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Abstract In process-driven, service-oriented architectures (SOAs), process activities
can perform service operations, data transformations, or human tasks. Unfortunately,
the process activities are usually tightly coupled. Thus, when the number of activities
in the process grows, focusing on particular activities of the flow such as the service
operations reading or writing persistent data is a time-consuming task. In particular,
in order to solve structural problems concerning persistent data access such as dead-
locks in data-intensive business processes, stakeholders need to understand the un-
derlying persistent data access details of the activities i.e. physical storage schemes,
and database connections.

With our view-based model-driven approach, we provide a solution to generate
flows of persistent data access activities (which we refer to as persistent data access
flows). To the best of our knowledge these persistent data access flows are not used
to solve structural problems in process-driven SOAs, yet. Moreover, our persistent
data access flows can be flattened by diverse filer criteria e.g. by filtering all activities
reading or writing from a specific database or table. Using our approach, we can en-
hance traceability and documentation of persistent data access in business processes.
In a series of motivating scenarios from an industrial case study we present how our
persistent data access flow concept can contribute to enhance productivity in service-
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oriented, process-driven environments. We qualitatively evaluate our concepts and
prototypes, and finally, discuss the correctness and the complexity of the underlying
algorithms.

Keywords SOA · Process · Business process · Process flow · Process-driven · Data
access flow · Data access flows · Persistency · Persistent · Persistent data access
flows · Data access service · DAS · Data access · Data · Data flow · Control flow ·
Data access activity · Service-oriented · DAO · Data access object · Model ·
Model-driven · Views · View-based · Data model · BPMS · Intalio · Microflow ·
Macroflow

1 Introduction

In process-driven, service-oriented architectures (SOAs), process activities can in-
voke service operations [1], transformations such as string manipulations, business
logic, or human tasks to perform a certain activity. Decision nodes are used to define
the possible paths through the flow. Often the process activities perform I/O opera-
tions on a persistent storage, typically an RDBMS. We refer to this special type of
process activities reading or writing from a persistent storage as data access activities.
Nowadays, this data access is often done by so-called data access services (DAS).
DAS are variations of the ordinary service concept: They are more data-intensive and
are designed to expose data as a service [2]. Like a common service consists of ser-
vice operations, a DAS consists of DAS operations. The DAS can use data access
objects (DAOs) that abstract and encapsulate all access to the data source and pro-
vide an interface independent of the underlying database technology [3]. The DAO
manages the connection with the data source to obtain and store data. Our approach
uses DAS and DAOs in our prototypical implementation.

The decision which alternative path to run in the business process often depends
on persistent data. Thus, there is a tight coupling between persistent data access and
business logic within a business process. This tight coupling is necessary to enable
stakeholders to get a basic understanding of the overall process. However, it can hin-
der stakeholders to analyze, develop, and test persistent data access in a business
process. In Fig. 1, we use a UML [4] activity diagram to illustrate these dependen-
cies. In UML terminology, the figure shows a main process with two activities (also
called microflows in [5]). Each activity contains basic actions, the fundamental be-
havior units of an activity [4]. The business process consists of different types of
actions, namely service operations, data access service operations, transformations,
and human actions. This business process is part of our case study, which we describe
in detail in Sect. 4.

A common problem in business process modeling is the detection of structural
errors [6]. Current business process modeling systems (BPMS) [7] lack support for
verification of structural problems concerning persistent data access. However, in
many BPMS, such as IBM Websphere MQ Workflow, the process activities cannot
request persistent data directly [8]. Therefore, these systems cannot trace persistent
data access without the help of external dependencies. In other BPMS, such as Web-
methods [9], the process activities are able to invoke persistent data access directly.
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Fig. 1 Persistent data access in a process-driven SOA
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However, they lack tool support for detecting structural persistent data access prob-
lems at modeling time. While collaborating on several service-oriented software de-
velopment projects in a large enterprise, we identified a series of structural problems
in business processes concerning persistent data access. During this collaboration,
we identified three groups of stakeholders which are faced with these problems: the
data analysts, DAS developers, and the database testers. In this article we discuss the
drawbacks from the stakeholder perspectives and propose appropriate solutions.

In this article we provide the following contributions: We use a view-based model-
driven approach to specify persistent data access in process-driven SOA. In particu-
lar, we specify persistent data access activities to better integrate persistent data ac-
cess into processes. With these well-structured persistent data access activities, and
our new view integration paths concept, presented in this article, we can generate
persistent data access flows from business processes. We show how these persistent
data access flows can enhance documentation and solve structural errors concerning
persistent data access in processes. As a result, data analysts, DAS developers, and
database testers can increase their understanding of persistent data access activities in
the process flow. By exploiting our model-driven approach we can filter the persistent
data access flows by diverse search criteria such as they solely contain only those ac-
tivities reading or writing from specific database tables or certain ORM frameworks.
Hence, development and deployment efforts can be reduced. Our model-driven so-
lution is based on the View-based Modeling Framework (VbMF) introduced in our
earlier work [10]. This framework aims at separating different concerns in a busi-
ness process into different views. The main idea in our VbMF approach is to enable
stakeholders to understand each view on its own, without having to look at other con-
cerns, and thereby reduce the development complexity. The data-related extension of
VbMF, the View-based Data Modeling Framework (VbDMF) [11, 12], introduces a
layered data model for accessing data in process-driven SOAs.

This article is organized as follows: First, in Sect. 2 we discuss related work. Next,
Sect. 3 provides some background information to better understand our approach.
Section 4 presents a motivation case study which we will refer to throughout this ar-
ticle. In Sect. 5 we present an overview of our approach. Next, in Sect. 6 we illustrate
how our persistent data access flow concept can solve structural problems in business
processes by presenting selected use cases. Section 7 describes the details necessary
to realize our approach within a model-driven generator environment: the model-
driven specification, integration, and extraction of persistent data access flows. Next,
in Sect. 8 we show the applicability of our implementation solution and present a
suitable tooling. In Sect. 9 we show the correctness and complexity of the underlying
algorithms. We discuss the limitations of our approach in Sect. 10. Finally, Sect. 11
summarizes and concludes this article.

2 Related work

In this section we present related work from the existing literature and related stan-
dards. We also emphasize the contribution of our work by explaining how our work
compares to these related works. Table 1 summarize this comparison.



Distrib Parallel Databases (2013) 31:1–45 5

2.1 Integrating persistent data access into SOAs

Many work focus on better integrating data into the overall SOA [13–16]. In the
following we relate each of these works to our approach.

At this point we want to clearly differentiate our approach from other works such
as BPELDT [17] which focuses on the data flows transporting data from one process
activity to the next process activity. Habich et al. introduce BPEL data transitions
to efficiently model ‘data-grey-box web services’ [17]. In contrast, in our approach,
we focus on tracing the persistent data access activities themselves instead of the
transitions between two process activities.

2.1.1 Modeling data access services

In the literature, various related works propose using data access services for better
data integration.

Carey et al. [13] examined how the AquaLogic Data Services Platform (ALDSP)
supports data modeling and design. They describe the ALDSP 3.0 data service model
and assert that the modeling extensions in ALDSP 3.0 provide a rich basis for mod-
eling data services for SOA applications.

Wang et al. [16] propose a dynamic data integration model architecture based on
SOA. On the basis of XML technology and web service, their architecture model
enables data sharing and integration over all business systems. Thus data resource
and information interoperability is realized in a cross-platform manner.

As our approach, both ALDSP [13] and the dynamic data integration model [16]
use data access services to read and write data. However, they focus on separate
modeling of data access services for use in external environments. In these two ap-
proaches, data integration overall business systems is established by using DAS as
interface to the data. In contrast, we propose a continuous integration approach to
be able to exploit the structured nature of the data access service models in business
processes.

2.1.2 Modeling the relationships between persistent data access, services and
processes

Zhang et al. [14] propose a new process data relationship model (PDRM) to specify
the complex relationships among process models, data models, and persistent data
access flows. In our approach, we define the activities incorporating data access as
DAS activities. Likewise, Zhang et al. define these activities as data access nodes
(DAN). Like our approach, they understand data access flows as persistent data access
flows rather than data flows representing transient and persistent data. However, as
opposed to our approach, they focus on automatic data access component generation
to cluster similar data access components into larger components. In contrast, we
concentrate both on the applicability and the feasibility of generating data access
flows. Furthermore, unlike our model-driven solution, they solely focus on simple
activities and cannot model structured process activities.
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Zhang et al. [15] introduce a unique information liquidity meta-model (ILM) to
separate persistent data integration logics from business services and application ser-
vices. Like our approach their architecture uses a data service layer to access the data.
In addition, as our approach, they use views to relate processes to new and existing
services, or new and existing data definition. Whereas our approach focuses on mod-
eling new view models and extracting new view models from existing view models,
they solely concentrate on creating new models. In our approach we also focus on
solving data analysis problems by creating flattened persistent data access flows from
the whole process flow.

2.1.3 Business process modeling systems

Our work is closely related to common commercial and open-source business process
modeling systems (BPMS) [7]. Representatives of common commercial BPMS are
IBM Websphere MQ Workflow [18], Webmethods [9], and TIBCO [19]. In addition,
there are common representatives of open-source systems i.e. JBOSS [20] and Intalio
[21]. Russel et al. [8] define a specific data interaction pattern for how BPMS access
persistent data. Their main focus is to determine data patterns in business processes.
On top of this data integration pattern, our conceptual approach focuses more on solv-
ing structural problems in business processes by using persistent data access flows.
Unfortunately, many BPMS do not explicitly support this pattern by a direct integra-
tion of persistent data access into the process activities. In example, IBM Websphere
MQ Workflow [18] and Intalio BPMS Designer [21] do not provide an explicit mech-
anism to invoke persistent data access from the process activities within the BPMS.
In these BPMS, the persistent data is rather accessed e.g. through underlying services
incorporating the persistent data access implementation.

