
Cost-Based Optimization
of Service Compositions

Philipp Leitner, Member, IEEE, Waldemar Hummer, Student Member, IEEE, and

Schahram Dustdar, Senior Member, IEEE

Abstract—For providers of composite services, preventing cases of SLA violations is crucial. Previous work has established runtime

adaptation of compositions as a promising tool to achieve SLA conformance. However, to get a realistic and complete view of the

decision process of service providers, the costs of adaptation need to be taken into account. In this paper, we formalize the problem of

finding the optimal set of adaptations, which minimizes the total costs arising from SLA violations and the adaptations to prevent them.

We present possible algorithms to solve this complex optimization problem, and detail an end-to-end system based on our earlier work

on the PREvent (prediction and prevention based on event monitoring) framework, which clearly indicates the usefulness of our model.

We discuss experimental results that show how the application of our approach leads to reduced costs for the service provider, and

explain the circumstances in which different algorithms lead to more or less satisfactory results.

Index Terms—Service composition, service-level agreements, adaptation, optimization

Ç

1 INTRODUCTION

SERVICE-BASED applications have seen tremendous re-
search activity in the last years, with many important

results being generated around the world [1]. This global
interest is justified by the ever increasing services industry,
which is still only starting to explore the potential that new
paradigms like Everything-as-a-Service (XaaS) or cloud
computing provide [2]. However, to fully realize this
potential, research and industry alike need to focus more
strongly on nonfunctional properties and quality issue of
services (generally referred to as QoS). In the business
world, QoS promises are typically defined within legally
binding service-level agreements (SLAs) between clients
and service providers, represented, e.g., using WSLA [3].
SLAs contain service-level objectives (SLOs), i.e., concrete
numerical QoS objectives, which the service needs to fulfill.
If SLOs are violated, agreed upon monetary consequences
go into effect. For this reason, providers generally have a
strong interest in monitoring SLAs and preventing viola-
tions, either by using post mortem analysis and optimiza-
tion [4], [5], or by runtime prediction of performance
problems [6], [7]. We argue that the latter is more
powerful, allowing to prevent violations before they have
happened by timely application of runtime adaptation
actions [8], [9], [10].

However, preventing SLA violations is, in general, not

for free. For instance, some alternative services usable in a

composition may provide faster response times (thereby

improving the end-to-end runtime of the composite service,

and reducing the probability of violating runtime-related
SLOs), but those services are often more expensive than
slower ones. Therefore, there is an apparent tradeoff
between preventing SLA violations and the inherent costs
of doing so. We argue that this tradeoff is currently not
covered sufficiently in research. Instead, researchers as-
sume that the ultimate goal of service providers is to
minimize SLA violations, completely ignoring the often
significant costs of doing so (e.g., [9], [10]).

In this paper, we contribute to the state of the art by
formalizing this tradeoff as an optimization problem, with
the goal of minimizing the total costs (of violations and
applied adaptations) for the service provider. We argue that
this formulation better captures the real goals of service
providers. Additionally, we present possible algorithms to
solve this optimization problem efficiently enough to be
applied at composition runtime. We evaluate these algo-
rithms within our PREVENT (prediction and prevention
based on event monitoring) framework [8].

The remainder of this paper is structured as follows: In
Section 2, we motivate our work and present an illustrative
example, which will guide us through the rest of the paper.
Following in Section 3, we present our earlier work on
prevention of SLA violations. In Section 4, we formalize the
problem of cost-based optimization of service compositions.
We explain possible algorithms to solve this problem
efficiently in Section 5, which are experimentally evaluated
in Section 6. Finally, we compare our work with the most
important related scientific approaches in Section 7, and
conclude the paper in Section 8.

2 MOTIVATION

In this paper, we use the scenario depicted in Fig. 1 (in
BPMN [11] notation) to motivate and explain our approach.

This scenario considers the case of a manufacturer of
industry products. These products are constructed on-
demand by assembling various parts, some of which can be

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 6, NO. 2, APRIL-JUNE 2013 239

. The authors are with the Information Systems Institute, Distributed
Systems Group, Vienna University of Technology, Argentinierstrasse 8/
184-1, 1040 Vienna, Austria.
E-mail: {leitner, hummer, dustdar}@infosys.tuwien.ac.at.

Manuscript received 4 Feb. 2011; revised 16 Aug. 2011; accepted 13 Sept.
2011; published online 1 Nov. 2011.
For information on obtaining reprints of this article, please send e-mail to:
tsc@computer.org, and reference IEEECS Log Number TSC-2011-02-0010.
Digital Object Identifier no. 10.1109/TSC.2011.53.

1939-1374/13/$31.00 � 2013 IEEE Published by the IEEE Computer Society

produced in-house by the manufacturer, while others need
to be ordered from external suppliers. The manufacturing
process depicted in Fig. 1 consists of two segments: First,
the customer sends a request for quotation (RFQ), which
the manufacturer responds to with an offer (consisting of
estimated price and delivery time for the finished product),
Second, the customer can then order this product to the
offered conditions. For reasons of brevity, we concentrate
on the two roles “Customer” and “Assembly Service” in the
figure, even though the manufacturer interacts with many
different external partners (e.g., suppliers of parts, shippers,
credit card companies) to implement the described func-
tionality. Since the manufacturer’s business is based
entirely on a service-based notion, the manufacturing
process is implemented as a service composition,
i.e., activities in the process are mapped to one or more
invocations of (web) services.

With its key customers, the manufacturer has some
established SLAs. We provide a list of typical SLOs in
Table 1. Note that these objectives can be of quantitative
(SLOs #1 to #4) or of qualitative (SLO #5) nature.

All SLOs have some target values and penalties for
violating these targets associated (see Table 2). Therefore, the
manufacturer has a strong interest in complying to these
SLOs, as long as the costs of doing so do not exceed
the benefit. The manufacturer may apply a number of
runtime adaptations to the process. We sketch some example
adaptation actions in Table 3. The columns þ and � refer to

SLOs in Table 1, and indicate that the respective action has a

positive (þ) or negative (�) impact on this SLO. Note that

these actions and impacts are just of examplatory nature,

that is, while for some business cases outsourcing may

reduce costs and increase the process duration (and error

rate), this does not necessarily hold for all processes.

Additionally, applying these actions generally also has some

associated costs, which need to be taken into account (for

instance, express shipping is more expensive than regular

shipping). As we can see, for the manufacturer there is a

tradeoff between the three dimensions duration, costs, and

quality, which is well known in many fields of engineering.
Since the manufacturer business process is implemented

as a service composition, applying these adaptations

240 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 6, NO. 2, APRIL-JUNE 2013

Fig. 1. Motivating scenario.

TABLE 1
Service-Level Objectives

TABLE 2
Target Values and Penalties

TABLE 3
Possible Adaptation Actions

essentially boils down to adapting the service composition.
This can be done by either adapting the data flow of the
composition (e.g., to use a different shipping option), by
invoking different base services, or by changing the
structure of the composition itself. In our previous work,
we have already shown how such adaptations can
technically be applied [8], [9]. However, in these previous
papers, the question of how the service provider can
actually select these actions has not been discussed.
Selecting the cost-optimal set of adaptations to prevent
predicted violations results in an optimization problem, i.e.,
minimizing the total costs of all SLA violations plus all costs
arising from the adaptation. This problem needs to
be solved very efficiently, as the optimization has to be
repeated at runtime for every composition instance that is
predicted to violate one or more SLOs. Discussing this
optimization problem is the main contribution of this paper.

