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Building Infrastructure-as-a-Service (IaaS) applications today is a complex, repetitive, and error-prone en-
deavor, as IaaS does not provide abstractions on top of virtual machines. This article presents JCLOUDSCALE,
a Java-based middleware for moving elastic applications to IaaS clouds, with minimal adjustments to the
application code. We discuss the architecture and technical features, as well as evaluate our system with
regard to user acceptance and performance overhead. Our user study reveals that JCLOUDSCALE allows many
participants to build IaaS applications more efficiently, compared to industrial Platform-as-a-Service (PaaS)
solutions. Additionally, unlike PaaS, JCLOUDSCALE does not lead to a control loss and vendor lock-in.
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1. INTRODUCTION

In recent years, the cloud computing paradigm [Buyya et al. 2009] has provoked a
significant push towards more flexible provisioning of IT resources, including com-
puting power, storage, and networking capabilities. Besides economic factors, the core
driver behind this cloud-computing hype is the idea of elastic computing. Elastic ap-
plications are able to increase and decrease their resource usage based on current
application load, for instance, by adding and removing computing nodes. Optimally,
elastic applications are cost and energy efficient, while still providing the expected
level of application performance.

Elastic applications are typically built using either the Infrastructure-as-a-Service
(IaaS) or Platform-as-a-Service (PaaS) paradigm [Armbrust et al. 2010]. In IaaS, users
rent virtual machines from the cloud provider and retain full control (e.g., admin-
istrator rights). In PaaS, the level of abstraction is higher, as the cloud provider is
responsible for managing virtual resources. In theory, this allows for more efficient
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cloud application development, as less boilerplate code (e.g., for creating and destroy-
ing virtual machines, monitoring and load balancing, or application code distribution)
is required. However, practice has shown that today’s PaaS offerings (e.g., Windows
Azure, Google’s AppEngine, or Amazon’s Elastic Beanstalk) come with significant dis-
advantages, which render this option infeasible for many developers. These problems
include: (1) strong vendor lock-in [Dillon et al. 2010], as one is typically required to
program against a proprietary API; (2) limited control over the elasticity behavior of
the application (e.g., developers have very little influence on when to scale up and
down); (3) no root access to the virtual servers running the actual application code;
and (4) little support for building applications that do not follow the basic architectural
patterns assumed by the PaaS offering [Jayaram 2013] (e.g., Apache Tomcat–based
Web applications). All in all, developers are often forced to fall back to IaaS for many
use cases, despite the significant advantages that the PaaS model would promise.

In this article, we discuss an alternative model for building elastic cloud applica-
tions, based on our initial work in Leitner et al. [2012]. We introduce JCLOUDSCALE, a
Java-based middleware that eases the task of building elastic applications. Similar to
PaaS, JCLOUDSCALE takes over virtual machine management, application monitoring,
load balancing, and code distribution. However, given that JCLOUDSCALE is a client-side
middleware instead of a complete hosting environment, developers retain full con-
trol. Furthermore, JCLOUDSCALE supports a wider range of applications. JCLOUDSCALE

applications run on top of any IaaS cloud, making JCLOUDSCALE a viable solution to
implement applications for private or hybrid cloud settings [Sotomayor et al. 2009]. In
summary, we claim that the JCLOUDSCALE model is a promising compromise between
IaaS and PaaS, combining many advantages of both worlds.

We validate JCLOUDSCALE via a user study, comparing our model to both existing
IaaS (OpenStack and Amazon EC2) and PaaS (Amazon Elastic Beanstalk) systems.
We address the runtime performance impact of JCLOUDSCALE, as well as development
productivity and user acceptance. Our study results suggest that JCLOUDSCALE in-
creases developer productivity in comparison to pure IaaS solutions and, to a lesser
extent, to Elastic Beanstalk. Unlike Elastic Beanstalk, JCLOUDSCALE is more flexible,
does not lead to vendor lock-in, and can also be used in a private or hybrid cloud en-
vironment. However, our results also show that there still are technical issues in the
current prototype that need to be addressed. Further, our results show that, in its cur-
rent version, JCLOUDSCALE impacts performance in a noticeable manner. JCLOUDSCALE

is readily available as an open-source project on GitHub.

2. THE JCLOUDSCALE MIDDLEWARE

In the following, we introduce the main notions and features of JCLOUDSCALE.

2.1. Basic Notions

JCLOUDSCALE is a Java-based middleware for building elastic IaaS applications. The
ultimate aim of JCLOUDSCALE is to help developers facilitate implementation of cloud
applications (in the following referred to as target applications) as local, multithreaded
applications, without even being aware of the cloud deployment. That is, the target ap-
plication is not aware of the underlying physical distribution, and does not need to care
about technicalities of elasticity, such as program code distribution, virtual machine
instantiation and destruction, performance monitoring, and load balancing. This is
achieved with a declarative programming model (implemented via Java annotations)
combined with bytecode modification. To the developer, JCLOUDSCALE appears as an
additional library (e.g., a Maven dependency) plus a postcompilation build step. This
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Fig. 1. JCLOUDSCALE Overview.

puts JCLOUDSCALE in stark contrast to most industrial PaaS solutions, which require
applications to be built specifically for these platforms. Such PaaS applications are
usually not executable outside of the targeted PaaS environment.

