
Web-Scale Workflow
Editor: Schahram Dustdar • dustdar@infosys.tuwien.ac.at

84 	 Published by the IEEE Computer Society	 1089-7801/12/$31.00 © 2012 IEEE� IEEE INTERNET COMPUTING

A service system’s quality is multifaceted,
including functional and nonfunctional
technical aspects, as well as nontechnical

aspects ranging from business to social char-
acteristics. Elasticity1 is a good example of this
multifaceted quality: it describes a system’s
capacity to add or remove various resources as
needed to efficiently operate in a fast and con-
venient manner and without severe impact on
other qualities, such as system availability or
performance. Resources can include infrastruc-
ture such as compute power, storage space, and
bandwidth, but also nontechnical resources
such as the financial budget available or the
human (expert) manpower needed to skillfully
operate the system, make decisions, or perform
human-based computing tasks. The elasticity
of a system through virtualized resources2 is
thus a fundamental requirement of Web-scale
systems; in system design, those resources must
receive careful consideration.

Design by contract3 is a well-known soft-
ware design approach that extends conventional
software component definitions with pre- and
post-conditions and invariants; these specifi-
cations are referred to as contracts. In analogy
to design by contract, we introduce design by
units, which extends software service defini-
tions with a resource model to better address
human and compute resource requirements in
system design. Units are abstractions to model

diverse resources in the cloud that are required
to operate a system and to guarantee nontrivial
system requirements, such as elasticity.

The Emergency Hub
Consider an emergency hub system as an
example (see Figure 1). The system provides a
Web service interface that lets various clients,
including smartphones, signal an emergency
situation. Under normal circumstances, the sys-
tem’s request load might be low. In an emer-
gency situation that involves large numbers
of people, however — as might occur during a
sporting event, demonstration, or other large
gathering in a metropolitan region — the sys-
tem will need to scale elastically on demand.
Additional infrastructure resources as well as
social resources (such as emergency personnel)
will be needed. Once the emergency situation is
resolved, the diverse resources will no longer be
required, and the system can scale down.

In recent years, systems similar to the emer-
gency hub have arisen in a variety of appli-
cation domains. Designing, deploying, and
operating such systems introduces several chal-
lenges. As we might assume from this example,
various infrastructure resources are required,
including storage systems, servers, and virtual
machines. However, the example also illus-
trates the need for other types of resources and
their complex configurations. In the case of a

Design by Units
Abstractions for Human and Compute
Resources for Elastic Systems
Stefan Tai • Karlsruhe Institute of Technology

Philipp Leitner and Schahram Dustdar • Technical University of Vienna

Units make the usage and properties of diverse resources, including infrastruc-

ture and human resources, explicit early in system design, and allow for rea-

soning about complex system qualities, such as elasticity. They advance the

measurability and management of systems whose quality depends largely on

the resources that the system uses.

IC-16-04-WSWF.indd 84 6/5/12 5:34 PM

Design by Units

JULY/AUGUST 2012� 85

large-scale emergency, for instance,
not only one (physical) hospital will
be populated but most, if not all,
hospitals in the city might need to
serve as resources. Thus, an emer-
gency hub system must manage and
coordinate all available respective
resources in a “virtual hospital.” The
specific requirements and manage-
ment needs associated with such
situations and peak loads are known
only at system runtime and must be
provisioned on the fly.

A critical resource commonly
neglected in conventional software
system design is humans. Required
human resources in our emergency
hub example include police, firemen,
ambulance personnel, medical doc-
tors, nurses, conflict resolution spe-
cialists, SWAT teams, and so on. All
these people must be “composed” on-
demand based on their skills, avail-
abilities, and costs.

Both infrastructure resources and
human resources have various rel-
evant properties depending on the
case at hand. These measureable
properties constitute the building
blocks for determining the poten-
tial degree of elasticity. We argue
for dedicated modeling abstrac-
tions that system designers can use
to express these properties during
design and to deploy and operate the
system accordingly. In other words,
the overall system consists of both
infrastructure resources, and peo-
ple and social teams. Both resource
types constitute building blocks that
are critical for the system to fulfill its
purpose. We argue that it’s critical to
define early on in software system
design the measureable resources
needed and how these relate to dif-
ferent system parts.

