderManager war

12 (AeTnmestEC I Tect

[IH €DO Sessions 12 + ~ =0
% Outine 51 _B] TaskLis| P Selection| Parent| List| Tree| Table | Tree with Columns
(&) platform:/resource/MoccaPrototype/mocea.ch || ¥ Tasks | = Properties £3 EEE v =0
Property Value

Action U= provision
Application Component U= JBoss
= httpy//localhost:8081/ode/processes/EC2IBossHsqldbComponentFlow

File Name
Repository EPR
Target Component Id

Fig. 16. Specifying component bindings.

since it uses this component. From the variability points depicted in this diagram
the customization flows can be generated as described in Sec. 4.3. Additionally
these dependencies serve as input to the provisioning flow’s decision in which order
to provision the individual components.

The provisioning flow initiates the component flows of application components
to provision an application instance. These component flows are associated with
an application component through component bindings. In Fig. 16, the component
binding for the JBoss component is selected in the main view of Eclipse. In the
properties view on the lower side the properties of this component are displayed.
This is where the component JBoss modeled in the application diagram is refer-
enced. The element currently selected in the properties view shows the End Point
Reference of the component flow for that referenced component. The action ele-
ment specifies the purpose for which the component flow is used. In this case it
is for provisioning. Additional component bindings may also be specified to ref-
erence component flows implementing other actions. Those include adding other
components after provisioning the referenced component or deprovisioning it.

Having packaged the sample application using the CAR export file wizard of the
application modeler, the application can be uploaded to the Cafe Portal. Having
uploaded the application it becomes available under the templates tab (as shown
in Fig. 17) and customers can subscribe to that application.

350 F. Leymann et al.

——

e
& e e o T = |
Dstei Bearbeiten Ancicht Chronik Lesezeichen Estras Llife

- Cc 7y ([E http//localhost:8080/ CafePortl/templates.jsp vy -] M- LEO ng-Deu 2|
5| Meistoesuchte Seiten b Erste Schiitte 5. Aktuelle Nachrichten [] http://localhost3080/... W SquirrelMail - Login | ‘RalphMietzner [T LEO Deutsch-Englisch... 43¢ IAAS - Trac || ec2 scratchpad »

[cafe | Composite Application Fra... x | @ ActiveBPEL® Administration x| @ ActiveBPEL® Administration - Depl., 3 | -

Jcafe

shome .itemplates .umy apps .research .ipublications .1about

Application Templates . .
Upload a new Template | Application Templates

Available Templates

. MoccaPrototype Mocca Prototype

Fig. 17. The sample application in the Cafe portal.
A.2. Tree-based tools

The tree-based tools have been realized by using VBMF,!! which is an Eclipse-based
tool supporting model driven development of applications. Especially, it supports an
easy way to specify metamodels and generates corresponding tree-based modeling
tools. Based on Fig. 2, the metamodels denoted as “model types” in that figure
have been specified in VBMF and the corresponding modeling tools for tree-based
specification of architecture models, deployment topology etc. result.

Figure 18 shows the tool allowing to model components of an architecture
model (the “boxes”) and also of deployment models. The WebSphere component is

e} = O|[= properties 2 5
Resource Set Propert: | value
Implementation 4 Implementation WebSpherelmpl
B platform; whff OrderSystem deplayment
$ plat o.rm [resaurceimacca, vb/frameworkiview/OrderSystem. deploymenl Infa = IBM Webisphere Server
[= < ¥iew OrderSystem Label
L Compaonent InpukEnkry Mame = Websphere
<+ Companent GoodStandingverifisr oot o False
< Component Riskiccessor Sub Companent 4 Component RiskAccessor, Companent OrderPracessar
< Companent OrderProcessor Type I'= appServer
<+ Companent StockManagement. Visible Property
< Component DataHandler
<= Component ProgressManitor
<+ Compaonent Tamcat
< Component DBZ
< Component MwStack
- 12 platform:resourceimocca, vh(framewarkiview/OrderSystem.installation
Selection | Parent | List | Tree | Table | Tree with Columns | «| |

Fig. 18. Modeling components.