The primary entities of JCLOUDSCALE are cloud objects (COs). COs are object instances
that execute in the cloud. COs are deployed to, and executed by, so-called cloud hosts
(CHs). CHs are virtual machines acquired from the IaaS cloud, which run a JCLOUD-
SCALE server component. They accept COs to host and execute on client request. The
program code responsible for managing virtual machines, dispatching requests to vir-
tual machines, class loading, and monitoring is injected into the target application as a
postcompilation build step via bytecode modification. Optimally, COs are highly cohe-
sive and loosely coupled to the rest of the target application as, after cloud deployment,
every further interaction with the CO constitutes a remote invocation over the network.
Figure 1(a) illustrates the basic operation of JCLOUDSCALE in an interaction diagram.
The gray boxes indicate code that is injected. Hence, these steps are transparent to the
application developer.

Figure 1(b) shows a high-level deployment view of a JCLOUDSCALE application. The
gray box in the target application JVM again indicates injected components. Note
that CHs are conceptually “thin” components, that is, most of the actual JCLOUDSCALE

business logics is running on the client side in the target application JVM. In its cur-
rent version, JCLOUDSCALE does not support target applications that are themselves
distributed. CHs consist mainly of a small server component that accepts requests
from clients, a code cache used for classloading, and sand boxes for executing COs. As
JCLOUDSCALE currently does not explicitly target multitenancy [Bezemer et al. 2010],
these sand boxes are currently implemented in a lightweight way via custom Java
classloaders. On the client side, the JCLOUDSCALE middleware collects and aggregates
monitoring data, and maintains a list of CHs and COs. Further, the client-side mid-
dleware is responsible for scaling up and down based on user-defined policies (see
Section 3.1).
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2.2. Interacting with Cloud Objects

Application developers declare COs in their application code via simple Java an-
notations. In the following, we refer to the minimal example given in Listing 1. A
more comprehensive example, which also includes a step-by-step tutorial, is available
online1.

As is the case for any object in Java, the target application can fundamentally in-
teract with COs in two different ways: invoking CO methods and getting or setting
CO member fields. In both cases, JCLOUDSCALE intercepts the operation, executes the
requested operation on the CH, and returns the result (if any) back to the target appli-
cation. In the meantime, the target application is blocked (more concretely, the target
application remains in an “idle wait” state while it is waiting for the CH response).
Fundamentally, JCLOUDSCALE aims to preserve the functional semantics of the target
application after bytecode modification. That is, every method call or field operation
behaves functionally identical to a regular Java program.

One exception to this rule is CO-defining classes that contain static fields and meth-
ods. Operations on those are by default not intercepted by JCLOUDSCALE for performance
reasons, as this would introduce a significant overhead even if the target application
reads only from such static fields. However, this potentially leads to a problem that we
refer to as JVM-local updates: if code executing on a CH (e.g., a CO instance method)
changes the value of a static field, only the copy in this CH’s JVM will be changed.
Other COs, or the target application JVM, are not aware of the change. Hence, in this
case, the value of the static field is tainted, and the execution semantics of the ap-
plication changes after JCLOUDSCALE bytecode injection. To prevent this problem and
preserve standard Java language semantics, static fields can be annotated with the
@CloudGlobal annotation (see Listing 1, Lines 4 and 5). Changes to such static fields
are maintained in the target application JVM, and all CH JVMs are operating on the
target application JVM copy via callback.

2.3. Handling JCLOUDSCALE Faults

Distributing applications with JCLOUDSCALE can potentially introduce faults that are
not apparent as long as the target application is executed locally. For instance, transient
network outages can mean that a subset of COs is temporarily not available, or a
terminated CH can lead to a permanent loss of COs. At this stage, JCLOUDSCALE does
not provide sophisticated features to deal with these situations. However, JCLOUDSCALE

notifies the target application via a custom exception type (JCloudScaleException) and
a more detailed exception message about such problems, allowing developers to deal
with these issues as required in the target application.

1https://github.com/xLeitix/jcloudscale/blob/master/docs/FirstSteps.md.
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Fig. 2. Autonomic elasticity.

Fundamentally, JCLOUDSCALE is most suitable for applications in which the loss of
individual COs or CHs is noncritical. This is in line with standard cloud architectures,
which typically promote designing for failure, for example, by adopting statelessness
and redundancy [Cito et al. 2015]. Built-in support for redundancy is not part of the
current JCLOUDSCALE release, but is part of our future research.

2.4. Remote Classloading

Whenever a CH has to execute a CO method, JCLOUDSCALE has to ensure that all
necessary resources (i.e., program code and other files, e.g., configuration files) are
available on that CH. In order to ensure freshness of the available code and to retrieve
missing files, we intercept the default class loading mechanism of Java and verify
that the code available to the CH is the same as the one referenced by the client.
If this is not the case, the correct version of the code is fetched dynamically from
the target application. In order to improve performance, CHs additionally maintain
a code cache, which is a high-speed storage of recently used code. This mechanism
allows JCLOUDSCALE to load missing or modified code efficiently and seamlessly for
the application only when necessary, thus simplifying application development and
maintenance. We discuss this process in more detail in Zabolotnyi et al. [2013].

3. SUPPORTING CLOUD ELASTIC APPLICATIONS

So far, we have discussed how JCLOUDSCALE transparently enables remoting in cloud
applications. We now explain how JCLOUDSCALE enables elastic applications.

3.1. Autonomic Elasticity via Complex Event Processing

One central advantage of JCLOUDSCALE is that it allows for building elastic applications
by mapping requests to a dynamic pool of CHs. This encompasses three related tasks:
(1) performance monitoring, (2) CH provisioning and deprovisioning, and (3) CO-to-
CH scheduling and CO migration. One design goal of JCLOUDSCALE is to abstract from
technicalities of these tasks, but still grant developers low-level control over elasticity
behavior.