Other BPMS such as Webmethods [9], JBOSS Messaging [22] and TIBCO [19]
support integration of persistent data access into the process activities. In these
BPMS, process activities can directly request persistent data within the BPMS en-
vironment. However, as opposed to our persistent data access flow concept, these
BPMS do not provide comparable support to adequately overview persistent data
access in data-intensive business processes. In Webmethods [9], stakeholders can
configure adapter services used to read or write data from the database, in example
the InsertSQL, UpdateSQL and DeleteSQL services. As our approach, the services
can configure SQL statements in a structured way. For example, statements can con-
tain structured elements such as database connection properties, database tables, and
database table columns. Furthermore, Webmethods provides filtering mechanisms
to limit the adapter services by structured elements such as catalogs, schemes, and
tables. JBOSS Messaging [22] supports configuration of relational database connec-
tions by the JDBC Persistent Manager. A channel mapper is used to configure SQL
statements such as Create and Select. However, as opposed to our approach, JBOSS
Messaging does not support structured modeling of persistent data access. In TIBCO
[19], it is possible to establish the link between a process activity and structured pro-
cess data models with business objects, e.g. specified in UML [23], designed with
TIBCO Business Studio. TIBCO provides tooling support to read/write access from
the business objects.
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2.2 Solving structural problems in business processes

There are several approaches concerning solving structural problems in business pro-
cesses [6, 24]. Sadiq et al. [6] identify structural conflicts in process models by ap-
plying graph reduction rules. Awad et al. [24] use business process queries to detect
structural problems in business processes. In contrast to these works, in our approach,
besides solving structural problems in business processes, we aim at enhancing trace-
ability and documentation of persistent data access. Moreover, we provide a model-
driven solution to reduce business process complexity as we can flatten business pro-
cesses by certain filter criteria.

2.2.1 Static analyzing techniques

There are a number of frameworks for performing static analysis to extract common
data flows from the whole program. An example of these static analysis approaches
is the demand-driven flow analysis as proposed by Duesterwald et al. [25]. ‘The goal
of demand-driven analysis is to reduce the time and space overhead of conventional
exhaustive analysis by avoiding the collection of information that is not needed’ [26].
As our approach, Duesterwald et al. focus on extracting sub flows from process flows
on-demand. However, they aim at extracting common data flows instead of persistent
data access flows. Moreover, we provide a model-driven, view-based approach to
analyze and document persistent data access flows in process-driven SOAs.

In Sect. 4 we present how our approach can be in particular applied to testing and
to deadlock detection and prevention. In the following we relate other testing and
deadlock detection and prevention techniques to our solution.

2.2.2 Testing

There are a number of approaches in the literature that elaborate on test case creation
and selection.

Fischer et al. [27] focus on improving test case quality for declarative programs
by introducing a novel notion of data flow coverage. In their opinion, a visual repre-
sentation of the control- and/or data flow would help the users to better understand
program execution. We share the opinion that a visual view increases the understand-
ability of the data flows. However, our views are not restricted to the viewing of these
data flows. Accordingly, our persistent DAS Flow View can be integrated with other
views in order to form richer views, in example with the DAO View, the ORM View,
and the Physical Data View.

There are several works using data flows for selecting test cases as presented in
[28]. Rapps et al. apply data flow analysis techniques to examine test data selection
criteria. The procedure presented associates each definition of a variable with each of
its usages within a flow. The data flow criteria that they have defined can be used to
traverse each path. Like our approach, each persistent data access activity in the pro-
cess flow can be associated with corresponding definitions. In contrast to this formal
approach, we use a visual approach for selecting our test cases.
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2.2.3 Deadlock detection and prevention

In the following we relate our solution to various static and dynamic deadlock detec-
tion techniques.

There are many runtime approaches (such as [29] and [30]) that aim at deadlock-
free sharing of resources in distributed database systems. Isloor et al. [29] distin-
guish between deadlock detection, deadlock prevention and deadlock avoidance tech-
niques. Krishna et al. [30] present a graph-based deadlock prevention algorithm that
reduces processing delays within the distributed environment. However, with our per-
sistent data access flow approach we provide a visual solution in order to discover
errors at the earliest stage of development—at the modeling level.

There are a number of static deadlock detection algorithms (e.g. [31]). Naik et
al.’s [31] deadlock detection algorithm uses static analyses to approximate necessary
conditions for deadlocks to occur. Their effective algorithm concentrates on detecting
deadlocks between two threads and two locks.

Dedene et al. [32] present a formal approach to detect deadlocks at the concep-
tual level. In their work, they present a formal process algebra to verify concep-
tual schemes for deadlocks based on the object-oriented analysis (OOA) method
M.E.R.O.DE. As our approach, Dedene et al. can check the models for deadlocks
at the earliest stage in the development process.

An interesting approach is presented by Zhou et al. [33]. Like our approach, the
authors use a static approach to analyze deadlocks in data flows. They in particular
concentrate on analyzing deadlocks in loops. In order to determine deadlocks, they
define a causality interface that abstractly represents causality of data flow actors.

In contrast to these formal deadlock analysis approaches, again, our approach is a
visual solution for detecting deadlocks. Furthermore, on top of our approach, com-
mon deadlock detection and prevention techniques as described before can be per-
formed. Furthermore our persistent data access flow concept aims at documenting
the persistent data access flows within the control flow. Thus, with our approach we
do not solely focus on detecting deadlocks in process flows, we rather enable a more
general analysis of a series of development and testing problems.

2.2.4 Business process modeling systems

‘undo action’. In contrast, our approach focuses on the underlying structural problem.
We solve the cause of the failed transaction instead of solely handle the problem. In
example, if a database table is locked due to a structural problem within the business
process, our persistent data access flow approach can contribute solve the problem
more quickly.

In order to solve structural problems in business processes, common BPMS such
as IBM Websphere MQ Workflow [18], JBOSS [20], and Intalio [21] support transac-
tion handling. Thus, in case of failures, the transactions can be rolled back or compen-
sated. Whenever some actions cannot be rolled back e.g. due to external dependen-
cies, a compensation handler can be invoked to perform an ‘undo action’. In contrast,
our persistent data access flow approach focuses on the underlying structural prob-
lem. Moreover, we solve the cause of the failed transactions instead of solely handle
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the problem. In example, if a database table is locked, due to a structural problem
in the business process, our persistent data access flow approach will contribute to
solve the problem more quickly. In addition, our model-driven provides up-to-date
documentation of persistent data access in business processes.

3 Background

Before we go deeper into the contributions of our approach, we give some back-
ground knowledge to better understand our concepts.

3.1 Data flow vs. control flow

Common graphical process modeling languages and business process management
systems (BPMS) [7] can differentiate between the control flow and the data flow
of a process. Examples of graphical modeling languages are the Business Process
Model and Notation (BPMN) [34] and the Unified Modeling Langage (UML) [4]
activity diagrams. An example of a BPMS is the IBM Websphere MQ Workflow [18]
Whereas the control flow describes the sequence of activities of the process flow, the
data flow describes incoming and outcoming data to and from process activities. An
example of a control flow is depicted in Fig. 1.

In BPMN, data is transferred in data objects that can be associated with activities.
The data flow is modeled by associations from data objects to activities or vice versa.
Accordingly, data objects written by one activity can be read be the subsequent ac-
tivity. In IBM Websphere MQ Workflow, a data flow is modeled by connecting the
activity’s input and output container. Special data flow connectors define the mapping
of the activity’s input and output container. In UML 2.0, the data flow is specified by
pin elements representing the inputs and outputs of activities. Whereas input pins
provide the activities with data, output pins get the data from the activities. Figure 2
depicts a data flow in UML notation.

Lang defines that data flows between processes may represent either attributes of
objects, transient data or persistent data [35]. In contrast to these data flows, in this
article, we concentrate on persistent data access flows. Our persistent data access
flows are control flows that solely consist of data access activities reading or writing
from a persistent data storage. In contrast, whenever we refer to data flows, we outline
the common data flows, representing transient and persistent data respectively, as
defined by Lang [35].

3.2 Microflow and macroflow pattern

Our work is in particular based on the so-called Macro-Microflow pattern [5, 36]. The
Macro-Microflow pattern is a pattern designed for process-oriented integration in ser-
vice oriented architectures. According to this Macro-Microflow pattern, a microflow
represents a sub-process that runs within a macroflow activity [5, 36]. Macroflows
are considered to be high-level conceptual business processes whereas microflows
are technical information processes [5, 36, 37]
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Fig. 2 Data flow of a business
process specified with UML pin
elements
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There are two types of microflows. Firstly, a short-running technical process that
runs automatically and secondly, a flow of activities that can contain interrupting
process activities such as human tasks and events. The first alternative, the technical
microflows are not interruptible and are running in a transaction [5, 36]. A flow is not
interruptible if it contains no interrupting process activities such as human tasks and
events. The interruptible microflows in turn can contain automatically short-running
microflows. When analyzing, developing, and maintaining persistent data access,
stakeholders have to focus on these microflows. When analyzing, developing, and
maintaining persistent data access, stakeholders have to focus on these microflows.
In Fig. 1, we depict two technical microflows as technical sub processes of the whole
business macroflow.

