Distrib Parallel Databases
DOI 10.1007/s10619-013-7125-7

Data-driven and automated prediction of service level
agreement violations in service compositions

Philipp Leitner - Johannes Ferner -
Waldemar Hummer - Schahram Dustdar

© Springer Science+Business Media New York 2013

Abstract Service Level Agreements (SLAs), i.e., contractually binding agreements
between service providers and clients, are gaining momentum as the main discrim-
inating factor between service implementations. For providers, SLA compliance is
of utmost importance, as violations typically lead to penalty payments or reduced
customer satisfaction. In this paper, we discuss approaches to predict violations a
priori. This allows operators to take timely remedial actions, and prevent SLA vio-
lations before they have occurred. We discuss data-driven, statistical approaches for
both, instance-level prediction (SLA compliance prediction for an ongoing business
process instance) and forecasting (compliance prediction for future instances). We
present an integrated framework, and numerically evaluate our approach based on a
case study from the manufacturing domain.

Keywords Service composition - Service level agreements - Quality prediction

1 Introduction

Service-based applications and business process management have been blooming
research areas for the last years, solving many fundamental problems of both, aca-

Communicated by Amit Sheth.

P. Leitner (X)) - J. Ferner - W. Hummer - S. Dustdar
Distributed Systems Group, Vienna University of Technology, Argentinierstrasse 8, Vienna, Austria
e-mail: leitner @infosys.tuwien.ac.at

J. Ferner
e-mail: johannes_ferner@yahoo.de

W. Hummer
e-mail: hummer @infosys.tuwien.ac.at

S. Dustdar
e-mail: sd@infosys.tuwien.ac.at

Published online: 04 April 2013 €\ Springer

mailto:leitner@infosys.tuwien.ac.at
mailto:johannes_ferner@yahoo.de
mailto:hummer@infosys.tuwien.ac.at
mailto:sd@infosys.tuwien.ac.at

Distrib Parallel Databases

demic and industrial interest [37, 49]. Going forward, global trends like Everything-
as-a-Service (XaaS) or Cloud Computing will further increase the spotlight put on
services engineering and related disciplines [7]. In the wake of these developments,
non-functional service aspects and Quality-of-Service (QoS) are becoming more rel-
evant to industrial practice, where QoS promises are typically defined as legally bind-
ing Service Level Agreements (SLAs) [25]. SLAs are described using languages such
as WSLA [10] or OGFs WS-Agreement [2], and contain so-called Service Level Ob-
jectives (SLOs), numerical QoS objectives, which the service needs to fulfill. For
cases of violations, SLAs often define monetary penalties, e.g., a discount that the
provider needs to grant to the client. Furthermore, frequent SLA violations detect
from the service client’s experience, and are damaging to the image of the provider.
Hence, providers have a strong interest in reducing the number of SLA violations for
their services.

Essentially, there are two approaches to achieve this. On the one hand, it is possible
to use post mortem analysis and optimization [5, 51], i.e., analyzing historical cases of
violation and modifying the service composition [12] (or the business process that the
composition implements), so that the same type of violation is less likely to happen
again. On the other hand, one can aim to predict violations in advance, before they
have actually happened. This is more promising, as it allows providers to not only
learn from past failures, but actually prevent them in the first place. In this paper,
the main contribution is an extensive discussion of an approach to achieve the latter,
runtime prediction of SLA violations. We distinguish between two types of SLOs,
instance-level SLOs (which can be evaluated for each business process instance in
isolation) and aggregated SLOs (which can only be evaluated over a defined period
of time), and present data-driven statistical prediction techniques for both types of
SLO. This paper is an extension of previously published work [28]. This earlier work
introduced our approach for machine learning based prediction, while the current
paper provides a more extensive discussion of the end-to-end framework, coverage
of quantitative and aggregated SLOs, and numerical evaluation of the approach.

The remainder of this paper is structured as follows. Firstly, in Sect. 2, we intro-
duce the domain of SLA management. Afterwards, in Sect. 3, the case study used
in the remainder of the paper, is introduced. The main contributions of this paper
are contained in Sect. 4 and Sect. 5. Section 4 introduces the general framework for
predicting violations, while Sect. 5 details the used statistical models. Afterwards,
Sect. 6 discusses a prototypical implementation of our techniques based on an ex-
isting infrastructure for service-oriented architectures (SOAs) [35], which forms the
basis of the numerical evaluation discussed in Sect. 7. Section 8 gives an overview
of earlier research, and puts our work into context with regard to the research area at
large. Finally, we conclude the paper in Sect. 9, summarizing the main points of our
contribution and outlining future research.

2 Background
In the following section, we introduce some important background and notation with

regard to the concept of SLAs. SLAs [25] are a formalization and contractual ar-
rangement of QoS for composed services. Instead of assuming that services provide

@ Springer

Distrib Parallel Databases

Service Target value
Provider

S _- @)
N - @
AN P @,
SLA S S
=
3
5}
Service Client
Composition 0.1
Instance -
Measured S
Value —
3
Aggregation (4]
Interval

Fig. 1 Simplified SLA model

the highest quality they can on a best-effort basis, SLAs fix the minimally promised
quality in various dimensions. SLAs are often seen as legally binding contracts be-
tween one or more service clients and a service provider. SLAs are a collection of
many SLOs. An SLO is an observable quality dimension of a service. Additionally,
SLAs define penalties for non-achievement (violation) of SLOs. Both, penalties and
target values, can be different for every SLA in which an SLO is used. At runtime,
concrete values for SLOs can be monitored. Based on the type of SLO (see below),
this measured value can be generated either per composition instance or per aggre-
gation interval. For clarity, the domain model of SLAs, as they are understood in this
paper, is depicted in Fig. 1.

Some different languages have been proposed to model SLAs, including WSLA
[10, 25], WS-Agreement [2] and SLAng [46]. These models do not differ so much
in their expressiveness, but more in the environment they live in. For instance,
WSLA specifies a monitoring and accounting infrastructure along with the basic lan-
guage [10]. It is important to note that the work in this paper is agnostic with regard
to the used SLA language, as long as it fits the basic model specified in Fig. 1.

SLOs come in different flavors. In this paper, two distinctions are of relevance.
Firstly, one can differentiate between nominal and continuous SLOs. For nominal
SLOs, the measured value can be one of a finite number of potential values. The tar-
get range (i.e., the domain of valid values as per the agreement) is a subset of the
set of potential values. Metric SLOs, which are more prevalent, can take an infinite
number of values. Target values are defined as thresholds on the metric. Secondly,
one can distinguish SLOs on composition instance level and aggregated SLOs. For
composition instance level SLOs, a decision of whether an SLA violation has hap-
pened can be made for every single composition instance individually. Aggregated
SLOs are defined over an aggregation interval, for instance a number of composi-

@ Springer

Distrib Parallel Databases

tion instances or a time interval. Decisions can be made only looking at the whole
aggregation interval, e.g., all composition instances of a month.

3 Illustrative use case

In the remainder of this paper, the case of a reseller of built-on-demand heavy-duty
industry robots (ACMEBOT) will be used. We originally introduced ACMEBOT
in [26], and the following discussion will mostly follow the same basic notions.

The business model of ACMEBOT is as follows. Customers request a quote (re-
quest for quotation, RFQ) for a specific robot in a specific configuration. ACMEBOT
plans the steps necessary for the requested configuration, checks whether necessary
parts are not in the internal warehouse (these parts need to be ordered from external
suppliers), and generates an offer. The customer can then either cancel the process or
place the order. If the order is placed, ACMEBOT starts by getting all missing parts
from external suppliers and waits for these parts to arrive. As soon as all parts are
available, the product is scheduled for assembling. After assembling is finished, the
product is subject to a quality control step, and, if successful, shipped to the customer.
In parallel to the shipping of the product, the customer is billed and an invoice is sent.
ACMEBOT’s core business process is depicted in Fig. 2.