An overview of the JCLOUDSCALE components related to elasticity and their interac-
tions is given in Figure 2. Conceptually, our system implements the well-established
autonomic computing control loop of monitoring-analysis-planning-execution [Kephart
and Chess 2003] (MAPE). The base data of monitoring is provided using event mes-
sages. All components in a JCLOUDSCALE system (COs, CHs, as well as the middleware
itself) trigger a variety of predefined lifecycle and status events, indicating, for instance,
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that a new CO has been deployed or that the execution of a CO method has failed. Ad-
ditionally, JCLOUDSCALE makes it easy for applications to trigger custom (application-
specific) events. Finally, events may also be produced by external event sources, such
as an external monitoring framework. All these events form a consolidated stream of
monitoring events in a message queue, by which they are forwarded into a complex event
processing (CEP) engine [Luckham 2002] for analysis. CEP is the process of merging a
large number of low-level events into high-level knowledge, for example, many atomic
execution time events can be merged into meaningful performance indicators for the
system in total.

Developers steer the scaling behavior by defining a scaling policy, which implements
the planning part of this MAPE loop. This policy is invoked whenever a new CO needs
to be scheduled, and is also responsible for deciding whether to deprovision an existing
CH at the end of each billing time unit. We provide a simplistic example in Listing 2.
This policy schedules COs in a round-robin fashion among existing CHs, and never
scales up. The policy terminates a host if it is unused (i.e., there are no COs deployed
at it) at the end of its billing time unit.

Clearly, most real scaling policies are more complex than the one in Listing 2. Using
the ClientCloudObject, IHostPool, and IHost APIs, developers are able to schedule the
provisioning of new CHs (optionally asynchronously), migrate existing COs between
CHs, and schedule COs to a CH. Often, these decisions will be based on monitoring data.
Hence, developers can define any number of monitoring metrics. Metrics are simple 3-
tuples <name, type, cep-statement>. CEP-statements are defined over the stream of
monitoring events. An example, which defines a metric AvgEngineSetupTime of type
java.lang.Double as the average duration value of all EngineSetupEvents received in
a 10-second batch, is given in Listing 3.

Monitoring metrics range from very simple and domain-independent (e.g., calculating
the average CPU utilization of all CHs) to application-specific ones, such as the example
given in Listing 3. Whenever the CEP-statement is triggered, the CEP engine writes
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Fig. 3. Monitoring event hierarchy.

a new value to an in-memory monitoring repository. Scaling policies have access to
this repository, and make use of its content in their decisions. In combination with
monitoring metrics, scaling policies are a well-suited tool for developers to specify how
the application should react to changes in its workload. Hence, sophisticated scaling
policies that minimize cloud infrastructure costs or that maximize utilization [Genaud
and Gossa 2011] are easy to integrate.

Finally, the cloud manager component, which can be seen as the heart of the JCLOUD-
SCALE client-side middleware and the executor of the MAPE loop, enacts the decisions
of the policy by invoking the respective functions of the IaaS API and the CH remote
interfaces (e.g., provisioning of new CHs, deprovisioning of existing ones, as well as the
deployment or migration of COs).

Figure 3 depicts the type hierarchy of all predefined events in JCLOUDSCALE. Dashed
classes denote abstract events, which are not triggered directly, but serve as classifica-
tions for groups of related events. All events further contain a varying number of event
properties, which form the core information of the event. For instance, for Execution-
FailedEvent, the properties contain the CO, the invoked method, and the actual error.
Developers and external event sources can extend this event hierarchy by inheriting
from CustomEvent, and writing these custom events into a special event sink (injected
by the middleware, see Listing 1). This process is described in more detail in Leitner
et al. [2012].

3.2. Deploying to the Cloud

As all code that interacts with the IaaS cloud is injected, the JCLOUDSCALE program-
ming model naturally decouples Java applications from the cloud environment to which
they are physically deployed. This allows developers to redeploy the same application
to a different cloud simply by changing the respective parts of the JCLOUDSCALE con-
figuration. JCLOUDSCALE currently contains three separate cloud backends, supporting
OpenStack-based private clouds, the Amazon EC2 public cloud, and a special local
environment. The local environment does not use an actual cloud at all, but simulates
CHs by starting new JVMs on the same physical machine as the target application.
Support for more IaaS clouds, for instance, Microsoft Azure’s virtual machine cloud, is
an ongoing activity. Moreover, we aim to introduce systematic testing to ensure reliable
deployment of CHs, which is a key requirement for elasticity [Hummer et al. 2013].

It is also possible to combine different environments, enabling hybrid cloud applica-
tions. In this case, the scaling policy is responsible for deciding which CO to execute
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Fig. 4. Supported deployment environments.

on which cloud. Figure 4 illustrates the different types of environments supported by
JCLOUDSCALE.

4. VALIDATION

As part of our validation of the JCLOUDSCALE framework, we aim at answering the
following three research questions:

—RQ1: Does using JCLOUDSCALE instead of established tooling lead to more efficient
development of cloud solutions, for example, in terms of solution size or development
time?

—RQ2: How does JCLOUDSCALE compare with established tooling in terms of ease of
use, debugging, and other more “soft” quality dimensions?

—RQ3: What runtime overhead does JCLOUDSCALE impose at execution time?

In order to answer RQ1 and RQ2, we conducted a multimonth user study. RQ3 is
addressed via numerical overhead measurements on a case study application, with and
without JCLOUDSCALE.

4.1. User Study

In order to evaluate RQ1 and RQ2, we conducted a user study with 14 participants
to assess the developers’ experience with JCLOUDSCALE as compared to using standard
tools. Following the general ideas of action research [Avison et al. 1999], we aimed
at a study methodology that focused on how real developers would actually use our
middleware to build two separate, nontrivial cloud applications.