3.3 View-based data modeling framework

In the following we shortly recapitulate the View-based Data Modeling Framework
(VbDMF) which we apply to implement our solution. VbDMF is an extension of
the basic View-based Modeling Framework (VbMF). VbMF is specified to define
processes in a process-driven SOA. In contrast, VbDMF is focused on modeling per-
sistent data access within processes.

VbMF consists of modeling elements such as (view) models, and views. A view or
model instance is specified using an appropriate view model. Each model is a (semi)
formalized representation of a particular business process concern. The models, in
turn, are defined on top of the meta-model. We use the Eclipse Modeling Framework
(EMF) meta-model to define our models. Accordingly, the VbMF core model is de-
rived from the EMF [38] *.ecore meta-model. All views (model instances) depicted
in this article are based on the XML Metadata Interchange (XMI) standard [39].

In Fig. 3, the rectangles depict models of VbMF and the ellipses denote the ad-
ditional models of VbDMF. In VbMF new architectural models can be designed,
existing models can be extended by adding new features, views can be integrated
in order to produce a richer view, and using transformations platform-specific code
can be generated. As displayed by the dashed lines in Fig. 3 view models of VbDMF

Fig. 3 VbMF and VbDMF—overview
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extend basic VbMF view models namely the Information View model, the Collabora-
tion View model, and the Flow View model. The dashed lines in Fig. 3 indicate view
integration, e.g., the Collaboration View integrates the Information View to produce
a combined view.

In the following we shortly describe basic views of VbMF and VbDMF:

VbMF views

− The VbMF Collaboration View model basically describes services and service
operations.

− The VbMF Information View model specifies the service operations in more detail
by defining data types and messages.

− The VbMF Flow View model describes the control-flow of a process.

VbDMF views

− The VbDMF Collaboration DAO Mapping View model is an optional view model
that maps DAS operations to DAO operations.

− The VbDMF Information Data Object Mapping View model is an optional view
model that maps DAS data types to DAO data types.

− The VbDMF DAO View model describes the DAO operations in detail.
− The VbDMF Data Object View model specifies data object types and data object

member variables used to store values in object-oriented environments.
− The VbDMF ORM View model maps physical data to data object types.
− The VbDMF Physical Data View model specifies the data storages such as

database tables and columns accessed from the DAOs.
− The VbDMF Database Connection View model comprises a list of arbitrary, user-

defined connection properties.

To summarize, whereas VbMF focuses on reducing the development complexity
of business processes and services, VbDMF introduces tailored views for integrating
persistent data access into the services of business processes.

4 Case study

In this section we present our motivation case study which we will refer to through-
out this article. This case study deals with a real workflow of a specific e-government
application modeling the jurisdictional provisions in the context of a district court.
However, the applicability of the persistent data access flows is not limited to this type
of applications. The persistent data access flow concept can reasonably be applied to
all applications, based on a process-driven SOA, where data is accessed from a persis-
tent storage. In the course of this section, we also describe selected problems which
we identified while collaborating in several projects for developing e-government ap-
plications. All these problems have in common that data is accessed from persistent
storage. These problems reoccur in many use cases for data analysts, DAS devel-
opers, and database testers. For each problem, we illustrate how the persistent data
access flows can contribute to problem solving.
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First of all, let us explain the business process flow at the land registry court il-
lustrated in Fig. 1 of Sect. 1. As governmental processes are typically very complex
[40], for reasons of simplicity, we use a flattened workflow for demonstration. We
use a UML [4] activity diagram to model the process flow. Each process activity con-
tains basic actions, the fundamental behavior units of an activity [4]. The business
process consists of different types of actions, namely service operations, data access
service operations, transformations, and human actions. The process starts when a
new jurisdictional application is received. Then, the ValidateApplication activity in-
vokes a service that checks the incoming jurisdictional application for correct syntax
and semantic. Successfully validated applications are saved by a flow of alternate
transformation activities and persistent data access activities. In case the validation
fails, neither data is stored nor the delivery is sent to the applicant. In order to store
data into the database by object relational mapping (ORM) mechanisms, the pro-
cess data need to be transformed into data objects. The activities transformDelivery
and transformPerson transform delivery and applicants process data respectively into
associated data objects. After executing each of these transformation activities, the
persistent data access activities insertDelivery and insertPerson respectively are in-
voked in order to persistently store the resulting data objects. Stored applications can
be executed by the registrar within the human process activity ExecuteApplication. If
the registrar approves the application, the service-based activity AccountFees will be
invoked. As a dismissed application is free of charge, the service operation Account-
Fees is never invoked in case of dismissal. After accounting the fees, the registrar
has to select whether the approval or dismissal shall be delivered by the system. De-
pendent from the registrar’s decision, the approval or dismissal is delivered to the
applicant. For this purpose, the process activity ValidateDelivery checks the recipient
information for correctness and completeness before sending the delivery to the ap-
plicant. In case of successful validation, the two DAS operations updatePerson and
updateDelivery are invoked in order to store the recipient information persistently. If
the validation fails, the persistent data access activity selectPerson will return zero
rows. In this case, instead of updating the person, a new person has to be inserted by
invoking the persistent data access activity insertPerson. Finally, the service opera-
tion SendDelivery sends the delivery to the recipient by invoking an external service.

5 Our approach

In this section we present the basic idea of our persistent data access flow concept.
For this, we reuse the business process presented in the precedent case study Sect. 4.

On the left and on the right of Fig. 4, the resulting persistent data access flows from
the business process in the middle are shown. We define persistent data access flows
as control flows containing the persistent data access activities of the whole busi-
ness process flow. We differentiate simple persistent data access flows from filtered
persistent data access flows.

− Simple persistent data access flows are control flows containing all and only the
persistent data access activities of a business process.
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Fig. 4 Two persistent data access flows extracted from a business process flow

− Filtered persistent data access flows are control flows containing only those per-
sistent data access activities of a business process that match certain persistent
data access filter criteria.

On the left of Fig. 4, a simple persistent data access flow is depicted. On the right
of the figure, a filtered persistent data access flow is shown. The filtered persistent
data access flow in this example contains only those persistent data access activities
reading or writing data from table Person.

In this article we use DAS with underlying DAOs as example implementation.
However, our approach can be easily applied for other types of persistent data access
implementations. In the following we show how our persistent data access flows de-
picted on the left and on the right of Fig. 4 can be applied to enhance traceability and
documentation of persistent data access in process-driven SOAs. For this purpose,
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in the following Sect. 4, we present selected problems and solutions from different
stakeholders’ point of view, in particular from the perspective of data analysts, DAS
developers, and database testers.

6 Solving structural problems in business processes

In this section we illustrate how our persistent data access flow concept can be gen-
eralized to solve various data analysis problems. For this, we refer to the selected
problems introduced in Sect. 1. These problems reoccur in many cases for data ana-
lysts, DAS developers, and database testers when analyzing, developing, and testing
persistent data access in business processes. For each selected problem, we describe
how stakeholders can apply our persistent data access flow concept to solve it.

1. At first, we have a look at a typical data analysis problem. We show how our persis-
tent data access flow concept can ease the manual and automated data analysis in
process-driven SOAs. Our goal is not to reinvent deadlock detection, but instead
show how both manual and automatic deadlock detection in a complex process
model can be eased by applying the persistent data access flows. On top of our
approach existing data analysis solutions such as deadlock detection techniques
can be applied.

2. Secondly, we show how DAS developers can benefit from our view-based ap-
proach. The persistent data access flows can be applied to document the persistent
data access flows in a process. Furthermore, we illustrate how to detect design
weaknesses concerning persistent data access at the earliest possible state of the
development process [32]—in the modeling phase.

3. Thirdly, we describe how our approach provides database testers with appropriate
input/output data needed for test case generation and execution. Moreover, we ex-
plain how the persistent data access flow concept can improve the database testers’
documentation. Finally, we illustrate how our persistent data access flows support
testers in locating errors more quickly.

6.1 Problem & solution: deadlock detection

In process-driven SOAs usually a large number of process instances run in parallel
in a process-engine. These process instances often require access to competing data
resources such as data from an RDBMS. Deadlocks arise when process instances
hold resources required from each other. When none of these process instances will
lose control over its resources, a classic deadlock situation occurs [29]. There are
various deadlocks detection techniques in order to discover and resolve deadlocks.
One common method to resolve deadlocks are database transaction timeouts as used
by common database drivers such as the Java Database Connectivity (JDBC) driver
[41]. Accordingly, after the timeout expired, process instances lose control over the
held resources.

A process can perform some transformations, invoke service operations, and ac-
cess the database. In order to prevent, detect, and solve deadlocks, data analysts need
to focus on the persistent data access activities of a process. Moreover, stakeholders
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Fig. 5 Motivating example for manually detecting potential deadlock risks

have to make sure that the DAS operations of different process flow instances always
have to be processed in the same order such that no two DAS operations have to wait
for competing resources.

Manual deadlock detection with persistent data access flows In the following we
present how our approach can contribute to detect deadlocks in business processes by
using our persistent data access flow approach. Figure 5 displays the two persistent
data access flows of our business process. In order to identify the persistent data
access activities they are consecutively numbered.