For reasons of brevity, we concentrate on the two roles “Customer” and
“ACMEBOT Assembly Service” in the figure, even though ACMEBOT interacts with
many different external partners (e.g., suppliers of parts, shippers, credit card compa-
nies) to implement the described functionality. ACMEBOT’s IT relies on the notion
of SOA, i.e., the order process is implemented as a service composition. Hence, ac-
tivities in the process are mapped to one or more invocations of (Web) services.

Generally, customers of ACMEBOT are larger business partners, typically re-
sellers (i.e., ACMEBOT does not interact with end customers directly). For each re-
seller, there are pre-established SLAs, which typically consist of a subset of a number
of often-seen SLOs. Some examples are depicted in Table 1, along with target values
and penalties. Evidently, these are illustrative example values only, without claims of
generality. Penalty payments are captured as discount on the current or future pur-
chases. Time periods are given in working days. The SLO “Quality Control Positive”
is of particular interest, as it is the only nominal SLO in the case study. The possible
values of this SLO are simply {Yes, No}, with the target being Yes.

4 Data-driven prediction of SLA violations

In this section, we discuss our integrated, data-driven approach for predicting differ-
ent types of SLOs in advance.

4.1 Framework overview

We sketch our overall framework for predicting SLA violations in Fig. 3. Essen-
tially, three separate phases can be distinguished. Firstly, in the monitoring phase,

@ Springer

Distrib Parallel Databases

([97] woly) uonensnyI ased as) g “S1g

JUN022Y Buljquassy
92I10AUY| g reuld
uo Jawosn) A1Ba paysiul4
pues abieyn 1e910 10} Wep
1940 180
Bunquiessy puag EIEIENETS)

s|npayos . z

U0 w =

Aueno : sed o)| §

sued : jo Amgejreny >

104 e\ : 309yD 13
H ot >
: 31 o
H o =
H < H
pejquisssy sued ajqe|ieAeun : Buliquiassy @ g
dius 1onpo.d 18pI0 : ueld A
: 3 o
H]
. 3
: g
19pIo 19pio : O4d o

|eoue) BAI908Y : oAI909Y
A i A
i v ;

: 19pI0 J9jj0 uo 1910 44 o

o ooe|d aploaQg aAI1908Y aoe|d <

9010AU| BA1908Y 10Npo.d aA1e08Y h m

pringer

As

Distrib Parallel Databases

Table 1 Example SLOs in ACMEBOT

Type of SLO SLO Target Penalty Interval
Instance-Level Metric Time To Offer <2 days 5 % discount n/a
Delivery Time <3 days 10 % discount n/a
End-To-End Duration <7 days 10 % discount n/a
Nominal Quality Control Yes 80 % discount, or n/a
Positive correction at
provider’s expense
Aggregated Metric Rate of Failed Service <1 % 10 % discount on next ~ Weekly
Requests purchase
Service Availability >99.99 % 10 % discount on next Monthly
purchase

() ()\Business Process

O~-O0—0—-0

low-level events

| Complex Event Processing Engine

QoS metrics PPM metrics
Estimators
QoS Database Dai::b'\:se
estimations
QoS metrics PPM metrics
e : Y oo
| | | o
g

1 \ﬁj { predictions SLO l b External
1 (e > Predictors ! Lo Data
) o i Prediction ! ! 1 | | external Providers
| Prediction | ' _Models 11| | metrics
| GUI l qTTTooToTe n
! ! P s
.

Fig. 3 Prediction approach overview

raw data is gathered from the running service composition, and transformed into so-
called metrics (both, QoS and Process Performance Metrics, or PPMs, as will be
explained below). We use the notion of complex event processing [30] (CEP) to ex-
tract higher-level knowledge from low-level monitoring events. These metrics are
stored in databases, decoupling the monitoring parts of the system from the actual
analysis. Secondly, in the prediction phase, the gathered high-level knowledge is
enriched with external data, if available, as well as with so-called estimations. All

@ Springer

Distrib Parallel Databases

c T * used in
OmEOSI ion

1

measures

*

Composition _ N
Instance [Estimator]

1 0.1
------- measures estimates input to
{ fact,estimable, * value of
unknown }

External Metric

Internal Metric

provided by
1
[QoS Metric | [PPM Metric | External Data
* Provider
refers to
1 *
Service

Fig. 4 Metrics data model

these different types of runtime data are then fed into a prediction model, essentially
a pre-trained statistical model used for generating one or more predictions of con-
crete SLO values from data. Finally, in the management phase, the predictions of
SLO values are matched to existing customer SLAs, and visualized in a dashboard
for human operators, along with collected statistical information about the past per-
formance of predictors.

In the following, we will focus mostly on the prediction and management phases.
A deeper discussion of the monitoring is out of scope of this paper. The interested
reader may refer to [27, 51] to find more information on our ideas with regard to
CEP-based monitoring.

4.2 Input data and checkpoint definition

A vital ingredient of our approach are metrics. Basically, metrics is the umbrella term
we use for all different types of data used as input of SLO predictions. We present
an overview of the relevant data model in Fig. 4. Generally, we distinguish between
internal and external metrics. Internal metrics can be monitored directly from the
service composition, while external metrics originate in external data source, e.g.,
an external customer relations management service providing customer information.
We do not go into more detail about external data providers. Internal metrics are fur-
ther separated into QoS metrics, i.e., typical Web service QoS information [31], and
PPMs [52]. PPMs are domain-specific metrics, which are often defined recursively,
and which make business sense in the domain of the provider of the process. They

@ Springer

Distrib Parallel Databases

are the basis for defining the SLOs of a process. Examples of PPMs include simple
metrics, such as the customer that has ordered a product, or the number of parts that
are not in stock for a given order. A more complex PPM is the duration of the part
ordering subprocess in the ACMEBOT case. QoS metrics are always associated to
exactly one service used in the service composition, while PPMs are typically not
bound to any concrete service.

Metrics can be monitored for each composition instance. At any point in the ex-
ecution of a process, every metric can be in one of three states. (1) Input data can
be available as facts. Facts represent data which is already known at this time. Gen-
erally speaking, this includes all data which can already be monitored at this point
in the execution. Typical examples of facts are the QoS of services that have already
been invoked. (2) Input data can be unknown. Unknowns are the logical opposites of
facts, in that they represent data which is entirely unknown at this point in the compo-
sition instance. For instance, before starting the assembling process, the assembling
time will be unknown. (3) Finally, as a kind of middle ground between facts and
unknowns, input data can also be estimable. Such estimates are produced by dedi-
cated estimator components, which are metric-specific. Generally, an estimator is a
function that takes any number of other metrics (typically metrics, which are already
available as facts) as input and produces an estimation for a yet unknown metric, to
serve as input to prediction. Evidently, not all metrics are estimable. QoS metrics are
often relatively easy to estimate, as techniques such as QoS monitoring [34] can be
used to create an approximation of e.g., the response time of a service before it is ac-
tually invoked. As PPMs are generally domain-specific, it is often harder to estimate
PPMs in advance. However, in many cases, this is possible as well. For instance, given
the address of the customer and the selected shipping option, it is possible for domain
experts to estimate the shipping time before even starting the shipping process.

It is obvious that one important decision for our approach is at which point in the
service composition we want to predict violations. We refer to this decision point
as the prediction checkpoint. Earlier checkpoints have access to less data, but the
remaining time for reacting to prospective faults is higher. Conversely, generating
predictions later increases the quality of the predictions, but reduces the time avail-
able for reaction. This tradeoff is visualized in Fig. 5. However, note that it is also
possible to define multiple checkpoints for a given process, generating both early
(but inherently unsure) warnings and more reliable late predictions.