3 BACKGROUND

To provide some background information for this paper, we
now present the PREVENT framework, which forms the
basis for the research discussed here. Generally, PREVENT

is a closed-loop system [12] for self-optimizing service
compositions. PREVENT is based on the existing SOA
runtime environment VRESCO [13]. As we have sketched in
Fig. 2, the PREVENT framework consists of the seminal
steps “monitor,” “analyze,” “plan,” and “execute,” as
defined in the vision of autonomic computing [14]. We
have previously presented our initial version of the
PREVENT framework in [8].

Generally, the idea of PREVENT is to use event-based
monitoring of composition data to generate runtime predic-
tions of SLA violations before they have happened. Based on
these predicted violations, adaptation actions are triggered
with the goal of preventing the violation. In this paper, we
focus on the implementation of the Cost-Based Optimizer
component in Fig. 2, which we have not discussed so far in
our earlier work. For every composition instance, this
component receives estimations of concrete SLO values from
the Violation Predictor component, and decides (based on
these estimations as well as on knowledge of standing SLAs
and available adaptation actions), which adaptations should
be applied to a composition instance. In the following, we

refer to this decision procedure as cost-based optimization. We
use the term optimization time as the point in time during a
composition instance’s execution at which cost-based opti-
mization happens. The interested reader may download our
current version of the PREVENT prototype.1

3.1 Prediction of SLOs

Generally, the PREVENT approach to prediction of SLA
violations is based on the idea of predicting concrete SLO
values based on monitoring data. We distinguish three
different types of information. Facts represent data that can
already be measured at optimization time. Unknowns are
the opposites of facts. They represent data that are entirely
unknown at optimization time. Evidently, unknown data
cannot be used in the prediction. Estimates are a kind of
middle ground between facts and unknowns, in that they
represent data that are not yet available, but can in some
way be estimated. This is often the case for QoS data,
because techniques such as QoS monitoring [15] can be
used to get an idea of, e.g., the response time of a service
before it is actually invoked. The Violation Predictor uses
both facts and estimates from previously monitored
historical service executions to train a machine learning
function (we use multilayer artificial neural networks [16]
for quantitative SLOs and C4.5 decision trees [17] for
qualitative SLOs), which can then be used to produce a
numerical estimation of the SLO values at runtime. More
details about our approach to prediction of SLOs can be
found in our earlier work [6].

We have sketched this machine learning-based imple-
mentation of the SLO Predictor in Fig. 3. One model is
trained per SLO that needs to be predicted (even though the
same model can be used if this SLO is used in multiple
customer SLAs), and every model is trained from different
data. Please see below for a discussion of how to identify
which data to use for each SLO. Apparently, some historical
executions of the service composition are necessary to
bootstrap the training. The concrete amount of instances
that are necessary depend both on the expected quality of
prediction (more historical information in tendency im-
proves the prediction quality) and on the size and complex-
ity of the service composition. This prediction approach
cannot be used while no historical information is available.

LEITNER ET AL.: COST-BASED OPTIMIZATION OF SERVICE COMPOSITIONS 241

Fig. 2. Overall framework.
Fig. 3. Predicting SLOs using machine learning.

1. http://sourceforge.net/projects/vresco/.

If this is the case, one could still use an alternative
prediction approach, which is not data based, e.g., [18].
However, a detailed discussion of this remains part of our
future work.

For understanding the remainder of the paper, it is
important to keep in mind that the SLO Predictor essentially
implements a set of estimator functions, which can be used
for any partially known instance of the composition (i.e., an
instance, whose facts and estimates are partially known, for
instance a half-finished instance) to generate an estimation
of the SLO value when the instance is finished. We will use
these estimator functions in our modeling in Section 4.

3.2 Identification of Factors of Influence

As input to the machine learning-based SLO Predictor
approach, we need to identify the most significant metrics
that influence the SLO compliance of the composition. We
refer to these metrics as the factors of influence of the
service composition. Factors of influence are rarely obvious,
even to domain experts. Hence, we have devised a process
called dependency analysis, which can be used by business
analysts to identify factors of influence. We summarize this
process here, to the extent that is necessary for under-
standing the core contribution of the current paper.

Dependency analysis is a semiautomated process. We
rely on the domain knowledge of a human business analyst,
but support her with automation and knowledge discovery
tools to ease repetitive tasks. The high-level process is
sketched in Fig. 4. As a first step, the business analyst needs
to define an (initial) list of potential factors of influence.
These include both domain-specific metrics, which need to
be defined manually, and typical QoS metrics, which can be
automatically generated (e.g., for every used service, we
generate response time and availability metrics). For every
potential factor of influence, a monitor is defined or
generated, which specifies how this metric can be measured
from a running instance. Second, a data set containing these
factors needs to be generated, either by simulating the
composition in a web service test environment (e.g.,
Genesis2 [19]) or by monitoring real executions with
monitoring of all potential factors of influence enabled.
Using this data set, a dependency tree can be generated, as
discussed in [5]. The dependency tree is essentially a
decision tree, containing the factors that best explain SLO
violations in the composition. The third step is then to use
these factors to try and train a prediction model from the
identified factors of influence. If this prediction model has a
sufficiently high training data correlation against the
measured data set (i.e., if the predictions generated with
the predictor are highly correlated with the actual measured
values), we can accept these factors and influence and use
them in the SLO Predictor for the SLO. If the correlation is
not sufficient, the business analyst needs to identify the

reason for the lacking performance. Generally, the analyst
will define additional potential factors of influence, and
repeat from the second step.

3.3 Adaptation Actions

The PREVENT Adaptation Executor can execute a range of
different adaptations of service composition instances.
Generally, we distinguish three types of adaptations: Data
manipulation, service rebinding, and structural adaptation.
Data manipulation actions represent the most simple type
of adaptation, where the composition is in fact not changed.
Instead, the data flow of the composition instance is
intercepted and some datum is changed (e.g., the priority
parameter of the service invoked as part of the “ship”
activity is changed to “high priority”). Service rebinding
represents the common case, where a different service is
used to implement an activity in the composition, e.g., a
faster shipping service is used in the activity “ship.” For this
type of adaptation, we differentiate between three types,
one-to-one service rebinding without interface mediation
(the original and the new service have identical interfaces),
one-to-one service rebinding with interface mediation (the
services have different interfaces, but the same number of
service invocations is needed to achieve the required
functionality), and substitution with subflow (the original
service invocation is not only replaced with another single
service invocation, but with a whole subcomposition). This
adaptation is similar to the another type of adaptation,
structural adaptation. In this case, not only the data or
service bindings of a composition change, but the logical
structure of the composition itself. This includes simpler
cases like removing activities in an instance (e.g., skip the
“quality control” activity) and more complex adaptations,
where an entire subtree of the composition definition is
replaced (e.g., outsource the assembling process to an
external provider). Please refer to our earlier publications
[8], [9] for details on how these actions are implemented.
Most important for the remainder of this paper is to know
how adaptation actions are defined in the PREVENT

framework. We have sketched this in Fig. 5.
We can define any number of adaptation actions, which

can be applied to an instance of the composition. Each of
those definitions contains the description of the actual
action, which can be any of the action types discussed
above. In addition, the action definition also contains the
impact model of the action, a list of constraints and ordering
clauses, and the costs of applying this action. We assume

242 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 6, NO. 2, APRIL-JUNE 2013

Fig. 4. Schematic dependency analysis process.