Units as Abstractions
The emergency hub scenario illustrates
that conventional service-centric
application design and development
models at best address only half
the picture. Service programming

models and architectural styles
such as SOAP and REST focus on
representing application logic. Multi
faceted system qualities such as
elasticity, however, critically depend
on resources in the application envi-
ronment, such as the infrastructure
to which the application is deployed,
and the people behind the system.
Figure 2 illustrates this concept.

Appropriate first-class abstrac-
tions are needed in system design
to model such resources. Unlike the
design and programming abstrac-
tions used to model application
logic, we propose units as a com-
plementary abstraction to manifest
resources. We can model a variety of
resources using typed units. The unit
type defines properties specific to
the resource that it manifests, such

as costs associated with an infra-
structure resource or skills associ-
ated with a pool of human experts.
Examples of concrete unit types are
units for modeling compute power
(similar to Amazon’s Elastic Compute
Cloud [EC2] units) or social compute
units (SCUs)4 for modeling human
exper t pools. A system designer
using design tools can then link
units with elements of the applica-
tion logic, such as conventional ser-
vice definitions.

Our objective and claim is to bet-
ter reason about system qualities
such as elasticity when using units
in design. Explicitly modeling units
lets us handle them automatically
and uniformly — for instance, with
regard to monitoring, provision-
ing, and de-provisioning resources.

Figure 1. Resource elasticity. The human and Web resources needed to
respond to, for example, an emergency situation, must scale elastically based
on demand.

Peak load

Web interface

Normal
operation

Normal
operation

IC-16-04-WSWF.indd 85 6/5/12 5:34 PM

Web-Scale Workflow

86	 www.computer.org/internet/� IEEE INTERNET COMPUTING

The increased attention devoted
to specifying units is necessary to
assess qualities such as elasticity in
Web-scale systems. Measured and
assessed qualities are important in a
variety of application scenarios and
systems, such as the emergency hub
example.

Units should exhibit the follow-
ing common traits:

•	 Impact . Each unit provides a
resource to the application, some-
thing that’s required for it to
function or reach its desired qual-
ity levels. In our emergency hub,
compute units, for example, have
an impact on the availability of
the call center, storage units on
data management, and medical
personnel units on the workflows
related to treating injured people.

•	 Impact measurability. We should
be able to measure the impact on,
for example, a metric scale. That
is, for each unit, we can mea-
sure the relative impact of dif-
ferent configurations; we must
be able to decide, for two given
unit configurations, which one
will provide the “better” service,
and by how much. Note that this

doesn’t need to be an exact sci-
ence. In reality, we expect that
we will often have to make do
with estimations and approxima-
tions of impact. We can measure
call center availability via aver-
age response times, for example,
whereas we might use different
skill sets and levels of medical
personnel to determine the num-
ber and severity of medical situa-
tions that can be dealt with.

•	 Cost measurability. As with impact,
units also have defined consump-
tion costs. That is, for each unit,
the usage costs must be measur-
able. In combination with impact
measurability, this lets us pre-
emptively reason over the ben-
efits and value of different unit
configurations.

•	 Dynamicity. A system must be
able to acquire and release new
units in a timely, on-demand
fashion. Together with impact
and cost measurability, this lets
us model runtime reactions to
changes in the application’s envi-
ronment. Resource management
might be automated (as with
compute units) or be partly auto-
mated or involve human interactions

(as with scheduling medical
personnel).

Here, we focus on two types of
units (infrastructure and human
resource) to illustrate the wide array
of those possible. Clearly, different
applications will depend on different
types of units.