All activities in a process flow instance are running in a transaction [42]. Con-
sider two process instances p1 and p2 running through the main process. P1 in-
serts a new row into table Delivery by performing the DAS operation DeliveryDAS.-
insertDelivery (1). At the same time p2 updates a row into table Person by performing
the DAS operation PersonDAS.updatePerson (4). Thus DAS operation DeliveryDAS.-
insertDelivery (1) holds table Delivery and DAS operation PersonDAS.updatePerson
(4) holds table Person. As a result, the DAS operation DeliveryDAS.updateDelivery
(6) cannot be executed because DAS operation DeliveryDAS.insertDelivery (1) holds
table Delivery. Likewise, the DAS operation PersonDAS.insertPerson (2) cannot be
executed because PersonDAS.updatePerson (4) holds table Person. This is the classic
deadlock situation. In Fig. 5, this deadlock situation is displayed by the intersecting
arrows on the left hand side and, concomitantly, the non-intersecting arrows on the
right hand side.

As shown in Fig. 5, the persistent data access flow on the left hand side simply con-
sists of two DAS operations. The first DAS operation DeliveryDAS.insertDelivery (1)
inserts delivery data into table Delivery. Afterwards the DAS operation PersonDAS.-
insertPerson (2) inserts person data into table Person. The persistent data access
flow on the right hand side of the figure consists of a DAS operation PersonDAS.-
selectPerson (3) that selects a row from table Person using certain filter criteria. If the
result set is empty, a new row will be inserted into table Person by the DAS operation
PersonDAS.insertPerson (5). Otherwise the retrieved row in table Person is updated
by the DAS operation PersonDAS.updatePerson (4). Finally a row in table Delivery
is updated by the DAS operation DeliveryDAS.updateDelivery (6).
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Without our persistent data access flow concept, analysts cannot solely focus on
the persistent data access activities of the process, but must consider many other
concerns at the same time. Therefore, especially if a large number of different types
of activities is used in a flow model, manual deadlock detection will be an exhaustive
and time-consuming task. Our approach is to provide a specific persistent data access
flow that enables data analysts to focus only on the relevant information helpful for
detecting deadlocks. In particular, our approach supports a visual solution to already
eliminate potential deadlock risks at the modeling level. The same can be assessed
for any other manual data analysis task in process-driven SOAs. Furthermore, on top
of our approach, common deadlock detection techniques (such as [31–33]) can be
performed.

Automatic deadlock detection with persistent data access flows In some cases, we
want to go beyond manual data analysis in process-driven SOAs. The persistent data
access flows enable us to easier implement algorithms for static deadlock detection
in distributed database systems: As explained in the example above (see Fig. 5), a
deadlock can occur, when data resources in different persistent data access flows are
accessed in a different order. Thus in order to detect possible deadlocks, we need
to check the order in which database tables are accessed in each of these persistent
data access flows. For this, we need to consider the paths of all persistent data access
flows of the process. Accordingly, a possible deadlock algorithm compares the order
in which database tables are accessed in one path p1 with the order in which tables
are accessed in another path p2. This pair-wise comparison needs to be done for each
possible path of the persistent data access flows of a process.

6.2 Problem & solution: design weakness detection

In process-driven SOAs, at first, DAS developers have to become acquainted with the
process flows including business logic activities, transformation activities, and persis-
tent data access activities. In particular, they need a general overview of the persistent
data access flows of the process e.g. they need to know which tables are accessed by
a certain DAS operation. These persistent data access flows are in particular impor-
tant for developers who need to review the developed database transactions in case of
troubleshooting or analysis of performance leaks.

Secondly, in integrated development environments (IDE) such as Eclipse [43], it
is possible to search for modules that invoke a certain DAS operation. However, in a
process flow of different types of activities, to search for specific DAS operations can
be a time-consuming task. Accordingly, in contrast to our approach, in common IDEs
it is not possible to extract a list of DAS operations accessing a specific database table
or database table column.

Thirdly, the persistent data access flow enables DAS developers to easily discover
inefficient persistent data access flow. Figure 6 shows an example of such an ineffi-
cient persistent data access flow before and after redesigning it. When we look at the
flow on the left hand side of the figure, we can easily recognize that eliminating the
DAS operation DAS1.select could reduce the number of statements during process
execution. The reason for this is that the update operation DAS1.update anyway re-
turns the number of updated data sets. After redesign, we can see the resulting flow
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Fig. 6 Motivating example for detecting inefficient persistent data access flows

on the right hand side of Fig. 6. There are various performance measuring tools used
to discover performance leaks at runtime. However we provide a visual approach to
detect inefficient source code at the earliest possible state of the development pro-
cess [32]. Our approach is not limited to the example above. It rather can be applied
to solve many other types of structural problems in business processes.

6.3 Problem & solution: test case generation

One major task during testing a process is to check whether data is correctly stored
and retrieved from a central storage. For this purpose, test cases have to be created,
tested, and executed, and finally, the results need to be examined [44]. In the follow-
ing, we concentrate on creating test cases at two different levels:

1. Test cases for single persistent data access activities: Each persistent data access
activity will have to be checked whether data is correctly stored and accessed.
Each persistent data access activity can be tested independently from the whole
process. In order to create, test, and execute these test cases respectively, testers
require necessary input and output data for each path of the process [28] (see
Fig. 7). In order to provide appropriate input and output data, they need the in-
formation which tables are accessed by a specific DAS operation. Our approach
enables extracting persistent data access flows by different filter criteria, such as
extracting persistent data access flows containing only those activities accessing a
specific column of a database table.

2. Test cases for transactions: All persistent data access activities of a process are
running within a transaction. For each possible path in this transaction, a test case
has to be created, tested, and executed in order to verify the correctness of each
path. Figure 7 exemplifies these different paths both of the process flow and of
the associated persistent data access flow. The bold arrows mark a specific path
within the process flow. In order to create, test, and execute cases for transactions,
testers have to overview the overall persistent data access flows of a process. For
this purpose, data test developers need a documentation of these modeled persis-
tent data access flows. However, from our experience, in industry, persistent data
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Fig. 7 Motivating example for testing persistent data access of a process flow

access flows are not documented. Furthermore, even if such kind of documen-
tation existed, the problem of updating this documentation in a timely manner
would remain. ‘The only notable exception is documentation types that are highly
structured and easy to maintain, such as test cases and inline comments’ [45]. As
our persistent data access flows follow the MDD [46] paradigm, there is no gap
between specification and development. In particular, the effort to update the spec-
ification to be synchronized with the newly implemented data access activities is
not necessary. The persistent data access flow concept provides such kind of doc-
umentation implicitly and thus enables testers to gain a better understanding of
the persistent data access flows of a process. As shown in Fig. 7, with our per-
sistent data access flows, database testers can easily overview the persistent data
access activity paths of a process. Finally, due to the improved persistent data ac-
cess documentation, we argue that using the persistent data access flow concept
can decrease the participation of the different stakeholders during test case design.

Moreover, our persistent data access flow concept enables testers to locate errors
more quickly when a specific test case asserting persistent data access fails [27].
Accordingly, testers will be able to verify the particular path of the flow and thus
will more efficiently determine the failure reason e.g. if the failure is due to an error
within the process, the test case or the provided input data. During the run, a log
handler can log each persistent data access activity performed during the process.
With this information, the error causing persistent data access activities can be easily
retrieved by reconstructing the entire path of the persistent data access flow.

7 Solution: model-driven specification, integration, extraction

In this section we prove the technical feasibility of our approach. Our model-driven
solution is based on the View-based Data Modeling Framework (see Sect. 3.3). Our
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Fig. 8 VbDMF flow view
model

highly structured models are used as the modeling basis for extracting our flattened
persistent data access flows. In the following we present the necessary steps to be
taken in order to implement our persistent data access flow concept.

− Specification of persistent data access activities.
− Integration of persistent data Access activities with persistent data access imple-

mentation details.
− Extraction of persistent data access flows from whole process flows.

7.1 Specification

In Sect. 3.3 we already provided a general overview of our View-based Modeling
Framework (VbMF) and View-based Data Modeling Framework (VbDMF). Now, we
present our VbDMF Flow View model that is used to define the data access activities
of a process flow. As shown in Fig. 8, our VbDMF Flow View model is extended
from the basic VbMF Flow View model.

The VbDMF Flow View consists of a separate persistent data access task Atomic-
DASTask extended from the basic AtomicTask of the VbMF Flow View. The VbMF
AtomicTask class is a specialization of the VbMF Task class. The new AtomicDAS-
Task allows stakeholders to structurally modeling persistent data access in business
processes. On the basis of this new simple model, we can link a business process
activity with persistent data access implementation details. In the following Sect. 7.2,
we describe how stakeholders can associate each AtomicDASTask of the VbDMF
Flow View with the definition of a corresponding DAO operation of the VbDMF
DAO View.

7.2 Integration

As explained in Sect. 3.3 views can be enriched by the mechanism of view integra-
tion. In this article we enhance the concept of view integration by introducing view
integration paths, which we use to trace implementation details of process activities
among different views.

In Fig. 3, we have basically outlined the (directed) view integration dependencies
between the different VbMF/ VbDMF views. By the mechanism of view integration,
persistent data access activities of a business process can be integrated with their
persistent data access implementation details. In example, the Collaboration DAO
Mapping View integrates the Collaboration View and the DAO View. The DAO View,
in turn can integrate two views, namely the ORM View and the Data Object Type
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View. Finally, the ORM View can integrate the Physical Data View and the Data
Object View views. In order to check if a process activity reads or writes from a
certain database table, the Flow View needs to be integrated with the Physical Data
View. However, as depicted in Fig. 3, these two views are not connected directly.
Thus, we have to establish an integration path between these two views.