Fig. 5. Definition of adaptation actions.

that every adaptation action has a constant, nonnegative
cost. For example, the cost of using a faster shipping service
is the cost of using the new service minus the costs of using
the original shipping service. The impact model contains a
set of impact clauses. Every impact clause represents the
concrete impact that applying this adaptation action has on
one concrete monitorable fact or estimate. Essentially,
therefore, the clauses model updates to the data used to
generate predictions (see Fig. 3). Every adaptation action
can have any number of positive as well as negative impacts
on any fact or estimate. This impact value can be
determined in several ways: 1) based on measured history
data if the corresponding advice has already been used
before, for example, using data mining; 2) based on SLAs
with external providers, if such SLAs exist; or 3) by using
QoS aggregation techniques [20]. We assume that the
impact model specifies impact clauses for all metrics, which
the advice affects. Of course, impact clauses do not need to
be exact (very often it will realistically be impossible to
statically define an exact impact model before execution);
however, more exact impact models lead to better predic-
tions of SLOs after adaptation, which in turn leads to a
better end-to-end performance of the PREVENT system.

4 OPTIMIZATION PROBLEM FORMULATION

In this section, we formalize the problem of selecting the
most cost-effective adaptation actions to prevent one or
more predicted SLA violations. We consider an interac-
tion of the service composition with a given client, who
has a given SLA with the composition provider. Let I be
the set of all possible composition instances of this client,
and let i 2 I be concrete instances that we can monitor
using the PREVENT tooling. Furthermore, let S ¼
fs1; s2; . . . skg be the set of SLOs defined in the relevant
SLA. As part of the SLO definition, a penalty function is
associated with all SLOs in S. Collectively, we refer to
these functions as P ¼ fps1; ps2; . . . pskg. Penalty functions
define the costs for the provider based on a measured
SLO value, i.e., they are functions defined as ps :
IR! IR; s 2 S. Similarly, the measured value of an SLO
ms is a function ms : I ! ½0 : 1�. We normalize SLO values
to the interval ½0 : 1� to make them comparable. Putting it
all together, we define the penalty function for a given
SLO s and instance i as

pis ¼
def
psðmsðiÞÞ:

Penalty functions for SLOs can take many different shapes.
The most important ones are:

1. constant penalty (a constant payment needs to be
made if a certain SLO threshold value is surpassed),

2. staged penalty (similar to a constant penalty, but with
different levels of penalty),

3. linear penalty (the penalty is linearly increasing with
the degree of violation), and

4. linear penalty with cap (the penalty is linearly
increasing up to a maximum value).

Even though these functions span many different types
of mathematical functions, they share two essential char-
acteristics. First, SLA penalty functions are always mono-
tonically increasing, i.e.,

8ps 2 P : 8x1; x2 2 IR : ðx1 < x2Þ ¼) ðpsðx1Þ � psðx2ÞÞ:

This is evident, because the penalty for a higher degree of
violation should never be smaller than the penalty for a
lesser violation. Second, SLO penalty functions always have
a point discontinuity in a special violation threshold point
(t1). Before (and including) t1 the penalty is generally 0 (no
violation has occurred), and beyond this point a positive
penalty needs to be paid

ð8s 2 S : 8x 2 IR : ðx � t1 () psðxÞ ¼ 0Þ ^ ðx > t1

() psðxÞ > 0ÞÞ:

This also means that penalty functions are generally
discontinuous. Furthermore, this property signifies that
there is no incentive for the service provider to apply
further adaptation and improve an SLO value below t1,
because all further improvements do not further reduce his
costs (they are already 0 for this SLO).

To prevent violations, we are able to apply a number of
possible adaptations to an instance i. We define A ¼
fa1; a2; . . . alg as the set of all possible adaptation actions,
and A� 2 PðAÞ (PðAÞ denotes the powerset of A) as the
subset of adaptation actions that are selected to be applied.
We assume that all adaptations have some costs associated,
defined as a cost function c : A! IR. We assume that cost
functions are constant, that is, we do not consider cross-
pricing models for services [21], which would lead to
nonconstant costs of adaptation. Furthermore, adaptation
actions, if applied, have some defined impact on the
composition instance i. Hence, we define the transformation
of i to a modified instance i0 using the � operator, defined as
a function � : I � PðAÞ ! I. This is captured by the impact
model, which has to be specified as part of the action
definition (see Section 3).

Selecting the most cost-effective adaptation actions means
finding the adaptation actions (A�) that minimize the total
costs for the service provider. The total costs TC are defined
in Equation 1 as the sum of the costs of SLA violations after
adaptation (V C) and the costs of adaptation (AC).

TC : PðAÞ ! IR; TCðA�Þ ¼ V Cði �A�Þ þACðA�Þ: ð1Þ

AC is the sum of the costs of all applied adaptation actions
(Equation 2).

AC : PðAÞ ! IR; ACðA�Þ ¼
X
ax2A�

cðaxÞ: ð2Þ

V C is defined as the sum of all penalty functions applied to
an instance (Equation 3).

V C : I ! IR; V CðiÞ ¼
X
sx2S

pisx: ð3Þ

Obviously, the goal of the service provider is to minimize
TC. Hence, the optimization objective becomes finding the
A� that minimizes TC for a given instance i (Equation 4).

TCðA�Þ ¼
X
sx2S

pisx þ
X
ax2A�

cðaxÞ ! min! ð4Þ

Note that we can easily calculate AC for any given A�,
but at optimization time, V C is unknown (we do not know
for sure which SLOs will be violated, with or without

LEITNER ET AL.: COST-BASED OPTIMIZATION OF SERVICE COMPOSITIONS 243

adaptation). However, the SLO Predictor provides estima-
tions for SLOs based on instance data (see Section 3). Hence,
we assume that we have estimation functions es : I !
IR; s 2 S available for each SLO, which estimate the concrete
penalty values in advance with a reasonably small predic-
tion error � (8s 2 S; i 2 I : jesðiÞ � psðiÞj < �). Replacing V C
with its prediction using es leads to Equation 5, which we
can solve.

TCðA�Þ �
X
sx2S

eisx þ
X
ax2A�

cðaxÞ ! min! ð5Þ

However, not all combinations of adaptation actions are
legal. Some adaptation actions are mutually exclusive (e.g.,
use Shipping Service DHL and use Shipping Ser-

vice UPS), while others depend on each other (see our
earlier work [9] for details on dependencies between
adaptation actions). For simplicity, we capture these
additional constraints using a penalty term v : PðAÞ ! IN.
The definition of v is shown in Equation 6.

vðA�Þ ¼ 1 A�contains constraint violation
0 otherwise:

�
ð6Þ

By incorporating this penalty term, we arrive at our final
target function (Equation 7).

TCðA�Þ � vðA�Þ þ
X
sx2S

eisx þ
X
ax2A�

cðaxÞ ! min! ð7Þ

We have all necessary information to evaluate Equation 7
at optimization time for any set of actions A�. However,
finding the A� that minimizes TCðA�Þ is still far from trivial,
because Equation 7 is discrete and cannot be optimized
analytically. We present algorithms to find a (near-)optimal
solution in Section 5.

5 ALGORITHMS

We will now discuss different approaches for finding
solutions to this problem. These algorithms are implemented

in the Cost-Based Optimizer component. Optimization is
always triggered by a predicted violation of at least one SLO,
and receives as input a list of monitored facts and estimates
of the current instance.

5.1 Branch-and-Bound

Branch-and-bound is a very general deterministic algo-
rithm for solving optimization problems. The high-level
idea of this approach is to enumerate the solution space in
a “smart” way so that at least some suboptimal solutions
can be identified and discarded prematurely, i.e., before
they have been fully constructed and evaluated. We use a
binary encoding to represent solutions, i.e., every solution
is represented as a binary vector, and an adaptation action
with index j is applied iff the solution vector is 1 at
index j. For example, the solution vector 00110100
encodes that the third, fourth, and sixth adaptation action
should be applied. Evidently, 2jAj different solutions exist
for each optimization problem, where jAj is the number of
possible adaptation actions (but not all combinations need
to be legal). For solutions that are still being constructed
we allow a third symbol, “�”, representing an action that
is still undecided (alive). We refer to solutions, which
contain at least one alive action, as partial, and solutions,
which do not contain any alive actions, as complete.
Therefore, the vector 001101 � 0 is a partial solution, where
the last-but-one action is alive.