4.3 Identification of factors of influence

Finding good prediction checkpoints at which the prediction is reasonably accurate
and still timely enough to react to problems demands for some domain knowledge
about influential factors of composition performance. Factors of influence are rarely
obvious, even to domain experts. Hence, a process has been devised based on the
principle of dependency analysis [50, 51], which can be used by business analysts to
identify factors of influence. This process is summarized here.

Our approach for identifying factors of influence is a semi-automated process. It
relies on the domain knowledge of a human business analyst, but supports her with
automation and knowledge discovery tools to ease repetitive tasks. The high-level

@ Springer

Distrib Parallel Databases

o5 Facts: {Customer, OrderedProduct, ...} {AssemblingTime, QoS_ExtSupplier, ...}
g. B Estimates: {QoS_ExtSupplier, QoS_Warehouse, ...} {QoS_BankingService, ...}
Unknown: {InStock, PaymentPrefs, ...} {PaymentPrefs, DeliveryTimeShipment}
'] [
L] I
' Order l Ship
o Receive | Unavailable Quality |
Sw RFQ | Parts Control O\
(]
& —~O—-O—O—
=0
S0 Produce
o
S | Offer Assemble I
Charge
l I Customer
| |
| Prediction |
[~} F~~ Quality __*_ ____-----
e e
g i O T |
J< \\>: o
23 b '
g3 A [
2 - - - Time for
§ L | "T=--.___| Reaction
i [| T
I |
C1 c2
Fig. 5 Example checkpoints in the ACMEBOT process
Generate Initial Execute Evaluate
.—> List of Potential Composition / Depende_ncy —>| Training Data
Metrics Monitor Metrics Analysis Correlation
Define [Yes] Additional
Additional Metrics @
Metrics Necessary?
»
\

N

/

%
\
Human input / Decisign/Required
\
AN f 3 //
Fig. 6 Factors of influence analysis process

process is sketched in Fig. 6. As a first step, an (initial) list of potential factors of
influence is defined. Typical QoS metrics can be generated automatically (e.g., for
every used service, response time and availability metrics can be generated). Addi-
tionally, the business analyst may include PPMs and external data, which both need
to be defined manually. For every potential factor of influence, a monitor is defined or
generated, which specifies how this metric can be measured from a running instance.
For instance, for QoS metrics, we define CEP expressions, which indicate how this
metric can be calculated from service composition monitoring events. To give one
trivial example, the execution time of an activity in the composition is the times-

@ Springer

Distrib Parallel Databases

tamp of the respective “activity finished” event minus the timestamp of the according
“activity started” event. Secondly, a data set containing these metrics needs to be gen-
erated, either by simulating the composition in a Web service test environment, such
as Genesis2 [24], or by monitoring real executions with monitoring of all potential
factors of influence enabled. Afterwards, a so-called dependency tree is generated
from the data set. The dependency tree is essentially a decision tree, containing the
factors that best explain SLO violations in the composition. Generating the depen-
dency tree boils down to training a decision tree using, e.g., the C4.5 [40] algorithm
from the available data. The third step is then to use these factors, as contained in
the dependency tree, to try and train a prediction model. If this prediction model has
a sufficiently high training data correlation (see Sect. 4.4) against the measured data
set, these factors can be used as input to the prediction model. If the correlation is
not sufficient, the business analyst needs to identify the reason for the lacking perfor-
mance. Generally, she will then go on to define additional metrics and their monitors,
and repeat from the second step.

4.4 Prediction quality management

In the management phase, one essential activity is prediction quality management,
i.e., the process of evaluating the performance of prediction models by comparing
predictions with actual outcomes, as soon as they become available. As different sta-
tistical methods are used to predict different types of SLOs, we also need different
quality indicators to evaluate their performance. Typically, if the prediction perfor-
mance as measured by these quality indicators, is not sufficient, the prediction model
needs to be re-trained, by taking into account new monitoring data, or additional fac-
tors of influence.

4.4.1 Quality indicators for metric SLOs

For metric SLOs (both, on instance-level and aggregated), we mainly use the training
data correlation corr, the mean prediction error e, and the prediction error standard
deviation o; for quality management. corr is a standard machine learning approach
to evaluate regression models, which captures the statistical correlation between the
actual outcomes in the training data set, and the values that the predictor would gen-
erate if applied to the historical values. In our approach, corr is used mainly to eval-
uate freshly generated prediction models, when no actual runtime predictions have
yet been carried out (e.g., as part of the dependency analysis process outlined in
Sect. 4.3). This indicator is inherently overconfident, as during training all estimates
are replaced for the facts that they estimate. However, a low training data correlation
is an indication that important metrics are still unknown in the checkpoint, i.e., that
the checkpoint may be too early in the composition to do much good. More important
at runtime than corr is e, as defined in Eq. (1).
Y izo lmi — pil
. ey
e represents the average (Manhatten) difference between predicted and monitored
values, i.e., how far “off” the prediction is on average. n is the total number of predic-
tions, p; is a predicted value, and m; is the measured value to prediction p; (that is,

e=

@ Springer

Distrib Parallel Databases

every prediction is compared to the value that has been measured after this instance
was finished). Finally, o7 is used to describe the variability of e, as defined in Eq. (2).
e; is the actual prediction error for an instance (m; — p;). Essentially, high oz means
that the actual error for an instance can be much lower or higher than e, which in turn
makes the prediction less reliable for the end user.

n . 2)2
Ué — Zl =0 (el e) (2)

n
4.4.2 Quality indicators for nominal SLOs

For nominal SLOs, we cannot just calculate a mean distance of predictions and actual
SLO values. Instead, we need to look at each prediction individually. To this end, con-
fusion matrices are often used. They are essentially tables with n rows and columns,
where n is the number of different values that the SLO can have (in the example of
the “Quality Control Positive” SLO from Sect. 3 n is therefore 2). Every cell xy in
the confusion matrix contains the number of cases, in which the actual SLO value
turned out to be x, and the prediction was y. Evidently, only the values on the main
diagonal of the confusion matrix contain correct predictions, while all other cases
represent some sort of prediction error.

prec - recall

F=2 3)

. prec + recall

While the confusion matrix visualization is helpful to get a quick impression of
the prediction performance, it is hard for a human operator to objectively compare
the performance of two predictors solely based on it. For these cases, it is better to
aggregate the information contained in the confusion matrix, for instance using the
F-measure, as defined in Eq. (3). In essence, the F'-measure is the harmonic mean of
precision and recall [43], which can be derived from the confusion matrix.

5 Statistical models

In the following, we discuss our concrete instantiations of different statistical models
for prediction SLA violations. Depending on the type of SLO, we use one of three
different approaches: (1) for nominal, instance-level SLOs, we use decision tree clas-
sifiers [39], (2) for metric, instance-level SLOs, we use Artificial Neural Networks
(ANNSs) [23], and (3) for metric, aggregated SLOs, we use Autoregressive Integrated
Moving Average (ARIMA) models [6].

5.1 Prediction of nominal, instance-level service level objectives
Nominal SLOs are interesting, as many prediction approaches used in related work
(e.g., resource analysis as discussed in [21]) are not well-suited to handle them.

Essentially, predicting a nominal SLO is a classification problem. We use J54, the
WEKA [17] implementation of the well-known C4.5 algorithm [22, 40]. Note that

@ Springer

Distrib Parallel Databases

Fig. 7 Example decision tree
for SLO quality control positive

Outsourced?

= false = true

QA Skipped?
=true

Priority of Construction?

Result: OK = false

-

\
Result: OK = ~=3
i o
Result: Failed Result: OK

it is also feasible to plug in other classification algorithms as implementations of the
prediction models for nominal SLOs. We have also experimented with Bayes net-
works [16], but do not report on these results in this paper for reasons of brevity.