In order to establish such an integration path from the source view i.e. the Flow
View to the target view i.e. the Physical Data View, many views need to connected.
When integrating views to establish an integration path, the target view of the last
view integration always becomes the source view of the next view integration. Within
a view integration, we define the connection point in the source view as start integra-
tion point and the connection point in the target view as end integration point. In
order to illustrate the concept of view integration paths, Fig. 9 shows an integration
path of four view integrations. The views are depicted in XMI notation.

− The first view integration combines the Flow View with the Collaboration
DAO Mapping View. In this view integration, the entity AtomicDASTask DAS-
Delivery.insertDelivery of the Flow View acts as start integration point S1 and
the entity AtomicDASTask DASDelivery.insertDelivery of the Collaboration DAO
Mapping View acts as end integration point E1. The Collaboration DAO Map-
ping View maps DAS operations to DAO operations e.g. it maps the DAS op-
eration DeliveryDAS.insertDelivery of the Flow View to the DAO operation
DeliveryDAO.insert of the DAO View. Instead of using the Collaboration DAO
Mapping View, the Flow View can also be integrated with the DAO View directly
by using the VbMF/VbDMF’s mechanism of view integration. However, in this
case, as we use a name-based matching algorithm for view integration, the DAO
operations and the DAS operations would have to be named identically.

− The second view integration pair (S2,E2) combines the AtomicDASTask Delivery-
DAO.insertDelivery entity of the Collaboration DAO Mapping View with the
DAO operation DeliveyDAO.insertDelivery entity of the DAO View.

− The third view integration combines the DAO View with the ORM View in order
to get information about the associated database tables. Each DAO Operation of
the DAO View contains DAO Input Parameter Types and DAO Output Parameter
Types. Each parameter type can be mapped to corresponding Data Object Types
of the ORM View. In our example, the input parameter type DeliveryDO of the
DAO View can be mapped to the correspondent entity DeliveryDO of the ORM
View. In this view integration, the entity DeliveryDO of the DAO View acts as
start integration point S3 and the entity DeliveryDO of the ORM View acts as end
integration point E3.

− The fourth view integration pair (S4,E4) combines the DeliveryTable entity of
the ORM View with the DeliveryTable entity of the Physical Data View. This is
possible, because the ORM View maps Tables and Table Columns of the Physical
Data View to Data Object Types and Data Object Member Variables of the Data
Object Type View.

After illustrating the concept of view integration paths, we provide general defini-
tions of the underlying terms.
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Fig. 9 VbDMF integration path

Definition 1 Let V1 and V2 be two views. If entity S ∈ V1 matches entity E ∈ V2 and
entity E ∈ V2 matches entity S ∈ V1, then S is defined as the start integration point
and E is defined as the integration end point. Then, V1 is defined as the source view
and V2 is defined as the target view of this view integration.
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Definition 2 Let V1 be a view, and M1 be the model of V1, such as V1 =
instanceOf (M1). A start integration point S1 ∈ V1 corresponds to an integration end
point E1 ∈ V1 when one of the following conditions is true:

− S1 ≡ E1
− E1 is a super element of S1
− Let MC1 be a mapping container entity ∈ M1 with S1instanceOf (MC1) and

E1instanceOf (MC1).

Definition 3 Let Vi , i ∈ 1..n be n views. A view integration path is a tuple of entity
pairs P(Si,Ei |i = 1..n − 1, Si ∈ Vi,Ei ∈ Vi+1) that meets the following conditions:
For each i ∈ 1..n − 1 ∃ Si ∈ Vi that matches an integration end point Ei ∈ Vi+1,
each integration end point Ei ∈ Vi+1 corresponds to a new start integration point
Si+1 ∈ Vi+1.

Next, we present our algorithms used to implement the definitions above. The
MatchFilterCriteria algorithm (see Algorithm 1) is the heart of our implementation
solution. It checks if a certain process activity matches given filter criteria by im-
plementing the concept of view integration paths. Algorithm 1 is a sub-algorithm of
our recursive elimination algorithm RecursiveClean (Algorithm 4), which we will
present in Sect. 7.3. Algorithm 1 consists of three basic functions:

Algorithm 1: MatchFilterCriteria()
Input: Entity integrationStartPoint ∈ FlowView
Input: View searchView
Input: Entity searchEntity

1 sourceView = FlowView;
2 if (NOT(searchView == NULL)) then
3 while (NOTsourceView.equals(searchView)) do
4 targetView = getNextView(sourceView, searchView);
5 integrationEndPoint = getIntegrationEndPoint(integrationStartPoint, targetView);
6 if (NOT(searchView.equals(targetView))) then
7 integrationStartPoint =

RecursiveGetIntegrationStartPoint(integrationEndPoint, targetView);
8 sourceView = targetView;
9 return (RecursiveMatchEntity(integrationEndPoint, searchEntity));

− getNextView(View sourceView, View targetView) The function getNextView simply
returns the next related view based on the sourceView and the targetView. The
function returns the next view based on the view integration dependencies de-
picted in Fig. 3. This function NextEntity is comparably simple and is not further
illustrated.

− getIntegrationEndPoint(Entity startEntity, View targetView) In order to connect a
source view with a target view, the start integration point of the source view need
to be integrated with an end integration point of the target view. In our prototype
implementation, the algorithm finds the corresponding integration end point in
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Algorithm 2: RecursiveGetIntegrationStartPoint()
Input: Entity currentEntity
Input: View targetView

1 integrationEndPoint = GetIntegrationEndPoint(currentEntity, targetView);
2 if NOT(integrationEndPoint == NULL) then
3 return integrationEndPoint;
4 else
5 if (hasChildren(currentEntity)) then
6 foreach (Entity childEntity ∈ entity.children()) do
7 return RecursiveGetIntegrationStartPoint(childEntity, targetView);
8 else
9 Entity parent = getParent(currentEntity);

10 if (parent instanceof MappingContainer) then
11 foreach (EntitychildEntity ∈ parent.children()) do
12 if (NOT(childEntity.equals(currentEntity))) then
13 return childEntity;
14 return NULL;

the target view based on name-matching [10]. As the name-matching algorithm is
sufficient for our prototype implementation, we do not provide further implemen-
tations to find matching entities in the target view in this article.

− RecursiveGetIntegrationStartPoint(Entity oldEntity, View sourceView) Based on
the end integration point of the previous view integration, this Algorithm 2 can
calculate the start integration point of the next view integration. The target view
of the last view integration becomes the source view of the next view integration.
Thus, the old end integration point is in the same view as the new start integration
point. Algorithm 2, the heart of our integration path calculation, requires the sim-
ple recursive sub-algorithm RecursiveMatchEntity (Algorithm 3) to check if the
integration end point of the target view contains or matches given search criteria.

Three parameters are passed to Algorithm 1: A parameter integrationStartPoint
of the Flow View, which initially is the persistent data access activity, and the fil-
ter criteria to be checked represented by the view searchView containing the entity
searchEntity. As defined above, a view integration path consists of pairs of a start in-
tegration entity and end integration entity. Each start integration entity belongs to the
source view and each end integration entity belongs to the target view. Accordingly, at
first, a variable sourceView is initialized within the Flow View. As long as the current
sourceView does not equal the searchEntity entity of the searchView, the functions
getNextView and getIntegrationEndPoint, and RecursiveGetIntegrationStartPoint are
invoked. The function RecursiveGetIntegrationStartPoint is invoked as long as the
variable targetView does not equal the variable searchView.

In the following we describe the algorithm RecursiveGetIntegrationStartPoint (Al-
gorithm 2) used to get the start integration point of the current view integration. The
input parameters currentEntity and targetView are passed to Algorithm 2. According
to Definition 2, there are three possibilities how to find a start integration point for the
next view, the new start integration point either is the last end integration node, or the
new start integration point is part of a Matching Container, or the new start integra-
tion point is a child of the last end integration node. According to the first possibility,
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the function GetIntegrationEndPoint checks if the current start integration point of
the currentView matches a corresponding end integration point in the target view. If
the start integration point matches a corresponding end integration point, a new start
integration point is found. Otherwise, the new start integration point is either part of
a Matching Container or it becomes a child entity of the current entity. In both cases,
the RecursiveGetIntegrationStartPoint algorithm invokes itself recursively to check
if the new start integration point matches an end integration point.

Algorithm 3: RecursiveMatchEntity()
Input: Entity currentEntity ∈ View currentView
Input: Entity searchEntity ∈ View currentView

1 if (currentEntity.equals(searchEntity)) then
2 return TRUE;
3 if (hasChildren(currentEntity)) then
4 foreach Entity childEntity ∈ entity.children() do
5 RecursiveMatchEntity(childEntity);
6 return FALSE;

Finally, the simple recursive algorithm RecursiveMatchEntity (Algorithm 3) is in-
voked in order to check if the integration point in the target view matches the given
search criteria. For this purpose, two parameters are passed to Algorithm 1. Firstly,
the entity currentEntity is to be checked against certain filter search criteria. Secondly,
the entity searchEntity specifies this filter criteria. The algorithm firstly checks if the
entity searchEntity equals currentEntity by name-based matching. If this is true, the
business process activity matches the filter criteria. If currentEntity has children, for
each child, the algorithm invokes itself recursively.