4.1.1. Study Setup and Methodology. We conducted our study with 14 male master stu-
dents of computer science at TU Vienna (participants P01 to P14), based on two differ-
ent nontrivial implementation tasks. The first task was to develop a parallel computing
implementation of a genetic algorithm (T1). The second task required the participants
to implement a service that executes JUnit test cases on demand (T2). Both tasks
required solutions that were elastic, that is, participants needed to demonstrate that
their solutions were able to react to changes in load dynamically and automatically by
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Table I. Relevant Background for Each Participant of the Study

ID Phase Java Exp. Cloud Exp. JCS/OS OS JCS/EC2 Beanstalk
P01 Phase 1 + + T1 T2 – –
P02 Phase 1 + + T1 T2 – –
P03 Phase 1 ∼ ∼ T2 T1 – –
P04 Phase 1 - - T1 T2 – –
P05 Phase 1 ∼ - T2 T1 – –
P06 Phase 1 + - T2 T1 – –
P07 Phase 1 + + T2 T1 – –
P08 Phase 1 + ∼ T2 T1 – –
P09 Phase 1 + ∼ T2 T1 – –
P10 Phase 2 + + – – T2 T1
P11 Phase 2 + ∼ – – T1 T2
P12 Phase 2 + - – – T1 T2
P13 Phase 2 + ∼ – – T2 T1
P14 Phase 2 + + – – T2 –

To preserve anonymity, we classify the self-reported background of participants related to their Java
or cloud experience into three groups: relevant work experience (+), some experience (∼), or close
to no experience (-). The last four columns indicate whether the participant submitted solutions for
JCLOUDSCALE running on top of OpenStack, OpenStack directly, JCLOUDSCALE running on top of EC2, or
AWS Elastic Beanstalk, as well as which tasks the participant solved.

scaling up and down in the cloud. Both T1 and T2 required roughly one to two developer
weeks of effort (assuming that the respective participant did not have any particular
prior experience with the used technologies).

The study ran in two phases. In Phase 1, we compared using JCLOUDSCALE on top
of OpenStack with programming directly via the OpenStack API, without any specific
middleware support. This phase reflected a typical private cloud [Dillon et al. 2010]
use case of JCLOUDSCALE. In Phase 2, we compare JCLOUDSCALE on top of Amazon EC2
using Amazon Elastic Beanstalk. This reflects a common public cloud usage of the
framework. In both study phases, we asked participating developers to build solutions
for both tasks using JCLOUDSCALE and the respective comparison technology, and com-
pare the developer experience based on quantitative and qualitative factors. Our choice
of OpenStack and Amazon EC2 was motivated by the fact that those two platforms
currently form the most well-known, as well as most widely used, private and public
IaaS systems. Especially EC2 has established a quasi-standard in terms of API sup-
port, which many other IaaS systems also adhere to. Consequently, we chose Elastic
Beanstalk as the PaaS system as we wanted to stay within the same cloud ecosystem
to keep results as comparable as possible.

Phase 1 of the study lasted 2mo. We initially presented JCLOUDSCALE and the com-
parison technologies to the participants, and randomly assigned which of the tools
each participant should be using for T1. Participants then had 1mo of time to submit
a working solution to the task along with a short report, after which they could start
working on T2 with the remaining technology. Similar to T1, participants were given
1mo to submit a solution and a short report. Based on the lessons learned from Phase
1, we slightly clarified and improved the task descriptions and gave participants more
time (1.5mo per task) for Phase 2. Other than that, Phase 2 was executed identically to
Phase 1. Table I summarizes the relevant background for each participant of the study.

For the OpenStack-related implementations, we used a private cloud system hosted
at TU Vienna. This OpenStack instance consists of 12 dedicated Dell blade servers
with 2 Intel Xeon E5620 CPUs (2.4GHz Quad Cores) each, and 32GB RAM, running on
OpenStack Folsom (release 2012.2.4). All servers are redundantly connected through
3Gb switches. For the study, each participant was alloted a quota of up to 8 small cloud
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Table II. Solutions Sizes in Lines of Code

Ã to D̃ represent the median size of solutions, while σA to σD indicate standard deviations.

instances (1 virtual CPU, and 512MB of RAM), which they could use to implement and
test their solutions. For the AWS-related implementations, participants were assigned
an AWS account with sufficient credit to cover their implementation and testing with no
particular limitations. Our companion Web site contains the task descriptions that we
used for our study, as well as the questionnaires and anonymized participant reports.

4.1.2. Comparison of Development Efforts (RQ1). RQ1 asked whether JCLOUDSCALE makes
it easier and faster to build elastic cloud applications. To this end, we asked partici-
pants to report on the size of their solutions (in lines of code, without comments and
blank lines). The results are summarized in Table II. It can be seen that using JCLOUD-
SCALE generally reduces the total source code size of applications. Most important, the
size of the entire application was substantially smaller when using JCLOUDSCALE than
in the comparison cases. Going into the study, we expected JCLOUDSCALE to mostly
reduce the amount of code necessary for interacting with the cloud. However, our re-
sults indicate that using JCLOUDSCALE also often reduced the amount of code of the
application business logics, as well as assorted other code (e.g., data structures). When
investigating these results, we found that participants considered many of the tasks
that JCLOUDSCALE takes over as “business logics” when building the elastic application
on top of OpenStack or Elastic Beanstalk. To give one example, many participants
counted code related to performance monitoring towards “business logics.” Note that,
due to the open nature of our study tasks, the standard deviations are all rather large
(i.e., solutions using all technologies varied widely in size). Further, the large differ-
ence in T1 sizes (for JCLOUDSCALE on top of OpenStack and EC2) between Phase 1
and Phase 2 solutions can be explained by clarifications in the task descriptions. In
Phase 1, some formulations in the tasks led to much simpler implementations, while
our requirements were formulated much more unambiguously in Phase 2, leading to
more complex (and larger) submissions. Hence, we caution the reader not to compare
results from Phase 1 with those from Phase 2.

