
An assessment of a model for error processing in the CMS Data Acquisition System

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2010 J. Phys.: Conf. Ser. 219 022039

(http://iopscience.iop.org/1742-6596/219/2/022039)

Download details:

IP Address: 128.131.172.24

The article was downloaded on 09/02/2012 at 10:00

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1742-6596/219/2
http://iopscience.iop.org/1742-6596
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

An Assessment of a Model for Error Processing
in the CMS Data Acquisition System

S Dustdar1, J Gutleber2, R Moser1,2 and L Orsini2

1 Technical University of Vienna, Karlsplatz 13, 1040 Vienna, Austria

2 CERN, 1211 Gevena 23, Switzerland

E-mail: dustdar@infosys.tuwien.ac.at, johannes.gutleber@cern.ch,
roland.moser@cern.ch, luciano.orsini@cern.ch

Abstract. The CMS Data Acquisition System consists of O(20000) interdependent services. A
system providing exception and application-specific monitoring data is essential for the
operation of such a cluster. Due to the number of involved services the amount of monitoring
data is higher than a human operator can handle efficiently. Thus moving the expert-
knowledge for error analysis from the operator to a dedicated system is a natural choice. This
reduces the number of notifications to the operator for simpler visualization and provides
meaningful error cause descriptions and suggestions for possible countermeasures. This paper
discusses an architecture of a workflow-based hierarchical error analysis system based on
Guardians for the CMS Data Acquisition System. Guardians provide a common interface for
error analysis of a specific service or subsystem. To provide effective and complete error
analysis, the requirements regarding information sources, monitoring and configuration, are
analyzed. Formats for common notification types are defined and a generic Guardian based on
Event-Condition-Action rules is presented as a proof-of-concept.

1. Introduction
The Compact Muon Solenoid (CMS) experiment at the CERN LHC pp collider has to cope with an
interaction rate of 40 MHz. Since no purely software-based distributed system may digest the total
detector data of 1 MByte for a single event every 25 ns, pre-selection is performed in custom built,
pipelined processors that reside close to the detectors.

The resulting data rate of 100 kHz is processed by the CMS data acquisition system [6] that
consists of O(20000) interdependent services. It follows a service-oriented architecture (SOA) [1][8]
where each service provides a SOAP control interface [10]. High-level data acquisition applications
have been implemented using the XDAQ framework [7]. The CMS data acquisition system also
provides low-level monitoring and alarming information through the XDAQ monitoring and alarming
system (XMAS) [2] infrastructure that is based on a scalable and distributed publish/subscribe
eventing system [3] and currently handles O(100000) notifications per second.

This paper will present the architecture for a dedicated error processing system to reduce the
number of notifications to the operator for simpler visualization and to provide meaningful error cause
descriptions and suggestions for possible countermeasures.

17th International Conference on Computing in High Energy and Nuclear Physics (CHEP09) IOP Publishing
Journal of Physics: Conference Series 219 (2010) 022039 doi:10.1088/1742-6596/219/2/022039

c© 2010 IOP Publishing Ltd 1

2. Gap Analysis
The CMS data acquisition system provides monitoring and alarming information but no facilities that
analyze this information to derive high-level interpretations. Such an error processing system
compares the actual with the nominal state of the monitored system. Configuration information
defines the nominal state; Run-time information describes the actual state, which is provided through
XMAS but lacks state information and integration with legacy services. As the system continues to be
developed, error processing algorithms require continues adaptation. To ease this task the algorithms
shall be formulated independent of communication protocol and format.

3. Technologies
Continuing with a service based approach and taking the previously mentioned requirements and
constraints into account, we implemented an error processing system with Web Workflows. Web
Workflows combine business processes with the Web by encapsulating a workflow behind a SOAP
Web Service with a defined interface. They allow separation of protocols and formats handled by the
Workflow engine and the definition of error processing algorithms as Workflows.

Major business process management software vendors provide their own Web Workflow engine
implementations, for example Oracle BPEL process manager and IBM WebSphere Process Manager
[17]. We chose the ActiveBPEL workflow engine [4] as it implements protocol interoperability
(SOAP over HTTP) with the existing monitoring system out of the box and can be extended with new
communication protocols and data formats without modifying Workflows. It provides a standards
compliant workflow editor and depends on a limited number of software packages (Tomcat and Java)
that are already used in the CMS experiment.