An unsolved problem still is how to extract the persistent data access flows from
the whole Flow View. In the following we present an algorithm calculating a flattened
Flow View, defined as the DAS Flow View.

7.3 Extraction

In the following we present our algorithm used to extract the DAS Flow View from
the whole Flow View. Due to our model-driven view-based approach we can filter
data access activities by specific search criteria, such as tables, columns, DAOs, data
objects etc. As a result our extracted persistent data access flows can contain only
those activities accessing a specific table of a database.

Before we define the algorithm to extract persistent data access flows from the
whole process flow, in the context of VbDMF, we provide the following definition:

Definition 4 The VbDMF view incorporating the persistent data access flow is a
VbDMF DAS Flow View. This VbDMF DAS Flow View is an extraction of the Flow
View. This DAS Flow View only contains the AtomicDASTasks of the process flows.
Each AtomicDASTask matches an associated DAO Operation of the DAO View.
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Algorithms for global data flow analysis fall into two major classes: iterative al-
gorithms and elimination algorithms [25]. In iterative algorithms, the equations are
repeatedly evaluated until the evaluation converges to a fixed point. Elimination al-
gorithms compute the fixed point by decomposition and reduction of the flow graph
to obtain subsequently smaller systems of equations. We settled for a recursive elim-
ination algorithm and present our simple recursive elimination algorithm Recursive-
Clean (Algorithm 4) to extract the DAS Flow View from the Flow View. Algorithm 4
contains the sub-algorithm Algorithm 1 which is the heart of our recursive elimina-
tion algorithm RecursiveClean.

Algorithm 4: RecursiveClean()
Input: Task task ∈ FlowView
Input: View searchView
Input: Entity searchEntity

1 if (hasChildren(task)) then
2 foreach Task childTask ∈ task.children() do

/* only process non-data-related tasks */
3 if (!(childTask instanceof AtomicDASTask)) then
4 recursiveClean(childTask);
5 if (NOThasChildren(childTask)) then
6 task.removeChild(childTask);

/* only process data-related tasks */
7 else if (MatchFilterCriteria(childTask, searchView, searchEntity)) then
8 task.removeChild(childTask);
9 else if (!(task instanceof AtomicDASTask)) then

10 task = NULL;
11 else if (MatchFilterCriteria(childTask, searchView, searchEntity)) then
12 task = NULL;

In the following we explain our recursive elimination algorithm RecursiveClean
(Algorithm 4). The start Tasks of the Flow View are passed as mandatory input pa-
rameters to the algorithm. In addition, the optional input parameters searchView and
searchEntity are passed to the algorithm in order to filter DAS operations by certain
search criteria. After executing the algorithm, the persistent data access flow contains
only those DAS operations matching the entity searchEntity of the view searchView.
In order to filter persistent data access flows by more than one search criteria the
algorithm can be performed repeatedly. If the input task Task has children, for all
non-data-related entities, our recursive algorithm recursively steps into the different
paths of the tree view. A task Task can have children if its type is of Sequence, Par-
allel, Exclusive or Branch. For each non-data-related childTask of the current task,
the algorithm calls itself recursively. As explained before, a task is data-related if it
is of type AtomicDASTask. When stepping through a certain path, only the non-data-
related leaf-tasks are removed by recursion from the Flow View. Per default, tasks
of type AtomicDASTask must not removed, because they are part of our resulting
DAS Flow View. Likewise, tasks such as Sequence, Parallel, Exclusive and Branch
containing data-related entities must not removed as well, because they are also part
of the resulting DAS Flow View. The algorithm MatchFilterCriteria (Algorithm 1)



32 Distrib Parallel Databases (2013) 31:1–45

filters all data-related leaf-tasks of type AtomicDASTask provided that they do not
match the search criteria. In order to check if the current leaf-tasks match the search
criteria, the algorithm MatchFilterCriteria tries to establish a view integration path
to the entity searchEntity of the searchView. Hereby the current leaf-tasks act as in-
tegration points. If a view integration path is found, Algorithm 1 returns true. The
algorithm MatchFilterCriteria (Algorithm 1) has been described in detail before in
Sect. 7.2.

This recursive elimination algorithm can be reused for extracting other views such
as for extracting all service operations from the Flow View.

8 Applicability of the algorithms & tooling

In this section we show the applicability of the algorithms above and present a suit-
able tooling.

Firstly, we apply our algorithms to our process flow described in case study Sect. 4.
We extract both a simple and a filtered persistent data access flow:

− Extract simple persistent data access flows: When stakeholders want to test per-
sistent data access in process driven SOAs, they need a documentation about the
persistent data access activities in the business process. Our simple persistent data
access flow provides such a documentation. In the following we apply our al-
gorithms to extract the DAS Flow View from the whole process flow. For this
purpose, we invoke the recursive elimination algorithm RecursiveClean (Algo-
rithm 4) with the start Task of the Flow View in Fig. 4. The resulting Flow View
of this algorithm is a DAS Flow View that only contains data access activities. We
invoke the algorithm with the NULL value for the input parameters searchView
and searchEntity. Figure 10a shows the XMI notation of the extracted DAS Flow
View after invoking the algorithm.

− Extract filtered persistent data access flows: In case a deadlock occurs, data ana-
lysts want to check the business process for structural errors. For this purpose, they
can extract all the data access activities that read or write from a specific database
table. In our example the function MatchFilterCriteria of Algorithm 4 filters all

Fig. 10 Case Study: XMI notation of a simple and filtered persistent DAS flow view
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data access activities that do not access a specific table DeliveryTable. To establish
this, we set the input parameters searchView and searchEntity to the values Physi-
cal Data View and Table respectively. In addition, we set the attribute Table.name
to DeliveryTable. By view integration, we can filter those data access activities not
accessing the specific table DeliveryTable. For this purpose, the algorithm Recur-
siveMatchEntity (Algorithm 3) checks the searchEntity input parameter against
the DeliveryTable entity. If the entity DeliveryTable matches the current Table en-
tity, the concerned persistent data access activity is part of the resulting persistent
data access flow. Otherwise the persistent data access activity is filtered from the
Flow View. The resulting extracted DAS Flow View is shown in Fig. 10b. As a
result, only those data access activities accessing table DeliveryTable are part of
the DAS Flow View.

Use cases In the following, we give a few more use case examples fulfilled by
stakeholders developing and maintaining applications in large-scale enterprises. If a
certain use case occurs depends e.g. on the quality of the underlying business process
and non-functional requirements e.g. the availability of external dependencies such
as service providers and databases. These use cases mainly result from our study
of analyzing data access in service-oriented environments in a large enterprise and
secondly from analyzing literature in this field. They demonstrate how our persistent
data access flows can be applied to specific analysis problems. Each of these use cases
extracts a persistent data access flow from the whole process flow by different search
criteria.

− In case a deadlock occurs, in addition to selecting all persistent data access ac-
tivities accessing a specific database table, data analysts can further flatten the
resulting persistent data access flow. In example, they can extract all the data ac-
cess activities from the business process that read or write from a specific column
of a database table.

− In case a specific database fails, stakeholders such as DAS developers need a
documentation of which business process activities access a specific database. For
this purpose, they need to extract all the data access activities that read or write
from a specific database connection. In order to establish this, in addition to the
previous four view integrations, the Physical Data View needs to be integrated
with the Database Connection View.

− Let us consider the case that a certain service provider is shut down for any rea-
son. Then, stakeholders such as system architects need to determine the business
process activities invoking a service of the failed service provider. For this pur-
pose, stakeholders can extract only those data access activities from the whole
process flow which run on a certain URI Service.Uri.name. In order to establish
this, the algorithm MatchFilterCriteria integrates the DAS Flow View with the
Collaboration View.

Tooling In order to demonstrate applicability of our model-driven solution, we have
integrated our persistent data access flow algorithms into the Eclipse-based [43]
BPMS Intalio. Due to this tool integration, stakeholders can view the persistent data
access flows and trace persistent data access details of a business process. In particu-
lar, we provide the following functionalities:



34 Distrib Parallel Databases (2013) 31:1–45

1. Add data access service views to the process flow. Figure 11 shows a new menu
item in the process flow’s context menu for adding relevant data access service
views. After clicking this item, developers can select the VbDMF views, specify-
ing the data access services of the business process, in a file chooser. Afterwards,
a new directory (vbdmf_diagram_name) with the selected views is created in the
project folder. As a result, stakeholders can inspect the VbDMF views which are
shown bottom right of Fig. 12. By these views, stakeholders can view persistent
data access details of persistent data access activities such as physical storage
tables, database connections, object-relational mappings, and data access object
types. In Fig. 12, a character is displayed top right of each view, which refers to a
description below.
(a) The Collaboration View specifies the service operation definitions of the DAS

operations.
(b) The DAO Collaboration Mapping View maps data access service (DAS) to

underlying data access object (DAO) definitions.
(c) The DAO View models the underlying DAO operations of the DAS operations.
(d) The ORM View maps data object types of the Data Object Type View to

physical database tables of the Physical Data View.
(e) The Data Object Type View specifies the data object types of the input and

output parameters of the DAO View.
(f) The Physical Data View defines the tables and columns of an RDBMS and

integrates the Database Connection View.
2. Generate persistent data access flows Based on the selected views, developers can

generate simple and filtered persistent data access flows of a process flow. In both
cases, they use the filter view displayed in Fig. 12. The Persistent Data Access
Flow Filter View generates persistent data access flows for the selected process
flow in the process explorer. In order to generate a simple persistent data access
flow, stakeholders select the check box ‘No Filter Criteria’ and simply press the
Generate button within the filter view. In order to produce a filtered persistent data
access flow, stakeholders select filter criteria from the list. After pressing the but-
ton ‘Generate’, the recursive elimination algorithm RecursiveClean (Algorithm 4)
is invoked with or without filter criteria arguments. In the example we set the fil-
ter criteria to PhysicalDataView.table.name = DeliveryTable to filter all persistent
data access activities from the flow that do not match table DeliveryTable. As soon
as the button ‘Generate’ is pressed, Algorithm 4 is invoked with the input param-
eter values Physical Data View, Table, and DeliveryTable. Top right of Fig. 12 the
resulting filtered persistent data access flow is shown that solely consists of the
persistent data access activities reading or writing from table DeliveryTable.