Decision trees [39] are an approach primarily used for classification of data. The
decision tree is a directed, acyclic graph with one root node and any number of leaf
nodes (nodes with an out-degree of 0). Every leaf node represents a classification
to one of the classes, every other node represents a decision. When data has to be
classified using the decision tree, one reads the tree from the root node downwards,
always continuing with the edge indicated by the outcome of every decision evaluated
against the data, until a leaf is reached. This leaf is the result of the classification.
A primitive example of a decision tree in the SLO prediction domain is depicted
in Fig. 7. This tree exemplifies, what the tree-based prediction model for the SLO
Quality Control Positive (as introduced in Table 1) could look like.

5.2 Prediction of metric, instance-level service level objectives

There are inherently two quite different approaches to predict metric SLOs: (1) pre-
dict the concrete value of the metric SLO, and compare this predicted value with the
target value defined in the SLA, or (2) predict violation or non-violation directly. The
former is a regression problem, while the latter is a binary classification problem. If
one chooses to follow the latter approach, decision trees can again be used to carry
out predictions. However, we have decided to follow the former approach, as predict-
ing the concrete SLO value provides much more fine-grained information to the end
user. For instance, using our approach, users also get an idea “how much” the SLA
will be violated, which may also be relevant to quantify the actual damage of the
violation. Hence, a suitable regression algorithm for generating predictions of metric
SLO values is required.

In our work, we use Artificial Neural Networks (ANNs) [23]. ANNSs are a ma-
chine learning technique inspired by the inner workings of the human brain. Basi-
cally, ANNSs consist of one or more layers of nodes (neurons) and directed connec-
tions between neurons. Oftentimes, ANNs consist of an input layer, output layer and
one or many intermediary layers.

An abstracted example of a multilayer perceptron with one hidden (intermediary)
layer for predicting the metric SLO Order Fulfillment Time is given in Fig. 8. Input
values are mapped to nodes in the input layer. From these inputs, a complex system of
weights and activation functions produces a single output value (the SLO). However,
keep in mind that the number of intermediary layers is in general not fixed.

@ Springer

Distrib Parallel Databases

Fig. 8 Example network for Shipping Time —>

predicting the order fulfillment

time Time To Offer — O—> Order Fulfillment Time
Priority

Ingg,
I’lpl” Lay,, r’"edlateL
er

aJ’er

5.3 Prediction of aggregated service level objectives

In order to predict aggregated SLOs, one needs to be able to predict how many fu-
ture instances there will be in the remainder of the aggregation interval, as well as
predict how many of those instances will violate the target value. For both predic-
tion problems we can use the technique of time series analysis, i.e., the technique of
predicting future values based on the observed values of a series of historical val-
ues. In this paper, we consider two different types of time series, namely, those with
trends and those with seasonality. Time series with seasonality are stationary, i.e.,
the mean does not change over time. However, the concrete values change signifi-
cantly with the “season”. Time series with trends are non-stationary, i.e., their mean
changes with time. If we model the evolution of an SLO’s values as a stationary pro-
cess, it means that the SLO value oscillates around a constant mean value and shows
no significant trend in any direction away from the mean. We argue that stationarity
is a valid assumption for most SLOs, at least in the short or medium run. However,
over longer periods of time, it may occur that an SLO converges against a new mean
value and shows a different oscillation scheme. Hence, an appropriate time interval
for the stationary process has to be considered. ARIMA models [6, 45] have emerged
as a popular approach to predict future values in time series, where the data show
evidence of non-stationarity.

Similar to training of ANNs for instance-level SLOs, ARIMA models need to be
fitted to training data before they can be used for prediction. We have devised a fitting
process that uses historical instances of the service composition, however, details to
this parameter optimization process are out of scope here. Please refer to [15] for
more details.

6 Implementation

To evaluate the ideas discussed in this paper, we have implemented an end-to-end
prototype dubbed E-dict (short for Event-driven prediction).

6.1 Implementation overview
E-dict is based on Microsoft .NET 3.0 tooling and integrates various other well-

known third-party software packages. In this section, we detail the realization of our
prototype.

1 http://www.microsoft.com/download/en/details.aspx ?id=31.

@ Springer

http://www.microsoft.com/download/en/details.aspx?id=31

Distrib Parallel Databases

VRESCo
VRESCo-Enabled
O<:O—> Windows Workflow
VRESCo
Event
Database
\4 \4 \/
E-dict
| NEsper CEP Engine |
v

MySQL
Database

External
Data
Providers

WEKA R
Prediction Multilayer ARIMA
Console J54 Trees Perceptrons Models

Fig. 9 Implementation overview

Figure 9 shows how we have practically implemented the conceptual framework
discussed in Sect. 4. As far as possible, we aimed to prevent reproducing existing
work. Hence, we used, adapted and integrated a plethora of state-of-the-art tools,
algorithms and research prototypes. In the figure, we printed such existing tools and
technology in bold.

As can be seen, E-dict is heavily based on an earlier research prototype, VRESCo
(Vienna Runtime Environment for Service-Oriented Computing) [35]. VRESCo is a
novel environment for building, running, and monitoring highly dynamic compos-
ite services based on Microsoft Windows Workflow Foundation (WWF) technol-
ogy.> VRESCo allows for event-driven monitoring via the VRESCo event engine

2http://msdn.microsoft.com/en— us/netframework/aa663328.

@ Springer

http://msdn.microsoft.com/en-us/netframework/aa663328

Distrib Parallel Databases

(described in detail in [33]). The event data collected by this event engine is our
main interface towards the E-dict framework, which uses the NEsper complex event
processing engine’ to generate interpretable metrics from the low-level monitoring
data collected by VRESCo. NEsper is the .NET version of the state-of-the-art open
source CEP engine Esper,* and functionally mostly equivalent. The generated met-
rics are then stored in a local database, for which we use the open source database
management system MySQL 5.0 community edition.’

To implement the statistical algorithms described in Sect. 5, we utilize the well-
known machine learning toolkit WEKA [17], which implements both, J54 decision
trees (an open source implementation of C.45) and multilayer perceptrons. As WEKA
is implemented in the Java programming language (while our E-dict tooling is .NET
based), we wrapped WEKA using a RESTful Web service [42] to integrate the tool
more easily with our prototype. To implement ARIMA models, we use the R statis-
tical library [41] as foundation. As with WEKA, a service wrapper was necessary to
seamlessly integrate R with the remainder of the prototype system. Finally, prediction
results are reported to the user. At the moment, E-dict is commandline-based, hence,
predictions are reported via a prediction console.

6.2 E-dict configuration

Configuration of E-dict happens mostly via XML configuration files. While a full
discussion of the basis configuration is out of scope for this article, we will illustrate
the basic configuration instruments.

Listing 1 exemplifies the XML-based definition of a metric. Metrics are defined
as EPL (Esper Processing Language) statements on event streams, as received from
the VRESCo event engine. The complex event(s) produced by this EPL statement can
then be postprocessed in a number of ways. In the example, we retrieve some payload
data from the complex event via the message path GetPartListResult/Parts.
Afterwards, we apply a CS-Script® to the retrieved property. Using such scripts, we
are able to implement complex transformations on the processed events. The result of
the statement is of type integer. As part of E-dict, we provide some tooling to generate
monitoring definitions of many often-used metrics (e.g., for the response time of each
service used in the composition, or for each input and output message of each service
invocation). However, generally, domain experts are required to write definitions for
more domain-specific metrics (as the one depicted in Listing 1) manually.