We describe our general Branch-and-Bound algorithm in
Fig. 6. The algorithm is easy to understand. What is the most
important is the implementation of Line 13, the rules for
pruning the search tree (i.e., for prematurely discarding
solutions). In our Branch-and-Bound approach, we prune a
partial solution in two cases: 1) if the partial solution already
contains at least one conflict, or 2) if the partial solution
already prevents all SLA violations (the penalty function ps
is 0 for all s 2 S) without applying any more actions. Case 1
is trivial, because the target function value for all solutions
in such a subtree will always be 1. Case 2 lends itself to
more discussion. Remember the assumption that every
action has nonnegative costs, and that we described SLA
penalty functions as nonnegative functions. Therefore, we
can assure that for any solution where all penalty functions
are 0, the additional application of more actions can never
improve the target function value. Hence, these partial
solutions cannot be improved by applying more actions,
and the remaining solution subtree can be pruned.

In Listing 6, we simply iterated over all actions in the
order they appeared in the solution vector (in every step,
we always just investigate the next action, see Lines 18 and
22). In general, this approach is suboptimal. Even though
the order in which we investigate actions has no impact on
the quality of our solution (the algorithm is deterministic,
i.e., we will always find the global optimum eventually),
the order may have an impact on the number of solutions
we are able to prune. This is illustrated in Fig. 7. Assume the

244 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 6, NO. 2, APRIL-JUNE 2013

Fig. 6. Branch-and-Bound algorithm.

Fig. 7. Pruning of solution trees.

following simple scenario: There is only one SLO and three
possible adaptations. Only adaptation 3 is able to prevent
the violation of the SLO. Actions 1 and 2 have costs but no
relevant influence. There are no conflicts between actions.
Hence, the optimal solution vector is 001. In Fig. 7a, we
strictly followed the algorithm in Listing 6 and investigated
the actions in the order they appear in the solution vector.
Since the only “useful” action is investigated last, we extend
the whole solution tree without any pruning (the worst
case, equivalent to full enumeration). Now, in Fig. 7b, we
investigate the actions in reverse order (from back to front).
Now, the “useful” action is investigated first, and a large
part of this solution tree can be pruned according to
pruning Case 2.

Therefore, we can conclude that it is beneficial to
investigate actions in a specific order that maximizes the
number of solutions that can be pruned. We specify two
possible criteria for this ordering: 1) the impact of an action
on the SLOs (actions with higher total impact should be
investigated first), and 2) the utility of an action (actions
with higher utility should be investigated first). We will
now define those two orderings.

Based on the set of historical process instances that we
have already used to train the Violation Predictors, we can
calculate an estimation of impact and utility of each action
as follows: We define the set of available historical process
instances as H ¼ fh1; h2; . . .hqg, with H 	 I. We refer to the
number of historical instances as q ¼ jHj. Now, we are able
to calculate an estimation of the overall impact of an
adaptation action a on a SLO s as �a;s (Equation 8). Simply
put, the impact is the arithmetic mean of the difference
between SLO value with and without applying the
adaptation to each historical instance.

�a;s ¼
X
h2H

msðhÞ �msðh � fagÞ
q

: ð8Þ

Note that we have already defined in Section 4 that SLA
penalty functions are monotonically increasing. Hence,
higher impact values are generally good. However, the
impact value may also be negative (i.e.,msðhÞ < msðh � fagÞ).
In this case, this action has a negative impact on one of the
SLOs, which is reasonable and realistic. For instance, an
adaptation that reduces the process lead time can very well
have a negative impact on the SLO cost compliance. Based on
�a;s, we can now define the total impact of each action as the
sum of its impact on all SLOs. Furthermore, we can define the
utility of an action as its total impact divided by its costs.
Now, we are able to improve the Branch-and-Bound
algorithm trivially: Instead of investigating the actions in
the order they are specified in the solution vector, we now
investigate them either in the order of their impact �a

(impact-based sorting), or in order of their utility ua (utility-
based sorting). We will evaluate and discuss both alter-
natives in Section 6, and compare them to Branch-and-Bound
with randomly ordered actions.

5.2 Local Search

While the Branch-and-Bound algorithm discussed above
has the advantage of always finding the optimal set of
actions for any composition instance, the execution time of

the algorithm increases exponentially with the number of
available actions. Even though we can reduce the runtime
using impact- or utility-based sorting of actions, the
complexity still remains exponential. Hence, there is an
evident need to find strong heuristics, i.e., nondeterministic
algorithms that find “good” (even if not necessarily
optimal) solutions in polynomial time.

A simple heuristic that is often used to very good ends is
Local Search. Local Search is a metaheuristic, i.e., final
solutions are constructed by iteratively improving a start
solution. The general idea is that in each iteration the
algorithm searches a specified neighborhood for better
solutions than the current one. If at least one such solution
is found, the algorithm progresses to the next iteration with
one of the better solutions (typically, the best one in the
neighborhood, equivalent to steepest descent). If no better
solution can be found in the neighborhood, the algorithm
has converged to a local optimum and is terminated.
Usually, this algorithm is repeated multiple times with
different starting solutions (because different starting
solutions can lead to different local optima). This kind of
algorithm typically depends on the definition of: 1) a
suitable neighborhood and 2) a senseful selection of starting
solutions. We use the following neighborhood definition: A
complete solution vector is in the neighborhood of an
original solution if the two solutions represented as binary
vectors have a Hamming distance of 1, i.e., if they differ in
exactly 1 bit.

For selecting the start solutions, we use two different
approaches. The first and primitive one is to select n start
solutions with m bits set to 1 at random. Alternatively, we
propose to use an algorithm commonly referred to as
GRASP [22] (greedy randomized adaptive search proce-
dure). GRASP is essentially a variation of local search, in
which the start solutions are constructed using a greedy
heuristic. The idea is that GRASP can converge to a better
solution than a simple local search because the start
solutions are already better than random start solutions.
However, some attention needs to be paid to using a greedy
construction heuristic that actually generates start solutions,
which are both of reasonable quality and at the same time
widely spread over the search space.

We have sketched the construction heuristic that we
have used in our implementation of GRASP in Fig. 8.
Summarizing, the algorithm constructs n solutions by
stepwise addition of actions selected randomly from a

LEITNER ET AL.: COST-BASED OPTIMIZATION OF SERVICE COMPOSITIONS 245

Fig. 8. GRASP construction heuristic.

restricted candidate set (RCS). The heuristic is based on
similar concepts that we have already used in our
discussion of Branch-and-Bound: The idea is to stop adding
actions if either no more SLOs are violated or no senseful
actions are available anymore (the RCS is empty), and to
prefer adding actions which have a high utility value (ua).
Hence, in every step, the RCS consists of the r (maximum
size of the RCS) actions with highest nonnegative ua, which
have not yet been added and which do not lead to a conflict.

5.3 Genetic Algorithm

As an alternative to locality-based heuristics (local search,
GRASP) we also present a solution based on the concept of
evolutionary computation. More precisely, we use genetic
algorithms (GAs) [23] as a more complex, but potentially
also more powerful heuristic to generate good solutions to
the cost-based optimization problem. The overall idea of
GA is to mimic the processes of evolution in biology,
specifically natural selection of the fittest individuals,
crossover, and mutation. Therefore, in GA, we prefer to
work on a population of solutions instead of a single one.
We use the term “fit” to describe solutions with a good
(low) target function value. First, we generate a random
start population. For this, we use the same primitive
construction scheme as discussed above for local search:
We randomly apply m actions in every solution. Every
following iteration of the algorithm (referred to as genera-
tions) essentially follows a three-step pattern.