Mowving Applications to the Cloud 351

high-lighted in the left part of the screen and the right part shows the properties
of that component, e.g. its name and its type (in this case “AppServer”). The sub-
components of WebSphere application server are the Risk Assessor as well as the
Order Processor components (see Fig. 4).

The “arrows” of an architecture model are specified as component relations as
shown in Fig. 19. The left side of the screenshot high-lights the component relation
InputEntry_GoodStanding Verifier and the right side show its properties especially
that it begins at the Input Entry component and ends at the Good Standing Verifier
component (as shown in Fig. 3).

The fact, that the MWStack component encompasses (amongst others) the
WebSphere component and the DB2 component (see Fig. 5) has been specified
in Fig. 20.

@ OrderSystem,architecture &3 = O || £ properties &3
|.?_j Resource Set Propart: Yalue
E@ platfo.rm:,l’resourcefmocca.vb;’Framework,l'view,l’OrderSystem‘arch\tecture Name U= InputEntry_ Goodstandingerfisr
=l 4 View OrderSystem
: . - — Source < Component TnputEntry
< Component Relation InputEntry_GoodStandingerifier Target & Component GoodstandingverFier

-4 Component Relation InputEntry _RiskAccessar

< Component Relation RiskAccessor_OrderProcessor

< Component Relation OrderProcessor_StockManagement

< Component Relation OrderProcessor_DataHandler

< Component Relation Progressionitor_DataHandler

@ platform:/resaurce/macca. vbiframewark fview/OrderSystem . deployment

Selection | Parent | Lisk | Tree | Tahle | Tree with Colurnns |

Fig. 19. Modeling relations.

@ OrderSystem.deployment 53 = O || = properties &2 B 3=:¢>
I‘p_-, Resource Set Prapett | value
Implementation
=l platform: b fewjOrderSystem, depl £
5.2 plat n.rm Iresourcefmocca, vbframeworkview OrderSystem. deploymenl Info 1= The Middleware Stack
=) Wigw OrderSystem Label
<+ Component InputEntry Hame 1= MStack.
~<4+ Companent GoodStandingWerifier Root e
=4 Component RiskAccessor Sub Componsnt 4 Campanent DB2, Component WebSphers, Componant Tomeat
<+ Component OrderProcessor Type =
< Component StockManagement Visible Property

- < Component DataHandler

< Component ProgressMonitor
<+ Component Tomeat

< Component WebSphere

- < Component DBZ

Sl Component [ack
i) _ro] platform:fresource/macca. vb/frameworkview Order Sy stem.instal ation

Selection | Parent | List | Tree | Table | Tree with Calumns | 4 |

Fig. 20. Modeling composite components.

352 F. Leymann et al.

[OrderSystem.architecture

(@ OrderSystem.installation &2

= 8| properties &2
Eﬁ_—, Resource Set Fropert Valug
= @ platfu.rm.fresuurce,l’mucca.vb,l’framewurkl'wewarderSystemJnstallatlun Name webspherslmpl
El- 4 View OrderSystem Type peoys
4 Implementation WebSphereImpl =
< Implementation DEZImpl
4 BLOB WebSpheredrtifact
4 BLOB DBZArtiFact
Selection] Parent | List | Tree ‘ Table | Tree with Columns |
Fig. 21. Specifying implementations.
r@ OrderSystem, architeckure &3 r_'a OrderSystem.installation &3 = O || E properties 52
Lmucca.vb,l’Framewurk‘iview,l’OrderSystem.architectura| Propett: | Yalug
) N - File Ref WehSphere, ovf
= L&l platform: fresourcefmocca. vbiframeworkview/OrderSysten.installation Name
=4 View OrderSystem

4 Implementation WebsphereImpl
4 Implementation DBZImpl

4 BLOB DBZArtiFact

WebSphereartifact
Yisible Property

Selact\on] Parent | List | Tree | Table | Tree with Columns |

Fig. 22.