Another relevant aspect of E-dict configuration is fine tuning of the statistical mod-
els used in the SLO predictor component. For WEKA, we allow machine learning
savvy users to configure the machine learning model via the same parameters, which
are also used by the WEKA commandline interface.

3 http://esper.codehaus.org/about/nesper/nesper.html.
4http://esper.codehaus.org/.

5 http://www.mysql.com/products/community/.
6http://www.csscript.net/‘

@ Springer

http://esper.codehaus.org/about/nesper/nesper.html
http://esper.codehaus.org/
http://www.mysql.com/products/community/
http://www.csscript.net/

Distrib Parallel Databases

I <metric name="total_nr_of_items"

2 type="integer"

3 epl=

4 "select

5 _event as msg, _event.WorkflowId as id
6 from

7 AfterWFInvokeEvent _event

8 where

9 _event.ActivityName = ’‘get_parts_list’"
10 messagePath="GetPartListResult/Parts"

11 script="return (input as string) .Split(’;’).Length;"
2 />

Listing 1 Example metric definition in XML

Table 2 Base statistics for case () Order fulfillment time (b) Quality control
study SLOs
Min Max Mean StdDev True False
28588 ms 49939 ms 37693 ms 4626 2687 2266

7 Evaluation

We base our evaluation of the E-dict approach on an implementation of the actual
order handling part of the ACMEBOT case, i.e., the subflow starting with the activ-
ity “Receive Order” until the end of the business process. The case study has been
implemented using .NET Windows Communication Foundation” (WCF) technology.
A MySQL 5 database is used as data backend for VRESCo, and all necessary com-
ponents are deployed on the same Windows server machine, in order to reduce the
impact of external influences, such as network latency. The service composition itself
has been implemented as a dynamic service composition using Microsoft WWEF. The
technical implementation of this case encompasses more than 40 activities. These ac-
tivities are monitored using VRESCo, and 40 different metrics are generated for each
process instance using the CEP engine. These metrics include both QoS information,
such as the response time of every used Web service, and PPMs, such as customer
identifiers or which products have been ordered. These metrics form the foundation,
from which we will generate concrete predictions for SLOs.

For reasons of brevity, we focus on instance-level SLOs in our evaluation. Some
numerical results with regards to prediction performance for aggregated SLOs can
be found in [15]. To evaluate the prediction mechanisms for instance-level SLOs, we
have used two representative SLOs, the Order Fulfillment Time (i.e., the end-to-end
execution duration of the implemented process) as metric SLO, and Quality Control
(true if the quality was deemed acceptable, false otherwise) as nominal SLO.

In order to bootstrap our data-based prediction, we have initialized the system with
up to 5000 historical executions of the ACMEBOT process. We have summarized the
basic statistics of this bootstrap data in Table 2a for the SLO Order Fulfillment Time
and Table 2b for the SLO Quality Control.

7http://msdn.microsoft.com/en—us/library/ms735967(VS.90).aspx.

@ Springer

http://msdn.microsoft.com/en-us/library/ms735967(VS.90).aspx

Distrib Parallel Databases

Fig. 10 Histogram for SLO 1200
order fulfillment time
1000
wn
g 800 |
=
@
S
3
8 600 -
s
E 400
g !
3
z
200 +
0
29000 33000 37000 41000 45000 43000
Order Fulfillment Time
Table 3 .O.verhe£.1d for training (a) Training overhead (b) Prediction overhead
and prediction using ANNs
Instances Training [ms] Instances Prediction [ms]
250 24436 250 59
500 49168 500 70
1000 96878 1000 82
2500 240734 2500 126
5000 481101 5000 209

Furthermore, Fig. 10 visualizes the distribution of SLO values for Order Fulfill-
ment Time as histogram. For illustrative purposes, we have discretized continuous
values into discrete ranges.

7.1 Performance overhead

Two different factors are relevant for quantifying the performance overhead of predic-
tion. Firstly, we need to evaluate the time necessary for building the used prediction
models (training time). Secondly, we need to measure how long the actual runtime
usage (prediction) of these models takes. In Table 3, these measures are depicted for
ANNSs (in milliseconds). Evidently, the training time depends linearly on the number
of historical instances that are available. Furthermore, it can be seen that ANN train-
ing takes a significant amount of time, even for relatively modest training data sizes.
However, considering that model rebuilding can be done sporadically and offline,
this large training times seem acceptable. Additionally, after the initial construction
of the first prediction model, there is no time when no model is available at all. In-
stead, whenever retraining becomes necessary, the new model is trained offline, and
exchanged for the old model as soon as training is finished.

As a second interesting performance aspect, the prediction time, i.e., the time nec-
essary to produce predictions at runtime, has been measured. Table 3b again sketches

@ Springer

Distrib Parallel Databases

Table 4 Overhead for training

o ° R (a) Training overhead (b) Prediction overhead
and prediction using decision
trees Instances Training [ms] Instances Prediction [ms]
250 183 250 14
500 219 500 14
1000 258 1000 14
2500 460 2500 14
5000 623 5000 13
Table 5 Prediction quality of -
SLO order fulfillment time corr e Og
0.98 767 581

these measurements for ANNs. Note that this overhead is more significant for the run-
time performance than the training time, as it refers to the online part of prediction.
Fortunately, the results depicted show that the absolute time necessary for prediction
(roughly between 60 and 200 ms) is rather small.

Table 4 provides the same data for J54 decision trees, as used to predict nomi-
nal SLOs. Firstly, Table 4a shows that the time required for training decision trees
is much smaller than for ANNS. Indeed, even though the training time is again in-
creasing linearly with the number of available historical instances, the absolute time
required for constructing the tree stays well below 700 ms even for 5000 instances.
Using these trees for runtime prediction is equally efficient (Table 4b). We measured
a constant prediction time of approximately 14 ms, independent of the amount of data
used to train the tree in the first place.

7.2 Quality of prediction

Even more important than the time necessary to generate prediction models or run-
time predictions is the quality of these predictions. To visualize the prediction quality
in the ACMEBOT case, Fig. 11 plots for 100 distinct instances the predicted value
for the Order Fulfillment Time (x) and the respective measured value (+). As can be
seen, predictions and measured values are generally close, i.e., the prediction quality
is good. However, for some isolated instances, the prediction is off by a larger margin
(e.g., instances 82 or 91).

This more intuitive feeling for prediction quality is further substantiated in Table 5,
which contains the three basic quality indicators for prediction as defined in Sect. 4
(training data correlation corr, prediction error e, and prediction error variance o;).
With 0.98, corr is very high, indicating that the model might even be slightly over-
fitted to the training data. The actual prediction error e is 767 (or about 2 % of the
mean process duration), with a o7 of 581, which indicates a generally good prediction
quality, but a relatively high variation of the error.

Furthermore, we have evaluated the quality of predictions of nominal SLOs based
on the SLO Quality Control. We provide the confusion matrix for this SLO in Ta-
ble 6a (again based on predictions and actually measured values for 100 instances

@ Springer

Distrib Parallel Databases

Fig. 11 Predicted and actual 48000
values for SLO order fulfillment
time

46000 iy x5S X
44000 fe X% X

42000 % % X x
40000 .
38000 X
36000 x XX XX X
34000 |4 X
32000 * X
30000 % .
28000

26000 L
0O 10 20 30 40 50 60 70 80 90 100

Composition Instances

Order Fulfillment Time

Table 6 Prediction quality of

! (a) Confusion matrix (b) Aggregated metrics
SLO quality control

Predicted prec recall F

true false
0.9399 0.9404 0.9402

Actual true 53 2
false 4 41

of the service composition). As we can see, only 6 of 100 instances have been pre-
dicted inaccurately, 4 of which have been false positives (i.e., they were predicted as
violating the SLA, but have not actually done so).