First, we select a set of solutions from the population to
“survive” into the next generation. In our genetic algo-
rithm implementation, the fittest solution (i.e., the one with
the lowest target function value) is selected deterministi-
cally (elitism), while all remaining slots in the next
generation population are selected using a process called
tournament selection. In tournament selection, t random
solutions from the last generation are put into a tourna-
ment. The fittest solution of the tournament is selected into
the next generation. The parameter t steers the selection
pressure: Low t increases the time that the population
takes to converge against a solution, but high t increases
the danger of converging against a local optimum instead
of the global one.

Second, crossover is used to produce new solutions based
on the selected ones from the last generation. The main
challenge of implementing a strong crossover mechanism is
to ensure that the crossover product of two fit solutions is
also likely to be fit. Given the binary vector representation

we use to encode solutions, we can make use of a simple
one-point crossover scheme. We choose a random crossover
point cp from ½1 : jAj � 1�. To construct a new child, we copy
the binary vector of the first solution from the start until cp,
and the vector of the second solution from cpþ 1 to the end
of the vector.

This simple procedure ensures that characteristics of
both original solutions are preserved. However, because of
the random selection of cp, it is possible that the child
solution has a conflict, even if this was not the case for any
of the parents. In this case, we remove one of the conflicting
actions at random.

Third, we use mutation to introduce entirely new features
into the population. The need for mutation can be
illustrated easily: Assume that a given action a is not
applied in any solution in the population. Using one-point
crossover as discussed above it is not possible to create any
solution that uses a. Hence, we introduce some additional
randomization. After crossover, we may randomly flip
every bit in every solution in the population with a very
small probability. This means that most solutions in the
population are not mutated, but sometimes new actions are
applied, which are not the product of crossover.

GAs are notorious for having many parameters to fine-
tune the performance of the optimization. For illustrative
purposes, we have summarized the parametrization op-
tions available in our implementation of GA in Table 4,
including some values that we found to provide useful
default parameters if applied to the cost-based optimization
problem. Evidently, further customization would also be
possible, for instance by using a different selection or
crossover scheme. Unless stated otherwise, we will use the
configuration described in Table 4 for experimentation in
Section 6.

Unfortunately, this “canonical” GA implementation
takes a significant amount of time to converge against a
solution, because the solution space is searched solely
through the (rather unguided and strongly randomized)
means of crossover and mutation. One possibility to
improve this aspect is to combine the canonical GA with
local optimization as presented above. This leads us to an
adapted algorithm, which we have sketched in Fig. 9. In
literature, such combinations of GA and local search are
often referred to as memetic algorithms (MA) [24].

The main changes of MA (as compared to GA) are as
follows. First, a new Local Optimization operator is
introduced after crossover. Local optimization applies

246 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 6, NO. 2, APRIL-JUNE 2013

TABLE 4
GA Configuration Parameters

Fig. 9. Memetic algorithm.

the local search algorithm as discussed above to each
solution in the generation, basically reducing the popula-
tion to a set of locally optimal solutions. Second, we
remove the mutation operator from the algorithm (tech-
nically speaking, we set the mutation probability para-
meter to 0). The main reason is that given that all
solutions in the population are already locally optimal,
randomly mutating one bit in a solution can only lead to a
worse solution. In theory, it is possible that multiple bits
in a single solution are mutated at the same time, and that
these mutations lead to an improvement, but this corner
case is very unlikely in practice. Furthermore, the main
motivation for having mutation in the first place was that
it is the only way of introducing new actions in the
canonical GA. This is no longer the case, because local
search can do the same thing.

Generally, MA is slower than GA, because more
solutions are evaluated in each generation (evidently, MA
executes one local search for every solution in each
generation). However, the algorithm potentially converges
against a very good solution in a low number of genera-
tions. Hence, we argue that in practice MA improves on the
canonical form most of the time for our problem. This will
be substantiated further in Section 6.

6 EXPERIMENTATION

In the following section, we will numerically validate the
algorithms discussed in Section 5 based on an implementa-
tion of the scenario presented in Section 2. For reasons of
brevity, we only summarize the experiment setup here.
More details can be found in the accompanying experi-
mentation webpage.2 In addition, we do not explicitly
evaluate the prediction quality (i.e., the SLO Predictor
component) here. The interested reader may find a
numerical evaluation of the prediction in [6], as well as in [8].

We have implemented the scenario from Section 2 using
.NET Windows Communication Foundation3 (WCF) tech-
nology and the VRESCO SOA runtime environment on a
server running Windows Server Enterprise 2007, Service
Pack 2. The machine is equipped with two 2.99-GHz Xeon
X5450 processors and 32 GB of RAM. To train PREVENT, we
have initialized the system with a set of 9,796 historical
composition instances. These instances were created by
executing the service composition repeatedly. In this
historical data set, 3,660 instances have not been adapted,
while one or more adaptation actions have been applied in
the remaining 6,136 instances. In our experiments, we
consider the case of an SLA containing up to five SLOs,

similar to the previous example. Note that we have used an
integer value in ½0 : 15� to represent product quality in this
example, to allow for more fine-grained distinctions of
different levels of product faults. In Table 5, we have
sketched these SLOs and their basic statistics. � is the mean
value of the SLO without adaptation. �� is the mean among
instances to which some adaptation has been applied. � and
�� are the respective standard deviations. As before, t1 is
the violation threshold. Furthermore, SLO 1 is associated
with a staged penalty function with nine stages, SLO 2 and
SLO 3 are both associated with fixed penalty functions,
SLO 4 is associated with a linear penalty function with cap,
and SLO 5 with a linear penalty function without cap.
Additionally, we have defined 49 adaptation actions that
have positive and negative influences on some or all of
these SLOs. Every action has been associated with a positive
cost value.

As a first experiment, we analyze the suitability of
different variants of the Branch-and-Bound algorithm. As
all of these algorithms are deterministic, we are guaranteed
to find the optimal solution to any optimization problem
eventually. However, the three different versions of the
algorithm (Branch-and-Bound with random action sorting,
with impact-based sorting, and with utility-based sorting)
may differ significantly with regard to their runtime. As an
independent measure of algorithm runtime, we use the
number of solutions that have to be evaluated. All results
concerning algorithms with randomized elements are
arithmetic means of five repeated runs.

Fig. 10 plots the number of solutions depending on the
number of adaptation actions that are available (up to a
maximum of 17 actions, note the logarithmic scale on the
y-axis). For reasons of comparison, we also plot local
search in the figure, whose runtime grows linearly with
the number of actions. It was not feasible to evaluate
Branch-and-Bound for more than 17 actions.

As we can see, there is little difference between the three
variants of Branch-and-Bound, and none is able to reduce
the number of solutions that have to be evaluated
significantly below full enumeration. The reason for this
unsatisfying result is that, in this concrete optimization
instance, very little combinations of actions can prevent
the violation of all SLOs (the SLOs are conflicting), i.e.,
bounding Condition 2 cannot be applied very often. We can
see that by relaxing the problem and disabling SLOs 4 and

LEITNER ET AL.: COST-BASED OPTIMIZATION OF SERVICE COMPOSITIONS 247

TABLE 5
Case Study SLOs

Fig. 10. Solutions evaluated for Branch-and-Bound.

2 . ht tp ://www.infosys . tuwien .ac .a t/prot otype/VRESCo/
experimentation.html.

3. http://msdn.microsoft.com/en-us/library/ms735967(VS.90).aspx.

5, a significant performance boost can be achieved (Fig. 11)
by both impact-based and utility-based sorting. The
difference between impact-based and utility-based sorting
is not significant.

