
Journal of Information Assurance and Security.
ISSN 1554-1010 Volume 7 (2012) pp. 60-69
c© MIR Labs, www.mirlabs.net/jias/index.html

Enhanced Sharing and Privacy in Collaborative
Virtual Teams

Ahmad Kamran Malik1, Schahram Dustdar2

1Institute of Information Technology, Quaid-i-Azam University,
Islamabad, Pakistan

ahmadkamran@qau.edu.pk

2Vienna University of Technology, Distributed Systems Group,
Argentinierstrasse 8/184-1, 1040, Vienna, Austria

dustdar@infosys.tuwien.ac.at

Abstract: Privacy concerns keep users from sharing required
information in a collaborative environment. There is a need
of privacy preserving methods that can enhance flow of infor-
mation among collaborating users in dynamic teams without
compromising their privacy. We describe a user-defined role-
based sharing control model and architecture that uses hybrid
roles and hybrid sharing control policy for the owner of infor-
mation as well as the enterprise. It extends the RBAC model
to incorporate context constraints, collaborative relationship-
s, and owner-defined roles. Sharing control request evaluation
in presence of hybrid roles and hybrid policy is described. An
architecture and its implementation using Web services is de-
scribed that presents methods for sharing context information
among collaborating users of the virtual team.
Keywords: Access Control; Distributed System; Context-Aware
System; Collaborative environment; Virtual Teams

I. Introduction

Web 2.0 [22] and Enterprises 2.0 [16] technologies are be-
ing used by the enterprises to create virtual teams of expert-
s. These experts are users who work in distributed and dy-
namic teams created by one or more enterprises to achieve
their common goals. These enterprises and their users are
working from different locations connected through social
software technologies [17]. Sharing of information among
users or groups working to accomplish collaborative tasks
is a fundamental requirement. It enables individual users to
carry out their tasks efficiently and effectively to contribute
to a collective work done more than the sum of individual
works. Sharing of information also helps in management of
complex distributed tasks and individuals. Information be-
ing shared during these collaborations can belong to differ-
ent types (personal information, activity information, context
information, device information) and different privacy cate-
gories (public information, private information, semi private
information). In distributed and dynamic environments users
working in different teams can join and leave a team whenev-
er needed. In such environment, users are reluctant to share
their information with other users whom they do not know

personally. Role, that is assigned to a user based on user’s
responsibility [12], is one of the basic credential for shar-
ing information but is not sufficient to identify an individual.
Other credentials can identify an individual, yet they cannot
develop trust among collaborating users. In this case users
share only partial or insufficient information with others.
Different techniques have been used for controlling the in-
formation sharing, for example, access control techniques
like role-based access control (RBAC) [14], team-based
access control [33], context-based access control [26], or
organization-based access control [34]. Most of these tech-
niques focus on restricting access to information. We de-
scribe user-defined role-based sharing control model for en-
hanced sharing and privacy, to emphasize the importance of
enhanced sharing in presence of privacy constraints, which is
key characteristic and requirement of virtual teams collabo-
rations.
In this paper, we describe a model for sharing information
among collaborating users, performing activities in one or
more teams, created by their enterprises. We intend to en-
hance the sharing of information among collaborating user-
s. The increase in sharing of activity related information
increases the efficiency of collaborative activities and their
teams. We extend the Role-based access control model [14]
to include owner-defined roles in addition to the traditional
enterprise-defined roles. Owner, in our system, is the user
who wants to share her information with others. With the
increase in interaction among users, the mutual trust increas-
es. Using collaborative relationships and history of previous
interactions, an owner can assign the owner-defined role to
a collaborating user. Owner-defined role enhances the level
of information sharing among users. We describe the assign-
ment and revocation scenarios of owner-defined roles in our
system. An architecture of the user-defined role-based shar-
ing control system for enhanced sharing and privacy is pre-
sented. Our research efforts include user-defined role-based
sharing control model using context of all involved entities
and the control of information being shared at fine-grained
level of all involved entities. An owner can assign owner-
defined role to a trusted requester and can modify sharing

MIR Labs, USA

61 Malik et al.

policy for any entity, for example, for a specific user, activi-
ty, team, or enterprise. Information is organized in hierarchi-
cal order and sharing control system provides information
at certain level that is allowed to requester. Remainder of
the paper is described as follows. Section 2 describes infor-
mation sharing control and mobile-based dynamic collabo-
rations. Section 3 gives details of user-defined role-based
sharing control model. Section 4 explains the user-defined
role-based sharing control architecture. Section 5 explains
the user-defined role-based sharing control policy. Section 6
shows the related work. Section 7 describes conclusion and
future work.