4. Run-time and Configuration Information
Run-time information represents the actual condition of the running system and can be categorized as
shown in Figure 1:
• State information contains information about the actual state of services. With hierarchical states

as defined in ASAP [5] (Figure 2) we can impose general states for visualization and error
processing and allow flexibility by refinement of states when necessary for control. For example a
service can define a custom sub-state open.running.discard to indicate that it is operational but
discarding incoming data.

• Error information describes exceptions, which could not be handled locally by services. It
embeds a complete exception trace for debugging. In addition custom properties can be added at
each level of the exception trace to provide further information for error processing in an
automated fashion.

• Service information contains dynamic data ranging from statistics to configuration data not
known a priori. It is freely definable and usually specific to applications.

Message identier
Notication identier
Notier
Source
Timestamp

Notication

Exception type
Description
Severity (Warn, Error, Fault)

Error
Service type
State
Endpoints

State
(no specic)

Service specic
0..1

0..1
caused by

Figure 1 Run-time information types (notifications) and their primary properties.

17th International Conference on Computing in High Energy and Nuclear Physics (CHEP09) IOP Publishing
Journal of Physics: Conference Series 219 (2010) 022039 doi:10.1088/1742-6596/219/2/022039

2

State

open close

running notrunning completed abnormal
completed

suspended terminated aborted

Figure 2 Hierarchical states allowing refinement and generalization.

Configuration information represents the nominal condition of the running system. It can be

categorized in hardware and software information. Hardware information describes the setup of hosts,
devices and networks. Software information specifies applications, services and communication
endpoints.

5. Error Processing Architecture
A high-level error processing system is responsible to detect the cause of errors on startup and during
operation of the monitored system. Therefore it analyzes differences between actual and nominal
status of the system. The general architecture of our error processing system is depicted in Figure 3.
The data layer contains services of the monitored system, which may emit data into the monitoring
and alarming system. The logic layer contains the monitoring and error processing system and the
visualization layer contains the graphical user interface the operator interacts with.

The error processing system contains two kinds of services, an Error Processor and Guardians. In
our system the Error Processor is an intermediate, which subscribes to the monitoring and alarming
system and asynchronously receives all error notifications generated by the services in the data layer.
Subsequently these notifications are forwarded to error processing components, called Guardians.

Data

services

Logic

Visualization

Operator

XDAQ Monitoring and Alarming Cong
data

Error
Processing
System

Error
Processor

Guardian2.1.A1: process

1: subscribe 2.1: notify

2: notify

2.1.F2: notify

Guardian2.1.C1: process

Guardian2.1.B1: process

2.1.C1.D1: query

2.1.C1.E1: query

2.1.G2: notify

Figure 3 UML collaboration diagram of the error processing system and related services.

17th International Conference on Computing in High Energy and Nuclear Physics (CHEP09) IOP Publishing
Journal of Physics: Conference Series 219 (2010) 022039 doi:10.1088/1742-6596/219/2/022039

3

Guardians are logically ordered in a hierarchy as depicted in Figure 4 and contain expert
knowledge about specific services or subsystems. A Guardian is only interested in a specific subset of
notifications and thus provides a filter expression to reduce the number of notifications from the Error
Processor. The low-level Guardians observe specific services whereas the higher ones observe groups
of services. In case a Guardian cannot identify the cause of an error directly it may emit an exception,
which is passed to a higher-level Guardian. Error processing should always be done on the lowest
possible layer without incorporating knowledge about other subsystems or services. This keeps the
higher-level Guardians abstract and confined to their respective group of applications. In case a
Guardian could identify the cause of an error it may emit a notification to the operator.

All Guardians provide the same SOAP interface and as such may be implemented in any language.
This allows integration with already existing rule-based systems or custom error processing code in
case a generic Guardian is insufficient. The request message to the Guardians contains a list of error
notifications and a list of URLs of monitoring data servers, which may be queried for more
information. The response message contains operator notifications if an error cause could be identified
or a derived error notification. Additionally it encloses a list of matched notification identifiers.

Finally the Error Processor forwards operator notifications to the operator, error notifications to
XMAS and informs the operator to redefine the rules for unmatched notifications based on their
unique identifier. Subsequently the derived error notifications are asynchronously sent from XMAS to
the Error Processor, which will forward these notifications to another Guardian, effectively achieving
a logical data flow as depicted in Figure 4.

Figure 4 Logical data flow for error notifications (arrows in the middle) and operator notifications

(arrows on the right).