However, looking at lines of code alone is not sufficient to validate our hypothesis,
as it would be possible that the JCLOUDSCALE solutions, while being more compact, are
also more complicated (thus take longer to implement). That is why we also asked
participants to report on the time they spent working on their solutions. The results
are compiled in Table III. We have classified work hours into a number of different
activities: initially learning the technology, coding, testing and bug fixing, and other
activities (e.g., building OpenStack cloud images). Our results indicate that the initial
learning curve for JCLOUDSCALE is lower than for working with OpenStack directly.

ACM Transactions on Internet Technology, Vol. 15, No. 3, Article 10, Publication date: July 2015.



JCloudScale: Closing the Gap Between IaaS and PaaS 10:11

Table III. Time Spent in Full Hours

Ã to D̃ represent the median time spent, while σA to σD indicate standard deviations.

However, in comparison with Elastic Beanstalk, some participants reported equal or
even more complexity of JCLOUDSCALE, mainly because less information about JCLOUD-
SCALE is available on the Internet. For coding, JCLOUDSCALE appeared to be a much
faster tool for participants who had at least some prior experience with cloud comput-
ing. Generally, for task T2, JCLOUDSCALE proved troublesome for some participants. In
this task, JCLOUDSCALE generally did not improve productivity over either OpenStack
or Elastic Beanstalk. Further research will be required to analyze why the results
between tasks T1 and T2 vary in this regard.

We also analyzed qualitative feedback by the participants in their reports. Multi-
ple developers have reported that they felt more productive when using JCLOUDSCALE.
For instance, P01 has stated that “the coolest thing about JCLOUDSCALE is the reduc-
tion of development effort necessary, to host applications in the cloud (...) [there] are a
lot of things you do not have to care about in detail.” P03 also concluded that using
JCLOUDSCALE “went a lot smoother than [using OpenStack directly].” P07 also seemed
to share this sentiment and stated that “[After resolving initial problems] the rest of
the project was without big problems and I was able to be very productive in coding
the solution.” In comparison to Elastic Beanstalk, participants indicated that the core
idea behind JCLOUDSCALE is easier to grasp for starting cloud developers than the one
behind modern PaaS systems. For example, P13 indicated that “the API is easier to
understand and more intuitive to use. Also, it fits more into a Java-like programming
model, instead of the weird request-based approach of the Amazon API.” However, some
participants noted that the fact that Elastic Beanstalk is based on common technology
also appeals to them. For instance, P10 specified that “[In the case of Elastic Beanstalk,]
Well-known technology is the basis for everything (Tomcat/Servlet).” Hence, the partici-
pant argued that this allows developers who are already familiar with these platforms
to be productive sooner.

Summarizing our study results regarding RQ1, our data suggests that JCLOUDSCALE

allows for higher developer productivity for task T1. For T2, JCLOUDSCALE solutions
are more compact, but it took participants longer to implement them. More research is
required to substantiate the underlying reasons for this discrepancy.

4.1.3. Comparison of Developer-Perceived Quality (RQ2). In order to answer RQ2, we were
interested in the participant’s subjective evaluation of the used technologies. We asked
them to rate the technologies along a number of dimensions from 1 (very good) to
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Table IV. Subjective Participant Ratings from 1 (Very Good) to 5 (Insufficient)

Ã to D̃ represent the median ratings, while σA to σD indicate standard deviations.

5 (insufficient). We report on the dimensions “simplicity” (how easy is it to use the
tool?), “debugging” (how easy is testing and debugging the application?), “development
process” (does the technology imply an awkward development process?), and “stabil-
ity” (how often do unexpected errors occur?). A summary of our results is shown in
Table IV.

For T1, participants rated all used technologies similarly, while JCLOUDSCALE was
appreciated more for T2. However, JCLOUDSCALE was rated worse than the comparison
technologies mainly in terms of “stability.” This is not a surprise, as JCLOUDSCALE still
is a research prototype in a relatively early development stage. Participants mentioned
multiple stability-related issues in their reports (e.g., P10 mentioned that “When de-
ploying many cloud objects to one host, there were behaviors which were hard to reason
about”). Further, some technical implementation decisions in JCLOUDSCALE were not
appreciated by our study participants. To give an example, P11 noted that “It is confus-
ing in the configuration that the field AMI-ID actually expects the AMI-Name, not the
ID.” In contrast, JCLOUDSCALE has been rated slightly better in terms of simplicity and
ease of use, especially for T2. For example, participant P09 claimed that “JCLOUDSCALE

is the clear winner in ease of use. If you quickly want to just throw some objects in
the cloud, it’s the clear choice.” Similarly, P12 reported “[JCLOUDSCALE is] programmer
friendly. All procedure is more low level, and as a programmer there are more things to
tune and adjust.” In terms of debugging features, all used technologies were not rated
overly well. JCLOUDSCALE was generally perceived slightly better (arguably due to its
local development environment), but realistically all compared systems are currently
deemed too hard to debug if something goes wrong. Finally, in terms of the associated
development process, JCLOUDSCALE is generally valued highly, with the exception of T1
and JCLOUDSCALE on OpenStack. We assume that this is a statistical artifact, as the
development process of JCLOUDSCALE is judged well in all other cases. Concretely, P01
stated that with JCLOUDSCALE, “You are able to get application into the cloud really fast.
You are not forced to take care about a lot of cloud-specific issues.”