Furthermore, we provide aggregated quality indicators for this SLO in Table 6b.
Precision, recall and F are in the area of 0.94, indicating a very strong overall pre-
diction accuracy.

8 Related work

The problem discussed in this paper has been subject to a number of research papers
in the past. In this section, we briefly introduce this earlier research, and compare it
with our own contributions.

In general, even the earliest work on (Web) service level agreements, for instance
SLAng [46], WSLA [10] or WSOL [47, 48], has acknowledged the fact that runtime
management has to be a central element of every SLA infrastructure. For the service
provider, important runtime SLA management tasks include (1) monitoring of SLOs
(to decide if SLAs have been violated in the past), (2) analysis of past violations (to
improve the business process, so that those violations can be prevented for the future),
and, finally, (3) prediction of future violations before they have happened.

SLA monitoring is strongly related to QoS monitoring, as SLOs can often be bro-
ken down into lower-level QoS metrics. A plethora of different patterns can in princi-
ple be applied to QoS monitoring [36], but, in the context of SLA management, event-
driven monitoring [53] can be considered state of the art. In our work, we also use an

@ Springer

Distrib Parallel Databases

event-driven monitoring approach to gather the metrics required for prediction. Our
monitoring approach is based on the VRESCo SOA infrastructure [35], more con-
cretely, on the eventing features of VRESCo [33]. In this paper, a deeper description
of metric monitoring was out of scope, but details can be reviewed in [27].

Post-mortem analysis of SLA violations is still an active research area. For in-
stance, Mode4SLA has recently been proposed as a framework to explain [4] and,
consequently, prevent [5] SLA violations. Mode4SLA follows a top-down approach,
and identifies dependencies of SLAs on the performance of the underlying base ser-
vices used in a service composition. A similar approach is also followed by the depen-
dency analysis approach discussed in [50, 51]. This work is particularly interesting
in the context of this paper, as we have reused dependency analysis as a founda-
tional piece of our factors of influence identification process (see Sect. 4.3). Finally,
another important area of research in post-mortem SLA analysis is the mapping of
lower-level QoS metrics to SLAs. One approach researching this kind of dependen-
cies is the FoSSI project [13, 14], which deals mostly with SLAs in a cloud computing
context.

A priori identification of SLA violations is still mostly a research topic (as op-
posed to SLA monitoring, which has by now started to diffuse into industrial prac-
tice), even though initial work in the area dates back to 2002 [9, 44]. This work uses a
data-driven approach similar to the one discussed in this paper, but mostly stays on an
abstract level, without discussing concrete application areas, algorithms or metrics.
Others have consequently worked on prediction for concrete domains, e.g., finish
time prediction for (human-centric) business processes [11] or the performance of
service-based applications deployed on top of an enterprise service bus (ESB) [29].
More recently, other researchers have started to pick up on the idea of SLA predic-
tion for service compositions, including [28], which the current paper is based on.
Hence, some of our basic notions, as well as our general approach towards predict-
ing metric, instance-level SLOs, have originated in [28]. A similar approach has also
been discussed by [54]. These papers use a statistical approach similar to the cur-
rent paper, even though the research discussed in the latter paper focuses more on
event-based monitoring as an input to prediction than the actual prediction process.
Contrary, others have used significantly different data-driven prediction approaches,
based, for instance, on online testing [18, 32] or static analysis [21].

There is also some related research with regard to the application of time series
models to performance prediction, even if mostly for other domains. For instance, [3]
utilizes ARMA models to predict service quality in call centers. Nominal, aggregated
SLOs were not discussed in this paper, mostly because of their limited practical rele-
vance. However, existing literature knows of approaches to apply time series analysis
to nominal values (e.g., [38]), should nominal, aggregated SLOs become practically
relevant. Only very recently, some other authors have started to explore the field with
applications of ARIMA and GARCH (generalized autoregressive conditional het-
eroskedasticity) models to predict aggregated SLAs [1].

Finally, our work is also related to testing of service-based systems. A good
overview over this important field is given in [8]. In the past, we have also intro-
duced an approach for upfront testing of service compositions to identify integration
problems, and, hence, avoid SLA violations [19]. A similar approach was also dis-

@ Springer

Distrib Parallel Databases

cussed in [20], where root causes of functional service incompatibilities are detected
using decision tree technology.

9 Conclusions

Identifying potential cases of SLA violations will increasingly become a major pri-
ority of service providers around the world. Detecting violations before they have
happened allows providers to proactively take countermeasures, reducing the loss as-
sociated with violations. In this paper, we have presented a general framework for
predicting SLA violations in a business process implemented as a service compo-
sition. Our approach is grounded in the usage of statistical models for data-driven
prediction. Different types of SLOs ask for different prediction models: metric SLOs
on instance-level are predicted using ANN-based regression, aggregated metric SLOs
are covered using ARIMA models, an implementation of time series analysis, and,
finally, nominal SLOs are tackled via decision trees. We demonstrated the applica-
bility of these techniques to the problem of SLA violation prediction via numerical
experiments.

While this paper presents self-contained research with little open ends, some prac-
tical problems remain. Firstly, we do not go into much detail about the concept of
estimators. For some factors of influence, generating estimations is trivial (e.g., for
service response times). As part of our future work, we plan to research methods and
techniques for generating estimations in non-trivial cases. We conjure that it should
be possible to recursively use the same approach that we use for generating predic-
tions for estimation of factors of influence, as the problem is clearly strongly related.
Secondly, one limitation of the current approach is that no notion of “doubt” about a
prediction exists. That is, while our models will always generate a prediction, it is not
clear how trustworthy this prediction really is. The prediction error standard devia-
tion o helps, but obviously the concrete uncertainty can be much lower or higher for
single predictions. We need to investigate means to generate not only the predictions,
but also associated confidence intervals.

Acknowledgements The research leading to these results has received funding from the European Com-
munity’s Seventh Framework Program [FP7/2007-2013] under grant agreement 257483 (Indenica), as well
as from the Austrian Science Fund (FWF) under project references P23313-N23 (Audit 4 SOAs).

References

1. Amin, A., Colman, A., Grunske, L.: An approach to forecasting QoS attributes of web services based
on ARIMA and GARCH models. In: Proceedings of the 2012 IEEE International Conference on Web
Services, pp. 74-81. IEEE Computer Society, Washington, DC (2012). doi:10.1109/ICWS.2012.37

2. Andrieux, A., Czajkowski, K., Dan, A., Keahey, K., Ludwig, H., Nakata, T., Pruyne, J., Rofrano, J.,
Tuecke, S., Xu, M.: Web Services Agreement Specification (WS-Agreement). Tech. rep., Open Grid
Forum (OGF) (2006). http://www.gridforum.org/documents/GFD.107.pdf, Last Visited: 2011-07-19

3. Balaguer, E., Palomares, A., Soria, E., Martin-Guerrero, J.D.: Predicting service request in support
centers based on nonlinear dynamics, ARMA modeling and neural networks. Expert Syst. Appl. 34(1),
665-672 (2008). doi:10.1016/j.eswa.2006.10.003

@ Springer

http://dx.doi.org/10.1109/ICWS.2012.37
http://www.gridforum.org/documents/GFD.107.pdf
http://dx.doi.org/10.1016/j.eswa.2006.10.003

Distrib Parallel Databases

[=))

10.

11.

12.

16.

17.

20.

21.

22.
23.

24.

25.