Implementation details In the following we describe the implementation details of
integrating the persistent data access flows into the Intalio BPMS. Figure 13 illus-
trates the necessary implementation steps. Each of the three implementation steps
requires some input and generates output files. In the figure, the gray-labeled boxes
depict the generated output files whereas the white-labeled boxes denote existing in-
put (files).
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Fig. 13 Tool integration

− Transform BPEL to VbMF: In order to being able to apply our algorithm to persis-
tent data access flow, we need to transform the Intalio-generated BPEL flow into
VbMF views. Whenever saving a BPMN diagram, the concerning BPEL source
code is generated into the build folder of the project (shown top left of Fig. 12). On
top of this Intalio-generated BPEL code, we have implemented a java-based trans-
formation that translates a BPEL file into VbMF views, namely the BPEL Flow
View, BPEL Collaboration View, and BPEL Information View. After generating
the views, they are also saved in folder vbdmf_diagram_name.

− Execute Algorithm RecursiveClean(): The generated VbMF views BPEL Flow
View, BPEL Collaboration View, and BPEL Information View as well as other
data-related VbDMF views from the folder vbdmf_diagram_name are read by
our recursive elimination algorithm RecursiveClean. In addition, the algorithm is
fed with filter criteria specified in the Persistent Data Access Flow Filter View.
The result of the algorithm is the BPEL DAS Flow View.

− Transform VbDMF to BPMN: Finally, we have to generate the BPMN code from
the BPEL DAS Flow View. Besides the DAS Flow View, the transformation en-
gine reads the BPEL Collaboration View and the BPEL Information View in order
to transform BPEL messages and partner links to BPMN notation. In literature,
there are very few approaches to map BPEL to BPMN. Weidlich et al. [47] discuss
the limitations and pitfalls of such a BPEL-to-BPMN-mapping. However, in our
prototype implementation we concentrate on mapping simple BPEL processes.

9 Evaluation

In this section we want to discuss both the correctness and complexity of the pre-
sented algorithms.

Correctness Here, we discuss the correctness of the algorithm MatchFilterCriteria
(Algorithm 1) using induction. The MatchFilterCriteria algorithm is the heart of our
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recursive elimination algorithm that is used to implement our view integration path
concept.

Hypothesis Let V Ti be the ith target view and V Si+1 be the (i + 1)th source view
of a view integration path. The algorithm is correct if the target view V Ti equals the
source view V Si+1 ∀ 2 < i < n.

Algorithm 5 illustrates a reduced MatchFilterCriteria algorithm that contains the
relevant lines of the while loop necessary to prove the hypothesis. In this reduced
MatchFilterCriteria algorithm we use the following variables: V Si denotes the ith
source view of a view integration path, V Ti denotes the ith target view of a view
integration path. Accordingly, Si ∈ V Si denotes the start integration point of a view
integration and Ei ∈ V Ti denotes a end integration point of a view integration.

Algorithm 5: Reduced MatchFilterCriteria Algorithm
1 while (NOTVSi .equals(searchView)) do
2 targetView = getNextView(VSi , searchView);
3 Ei = getIntegrationEndPoint(Si , targetView);
4 if (NOT(searchView.equals(V Ti))) then
5 Si+1 = RecursiveGetIntegrationStartPoint(Ei ,V Ti );
6 VSi+1 = VTi ;

Let i be the number of while loop cycles of Algorithm 1. The number of while
loop cycles equates the number of views in the view integration path. ∀0 < i < 2 the
hypothesis is false, because a view integration path must have at least two views in
order to fulfill the hypothesis:

1. i = 1: S1 ∈ V S1, T1 = NULL

2. i = 2: S1 ∈ V S1, T1 ∈ V T1

Base Case: i = 3: S1 ∈ V S1, T1 ∈ V T1, S2 ∈ V S2, V S2 = V T1, T2 ∈ V T2
Inductive Step: Let V Si = V Ti−1 be true ∀2 < i < n:
S1 ∈ V S1, T1 ∈ V T1, . . . , Sn−1 ∈ V Sn−1, Tn−1 ∈ V Tn−1, Sn ∈ V Sn, V Sn = V Tn−1,
Tn ∈ V Tn.

Now, we show that the hypothesis is true ∀ 2 < i < n + 1:
S1 ∈ V S1, T1 ∈ V T1, . . . , Sn−1 ∈ V Sn−1, Tn−1 ∈ V Tn−1, Sn ∈ V Sn, V Sn =

V Tn−1, Tn ∈ V Tn, S(n) ∈ V Sn, T (n) ∈ V Tn, Sn+1 ∈ V Sn+1, V Sn+1 = V Tn, Tn+1 ∈
V Tn+1. From this it follows that ∀ 2 < i < n+1: V Si+1 = V T(i+1)−1 = V Ti . Hereby
we have proven that our hypothesis is true.

Complexity In the following we quantitatively measure the complexity of the pre-
sented algorithms using the Big O notation. We evaluate each of our algorithms sep-
arately before we will derive the overall performance from the parts.

Formally, the algorithm f (n) is equivalent to O(g(n)) for all n > 0, if there exists
a constant c > 0, such that f (n) = c ∗g(n). Tables 2, 3, 4, and 5 summarize the com-
plexity of the presented algorithms. The complexity of each algorithm is presented in
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Table 2 Complexity of algorithm RecursiveGetIntegrationStartPoint (Algorithm 1)

Line # Line of algorithm Complexity of line Max. # of invocations

1 integrationEndPoint =
GetIntegrationEndPoint
(currentEntity,targetView)

O(n) k

2 If(NOT(integrationEndPoint == NULL)) O(1) k

3 RETURN (integrationEndPoint) O(1) k

4 Else

5 If (hasChildren(currentEntity)) O(1) k

6 ForEach(Entity childEntity ∈ entity.children()) O(1) k

7 RETURN (RecursiveGetIntegrationStartPoint
(childEntity,targetView))

O(1) k

8 Else

9 Entityparent = getParent(currentEntity) O(1) k

10 If(parent instanceof MappingContainer) O(1) k

11 ForEach(EntitychildEntity ∈ parent.children()) O(1) k

12 If(NOT (childEntity.equals(currentEntity))) O(1) k

13 RETURN childEntity O(1) k

14 RETURN NULL O(1) k

Table 3 Complexity of algorithm RecursiveMatchEntity (Algorithm 2)

Line # Line of algorithm Complexity of line Max. # of invocations

1 If (currentEntity.equals(searchEntity)) O(1) k

2 RETURN TRUE O(1) 1

3 If (hasChildren(currentEntity)) O(1) k

4 Else

5 ForEach(Entity childEntity ∈ entity.children()) O(1) k

6 RecursiveMatchEntity(childEntity) O(1) k

7 RETURN FALSE O(1) 1

a separate table. In each table, the line number, the complexity of each line, and the
maximum number of invocations are displayed. First, in Tables 2 and 3 the complex-
ity of the algorithms RecursiveGetIntegrationStartPoint and RecursiveMatchEntity
are illustrated. As these two algorithms are invoked by algorithm MatchFilterCrite-
ria, next, Table 4 shows the complexity of the algorithm MatchFilterCriteria. Finally,
Table 5 displays the complexity of the algorithm RecursiveClean which invokes the
algorithm MatchFilterCriteria. In the sub tables, we use the following literals: v to
refer to the number of views in a view integration path, n to denote the number of
elements within a view, and the constant k to denote the number of child elements
within an integration element within a view. For example, The input parameter Deliv-
eryDO of the DAOView is a child entity of the DeliveryDAO.insert integration point.
The number of persistent data access activities within the Flow View is denoted by d .
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Table 4 Complexity of algorithm MatchFilterCriteria (Algorithm 4)

Line # Line of algorithm Complexity of line Max. # of invocations

1 sourceView = FlowView O(1) 1

2 if (NOTsearchView == NULL) O(1) 1

3 while
(NOTsourceView.equals(searchView))

O(1) v

4 targetView =
getNextView(sourceView, searchView)

O(1) v − 1

5 integrationEndPoint =
getIntegrationEndPoint
(integrationStartPoint, targetView)

O(n) v − 1

6 if (NOT(searchView.equals(targetView)))

then
O(1) v − 1

7 integrationStartPoint =
RecursiveGetIntegrationStartPoint
(integrationEndPoint, targetView)

O(1) v − 2

8 sourceView = targetView O(1) v − 1

9 RETURN (RecursiveMatchEntity
(integrationEndPoint, searchEntity))

O(1) 1

Table 5 Complexity of algorithm RecursiveClean (Algorithm 3)

Line # Line of algorithm Complexity of line Max. # of invocations

1 If ((hasChildren(task))) O(1) n

2 ForEach(Task childTask ∈ task.children()) O(1) n

3 If((!(childTask instanceof
AtomicDASTask)))

O(1) n

4 recursiveClean(childTask) O(1) n − d

5 If((NOT hasChildren(childTask))) O(1) n − d

6 task.removeChild(childTask) O(1) n − d

7 ElseIf(MatchFilterCriteria)
(childTask, searchView, searchEntity))

O(d) d

O(d) d

8 task.removeChild(childTask) O(1) d

9 ElseIf (!(task instanceof AtomicDASTask)) O(1) n − d

10 task = NULL O(1) n − d

11 ElseIf(MatchFilterCriteria)
(childTask, searchView, searchEntity))

O(d) d

12 task = NULL O(1) d

Table 2 depicts the complexity of the recursive algorithm RecursiveGetInte-
grationStartPoint (Algorithm 2). The algorithm RecursiveGetIntegrationStartPoint
checks each entity of the view if if matches the current entity currentEntity. Thus,
the function RecursiveGetIntegrationStartPoint is of linear complexity O(n) and is
invoked at most m times, whereas m corresponds to the number of child elements of
entity currentEntity. However, the number of child elements m is not dependent on
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the number of process elements, because it is a constant factor. Therefore, the next
statements are also of constant complexity. As a result, the overall performance of the
algorithm RecursiveGetIntegrationStartPoint is linear.