@ OrderSystem.installa @ *0rderSystem, cluster &8 ?,

Specifying artifacts.

[Resnuree ser

1 =0

= Properties 53

Properk: | Yalue

= @ platform: fresource/mocca. vbiframewark view/Order System. clustering
B4 COptimized Clustering Yiew

"4 Label TRUST

< Label AMOUNT_OF_DATA

Selection [Parent ‘ List | Tree | Table | Tree with Columns |

Marne

Yalue

Fig. 23.

Modeling labels.

Moving Applications to the Cloud 353

@ OrderSystem.architec &2 @ OrderSystem, clusteri 1 !

r[:, Resource Set

-4 Wiew OrderSystem

RS Cornponent ion InputEnkry
<+ Component Relation InputEntry_RiskAccessor

< Component Relation Riskaccessor_OrderPracessor

< Component Relation OrderProcessor_StockManagement
< Component Relation OrderProcessor_DataHander

EI@ platform:fresourcefmocca. vbyframeworkview Order System, architecture

= O || = properties &2
Propert | alue
Label 4 Label AMOUNT_OF_DATA
Mame U= InputEntry_GoodStandingverifier
Source < Component InpukEntry
Target < Component GoodStandingyerifier

-
[[+

[l
[+

""" < Component Relation ProgressiManitor_DataHandler

@ platform:fresourcefmocca, vbyframewaorkfview Order System, deployment
@ platform:fresourcefmocca, vbframeworkfview Order System.installation
@ platform:fresourcefmocca, vbframewaorkfview Order System, clustering

Select\on] Parent: | List | Tree | Table | Tree with Columns |

Fig. 24. Labeling relations.

@ OrderSystem.clustering 2 @ OrderSystem deployment 3

r(j Resource Set

D--@ platform: fresourceimocca, vb/frameworkyview Order System, deployment
[< view OrderSystem

-4 Component InputEntry

< Component GoodSkandingVerifier
<+ Component RiskAccessor

< Companent OrderProcessor

< Component StockManagement
<+ Component DataHandler

< Component ProgressMonitor

<+ Component Tomeat

< Companent ‘WebSphere

- < Component MWStack
e} @ platform: fresource/mocca, wb/Framewark viewiOrder Swstenm. installation
]--@ platform: fresourceimacca, vb Frameworkview Order System, clustering

Visible Property

selection [Parent | List | Tree | Table | Tree with Columns |

= O || = praperties 32 = ’E 2 e
Prapert; | value
Tmplementation 4 Implementation DE2Impl
Infa ['=18M DBZ Data Server
Label < Label TRUST
Mame u=DB2
Root g False
Sub Companent < Component StockManagement, Companent DataHandler
Type = DBMS

Fig. 25.

Labeling components.

@ OrderSystem, clustering

[Resource Set

(Q OrderSystem,parameterization &3

=0

-4 Deployment Parameterization Yiew OrderSystemn
-4 Property hostname

-4 Variability Point hostname

""" <4 Visible Property hostnamne

= @ platform: fresourcefmocca, vbyframeworkfviewOrderSystem, parameterization

Selection [Parent | Lisk | Tree | Tahle | Tree with Colurnns ‘

] Properties &3

Propert:

Value
ariability Poink
Visible Property

4 Yariability Poink hostname
< Visible Property hostname

Fig. 26.

Modeling properties.