However, even though smart action sorting can reduce
the solution space if there are no conflicting SLOs, the
number of solutions that need to be evaluated still grows
exponentially with the number of available actions. Hence,
solving the cost-based optimization problem deterministi-
cally is only possible for very small problems. If the set of
possible adaptations grows, we need to fall back to heuristic
optimization. For these algorithms, there are no guarantees
about the quality of the solution. That means that we need
to compare them in two dimensions. First, and similar to
before, we need to look at the number of solutions that are
evaluated before the algorithm produces the final result
(Fig. 12), as a measure of the runtime of the algorithm.
Second, we also need to take into account the quality of the
best found solution (Fig. 13).

In Fig. 12, we can see that, not surprisingly, all
algorithms scale much better than Branch-and-Bound (note
the linear scale on the y-axis and compare with Fig. 11).
GRASP is very efficient, and the fastest algorithm in this
experiment with an almost constant runtime. The computa-
tion of local search is also reasonably efficient, but the
number of solutions that have to be evaluated increases
more strongly as compared to GRASP. This is because for
GRASP the start solutions are already better, hence less
local search steps are necessary before a solution is reached.

Note that the number of solutions evaluated for local search
is directly proportional to the number of start solutions
used. In this experiment, we used 25 start solutions. If we
had used 50 start solutions instead, the runtime of local
search would have been almost on the level of MA. GA also
has a relatively constant runtime, but on much higher level
than GRASP. The slowest algorithm in this experiment is
MA, which is due to its unique combination of local
optimization and genetic algorithm.

In Fig. 13, the algorithms are compared with regard to
solution quality, measured as predicted total costs (TC, as
defined in Section 4) for the service provider. We observe a
quite clear ordering of algorithms in this experiment.
GRASP and MA generally perform best. For most instances,
MA is slightly better, even though this is not true for all
cases. GA comes in third, and local optimization with
random start solutions usually produces solutions vastly
inferior to all competitors.

Drawing conclusions from these experiments, we note
that Branch-and-Bound is applicable in situations, where
just a small set of actions is available. In general, impact-
based or utility-based sorting should be used instead of
random sorting, because there is no evident disadvantage to
these approaches and they may be helpful if there are no
conflicting SLOs. We did not discover a significant
difference in the performance of these two variants. If more
actions are available, MA and specifically GRASP are
interesting candidate algorithms. GRASP produces good
solutions in very little time and can generally be used even
for short-running compositions, where adaptation decisions
need to be taken in a short time frame (below 1 second). MA
is very promising in case of long-running compositions,
where the time necessary to find a solution is not critical.
MA often produces slightly better solutions than GRASP,
but takes much more time to do so.

In a second set of experiments, we now evaluate the end-
to-end effectiveness of PREVENT. That is, we analyze if the
system fullfills its main promise, preventing SLA violations,
and reducing the total costs for the service provider. Hence,
we execute 500 instances of the scenario composition and
monitor the actual total costs and violations (after adapta-
tion). We compare these numbers with the number of
violations and the total costs that the PREVENT SLO
Predictor can predict after roughly half of the service
composition is finished. We assume that these predictions

248 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 6, NO. 2, APRIL-JUNE 2013

Fig. 12. Solutions evaluated per heuristic algorithm.

Fig. 13. Quality of solution per heuristic algorithm.Fig. 11. Solutions evaluated without conflicting SLOs.

reflect the violations and costs that we would end up with if
we did nothing at all. Since our case study is rather short
running, but uses a relatively large set of adaptations, we
use GRASP for cost-based optimization. The results of this
experiments are depicted in Table 6.

Evidently, the usage of PREVENT fulfills its main
promise. Using PREVENT the total number of SLO viola-
tions decreases to about 28 percent of the number of
predicted violations. However, we can also see that
PREVENT does not primarily prevent violations, but rather
aims at minimizing the costs of violations. For instance, for
SLO 4 and 5 the total number of violations even increases.
This is because these SLOs are conflicting with the first
SLOs, and SLO 1 is in general the most expensive one to
violate. Hence, PREVENT happily trades violations of SLO 4
and 5 for preventing violations of SLO 1. Thereby, the total
costs for the service provider can be reduced to 56 percent
of the predicted costs. The lower part of the table validates
the claim of the paper that it makes sense to incorporate the
costs of adaptation into the decision process. To that end,
we have modified the target function of the optimization in
such a way that the costs of adaption are ignored. In this
configuration, the total costs after adaptation are 176 percent
of the predicted costs. That means that in this experiment it
is in fact much more expensive for the provider to prevent
adaptations (in the way that optimization ignoring costs
suggests) than doing nothing at all.

7 RELATED WORK

To the best of our knowledge, no approaches with the exact
focus of this paper (cost-based optimization of service
compositions) have been published so far. However, there
are some areas relevant or related to this problem, which we
discuss in the following.

On a fundamental level, our work is based on the notion
that both atomic and composite services exhibit some
measurable quality (QoS). Monitoring QoS has been an
active research area for some time. Different techniques
proposed in this direction include monitoring based on
client feedback [25], monitoring of TCP-level metrics using
network analysis techniques [15] or event-based monitoring
based on event-condition-action rules [26]. We use the
VRESCO event engine and event-based monitoring in a
manner very similar to the approach presented in [26].

The PREVENT approach aims at autonomous optimiza-
tion of service compositions with regards to SLA violations
and costs of adaptation. This bears a natural resemblance to
the idea of QoS optimization for service compositions, as
prominently described in [27]. Later approaches tried to
improve on this concept by using more efficient heuristic

algorithms, e.g., H1_RELAX_IP [28] (a heuristic relaxation
of integer programming), WFlow [29] (based on stochastic
workflow reduction) or the immune algorithm [30].
Different authors approached the problem by combining
global optimization and local selection (which can be done
much more efficient than global optimization). This
approach can also be considered a heuristic, because the
combination with local selection does not guarantee a
globally optimal solution [31]. Most comparably to our
work, the authors of [32] use a genetic algorithm combined
with local search to efficiently solve the QoS optimization
problem. The main difference of our work to all these
approaches is that we do not optimize the composition with
regard to global QoS goals. Instead, our optimization goal is
to minimize the costs resulting from SLA violations and
adaptations. Therefore, in our work, some SLAs are
allowed to be violated if it is financially desirable for the
provider to do so. Hence, the optimization problem
we have to solve is different.

To our work, even more important than the measure-
ment of past quality is the prediction of future QoS. One
well-known approach to establishing predictable QoS
levels in a composite service is QoS aggregation, i.e., the
process of calculating the quality dimensions of a compo-
site service based on the QoS of the utilized services and
aggregation functions. QoS aggregation has for instance
been discussed in [20]. The concept of QoS aggregation has
been extended to SLA aggregation by several authors [33],
[34]. As an alternative to QoS and SLA aggregation,
different authors have proposed to use various machine
learning techniques to predict composition QoS from
monitored runtime data [6], [7]. This approach is also the
one that we use in PREVENT, as explained in Section 3. The
main advantage that we see in using machine learning is
that it is very easy to incorporate non-QoS data (composi-
tion instance data, such as customer identifiers or ordered
products) without the need to explicitly specify aggrega-
tion rules describing how this data influence the composi-
tion performance. However, note that the contribution
discussed in this paper is in principle agnostic of the actual
approach used for prediction of violations.