II. Information Sharing Control and Mobile-
based Dynamic Collaborations

In this section, we describe access control, its pros and con-
s in collaborative and dynamic systems. We also describe
the term sharing control which is used in our system to em-
phasize the enhancement of owner-controlled sharing. As
distributed and dynamic scenarios require the use of smart
devices like mobiles in addition to computers and laptops we
describe the use of mobile systems and their limitations for
sharing of information.

A. Access Control

There is always a tradeoff between information sharing and
privacy of the owner’s information. Access control keeps in-
formation sharing to a restricted level of user’s privacy by
defining authorization rules. Static access control rules are
not suitable for dynamic environments. Authorization deci-
sions in dynamic environments depend on multiple factors
including context of all involved entities, collaborative rela-
tionship among entities, history of previous interactions, and
roles of the participants.
Access control and privacy policies for users have been cen-
trally administered by the enterprises. Standard access con-
trol policies, for example, core RBAC [14] were usually stat-
ic in nature, that do not take into account the context of sub-
ject or object. Currently mobile-based dynamic systems are
replacing centralized systems and static access control poli-
cies with distributed, peer to peer and, collaborative access
control policies, in which users can control sharing of their
data. Current research efforts are focussed on owner-defined
context-based dynamic policies for enhanced sharing of in-
formation. It means the current requirement is to shift control
of sharing policies from central administrators to distributed
users that will help in achieving distributed, enhanced, and
fine-grained level of sharing.
Context-based access control systems [26] are being used for
providing required level of access control to users. An own-
er can decide what level sharing is needed with which users.
Access rule adaptation can be performed using the dynam-
ic nature of context at runtime. Likewise, it is possible to
dynamically adapt the behavior of a system by capturing the
current context of requester, provider, resources, and envi-
ronment. Context-based systems are helpful in fulfilling the
changing access requirements of the owner of information.

B. Sharing Control

In our system, for dynamic and collaborative virtual team
environment, we motivate use of the term sharing control in-
stead of access control. We coin the term sharing control
which serves important purposes in sharing of information.
Sharing control emphasizes the fact that control of informa-
tion sharing should be distributed among owner and admin-
istrator. Also that the owner of information should have full
control of sharing her own information with others. In our
scenario, we distribute the control of sharing between owner
of information and the administrator. An administrator de-
signs access control policy based on enterprise-defined roles
while the owner has final authority of sharing her informa-
tion. An owner can override the administrator-defined policy
by creating owner-defined roles and providing authorization
policy for them. Owner of information wants control of shar-
ing control policies for her personal information and activi-
ties. The owner needs to change policies with change in con-
text and collaborative relationships. An owner may need to
control sharing of her information at different levels with dif-
ferent users, for example, restricting some user to access cer-
tain information or certain level of information (when same
information is available in different levels of detail). In this
way, different users can be granted different level of access
rights based on their role in enterprise, collaborative relation-
ship with owner, and current context.

C. Mobile-based dynamic collaborations

Mobile devices are the heart of distributed and dynamic
systems. In collaborative virtual team-based environments,
users are mostly distributed and dynamic. Users use var-
ious constrained devices like mobiles, PDA’s, and laptops
to contact with collaborating users of their team during the
movements. On one hand, mobile devices are resource con-
strained devices. Mobiles have limited battery power, memo-
ry, and display. On the other hand, due to advances in mobile
technologies, their advantage of anytime and anywhere con-
nectivity is dominating their limitations. During movements
mobile system act as a proxy for users and their computers,
they can share limited amount of data on user’s behalf. Thus
mobile devices are very helpful in many applications of col-
laborative working environments. For example, in disaster
scenarios, mobiles are an important and sometimes the only
way to connect and share required context of situation.
Due to their resource constraints (limited memory, display,
and battery) mobile devices need content adaptation. This
requires that the information should be organized in a way
so that only certain level of it can be shared using mobile
devices. Also the volume of information being sent should
be based on context of receiver and receiving device. Only a
minimum level of information is shared so that low memory
mobile devices can store it with less battery consumption and
can display on its small screen.

III. User-defined Role-based Sharing Control
Model

In this section, we describe user-defined role-based sharing
control model. This heart of this model is user-defined roles

Enhanced Sharing and Privacy in Collaborative Virtual Teams 62

Role Type Descriptions Example

E-Roles
Enterprise-
defined roles

E-Manager, E-Developer

O-Role(RBAC) Owner-defined
roles based on
RBAC

O-Manager,
O-Developer

O-Role(Private) Owner-defined
private roles

Friend, Family

Table 1: Types of roles used in our system

and collaborative relationships among all involved entities.
Two types of roles are involved in our system. One is conven-
tional enterprise-defined role as used in RBAC and other is
owner-defined role proposed in our system [35]. First we de-
scribe enterprise-defined and owner-defined roles, life cycle
of an owner-defined role including role assignment and revo-
cation scenarios. Next we describe entities and their collab-
orative relationships including priorities among entities [23].