354 F. Leymann et al.

@ OrderSystem. clustering (@ OrderSystem.parameterization &3 =g0|= Properties &3
[T Resource Set Propert | value
Mame U= hostname
B & platform: b iewOrderSystem. terizati
gp: DormI ,l’resoLLr;e,l’moccta v ,l’t.ramvgwor;‘f\;lev;,l’ E erSyskem, parameterization Phase = PRE_PROVISIONING
Deploymeni Parameterization Yiew OrderSystem | valie 0 |EfranksDez

i <+ Property hostname
<4 Variability Point hostnarne
i 4y Wisible Property hostname

Selection] Parent | List | Tree | Table | Tree with Columns |

Fig. 27. Modeling visible properties.

The information from Fig. 5 that WebSphere is realized by an implementation
of type OVF and that this OVF file is a BLOB Artifact having a certain FileRef
attribute is given in Figs. 21 and 22, respectively.

Figure 23 gives an example of modeling labels. The label AMOUNT-OF_DATA
high-lighted and got the value 200 assigned. This label has been associated to the
component relation InputEntry_GoodStanding Verifier in Fig. 24. The other label
called TRUST has been associated with the DB2 component in Fig. 25.

The specification of properties is depicted in Fig. 26: the property hostname
has been shown that has no value assigned (according to the situation modeled in
Fig. 5). Figure 27 also specifies hostname as a visible property now having the value
franksDB2 (see Fig. 5).

References

1. M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G. Lee,
D. Patterson, A. Rabkin, I. Stoica and M. Zaharia, Above the Clouds: A Berkeley
View of Cloud Computing, Technical Report (2009).

2. R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg and I. Brandic, Cloud computing and
emerging [T platforms: Vision, hype, and reality for delivering computing as the 5th
utility, Future Generation Computer Systems 25 (2009) 599-616.

3. S. Jha, A. Merzky and G. Fox, Using clouds to provide grids higher-levels of abstrac-
tion and explicit support for usage modes, Concurrency and computation: Practice
and experience, Special Issue of the OGF (2009).

4. National Institute of Standards and Technology, Draft NIST Working Definition of
Cloud Computing (2009), http://csrc.nist.gov/groups/SNS/cloud-computing/cloud-
def-v12.doc.

5. Open Cloud Manifesto (2009), http://www.opencloudmanifesto.org/Open%
20Cloud%20Manifesto.pdf.

6. F. Leymann, Cloud computing: The next revolution in IT, in Proc. of the 52th Pho-
togrammetric Week (Stuttgart, Germany, 2009).

7.

10.
11.

12.
13.
14.
15.

16.

17.

18.
19.

20.
21.

22.
23.
24.

25.

26.

27.

28.

29.

Moving Applications to the Cloud 355

R. Mietzner, T. Unger and F. Leymann, Cafe: A generic configurable customizable
composite cloud application framework, in Proc. of the 17th Intl. Conf. on Cooperative
Information Systems, CooplS (Springer-Verlag, Berlin, Heidelberg, 2009).

S. Weerawarana, F. Curbera, F. Leymann, T. Storey and D. F. Ferguson, Web Services
Platform Architecture (Prentice Hall, 2005).

DMFT Standard: Open Virtualization Format Specification, Document Number:
DSP0243 (2009), http://www.dmtf.org/standards/published_documents/DSP0243
_ 1.0.0.pdf.

The ACME Project, http://www.cs.cmu.edu/~acme/.

H. Tran, U. Zdun and S. Dustdar, View-based and model-driven approach for reducing
the development complexity in process-driven SOA, in Proc. of the Intl. Conf. on
Business Processes and Services Computing (Leipzig, Germany, 2007).

BPMN 1.1, http://www.bpmn.org/Documents/BPMN_1-1_Specification.pdf.

L. Hohmann, Beyond Software Architecture (Addison-Wesley, 2003).

M. R. Garey and D. S. Johnson, Computers and Intractability — A Guide to the
Theory of NP-Completeness (W.H. Freeman & Co., 1990).

S. Kirkpatrick, C. Gelatt and M. Vecchi, Optimization by simlated annealing, Science
220 (1983).

O. Danylevych, D. Karastoyanova and F. Leymann, Optimal stratification of trans-
actions, in Proc. of the 4th Intl. Conf. on Internet and Web Applications and Services
(2009), pp. 493-498.