Generally, PREVENT is a system to monitor and prevent
SLA violations. In this area, some works exist, which
discuss the runtime monitoring of composition quality,
such as [35]. This paper is of particular interest to us,
because it discusses an integrated approach toward
monitoring based on events. As stated above, this is quite
related to monitoring in PREVENT. These works do not
attempt to explain the reasons for SLA violations, and
neither do they try to prevent them. The MoDe4SLA
approach [4] is a top-down approach toward identifying

LEITNER ET AL.: COST-BASED OPTIMIZATION OF SERVICE COMPOSITIONS 249

TABLE 6
End-to-End Results

these influential factors of SLA violations. Research in a
similar direction, but using data mining techniques instead
of top-down analysis, has also been presented in [5]. Our
work is different in that we do not only try to identify
which parts of a service composition cause SLA violations,
but actively prevent them by applying targeted adaptation
actions. Therefore, our system essentially implements the
paradigm of self-adapting service compositions. This is
related to the area of flexible service composition, as
introduced in [36]. Flexible service compositions reoptimize
their composition at runtime, to deal with unanticipated
problems. Similar ideas (self-healing processes) have also
been presented as part of the DISC framework [37], which
implements dynamic and only partially defined processes.
A different kind of self-healing processes have been
discussed in [38]. In this paper, the authors present the
VieDAME framework, which autonomously monitors the
QoS of services used in the composition, and triggers
service re-selection if the monitored QoS falls below a
given threshold. This is similar to the PREVENT approach,
but our system supports a wider range of adaptation
actions (as discussed in our earlier work [8]). Additionally,
[38] does not take the costs of adaptation into account.
Another middleware for self-adapting compositions is
MASC [39]. However, the authors of this paper focus more
on adaptation for functional reasons, while our main goal
is the optimization of nonfunctional aspects. Furthermore,
the MASC system also does not explicitly incorporate costs
of adaptation.

The core contribution of this paper is the notion that
there generally is a tradeoff to consider between preventing
SLA violations and the costs of doing so. Hence, a
composite service provider is maximizing his own revenue
by minimizing his total costs. Similar models have been
investigated in many related areas before. For instance,
Mazzucco et al. [40] describe a model for revenue
maximizing in web services hosting using dynamic admis-
sion policies. Similarly, techniques to optimize application
servers in a way to maximize the provider profit in
distributed systems have been proposed in [41]. Other
tradeoffs that have been discussed in the literature include
the performance-security tradeoff [42] or the tradeoff
between composition QoS and the costs of monitoring [43].

8 CONCLUSION AND FUTURE WORK

For providers of composite web services, it is essential to be
able to minimize cases of SLA violations. One possible route
to achieve this is to predict at runtime, which instances
are in danger of violating SLAs, and to apply various
adaptation actions to these instances only. However, it is
not trivial to identify which adaptations are the most cost-
effective way to prevent any violation, or if it is at all
possible to prevent a violation in a cost-effective way. In this
paper, we have modeled this problem as a one-dimensional
discrete optimization problem. Furthermore, we have
presented both, deterministic and heuristic solution algo-
rithms. We have evaluated these algorithms based on a
manufacturing case study and have shown which types of
algorithms are better suited for which scenarios.

The main current limitation is that adaptation is only

considered on instance level, that is, for each composition

instance separately. Aggregate SLOs, which are defined

over a number of instances, are out of scope. Similarly, at

the moment we do not consider “permanent” adaptations,

i.e., adaptations which are done for all future instances.

We believe that the PREVENT adaptation model can be

extended to this kind of SLOs and actions, but new

approaches to predict violations and impact models are

needed to this end.

ACKNOWLEDGMENTS

The research leading to these results received funding from

the European Community’s Seventh Framework Pro-

gramme (FP7/2007-2013) under grant agreements 215483

(S-Cube) and 257483 (Indenica).

REFERENCES

[1] M.P. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann,
“Service-Oriented Computing: State of the Art and Research
Challenges,” Computer, vol. 40, no. 11, pp. 38-45, Nov. 2007.

[2] A. Lenk, M. Klems, J. Nimis, S. Tai, and T. Sandholm, “What’s
Inside the Cloud? An Architectural Map of the Cloud Landscape,”
Proc. ICSE Workshop Software Eng. Challenges of Cloud Computing
(CLOUD ’09) pp. 23-31, 2009.

[3] A. Dan, D. Davis, R. Kearney, A. Keller, R. King, D. Kuebler,
H. Ludwig, M. Polan, M. Spreitzer, and A. Youssef, “Web
Services on Demand: WSLA-Driven Automated Management,”
IBM Systems J., vol. 43, no. 1, pp. 136-158, Jan. 2004.

[4] L. Bodenstaff, A. Wombacher, M. Reichert, and M.C. Jaeger,
“Analyzing Impact Factors on Composite Services,” Proc. IEEE
Int’l Conf. Services Computing (SCC ’09), pp. 218-226, 2009.

[5] B. Wetzstein, P. Leitner, F. Rosenberg, S. Dustdar, and F. Leymann,
“Identifying Influential Factors of Business Process Performance
Using Dependency Analysis,” Enterprise Information Systems, vol. 4,
no. 3, pp. 1-8, July 2010.

[6] P. Leitner, B. Wetzstein, F. Rosenberg, A. Michlmayr, S. Dustdar,
and F. Leymann, “Runtime Prediction of Service Level Agreement
Violations for Composite Services,” Proc. Third Workshop Non-
Functional Properties and SLA Management in Service-Oriented
Computing (NFPSLAM-SOC ’09), pp. 176-186, 2009.

[7] L. Zeng, C. Lingenfelder, H. Lei, and H. Chang, “Event-Driven
Quality of Service Prediction,” Proc. Sixth Int’l Conf. Service-
Oriented Computing (ICSOC ’08). pp. 147-161, 2008.

[8] P. Leitner, A. Michlmayr, F. Rosenberg, and S. Dustdar,
“Monitoring, Prediction and Prevention of SLA Violations in
Composite Services,” Proc. IEEE Int’l Conf. Web Services (ICWS ’10),
pp. 369-376, 2010.

[9] P. Leitner, B. Wetzstein, D. Karastoyanova, W. Hummer, S.
Dustdar, and F. Leymann, “Preventing SLA Violations in Service
Compositions Using Aspect-Based Fragment Substitution,” Proc.
Int’l Conf. Service-Oriented Computing (ICSOC ’10), 2010.

[10] R. Kazhamiakin, B. Wetzstein, D. Karastoyanova, M. Pistore, and
F. Leymann, “Adaptation of Service-Based Applications Based on
Process Quality Factor Analysis,” Proc. Second Workshop Monitor-
ing, Adaptation and Beyond (MONA+), pp. 395-404, 2009.

[11] “Business Process Modeling Notation Specification,” technical
report, Object Management Group, 2006.

[12] M. Salehie and L. Tahvildari, “Self-Adaptive Software: Landscape
and Research Challenges,” ACM Trans. Autonomous and Adaptive
Systems, vol. 4, no. 2, pp. 1-42, May 2009.

[13] A. Michlmayr, F. Rosenberg, P. Leitner, and S. Dustdar, “End-to-
End Support for QoS-Aware Service Selection, Binding, and
Mediation in VRESCo,” IEEE Trans. Services Computing, vol. 3,
no. 3, pp. 193-205, July 2010.

[14] J.O. Kephart and D.M. Chess, “The Vision of Autonomic
Computing,” Computer, vol. 36, no. 1, pp. 41-50, Jan. 2003.

[15] F. Rosenberg, C. Platzer, and S. Dustdar, “Bootstrapping
Performance and Dependability Attributes of Web Services,”
Proc. IEEE Int’l Conf. Web Services (ICWS ’06), pp. 205-212, 2006.

250 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 6, NO. 2, APRIL-JUNE 2013

[16] S. Haykin, Neural Networks and Learning Machines: A Comprehensive
Foundation, third ed. Prentice Hall, 2008.

[17] J.R. Quinlan, “Induction of Decision Trees,” Machine Learning,
vol. 1, pp. 81-106, Mar. 1986.