Table 3 summarizes the complexity of the algorithm RecursiveMatchEntity (Algo-
rithm 2). As an entity has a constant number of child entities e.g. the entity Table has
a constant number of Columns. Therefore, the algorithm RecursiveMatchEntity is of
constant complexity.

Table 4 illustrates the complexity of Algorithm 4. The function getNextView, that
is not further specified, is of constant complexity, because, according to Fig. 3, it sim-
ply returns the next view by the current view. In contrast to the function getNextView,
the function getIntegrationEndPoint is dependent of the number of process elements
within a view. The function getIntegrationEndPoint determines a matching element
in the target view, that is the end integration point. Thus, the response time of this
function grows linearly with the number of view elements. The function Recursive-
MatchEntity checks if the current entity matches the search criteria. This function is
also of constant complexity. As a result, Algorithm 4 has an linear overall perfor-
mance.

Table 5 shows the complexity of the algorithm RecursiveClean. Each line in the
algorithm is invoked linearly with the number of process activity in the business pro-
cess. In particular, line 7 and 11 are invoked linearly with the number of persistent
data access activities within the business process. the lines 8 and 12 are only invoked
if the persistent data access activities do not match the filter criteria. Thus, the overall
performance of our recursive elimination algorithm RecursiveClean for the number
of persistent data access activities d > 0 is O(d2). If the number of persistent data ac-
cess activities within the business process d = 0, the worst case response time of the
recursive elimination algorithm RecursiveClean grows solely linear with the number
of process activities O(n).

In the following we summarize the resulting complexity of the algorithms.

− RecursiveGetIntegrationStartPoint: k ∗ O(n) + 11 ∗ k ∗ O(1) ≡ O(n)

− RecursiveMatchEntity: 4 ∗ k ∗ O(1) + 2 ∗ O(1) = (2 ∗ (2k + 1)) ∗ O(1) ≡ O(1)

− MatchFilterCriteria: (v − 1) ∗ O(n) + v ∗ O(1) + 2 ∗ (v − 1) ∗ O(1) + (v − 2) ∗
O(1) + 3 ∗ O(1) = (v − 1) ∗ O(n) + (4v − 1) ∗ O(1) ≡ O(n)

− RecursiveClean:

for d = 0: 3n∗O(1)+5∗ (n−d)∗O(1)+2d ∗O(d)+2d ∗O(1) ≡ 3n∗O(1)+
5 ∗ (n) ∗ O(1) ≡ O(n)

for d = n: 3n∗O(1)+5∗ (n−d)∗O(1)+2d ∗O(d)+2d ∗O(1) ≡ 3d ∗O(1)+
2d ∗ O(d) + 2d ∗ O(1) = 5d ∗ O(1) + 2d ∗ O(d) ≡ O(d2)

for 0 < d < n: 3n ∗ O(1) + 5 ∗ (n − d) ∗ O(1) + 2d ∗ O(d) + 2d ∗ O(1) ≡ 3 ∗
O(n) + 5 ∗ O(n − d) + 2 ∗ O(d) + 2 ∗ O(d2) ≡ O(n) + O(d2)

Today, XML is a popular standard data exchange format. Thus, in literature, there
is a variety of more efficient XML structural matching techniques [48, 49]. By us-
ing these structural matching techniques, the worst case complexity of our recursive
elimination algorithm O(n) + O(d2) for d > 0 can be reduced. However, the aim of
this section is to quantitatively show the feasibility and applicability of our approach,
which has been achieved well.
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10 Discussion

Different stakeholders such as business experts, architects, and developers have dif-
ferent requirements to a software system. According to the pattern of separation
of concerns [50], appropriate views must be provided to the different stakeholders.
However, in addition to these views, read-only sub-views extracted from these rich
views can facilitate tasks such as developing, and testing. Thus, besides view model
extension and view integration, we introduced a further mechanism in order to gen-
erate a resulting view: The mechanism to extract views from existing views. In this
connection we need to distinguish between editable and read-only views. The DAS
Flow View is an example of such a read-only view. The DAS Flow View cannot
be specified at modeling time, because usually connections have to be modeled in
the context of the whole business flow. Hence, these extracted views are typically
read-only views. Moreover, our DAS Flow View can be generated from the Flow
View on the fly. Thus the DAS Flow View does not have to be stored after adapting
the corresponding Flow View. This concept is comparable to the view concept in
database theory: A database view can output data stored in one more database tables.
When data in one of these database tables changes, the database view can output the
updated data by accessing them through the tables. The disadvantage of this on-the-
fly-generation is that the generation procedure needs to be performed each time when
selecting the DAS Flow View.

To the best of our knowledge, up-to-now these persistent persistent data access
flows are not used to solve development, testing and analysis problems, yet. With this
article, our goal is to present a visual solution for a series of persistent data access
problems. Accordingly, the specified use cases in Sect. 6 are just examples of how our
approach can be applied. Accordingly, in Sect. 6.1 we discover deadlocks by ensuring
whether the DAS operations are properly designed. However with our approach we
do not claim to discover a new approach for detecting deadlocks. The potential dead-
lock cause of two process-instances invoking intersecting DAS operations presented,
is just one of several possible causes for a deadlock. Other mistakes such as an incor-
rect transaction handling or database configuration can also increase the probability
of a deadlock. Instead, our persistent data access flow shall ease both manual and
automatic deadlock detection in a complex process model. On top of our approach
existing data analysis solutions such as deadlock detection techniques can be applied.

In the following we shortly state how our approach reduces the complexity of the
process in the context of the three presented use cases. Hereby we use the defini-
tions for process complexity specified in [51]. Four main metrics can be identified
to measure the complexity of a process: activity complexity, control flow complex-
ity, data-flow complexity, and resource complexity. The activity complexity of the
process simply calculates the number of activities a process has. The control flow
behavior of a process is affected by process constructs such as splits, joins, loops,
and ending and starting points. The data-flow and resource complexity perspectives
measure the complexity of data structures and the diversity of resources respectively.
With our approach, according to the concept of separation of concerns, we could re-
duce the number of activities of a flow. We achieved this by extracting persistent data
access flows consisting of simply data access activities. Thus we reduced the activity
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complexity of the process. Furthermore in the database testing use case, we resolved
one complex problem into a number of simpler problems by extracting the data paths
from a whole process flow. In this use case we could also decrease the control flow
complexity to a minimum value. This is because a data path contains no switch con-
structs. By our filtering mechanism, we could also reduce the data-flow complexity
and resource-complexity of business processes.

11 Conclusion and future work

Process flows contain different types of activities such as business logic activities,
transformation activities, and persistent data access activities. When the number of
activities grows, focusing on special types of activities of the process flow such as the
persistent data access activities is a time-consuming task. In this work we presented
a view-based, model-driven solution extracting persistent data access flows from the
whole process flow. By using these persistent data access flows, different stakehold-
ers such as data analysts, DAS developers, and database testers can focus on the
persistent data access activities of the process flows and to solve structural problems
in business processes. We illustrated how our tailored DAS Flow View concept can
improve data analysis, development, and testing by presenting selected use cases.
Each of these use cases is an example of how persistent data access flows can in-
crease efficiency and decrease the time to solve certain problems at the earliest state
of development. Our DAS Flow View can be further tailored by different filter crite-
ria such that the flow contains only those persistent data access activities reading or
writing data from a specific database table. We have demonstrated the applicability of
our approach by a suitable tooling. Furthermore, we have evaluated the feasibility by
showing the correctness and complexity of the presented algorithms. Apart from fo-
cusing on the persistent data access activities, our approach can be generally applied
to focus on any particular parts of the business process in a process-driven SOA.

However, further work is necessary to coping with other important requirements.
As the tools are what gives value to a concept, we continue focusing on developing
suitable tooling for persistent data access flows. Besides modeling data access activi-
ties, we will describe other important activities of the business process in more detail.
Accordingly, we concern ourselves with activity management e.g. specifying general
activity description interfaces and categorizing different types of activities, and devel-
oping new views. Furthermore, we will focus on source code re-engineering in order
to being able to exploit our approach when no view model instances are available.
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