We chose to implement error processing using BPEL as it already provides powerful languages for

filtering (XPath) [12] and querying (XQuery) [11] XML data. Using those features we implemented a
generic Guardian, which processes Event-Condition-Action (ECA) rules [9]. A rule that checks the
diskUsage of our computers is shown in Figure 5. This is an example of a rule which is not triggered
by an error notification but triggered periodically and checks service-specific information.

Figure 5 ECA rule for generic Guardian detecting low disk space.

<eca xmlns:tns="http://xdaq.web.cern.ch/xdaq/wsdl/2008/guardianeca-10.wsdl">
 <source type='flashlist' name='diskInfo'>urn:xdaq-flashlist:diskInfo</source>
 <rule>
 <condition>/*/source/diskInfo/table/rows[diskUsage/rows[xs:double(usePercent/text())>90]] </condition>
 <action>
 <inform>
 <message>free disk space below 10 percent</message>
 <services source="condition">/*/rows/context</services>
 </inform>
 </action>
 </rule>
</eca>

17th International Conference on Computing in High Energy and Nuclear Physics (CHEP09) IOP Publishing
Journal of Physics: Conference Series 219 (2010) 022039 doi:10.1088/1742-6596/219/2/022039

4

A set of rules is specific to one Guardian. A low-level Guardian for example defines a set of rules
to process errors emitted by a specific service type, effectively leading to disjoint sets of rules for
different Guardians. Higher-level Guardians define rules to match notifications derived by low-level
Guardians only, leading to the hierarchical error processing depicted in Figure 4.

6. Enhancements
During evaluation of existing workflow engines we identified some shortcomings of BPEL and
missing components necessary for integration with our system:

• BPEL workflows can only be triggered through SOAP messages and not through timers or
even more complex rules.

• ActiveBPEL natively supports only SOAP based protocols.
• BPEL does not support to model an organizational perspective [15] and mapping of services

to invoke activities must be modeled explicitly.
To overcome those shortcomings we implemented several additional services. Their interactions

are depicted in Figure 6.

Data

legacy services

Logic

Visualization

Operator

XDAQ Monitoring
and Alarming

Cong
data

Error Processing System

A1.2.1: notify
C1.1.1: notify

A1.2.1.1: notify
C1.1.1.1: notify

Check Scripts

Event
Generator Broker

native services

A1: trigger

B1: trigger

A1.2: check

A1.3: notify

C1: query

A1.1: query

C1.1: notify

D1: updateStats

Figure 6 UML collaboration diagram for auxiliary components.

The Event Generator is a service, which sends SOAP messages based on predefined rules. Rules

may match on workflow engine, timing and external user events. This allows periodic triggering of
workflows and avoids ever running workflows, both concepts that are not supported by BPEL
natively. The rule in Figure 7 shows a timing event (MinuteTimer:trigger) emitted once every 60
seconds. The timer is started based on the internal start event that is emitted as soon as the servlet
engine in which the Event Generator is running is started. The second rule presented in Figure 8 starts
a workflow which checks if all discovery services daemons [14] in our cluster are running and fully
functional. The rule specifies that specific SOAP request message to be sent to a web service based on
the previously mentioned timer event. This allows calling web services with without enforcing a
specific interface on them.

17th International Conference on Computing in High Energy and Nuclear Physics (CHEP09) IOP Publishing
Journal of Physics: Conference Series 219 (2010) 022039 doi:10.1088/1742-6596/219/2/022039

5

Figure 7 Event Generator rule of a timer emitting an event once per minute.

Figure 8 Event Generator rule for triggering a web service (workflow) based on a timer event.

The Broker is a component for dynamically allocating resources and services according to Quality

of Service (QoS) requests. It works with models for different scenarios. For example, the model for the
monitoring system implements a load balancer for periodically allocating monitoring services to
O(20000) services. This model itself relies on monitoring information, e.g. CPU load, to provide a

<?xml version='1.0'?>
<netflow:event xmlns:netflow="http://xdaq.web.cern.ch/xdaq/xsd/2006/netflow-event-10">
 <netflow:component activated="true" changeable="false" class="ch.cern.cms.wf.event.Timer">
 <netflow:item name="name">MinuteTimer</netflow:item>
 <netflow:item name="type">timer</netflow:item>
 <netflow:item name="description">Timer for executing scripts once per minute </netflow:item>
 <netflow:item name="maxinstances">1</netflow:item>
 <netflow:item name="period">PT60S</netflow:item>
 </netflow:component>