Units in Practice
Infrastructure units are currently
widely discussed under the umbrella
term infrastructure as a service
(IaaS).5 Different types of offerings
(storage services, elastic computing
services, and so on) provide different
resources as IaaS, so they implement
different types of units. Generally,
many of the current IaaS offerings
fulfill the requirements we’ve out-
lined. As one example, Amazon’s EC2
elastic computing services allow for
on-demand provisioning of virtual
machines, fulfilling the dynamicity
requirement. Furthermore, virtual
machines have a defined amount
of processing power, depending on
the so-called instance type. Simi-
larly, the costs of EC2 instances are
defined based on the instance type.

Just like most applications, our
emergency hub isn’t entirely auto-
mated. Human resources are neces-
sary for day-to-day operations, and
in cases of peak load, more people
are required. Traditionally, the costs
of human staff are predictable, but
impact measurability (of additional
or less staff) is problematic. Addi-
tionally, human resources are hardly
dynamic, given that practical and
legislative reasons render labor as
one of the most static resources in
the application environment. Note
that unlike crowdsourcing, which
involves masses of people, we focus
on the need to model (groups of)
skilled experts.

Recently, approaches such as the
SCU4 have started to appear; these
treat experts as elastic resources that
can scale up and down on demand.

Figure 2. Elastic units. Such units enable the implementation of software
services. They can represent both human and compute resources.

Services
such as

RESTful or
SOAP services

Application logic

is enabled by

Infrastructure units

Computing
such as

Amazon EC2
instances

Storage
such as

Amazon RDS
instances

Expert groups
such as

social compute
units

 Human resource
units

Application environment

* *
Units

IC-16-04-WSWF.indd 86 6/5/12 5:34 PM

Design by Units

JULY/AUGUST 2012� 87

These expert groups exhibit well-
defined competencies, letting sys-
tems automatically estimate the
impact of addit ional exper ts in
advance. SCUs help fulfill our basic
requirements of measurability and
elasticity. However, industrial state
of practice will take time to reach
the same level of maturity for human
resources as is common with regard
to many infrastructure units.

Challenges Ahead
To practitioners, it’s evident that the
variety of units limits the practi-
cal elasticity of the emergency hub
application illustrated in this article.
However, in current development
models, resources are typically an
afterthought to questions of appli-
cation and service development.
Going forward, we propose units as
the abstraction on which to model
diverse resources critical to Web-
scale service applications. Units make
resource usage and resource properties

explicit early in system design,
thereby allowing for better reasoning
about system qualities. The over-
arching objective is to make complex
system qualities such as elasticity
measurable and manageable. Mea-
surability is a prerequisite to address-
ing larger challenges such as quality
certification or accountability.

A variety of resources matter,
and a variety of units (unit types)
for manifesting these resources can
correspondingly serve as an appro-
priate abstraction and handle. In
addition to modeling infrastructure
resources and social (human expert)
resources with units, the following
resources (with potential examples
of unit abstractions) are the subject
of future research:

•	 Social resources, in the sense of
masses of people — for example,
using majority votes. Units can
serve as a structuring mecha-
nism for crowds.

•	 Middleware platform resources.
Units can represent application
containers or user workspaces.

•	 Legal framework resources. Units
might model compliance policies
or contracted license keys.

•	 Financial resources. We can use
units to represent funding sources
within an organization or from
external sources.

I n summary, units serve as a generic
abstraction and handle that can

make a variety of resources — which
are offered as services in the cloud —
measurable and manageable. Units
are a first-class abstraction in ser-
vice system design, making resource
needs, usage, and properties more
explicit.�

References
1.	 S. Dustdar et al., “Principles of Elastic

Processes,” IEEE Internet Computing,

vol. 15, no. 5, 2011, pp. 66–71.

Research and Practice in Elastic Operations

The elasticity of resources is a major driving factor behind
the current state of cloud computing. As such, it isn’t par-

ticularly surprising that many services and tools in the periphery
of cloud computing are either inherently elastic to the user, such
as platform-as-a-service (PaaS) environments (for example, the
Google AppEngine; https://developers.google.com/appengine/),
or provide means to implement elasticity at the client side (as
with the Amazon Elastic Compute Cloud; http://aws.amazon.
com/ec2/). For resources other than infrastructure and soft-
ware, elasticity is currently a neglected research topic. For
instance, although the elasticity of human resources has always
been relevant in the context of workflow management,1 little
knowledge exists about how to properly scale the pool of staff
associated with human activities in a workflow.