. Bodenstaff, L., Wombacher, A., Reichert, M., Jaeger, M.: Monitoring dependencies for SLAs: the

MoDe4SLA approach. In: Proceedings of the 2008 IEEE International Conference on Services Com-
puting (SCC’08), pp. 21-29. IEEE Computer Society, Washington, DC (2008). http://portal.acm.org/
citation.cfm?id=1447562.1447847. doi:10.1109/SCC.2008.120

. Bodenstaff, L., Wombacher, A., Reichert, M., Jaeger, M.C.: Analyzing impact factors on compos-

ite services. In: Proceedings of the 2009 IEEE International Conference on Services Computing
(SCC’09), pp. 218-226. IEEE Computer Society, Los Alamitos (2009)

. Box, G.E.P, Jenkins, G.M.: Time Series Analysis—Forecasting and Control. Holden-Day (1976)
. Buyya, R,, Yeo, C.S., Venugopal, S., Broberg, J., Brandic, I.: Cloud computing and emerging it plat-

forms: vision, hype, and reality for delivering computing as the 5th utility. Future Gener. Comput.
Syst. 25(6), 599-616 (2009). doi:10.1016/j.future.2008.12.001

. Canfora, G., Di Penta, M., Esposito, R., Villani, M.L.: QoS-aware replanning of composite web ser-

vices. In: Proceedings of the IEEE International Conference on Web Services ICWS’05), pp. 121-
129. IEEE Computer Society, Washington, DC (2005). doi:10.1109/ICWS.2005.96

. Castellanos, M., Casati, F., Dayal, U., Shan, M.C.: Intelligent management of SLAs for composite

web services. In: Databases in Networked Information Systems (2003)

Dan, A., Davis, D., Kearney, R., Keller, A., King, R.P., Kuebler, D., Ludwig, H., Polan, M., Spreitzer,
M., Youssef, A.: Web services on demand: WSLA-driven automated management. IBM Systems Jour-
nal 43, 136-158 (2004). doi:10.1147/sj.431.0136

Dongen, B.F., Crooy, R.A., Aalst, W.M.: Cycle time prediction: when will this case finally be finished?
In: Proceedings of the 2008 OTM Confederated International Conferences, pp. 319-336. Springer,
Berlin (2008)

Dustdar, S., Schreiner, W.: A survey on web services composition. International Journal of Web and
Grid Services 1(1), 1-30 (2005)

. Emeakaroha, V.C., Brandic, 1., Maurer, M., Dustdar, S.: Low level metrics to high level slas -

lom2his framework: bridging the gap between monitored metrics and sla parameters in cloud environ-
ments. In: Proc. Int High Performance Computing and Simulation (HPCS) Conf, pp. 48-54 (2010).
doi:10.1109/HPCS.2010.5547150

. Emeakaroha, V.C., Netto, M.A.S., Calheiros, R.N., Brandic, I., Buyya, R., De Rose, C.A.F.: Towards

autonomic detection of SLA violations in cloud infrastructures. Future Gener. Comput. Syst. (2011).
doi:10.1016/j.future.2011.08.018

. Ferner, J.: Using Time Series Analysis for Predicting Service Level Agreement Violations in Service

Compositions. Master’s thesis, Vienna University of Technology (2012)

Friedman, N., Geiger, D., Goldszmidt, M.: Bayesian network classifiers. Machine Learning 29, 131-
163 (1997). http://portal.acm.org/citation.cfm?id=274158.274161. doi:10.1023/A:1007465528199
Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, .H.: The WEKA data
mining software: an update. SIGKDD Explorations 11(1), 10-18 (2009). http://portal.acm.org/
citation.cfm?id=1656274.1656278. doi:10.1145/1656274.1656278

. Hielscher, J., Kazhamiakin, R., Metzger, A., Pistore, M.: A framework for proactive self-adaptation

of service-based applications based on online testing. In: Proceedings of the 1st European Conference
on Towards a Service-Based Internet (ServiceWave’08), pp. 122—133. Springer, Berlin (2008)

. Hummer, W., Raz, O., Shehory, O., Leitner, P., Dustdar, S.: Testing of Data-Centric and Event-Based

Dynamic Service Compositions. Softw. Test. Verif. Reliab. (2013, to appear)

Inzinger, C., Hummer, W., Satzger, B., Leitner, P., Dustdar, S.: Identifying incompatible service imple-
mentations using pooled decision trees. In: 28th ACM Symposium on Applied Computing (SAC’13),
DADS Track (2013)

Ivanovic, D., Carro, M., Hermenegildo, M.: An initial proposal for data-aware resource analysis of
orchestrations with applications to predictive monitoring. In: Proceedings of the 2009 International
Conference on Service-Oriented Computing (ICSOC’09), pp. 414-424. Springer, Berlin (2009).
http://portal.acm.org/citation.cfm?id=1926618.1926662

Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan-Kaufmann, San Mateo (1993)

Jain, A.K., Mao, J., Mohiuddin, K.M.: Artificial neural networks: a tutorial. IEEE Computer 29, 31—
44 (1996). doi:10.1109/2.485891

Juszezyk, L., Dustdar, S.: Script-based generation of dynamic testbeds for SOA. In: Proceedings of
the 2010 IEEE International Conference on Web Services (ICWS’10), pp. 195-202. IEEE Computer
Society, Washington, DC (2010). doi:10.1109/ICWS.2010.75

Keller, A., Ludwig, H.: The WSLA framework: specifying and monitoring service level agree-
ments for web services. Journal on Network and Systems Management 11, 57-81 (2003). http://
portal.acm.org/citation.cfm?id=635430.635442. doi:10.1023/A:1022445108617

@ Springer

http://portal.acm.org/citation.cfm?id=1447562.1447847
http://portal.acm.org/citation.cfm?id=1447562.1447847
http://dx.doi.org/10.1109/SCC.2008.120
http://dx.doi.org/10.1016/j.future.2008.12.001
http://dx.doi.org/10.1109/ICWS.2005.96
http://dx.doi.org/10.1147/sj.431.0136
http://dx.doi.org/10.1109/HPCS.2010.5547150
http://dx.doi.org/10.1016/j.future.2011.08.018
http://portal.acm.org/citation.cfm?id=274158.274161
http://dx.doi.org/10.1023/A:1007465528199
http://portal.acm.org/citation.cfm?id=1656274.1656278
http://portal.acm.org/citation.cfm?id=1656274.1656278
http://dx.doi.org/10.1145/1656274.1656278
http://portal.acm.org/citation.cfm?id=1926618.1926662
http://dx.doi.org/10.1109/2.485891
http://dx.doi.org/10.1109/ICWS.2010.75
http://portal.acm.org/citation.cfm?id=635430.635442
http://portal.acm.org/citation.cfm?id=635430.635442
http://dx.doi.org/10.1023/A:1022445108617

Distrib Parallel Databases

26.

217.

28.

29.

30.
31.

32.

33.

34.

35.

36.

37.
38.

39.
. Quinlan, J.R.: Improved use of continuous attributes in C4.5. Journal of Artificial Intelligence Re-

41.
42.

43.
44,

45.
. Skene, J., Lamanna, D.D., Emmerich, W.: Precise service level agreements. In: Proceedings of the

47.

48.