Independently of the subjective ratings, multiple participants stated that they valued
the flexibility that the JCLOUDSCALE concept brought over Elastic Beanstalk. Particu-
larly, P11 noted that “[JCLOUDSCALE provides] more flexibility. The developer can decide
when to deploy hosts, on which host an object gets deployed, when to destroy a host,
etc.” Additionally, participants favored the monitoring event engine of JCLOUDSCALE for
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performance tracking over the respective features of the PaaS system. For example,
P12 specified as a JCLOUDSCALE advantage that “programmatic usage of different events
with a powerful event correlation framework [is] in combination with listeners extremely
powerful.”

Concluding our discussion regarding RQ2, we note that JCLOUDSCALE has some way
to go before it is ready for industrial usage. The general concepts of the tool are valued
by developers but, currently, technical issues and lack of documentation and technical
support make it hard for developers to fully appreciate the power of the JCLOUDSCALE

model. One aspect that needs more work is how developers define the scaling behavior of
their application. Both tasks in our study required the participants to define nontrivial
scaling policies, for example, in order to optimally schedule genetic algorithm execu-
tions to cloud resources, which most participants felt unable to do with the current API
provided by JCLOUDSCALE. Overall, in comparison to working directly on OpenStack,
many participants preferred JCLOUDSCALE, but compared to a mature PaaS platform,
AWS Elastic Beanstalk still seems slightly preferable to many. However, it should be
noted that JCLOUDSCALE still opens up use cases for which using Beanstalk is not an
option, for instance, for deploying applications in a private or hybrid cloud [Leitner
et al. 2013].

4.2. Runtime Overhead Measurements (RQ3)

Finally, we investigated whether the improved convenience of JCLOUDSCALE is paid for
with significantly reduced application performance. Therefore, the main goal of these
experiments was to compare the performance of the same application built on top of
JCLOUDSCALE and using an IaaS platform (OpenStack or EC2) directly.

4.2.1. Experiment Setup. To achieve this, we built a simple sample application (inspired
by T2 from the user study) on top of Amazon EC2 and our private OpenStack cloud.
For OpenStack, we used the same configuration already explained for RQ1 and RQ2.
For EC2, we deployed our application in the eu-west-1 region and used instances of
size t1.micro. Initial experiments with Elastic Beanstalk have shown that there is
no substantial performance difference between EC2 and Elastic Beanstalk. Hence,
we omit Beanstalk in our discussions here. The application JavaScript Testing-as-a-
Service (JSTAAS) provides testing of JavaScript applications as a cloud service (inspired
by the real-life service provided by the New York–based startup Codeship2). Clients
register with the service, which triggers JSTAAS to periodically launch the client’s
registered test suites. Results of the test runs are obtained by the client when they are
available. Tests vary widely in the load that they generate on the servers; clients are
billed according to this load.

Second, we also implemented the same application using JCLOUDSCALE. As the main
goal was to calculate the overhead introduced by the JCLOUDSCALE, we designed both
implementations to have the same behavior and reuse as much business logics code as
possible. In addition, to simplify our setup, focus on execution performance evaluation,
and to avoid major platform-dependent side effects, we limited ourselves to a scenario in
which the number of available cloud hosts is static. The source code of both applications
is available online as part of our companion material.

All four solutions (directly on OpenStack, directly on EC2, and using JCLOUDSCALE

on both OpenStack and EC2) follow a simple master–slave pattern: a single node (the
master) receives tests through a SOAP-based Web service and schedules them over
the set of available worker nodes. All solutions were tested with a test setup that
consisted of 40 identical parallelizable long-running test suites (each suite execution

2https://codeship.com.
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Fig. 5. Execution on OpenStack platform. Fig. 6. Execution on EC2 platform.

takes around 30s in our OpenStack cloud environment), scheduled evenly over the set
of available cloud machines. Each test suite consisted of a set of dummy JavaScript
tests calculating Fibonacci numbers. During the evaluation, we measured the total
time of an entire invocation of the service (i.e., how long a test request takes end to
end, including scheduling, data transmission, result collection, and so on). A single
experiment run consisted of 10 identical invocations of the testing Web service, each
time with a different number of CHs (ranging from 2 to 20 CHs). In all experiment
setups, our evaluation shared a physical cloud environment with other tenants, as
would be the case in real-life usage. To reduce the performance impact of other tenants’
activities, we repeated each experiment 10 times over the course of a day.

4.2.2. Experiment Results. Figure 5 and Figure 6 show the median total execution time
for different numbers of hosts, including error bars demarkating standard deviations.
In general, both applications show similar behavior in each environment, meaning that
both approaches are feasible and have similar parallelizing capabilities with minor dif-
ferences in overhead. In both environments, there is an overhead of JCLOUDSCALE that
is proportional to the amount of used CHs and approximately equal to 2s to 3s per
introduced host for multiple minutes evaluation application. This overhead may be
significant for performance-critical production applications, but we believe that it is
a reasonable price to pay in the current development stage of the JCLOUDSCALE mid-
dleware. Furthermore, how large this overhead is depends largely on how much the
target application is required to communicate with the CHs. The main reason for this is
that messaging in JCLOUDSCALE is more expensive in comparison to a pure OpenStack
or EC2 solution, as JCLOUDSCALE appends some platform-specific metadata to remote
invocations (e.g., which CH or CO to address, which code to run, and so forth). The
evaluation application required a substantial amount of coordination between target
application and CHs, hence we have reason to believe that these overhead measure-
ments are relatively conservative. However, detailed investigation (and, subsequently,
reduction) of the overhead introduced by JCLOUDSCALE is planned for future releases of
the middleware.