On the research side, many ideas appear to increase the
elasticity and autonomy of applications, mostly in the context
of cloud computing. Recent research has proposed the idea
of elastic processes,2 which started to make explicit different
dimensions of elasticity prevalent in dynamic processes. To
this end, we can view elastic processes as a first step toward
a (domain-specific) abstraction of explicitly modeled units of
elasticity, as we describe in the main text. In the cloud world,
researchers are working on approaches for modeling functional

and nonfunctional cloud requirements.3 Although these require-
ments don’t make explicit the link between services and
resources, as we expect units to do, they could let us estab-
lish the quality level that’s expected of cloud applications with
regard to nonfunctional properties.

What current approaches don’t deliver is a common abstrac-
tion dealing with different types of resources – such as infra-
structure and human staff – in a homogenous way. Currently,
no means for modeling these types of resources are available,
and no framework exists for automatically managing the runtime
provisioning and de-provisioning of different resource types. We
argue that units can serve as an entry point toward developing
such abstractions, modeling languages, and frameworks.

References
1.	 D. Georgakopoulos, M. Hornick, and A. Sheth, “An Overview of Workflow

Management: From Process Modeling to Workflow Automation Infrastruc-

ture,” Distributed and Parallel Databases, vol. 3, no. 2, 1995, pp. 119–153.

2.	 S. Dustdar et al., “Principles of Elastic Processes,” IEEE Internet Computing,

vol. 15, no. 5, 2011, pp. 66–71.

3.	 R. Clarke, “User Requirements for Cloud Computing Architectures,” Proc.

Cluster, Cloud, and Grid Computing Conf. (CCGrid 10), IEEE CS Press, 2010,

pp. 625–630.

IC-16-04-WSWF.indd 87 6/5/12 5:34 PM

Web-Scale Workflow

88	 www.computer.org/internet/� IEEE INTERNET COMPUTING

2.	 S. Dustdar and H. Truong, “Virtualiz-

ing Software and Humans for Elastic

Processes in Multiple Clouds — A Ser-

vice Management Perspective,” Int’l J.

Next Generation Computing, to appear,

2012.

3.	 J.-M. Jazequel and B. Meyer, “Design by

Contract,” Computer, vol. 30, no. 1, 1997,

pp. 129–130.

4.	 S. Dustdar and K. Bhattacharya, “The

Social Compute Unit,” IEEE Internet Com-

puting, vol. 15, no. 3, 2011, pp. 64–69.

5.	 A. Lenk et al., “What’s Inside the Cloud?

An Architectural Map of the Cloud

Landscape,” Proc. ICSE Workshop

Sof tware Eng. Challenges of Cloud

Computing (CLOUD 09), IEEE Press, 2009,

pp. 23–31.

Stefan Tai is a full professor of applied infor-

matics at the Karlsruhe Institute of Tech-

nology, and director at the FZI Research

Center for Informat ion Technology.

Contact him at tai@kit.edu.

Philipp Leitner is a postdoctoral researcher

in computer science at the Distributed

Systems Group, Institute of Information

Systems, at the Vienna University of

Technology. Contact him at leitner@

infosys .t uwien .ac .at; www.infosys .

tuwien.ac.at/staff/leitner/.

Schahram Dustdar is a full professor of com-

puter science and head of the Distributed

Systems Group, Institute of Information

Systems, at the Vienna University of

Technology. Dustdar is an ACM Distin

guished Scientist. Contact him at dustdar@

infosys.tuwien.ac.at; www.infosys.tuwien.

ac.at/staff/sd.

Selected CS articles and columns
are also available for free at http://

ComputingNow.computer.org.

IC-16-04-WSWF.indd 88 6/5/12 5:34 PM