R. Mietzner and F. Leymann, Generation of BPEL customization processes for SaaS
applications from variability descriptors, in Proc. of the Intl. Conf. on Services Com-
puting (Washington, DC, USA, 2008).

BPEL, www.oasis-open.org/committees/wsbpel/.

A. Konstantinou, T. Eilam, M. Kalantar, A. Totok, W. Arnold and E. Snible, An
architecture for virtual solution composition and deployment in infrastructure clouds,
in Proc. of the 3rd Intl. Workshop on Virtualization Technologies in Distributed Com-
puting (VIDC, 2009).

Amazon EC2, http://aws.amazon.com/ec2/.

K. El Maghraoui, A. Meghranjani, T. Eilam, M. H. Kalantar and A. V. Konstantinou,
Model driven provisioning, bridging the gap between declarative object models and
procedural provisioning tools, in Proc. of the 7th Intl. Middleware Conference (2006),
pp. 404-423.

ELASTRA, http://www.elastra.com/.

RightScale, http://www.rightscale.com/.

SWSoft Inc. Application Packaging Standard (APS) (2007), http://apsstandard.com/
r/doc/package-format-specification-1.0.pdf.

B. Benatallah, M. Dumas and Q. Z. Sheng, Facilitating the rapid development and
scalable orchestration of composite web services, Distributed and Parallel Databases
17(1) (2005) 5-37.

Open SOA Collaboration (OSOA), SCA Service Component Architecture,
Assembly Model Specification Version 1.00 (2007), http://www.osoa.org/download/
attachments/35/SCA_ AssemblyModel_ V100.pdf.

F. Rosenberg, P. Leitner, A. Michlmayr, P. Celikovic and S. Dustdar, Towards com-
position as a service — a quality of service driven approach, in Proc. of the Intl. Conf.
on Data Engineering (Shanghai, China, 2009), pp. 1733-1740.

I. Foster and C. Kesselman, The Grid: Blueprint for a New Computing Infrastructure
(Morgan Kaufmann, 2004).

R. Buyya, D. Abramson and J. Giddy, Nimrod-G resource broker for service-oriented
grid computing, IEEE Distributed Systems Online 2(7) (2001).

356 F. Leymann et al.

30.
31.

32.

33.

34.

35.

36.

3tera, http://www.3tera.com/.

C. Yang, P. Shih and K. Li, A high-performance computational resource broker for
grid computing environments, in Proc. of the 19th Intl. Conf. on Advanced Informa-
tion Networking and Applications, Vol. 2, IEEE Computer Society (Washington, DC,
USA), pp. 333-336.

K. Li, Job scheduling and processor allocation for grid computing on metacomputers,
Journal of Parallel and Distributed Computing 65(11) (2005) 1406-1418.

C. Fehling, F. Leymann and R. Mietzner, A framework for optimized distribution of
tenants in cloud applications, in Proc. of the 3rd International Conference on Cloud
Computing (Miami, USA, 2010), pp. 252-259.

C. Lee, J. Suzuki, A. Vasilakos, Y. Yamamoto and K. Oba, An evolutionary game theo-
retic approach to adaptive and stable application deployment in clouds, in Proc. of the
2nd Workshop on Bio-Inspired Algorithms for Distributed Systems (ACM, New York,
NY, 2010), pp. 29-38.

B. Sotomayor, R. S. Montero, I. M. Llorente and I. Foster, Virtual infrastructure
management in private and hybrid clouds, IEEE Internet Computing 13(5) (2009)
14-22.

D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L. Youseff and
D. Zagorodnov, The eucalyptus opensource cloud-computing system, in Proc. of the
9th IEEE/ACM Intl. Symposium on Cluster Computing and the Grid-Volume (IEEE
Computer Society, 2009), pp. 124-131.