 <netflow:bind xpath="/netflow:event[@name='internal' and @command='start']">
 <netflow:event name="MinuteTimer" command="start">
 <!-- contains SOAP message to send out if component supports that -->
 </netflow:event>
 </netflow:bind>
 <netflow:bind xpath="/netflow:event[@name='internal' and @command='stop']">
 <netflow:event name="MinuteTimer" command="stop">
 <!-- contains SOAP message to send out if component supports that -->
 </netflow:event>
 </netflow:bind>
</netflow:event>

<?xml version='1.0'?>
<netflow:event xmlns:netflow="http://xdaq.web.cern.ch/xdaq/xsd/2006/netflow-event-10">
 <netflow:component activated="false" changeable="true" class="ch.cern.cms.wf.event.Workflow">
 <netflow:item name="name">slpcheck</netflow:item>
 <netflow:item name="type">workflow</netflow:item>
 <netflow:item name="description">Script for checking if SLP daemons</netflow:item>
 <netflow:item name="maxinstances">1</netflow:item>
 </netflow:component>

 <!-- Event Bindings between internal components -->
 <netflow:bind xpath="/netflow:event[@name='MinuteTimer' and @command='trigger']">
 <netflow:event name="slpcheck" command="start">
 <ns1:StartServiceRequest xmlns:ns1="http://xdaq.web.cern.ch/xdaq/wsdl/2007/wfcheck-10.wsdl"/>
 </netflow:event>
 </netflow:bind>

 <!-- External (User) emitted events -->
 <netflow:emittable from='user' to='slpcheck' description='activate'>
 <netflow:event name="slpcheck" command="activate"/>
 </netflow:emittable>
 <netflow:emittable from='user' to='slpcheck' description='deactivate'>
 <netflow:event name="slpcheck" command="deactivate"/>
 </netflow:emittable>
</netflow:event>

17th International Conference on Computing in High Energy and Nuclear Physics (CHEP09) IOP Publishing
Journal of Physics: Conference Series 219 (2010) 022039 doi:10.1088/1742-6596/219/2/022039

6

scalable monitoring infrastructure. Another example where a model would be useful is the assignment
of services to hosts based on QoS attributes instead of statically assigning services to hosts. This can
provide improved fault-tolerance and better resource usage in the data acquisition cluster. It will also
simplify our workflows, as they will not need the informational perspective to model the
organizational one [16].

Integration: As not all services publish directly into XMAS we added custom workflow checking
scripts, which query the states of those services over SSH and publish their information into XMAS
through SOAP messages. In addition some services use a custom, binary protocol for performance
reasons.

Although WSDL allows defining interfaces independent of transport protocols, the ActiveBPEL
engine only supports SOAP over HTTP as a protocol by default. ActiveBPEL solves this problem by
providing InvokationHandlers, which translate between internal workflow engine data representation
(XML) and custom formats and protocols and therefore allowing seamless integration with our system
at hand.

7. Summary
This paper summarizes requirements and pitfalls during design and implementation of a generic error
processing system using the CMS experiment as a case study. The presented error processing
architecture relies on Workflow and Web Service technologies, which allow seamless integration into
the existing environment. We implemented a generic workflow-based Guardian, which performs error
processing based on ECA rules.

Tests of the error processing system were performed in the production environment of the CMS
data acquisition system. In particular ECA rules have been defined for commonly encountered errors,
such as failing service location protocol (SLP) servers and domain name resolution (DNS) servers.
The error causes have been identified indirectly from error notifications emitted by data acquisition
applications.

We observed that error notifications in our system can be classified in regards to the number of
originators and the number of notifications per originator. A Guardian will handle those kinds of
errors in the following ways:

• A transient error emitted by one originator leads to a single error notification. It will be
matched by one specific rule in a low-level Guardian and will directly or indirectly (through a
higher-level Guardian) emit one operator notification.

• A transient error emitted by multiple originators leads to multiple error notifications. It will
be matched by one specific rule in a low-level Guardian and will directly or indirectly emit
one operator notification.

• A permanent error emitted by one or multiple originators leads to multiple error notifications
sent repeatedly. It will be matched by one specific rule in a low-level Guardian and will
directly or indirectly emit the same operator notification repeatedly.