[18] D. Ivanovic, M. Carro, and M. Hermenegildo, “Towards Data-
Aware QoS-Driven Adaptation for Service Orchestrations,” Proc.
IEEE Int’l Conf. Web Services (ICWS ’10), pp. 107-114, 2010.

[19] L. Juszczyk and S. Dustdar, “Script-Based Generation of Dynamic
Testbeds for SOA,” Proc. IEEE Int’l Conf. Web Services (ICWS ’10),
pp. 195-202, 2010.

[20] M.C. Jaeger, G. Rojec-Goldmann, and G. Muhl, “QoS Aggregation
for Web Service Composition Using Workflow Patterns,” Proc.
Eighth Int’l Enterprise Distributed Object Computing Conference
(EDOC ’04), pp. 149-159, 2004.

[21] L. Xu and B. Jennings, “A Cost-Minimizing Service Composition
Selection Algorithm Supporting Time-Sensitive Discounts,” Proc.
IEEE Int’l Conf. Services Computing (SCC ’10), pp. 402-408, 2010.

[22] T. Feo and M. Resende, “Greedy Randomized Adaptive Search
Procedures,” J. Global Optimization, vol. 6, pp. 109-133, 1995.

[23] D.E. Goldberg, Genetic Algorithms in Search, Optimization, and
Machine Learning. Addison-Wesley Professional, 1989.

[24] N. Radcliffe and P. Surry, “Formal Memetic Algorithms,”
Evolutionary Computing, vol. 865, pp. 1-16, 1994.

[25] R. Jurca, B. Faltings, and W. Binder, “Reliable QoS Monitoring
Based on Client Feedback,” Proc. 16th Int’l Conf. World Wide Web
(WWW ’07), pp. 1003-1012, 2007.

[26] L. Zeng, H. Lei, and H. Chang, “Monitoring the QoS for Web
Services,” Proc. Fifth Int’l Conf. Service-Oriented Computing (ICSOC
’07), pp. 132-144, 2007.

[27] L. Zeng, B. Benatallah, A.H.H. Ngu, M. Dumas, J. Kalagnanam,
and H. Chang, “QoS-Aware Middleware for Web Services
Composition,” IEEE Trans. Software Eng., vol. 30, no. 5, pp. 311-
327, May 2004.

[28] R. Berbner, M. Spahn, N. Repp, O. Heckmann, and R. Steinmetz,
“Heuristics for QoS-Aware Web Service Composition,” Proc. IEEE
Int’l Conf. Web Services (ICWS ’06), pp. 72-82, 2006.

[29] T. Yu, Y. Zhang, and K.-J. Lin, “Efficient Algorithms for Web
Services Selection with End-to-End QoS Constraints,” ACM Trans.
the Web, vol. 1, article 6, May 2007.

[30] J. Xu and S. Reiff-Marganiec, “Towards Heuristic Web Services
Composition Using Immune Algorithm,” Proc. IEEE Int’l Conf.
Web Services (ICWS ’08), pp. 238-245, 2008.

[31] M. Alrifai and T. Risse, “Combining Global Optimization with
Local Selection for Efficient QoS-Aware Service Composition,”
Proc. 18th Int’l Conf. World Wide Web (WWW ’09), pp. 881-890, 2009.

[32] F. Rosenberg, M.B. Müller, P. Leitner, A. Michlmayr, A. Bouguet-
taya, and S. Dustdar, “Metaheuristic Optimization of Large-Scale
QoS-Aware Service Compositions,” Proc. IEEE Int’l Conf. Services
Computing (SCC ’10), 2010.

[33] T. Unger, F. Leymann, S. Mauchart, and T. Scheibler, “Aggrega-
tion of Service Level Agreements in the Context of Business
Processes,” Proc. 12th Int’l Enterprise Distributed Object Computing
Conf. (EDOC ’08), pp. 43-52, 2008.

[34] I. Haq, A. Huqqani, and E. Schikuta, “Aggregating Hierarchical
Service Level Agreements in Business Value Networks,” Proc.
Seventh Int’l Conf. Business Process Management (BPM ’09), pp. 176-
192, 2009.

[35] L. Baresi, S. Guinea, M. Pistore, and M. Trainotti, “Dynamo +
Astro: An Integrated Approach for BPEL Monitoring,” Proc. IEEE
Int’l Conf. Web Services (ICWS ’09), pp. 230-237, 2009.

[36] D. Ardagna, M. Comuzzi, E. Mussi, B. Pernici, and P. Plebani,
“PAWS: A Framework for Executing Adaptive Web-Service
Processes,” IEEE Software, vol. 24, no. 6, pp. 39-46, Nov./Dec.
2007.

[37] E. Zahoor, O. Perrin, and C. Godart, “DISC: A Declarative
Framework for Self-Healing Web Services Composition,” Proc.
IEEE Int’l Conf. Web Services (ICWS ’10), pp. 25-33, 2010.

[38] O. Moser, F. Rosenberg, and S. Dustdar, “Non-Intrusive Monitor-
ing and Service Adaptation for WS-BPEL,” Proc. 17th Int’l Conf.
World Wide Web (WWW ’08), pp. 815-824, 2008.

[39] A. Erradi, P. Maheshwari, and V. Tosic, “Policy-Driven Middle-
ware for Self-Adaptation of Web Services Compositions,” Proc.
ACM/IFIP/USENIX Int’l Conf. Middleware (Middleware ’06), pp. 62-
80, 2006.

[40] M. Mazzucco, I. Mitrani, J. Palmer, M. Fisher, and P. McKee, “Web
Service Hosting and Revenue Maximization,” Proc. Fifth European
Conf. Web Services (ECOWS ’07), pp. 45-54, 2007.

[41] D. Villela, P. Pradhan, and D. Rubenstein, “Provisioning Servers
in the Application Tier for E-Commerce Systems,” ACM Trans.
Internet Technology, vol. 7, no. 1, article 7, 2007.

[42] S.S. Yau, Y. Yin, and H.G. An, “An Adaptive Tradeoff Model for
Service Performance and Security in Service-Based Systems,” Proc.
IEEE Int’l Conf. Web Services (ICWS ’09), pp. 287-294, 2009.

[43] Y. Zhang, M. Panahi, and K.-J. Lin, “Service Process Composition
with QoS and Monitoring Agent Cost Parameters,” Proc. IEEE 10th
Conf. E-Commerce Technology and the Fifth IEEE Conf. Enterprise
Computing, E-Commerce and E-Services, pp. 311-316, 2008.

Philipp Leitner received the BSc and MSc
degrees in business informatics from Vienna
University of Technology. He is currently work-
ing toward the PhD degree and is a university
assistant in the Distributed Systems Group,
Vienna University of Technology. His research
is focused on middleware for distributed sys-
tems, especially for SOAP-based and RESTful
web services. He is a member of both the IEEE
and the IEEE Computer Society.

Waldemar Hummer received the BSc degree
from the University of Innsbruck and the MSc
degree from the Vienna University of Technol-
ogy, both in computer science, and the BSc
degree in business administration, from the
Vienna University of Economics and Business.
He is currently working toward the PhD degree
and is a university assistant for the Distributed
Systems Group, Vienna University of Technol-
ogy. His primary topics of interest are in the

areas of self-optimizing service-based systems, web service composi-
tion, and web data aggregation. He is a student member of the IEEE.

Schahram Dustdar is a full professor of
computer science with a focus on Internet
technologies, heading the Distributed Systems
Group, Vienna University of Technology. He is
also an honorary professor of information
systems in the Department of Computing
Science at the University of Groningen, The
Netherlands. He is a senior member of both the
IEEE and the IEEE Computer Society.

LEITNER ET AL.: COST-BASED OPTIMIZATION OF SERVICE COMPOSITIONS 251

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