Another important issue that is visible from Figure 5 and Figure 6 is cloud per-
formance stability and predictability. With an increasing number of hosts, the total
execution time is expected to monotonously decrease, up to a limit when the overhead
of parallelization is larger than the gain of having more processors available. This
happens in case of Amazon EC2. However, starting with 10 used hosts in OpenStack,
the overall application execution time remains almost constant or even increases. In
our case, this is mainly caused by the limited size of our private cloud. In our system,
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starting with 10 hosts, physical machines start to get overutilized, and virtual machines
start to compete for resources (e.g., CPU or disk IO).

4.3. Threats to Validity

The major threat to (internal) validity, which the results relating to RQ1 and RQ2
indicate, are that the small sample size of 14 study participants, along with relatively
open problem statements, does not allow us to establish statistical significance. How-
ever, due to the reports we received from participants, as well as due to comparing the
solutions themselves, we are convinced that our results showing that JCLOUDSCALE lets
developers build cloud applications more efficiently was not a coincidence. Further, our
participants were aware that JCLOUDSCALE is our own system. Hence, there is a chance
that our participants gave their reports a more positive spin. However, given that all
reports contained negative aspects for all evaluated frameworks, we are confident that
most participants reported truthfully. There is also the possibility that our study de-
sign, which required all participants to work on two projects, skewed the results, as
it can be expected that participants learned from the first project for the second one.
This has been mitigated by letting a subset of the participants work with JCLOUD-
SCALE first and the remainder start with one of the comparison frameworks. Finally,
there is the threat that JCLOUDSCALE solutions, while being implemented more effi-
ciently, are also of lower quality. We have mitigated this threat by (partial) automatic
testing of solutions against defined requirements, as well as by manual inspection
and comparison of solutions. In terms of external validity, it is possible that the two
example projects we chose for our study are not representative of real-world applica-
tions. However, we argue that this is unlikely, as the projects have specifically been
chosen based on real-life examples that the authors of this article are aware of or
had to build themselves in the past. Another threat to external validity is that the
participants of our study are all students at TU Vienna. While most have some prac-
tical real-life experience in application development, none can be considered senior
developers.

In terms of RQ3, the major threat to external validity is that the application we used
to measure overhead is necessarily simplified and not guaranteed to be representative.
Real applications are hard to replicate in exactly the same way on different systems,
hence comparative measurements among such systems are always unfair. To minimize
this risk, we have taken care to preserve what we consider to be core features of
cloud applications even in the simplified measurement application. Similarly, there is a
threat to the generalizability of our study related to RQ1 and RQ2. It is possible that the
results of our study would have been substantially different if we had chosen different
comparison systems, for example, Microsoft Azure or Google Appengine. However, we
consider this threat small, as at the time we executed the study, the core features
provided by most IaaS and PaaS providers were comparable to the extent required by
our study.

5. RELATED WORK

We now put the JCLOUDSCALE framework into context of the larger distributed and
cloud-computing ecosystem. As the scope of JCLOUDSCALE is rather wide, there is a large
number of systems that are related to parts of the JCLOUDSCALE scope. We consider the
main dimensions to compare frameworks across to be the following: (1) to what extent
they transparently handle remoting and elasticity, (2) whether they handle scaling
up and down, (3) how easy it is to locally test and debug applications, (4) whether
the system restricts what kinds of applications can be built, (5) whether the system
handles cloud virtual machines, and (6) whether the system is bound to one specific
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cloud provider. We provide a high-level comparison of various systems along these
dimensions in Table V.

First, JCLOUDSCALE can be compared to traditional distributed object middle-
ware [Emmerich 2000], such as Java RMI or EJB. These systems provide transparent
remoting features, but clearly do not provide any support for cloud specifics, such as
VM management. It can be argued that EJB provides some amount of transparent
elasticity, as EJB containers can be clustered. However, it is not easy to scale such
clusters up and down. A recent work [Jayaram 2013] has introduced the idea of Elastic
Remote Methods, which extends Java RMI with cloud-specific features. This is compa-
rable in goals to our contribution. However, the technical approach is quite different.
Aneka [Calheiros et al. 2012; Vecchiola et al. 2008], a well-known .NET-based cloud
framework, is a special case of a cloud-computing middleware that also exhibits a num-
ber of characteristics of a PaaS system. We argue that Aneka’s abstraction of remoting
is not perfect, as developers still need to be intimately aware of the underlying dis-
tributed processing. To the best of our knowledge, Aneka does not automatically scale
systems, and provides no local testing environment. Simao et al. [2011] also presented
an approach that can be considered related to JCLOUDSCALE. Their A2-VM framework
schedules Java threads over a compute cluster.

Second, as already argued in Section 4, many of JCLOUDSCALE’s features are compa-
rable to common PaaS systems (e.g., Google Appengine, Amazon Elastic Beanstalk, or
Heroku). All of these provide transparent remoting and elasticity, and take over virtual
machine management for the user. However, they usually tie the user tightly to one
specific cloud provider. Support for local testing is limited, although most providers
currently have at least some tooling or emulators available for download.

In addition to these commercial PaaS systems, there are also multiple platforms
coming out of a research setting. For instance, AppScale [Chohan et al. 2010; Krintz
2013] is an open-source implementation of the Google Appengine model. AppScale can
also be deployed on any IaaS system, making it much more vendor-independent than
other PaaS platforms. This is similar to the ConPaaS open-source platform [Pierre et al.
2011; Pierre and Stratan 2012], which originates from a European research project of
the same name. ConPaaS follows a more service-oriented style, treating applications
as collections of loosely coupled services.