Leitner, P., Hummer, W., Dustdar, S.: Cost-based optimization of service compositions. IEEE Trans.
Serv. Comput. 99 (2011). http://doi.ieeecomputersociety.org/10.1109/TSC.2011.53

Leitner, P., Michlmayr, A., Rosenberg, F., Dustdar, S.: Monitoring, prediction and prevention of SLA
violations in composite services. In: Proceedings of the IEEE International Conference on Web Ser-
vices (ICWS’10), pp. 369-376. IEEE Computer Society, Los Alamitos (2010)

Leitner, P, Wetzstein, B., Rosenberg, F., Michlmayr, A., Dustdar, S., Leymann, F.: Run-
time prediction of service level agreement violations for composite services. In: Proceedings
of the 3rd Workshop on Non-Functional Properties and SLA Management in Service-Oriented
Computing (NFPSLAM-SOC’09), pp. 176-186. Springer, Berlin (2009). http://portal.acm.org/
citation.cfm?id=1926618.1926639

Liu, Y., Gorton, I., Zhu, L.: Performance prediction of service-oriented applications based on an en-
terprise service bus. In: Proceedings of the 31st Annual International Computer Software and Appli-
cations Conference, COMPSAC’07, vol. 01, pp. 327-334. IEEE Computer Society, Washington, DC
(2007). doi:10.1109/COMPSAC.2007.166

Luckham, D.: The Power of Events: an Introduction to Complex Event Processing in Distributed
Enterprise Systems. Addison-Wesley, Reading (2002)

Menascé, D.A.: QoS issues in web services. IEEE Internet Computing 6(6), 72-75 (2002). doi:10.
1109/MIC.2002.1067740

Metzger, A., Sammodi, O., Pohl, K., Rzepka, M.: Towards pro-active adaptation with confidence:
augmenting service monitoring with online testing. In: Proceedings of the 2010 ICSE Workshop on
Software Engineering for Adaptive and Self-Managing Systems (SEAMS’10), pp. 20-28. ACM, New
York (2010). doi:10.1145/1808984.1808987

Michlmayr, A., Rosenberg, F., Leitner, P, Dustdar, S.: Advanced event processing and notifica-
tions in service runtime environments. In: Proceedings of the 2nd International Conference on
Distributed Event-Based Systems (DEBS’08), pp. 115-125. ACM, New York (2008). doi:10.1145/
1385989.1386004

Michlmayr, A., Rosenberg, F., Leitner, P., Dustdar, S.: Comprehensive QoS monitoring of web ser-
vices and event-based SLA violation detection. In: Proceedings of the 4th International Workshop on
Middleware for Service Oriented Computing (MWSOC’09), pp. 1-6. ACM, New York (2009)
Michlmayr, A., Rosenberg, F., Leitner, P., Dustdar, S.: End-to-end support for QoS-aware service
selection, binding, and mediation in VRESCo. IEEE Transactions on Services Computing 3, 193-205
(2010)

Oberortner, E., Zdun, U., Dustdar, S.: Patterns for measuring performance-related QoS properties in
distributed systems. In: Proceedings of the 17th Conference on Pattern Languages of Programs (PLoP)
(2010)

Papazoglou, M.P., Traverso, P., Dustdar, S., Leymann, F.: Service-oriented computing: state of the art
and research challenges. IEEE Computer 40(11), 38-45 (2007)

Pruscha, H., G”ottlein, A.: Forecasting of categorical time series using a regression model. Economic
Quality Control 18(2), 223-240 (2003). http://www.heldermann-verlag.de/eqc/eqc18/eqc18014.pdf
Quinlan, J.R.: Induction of decision trees. Machine Learning 1, 81-106 (1986)

search 4, 77-90 (1996)

R Development Core Team: R: a Language and Environment for Statistical Computing. R Foundation
for Statistical Computing, Vienna (2008). http://www.R-project.org. ISBN 3-900051-07-0
Richardson, L., Ruby, S.: RESTful Web Services. O’Reilly (2007)

Rijsbergen, C.J.V.: In: Information Retrieval. Butterworths, Stoneham (1979)

Sahai, A., Machiraju, V., Sayal, M., Moorsel, A.P.A.V., Casati, F.: Automated SLA monitoring for
web services. In: Proceedings of the 13th IFIP/IEEE International Workshop on Distributed Systems:
Operations and Management (DSOM) (2002)

Shumway, R.H., Stoffer, D.S.: Time Series Analysis and Its Applications. Springer, Berlin (2010)

26th International Conference on Software Engineering (ICSE’04), pp. 179-188. IEEE Computer
Society, Washington, DC (2004). http://portal.acm.org/citation.cfm?id=998675.999422

Tosic, V., Ma, W., Pagurek, B., Esfandiari, B.: Web service offerings infrastructure (WSOI)—a man-
agement infrastructure for XML web services. In: Proceedings of the IEEE/IFIP Network Operations
and Management Symposium (NOMS’04), pp. 817-830 (2004)

Tosic, V., Pagurek, B., Patel, K., Esfandiari, B., Ma, W.: Management applications of the web
service offerings language (WSOL). Information Systems 30(7), 564-586 (2005). doi:10.1016/
j.15.2004.11.005

@ Springer

http://doi.ieeecomputersociety.org/10.1109/TSC.2011.53
http://portal.acm.org/citation.cfm?id=1926618.1926639
http://portal.acm.org/citation.cfm?id=1926618.1926639
http://dx.doi.org/10.1109/COMPSAC.2007.166
http://dx.doi.org/10.1109/MIC.2002.1067740
http://dx.doi.org/10.1109/MIC.2002.1067740
http://dx.doi.org/10.1145/1808984.1808987
http://dx.doi.org/10.1145/1385989.1386004
http://dx.doi.org/10.1145/1385989.1386004
http://www.heldermann-verlag.de/eqc/eqc18/eqc18014.pdf
http://www.R-project.org
http://portal.acm.org/citation.cfm?id=998675.999422
http://dx.doi.org/10.1016/j.is.2004.11.005
http://dx.doi.org/10.1016/j.is.2004.11.005

Distrib Parallel Databases

49.

50.

S1.

52.

53.

54.

Van Der Aalst, W.M.P,, Hofstede, A.H.M.T., Weske, M.: Business process management: a survey.
In: Proceedings of the 2003 International Conference on Business Process Management, BPM’03,
pp. 1-12. Springer, Berlin (2003). http://dl.acm.org/citation.cfm?id=1761141.1761143

Wetzstein, B., Leitner, P., Rosenberg, F., Brandic, 1., Dustdar, S., Leymann, F.: Monitoring and analyz-
ing influential factors of business process performance. In: Proceedings of the 13th IEEE International
Conference on Enterprise Distributed Object Computing (EDOC’09), pp. 118-127. IEEE Press, Pis-
cataway (2009). http://portal.acm.org/citation.cfm?id=1719357.1719370

Wetzstein, B., Leitner, P., Rosenberg, F., Dustdar, S., Leymann, F.: Identifying influential factors of
business process performance using dependency analysis. Enterprise Information Systems 4(3), 1-8
(2010)

Wetzstein, B., Strauch, S., Leymann, F.: Measuring performance metrics of WS-BPEL service compo-
sitions. In: Proceedings of the Fifth International Conference on Networking and Services (ICNS’09).
IEEE Computer Society, Los Alamitos (2009)

Zeng, L., Lei, H., Chang, H.: Monitoring the QoS for web services. In: Proceedings of the 5th In-
ternational Conference on Service-Oriented Computing (ICSOC’07), pp. 132-144. Springer, Berlin
(2007)

Zeng, L., Lingenfelder, C., Lei, H., Chang, H.: Event-driven quality of service prediction. In: Proceed-
ings of the 6th International Conference on Service-Oriented Computing (ICSOC’08), pp. 147-161.
Springer, Berlin (2008)

@ Springer

http://dl.acm.org/citation.cfm?id=1761141.1761143
http://portal.acm.org/citation.cfm?id=1719357.1719370

	Data-driven and automated prediction of service level agreement violations in service compositions
	Abstract
	Introduction
	Background
	Illustrative use case
	Data-driven prediction of SLA violations
	Framework overview
	Input data and checkpoint definition
	Identification of factors of influence
	Prediction quality management
	Quality indicators for metric SLOs
	Quality indicators for nominal SLOs

	Statistical models
	Prediction of nominal, instance-level service level objectives
	Prediction of metric, instance-level service level objectives
	Prediction of aggregated service level objectives

	Implementation
	Implementation overview
	E-dict configuration

	Evaluation
	Performance overhead
	Quality of prediction

	Related work
	Conclusions
	Acknowledgements
	References