Our tests have shown that error notifications from multiple originators dominate the number of
notifications. Our error processing system can handle these errors and reduces the number of
notifications by the number of originators. This shows that the presented architecture is an adequate
approach to analyze errors found in the CMS data acquisition system.

The low-level Guardians split the system into disjoint parts and thus scale to the number of
services found in our system. Scalability is however limited by the Error Processor, which needs to
forward all error notifications between XMAS and the Guardians. Additional measurements in the
XDAQ framework revealed a performance bottleneck induced by the overhead of the SOAP protocol,
which limits the throughput to 200 messages per second.

Planned improvements to the current system include porting XMAS to a binary protocol to reduce
the protocol overhead. Guardians shall subscribe directly to XMAS to improve scalability of the error
processing system. This requires extending the subscription mechanism to support complex filter
expressions taking notification properties into account.

17th International Conference on Computing in High Energy and Nuclear Physics (CHEP09) IOP Publishing
Journal of Physics: Conference Series 219 (2010) 022039 doi:10.1088/1742-6596/219/2/022039

7

Due to the standardized notification formats, integration with other existing monitoring systems is
feasible and would allow extending the scope of error processing beyond the core data acquisition
applications. In addition providing a standardized interface for Guardians will allow us to take
advantage by integrating distributed business rule engines [13] and already existing error processing
components in the future.

References
[1] Booth D et al 2004 Web Service Architecture http://www.w3.org/TR/ws-arch
[2] Bauer G et al 2009 Monitoring the CMS Data Acquisition System Proc. International

Conference on Computing in High Energy and Nuclear Physics in Journal of Physics:
Conference Series.

[3] Box D et al 2006 Web Services Eventing (WS-Eventing) http://www.w3.org/Submission/WS-
Eventing/

[4] ActiveBPEL Engine – official homepage http://www.activevos.com/community-open-
source.php

[5] Fuller J, Krishnan M, Swenson K, Ricker J 2005 Asynchronous Service Access Protocol
(ASAP) Version 1.0 http://www.oasis-open.org/committees/asap/

[6] Gutleber J, Murray S, Orsini L 2003 Towards a homogeneous architecture for high-energy
physics data acquisition systems Elsevier Comp. Phys. Comm. 153(2) 155-163.

[7] Gutleber J, Moser R, Orsini L 2007 Data Acquisition in High Energy Physics Proc.
Astronomical Data Analysis Software and Systems (ADASS) XVII, 394 47.

[8] CERN 2002 Data Acquisition & High-Level Trigger, Technical Design Report CMS TDR 6.2,
LHCC 2002-26 (ISBN 92-9083-111-4).

[9] Chen L, Li M, Cao J, Wang Y 2005, An ECA Rule-based Workflow Design Tool for Shanghai
Grid, 2005 IEEE International Conference on Services Computing 1 325-328.

[10] Gutleber J et al 2005 HyperDAQ Where Data Acquisition Meets the Web Proc. 10th Intl. Conf.
Accel. and L. Exp. Phys. Control Sys. (Geneva, Switzerland, 10-14 October 2005).

[11] Scott B et al 2007 XQuery 1.0: An XML Query Language http://www.w3.org/TR/xquery/
[12] Berglund A et al 2007 XML Path Language (XPath) 2.0 http://www.w3.org/TR/xpath20/
[13] Nagl C, Rosenberg F, Dustdar S 2006 VIDRE - A Distributed Service Oriented Business Rule

Engine based on RuleML Proc. 10th IEEE International Enterprise Distributed Object
Computing Conference. EDOC 2006: 35-44.

[14] Guttman E, Perkins C, Vaizades J and Day M 1999 Service Location Protocol Version 2
Internet RFC http://www.ietf.org/rfc/rfc2608.txt

[15] Russell N, ter Hofstede A, Edmond D, van der Aalst W 2004 Workflow Data Patterns.
[16] Zur Muehlen M 2004 Workflow-based Process Controlling: Foundation, Design, and

Application of Workflow-driven Process Information Systems, Logos,
http://books.google.com/books?id=EpgxaWJwkFQC

[17] Mendling J, Zdun U 2006 Experiences in Enhancing Existing BPM Tools with BPEL Import
and Export BPM 2006, LNCS 4102: 348-357.

17th International Conference on Computing in High Energy and Nuclear Physics (CHEP09) IOP Publishing
Journal of Physics: Conference Series 219 (2010) 022039 doi:10.1088/1742-6596/219/2/022039

8