In scientific literature, there are also a number of PaaS systems that are more geared
towards data processing, for example, BOOM [Alvaro et al. 2010], Esc [Satzger et al.
2011], or Granules [Pallickara et al. 2009]. These systems are hard to compare with
our work, as they generally operate in an entirely different fashion as compared to
JCLOUDSCALE or the commercial PaaS operators. However, they typically support only
a very restricted type of (data-driven) application model, and often do not actually
interact with the cloud by themselves. This makes them cloud-provider independent,
but also means that developers need to implement the actual elasticity-related features
themselves.

Third, we need to compare JCLOUDSCALE to a number of cloud-computing related
frameworks, which cover a part of the functionality provided by our middleware.
JClouds is a Java library that abstracts from the heterogeneous APIs of different
IaaS providers, and allows decoupling of Java applications from the IaaS system in
which they operate. JCLOUDSCALE internally uses JClouds to interact with providers.
However, by itself, JClouds does not provide any actual elasticity. Docker is a container
framework geared towards bringing testability to cloud computing. Essentially, Docker
has similar goals to the local test environment of JCLOUDSCALE.

JCLOUDSCALE also has some relation to the various cloud deployment models and
systems that have recently been proposed in literature, for example, Cafe [Mietzner
et al. 2009], MADCAT [Inzinger et al. 2014], or OpenTOSCA [Binz et al. 2013], which
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is an open-source implementation of an upcoming OASIS standard. These systems do
not typically cover elasticity by themselves (although TOSCA has partial support for
auto-scaling groups), but they are usually independent of any concrete cloud provider.

By design, JCLOUDSCALE supports most of the characteristics that we discuss here.
However, especially in comparison to PaaS systems, developers of JCLOUDSCALE appli-
cations are not entirely shielded from issues of scalability. Further, as the user study
discussed in Section 4 has shown, the system still needs to improve how scaling policies
are written to make building elastic systems easier for developers.

Item 4 in this list (Unrestricted Architecture) requires more discussion. Industrial
PaaS systems (e.g., Appengine, Beanstalk, Heroku) are generally geared towards a
very specific type of application (transaction-based Web applications). These systems
assume that requests are (to a large extent) independent, and take very little time to
process (Appengine, for instance, has a hard upper limit of 30s of processing time per
request). This model is useful for many typical use cases in a Web context, for example,
blogs or Web shops. However, developers aiming to build other kinds of applications
(e.g., the JSTAAS example discussed in Section 4.2, banking solutions, video streaming
platforms) have to switch for IaaS or struggle with the architectural and technical re-
strictions imposed by those PaaS systems. Other remoting and cloud frameworks (e.g.,
Java RMI or Docker) do not have such restrictions (e.g., Docker is useful for more or less
arbitrary applications); however, these systems are also not concerned about providing
automated scaling and elasticity. JCLOUDSCALE, as well as the related Aneka frame-
work [Vecchiola et al. 2008] and the Elastic Remote Methods proposed by Jayaram
[2013], strive for a middle ground. They do not inherently assume a specific, narrow
type of application and can, in principle, be used to implement a wide range of elastic
applications. However, they are most suitable for applications with durable request-
or task-processing activities, such as video-audio encoding, Web-crawling, sentiment
analysis, or image rendering. Additionally, JCLOUDSCALE provides significant benefits
for applications that use cloud resources only to cover activity bursts [Leitner et al.
2013]. JCLOUDSCALE is less suitable for connection-oriented and latency-sensitive ap-
plications, such as streaming services or online games. Further, for big data–centric
applications, JCLOUDSCALE is arguably less intuitive to use than state-of-the-art models
(e.g., Hadoop or Spark SQL).

6. CONCLUSIONS

JCLOUDSCALE is a Java-based middleware that eases the development of elastic cloud
applications on top of an IaaS cloud. JCLOUDSCALE follows a declarative approach based
on Java annotations, which removes the need to actually adapt the business logics of
the target application to use the middleware. Hence, JCLOUDSCALE support can easily
be turned on and off for an application, leading to a flexible development process
that clearly separates the implementation of target application business logics from
implementing and tuning the scaling behavior.

We have introduced the core concepts behind JCLOUDSCALE, and presented an evalu-
ation of the middleware based on a user study as well as using a case study application.
Our results indicate that JCLOUDSCALE is well received among initial developers. Our
results support our claim that the general JCLOUDSCALE model has advantages to both,
working directly on top of an IaaS API or on an industrial PaaS system. However,
further study is required to strengthen these claims, as the limited scale of our initial
study was not sufficient to clear all doubts about the viability of the system. Fur-
ther, there are also technical and conceptual issues that require further investigation.
Most important, we have learned that implementing actually elastic applications is
still cumbersome for developers, as getting the scaling policy right is still difficult
for some developers. Additionally, we are currently testing JCLOUDSCALE as a tool to
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cloud-migrate a number of existing standard systems, including Apache JMeter or the
service composition engine JOpera [Pautasso and Alonso 2005]. Finally, we are inves-
tigating more powerful ways to handle faults in JCLOUDSCALE applications, in addition
to the mechanisms introduced in Section 2.3. Concretely, we plan to investigate means
to allow for replication of COs, which is currently not supported out of the box.

COMPANION MATERIAL

Additional material, including the tasks used in our study, as well as the anonymized
participant feedback, is available on our companion website3. JCLOUDSCALE is available
as an open-source project on GitHub4.
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