A. Hybrid Role creation and management

Our system uses two types of roles. Here we discuss what
are these two types of roles, who creates, assigns, and owns
them, and how they are used. The two types of roles used
in our system are called enterprise-defined roles and owner-
defined roles. First type of role the enterprise-defined role
is conventional role used in RBAC systems. Second type
of role owner-defined role emerged from our requirement to
allow an owner of information to control sharing of her per-
sonal information. Adding these two types of roles in our
sharing control model completes our intention of owner con-
trolled sharing. These two types of roles with their subtypes
are described here and shown in Table 1.

1) Enterprise-Defined Roles

These are the conventional roles used in RBAC. An admin-
istrator of an enterprises defines these roles according to the
responsibilities of employees. These roles are used in our
system for controlling sharing policies of the employees of
an enterprise who are taking part in some collaborative team
activity. We represent enterprise-defined roles as E-Role that
contain authorization rules for access control. These are
rather static roles that describe who can share certain infor-
mation under which conditions. We use context constraints
with these roles to make their dynamic use in our scenario.
Context constraints can also be used for dynamic activation
and deactivation of roles.

2) Owner-Defined Roles

Owner-defined roles represented as O-Role in our system are
an alternative to enterprise-defined roles used to allow user
the control on sharing of her personal information. These
roles are used by an owner when the enterprise-defined role
does not allow to share information in a particular scenari-
o while the owner wants to share information with a trusted
user. Assignment of these roles depends on many factors in-
cluding current context, collaborative relationships, and his-
tory of interactions. Owner-defined roles are either created
from existing enterprise-defined roles or they can be created

by the owner. These two types of owner-defined roles are
described below.
A. Owner-Defined Enterprise-based Roles
This type of roles are created based on the enterprise-defined
roles. These roles are pre-defined in the system by creating
an O-Role for each E-Roles. After creation of these roles, an
owner can add the authorizations in these roles to allow users
to access more information. These roles are assigned to us-
er whose job role is same as E-Role on which it is based, for
example, user having E-Developer role will get O-Developer
role. When users are participating in a mutual activity, team,
or enterprise, system can automatically detect their collab-
orative relationships and provide roles related to requester’s
enterprise-based roles. It provides advantage of enhanced in-
formation sharing at different levels, for example, users hav-
ing O-Role will get details of information in contrast to the
users having only E-Role.
B. Owner-Defined Personal Roles
These roles are optional and are defined for the personal
friends or family of the owner. Some colleagues from en-
terprise can also be assigned these roles whom the owner
trusts. Examples of these roles are O-Friend, O-Colleague or
O-Family. These roles are assigned personally by the owner
to the trusted colleagues, family or friends for sharing their
personal information. Authorizations for these roles may be
very different and depend solely on personal liking and dis-
liking of the owner.
Owner-defined roles are assigned to collaborating users to
enhance the sharing of mutual activities and related context
information.

3) Role Assignment

Owner-defined roles can be assigned automatically when the
system detects collaborative relationships among owner and
requester. It depends on the settings by owner, normally own-
er would like to share activity information with users who are
mutually involved in an activity of the team. To some other
friends and trusted colleagues owner can manually assign O-
Role with certain condition or agreement. These roles must
be revoked as soon as they have been used for the said pur-
pose or defined time limit. Their excessive and uncontrolled
use can be a threat for user’s privacy. Role revocation can be
based on static information or dynamic events. Role revoca-
tion types are described below.

4) Role Revocation

Owner-defined roles are revoked from the requester after
they have finished with its intended use or after specific time
or event happening. It means role revocation is based on ei-
ther static or dynamic rules which the system can evaluate
and execute automatically. In addition an owner holds the
right to revoke her owner-defined role from a user who is
no more a trusted user. In the following we describe some
possible scenarios for role revocation.

• Time dependent revocation
In this case an owner-defined role is revoked after a
fixed duration of time.

• Event-based revocation
An event can be a start or end of a mutual activity or

63 Malik et al.

User
User-id Role

Profile Services

Role
Role-id Type

Permission Constraints

Interaction
Type Response

Time

Activity
Activity-id Services

Start date Team

End date Enterprise

Service
Service-id Owner

Type Context

Enterprise
Ent-id Departments

Goals Collaborations

Team
Team-id Users

Resources Location

Collaboration
Type Response

Duration Context

Collaboration
Type Result

Duration Context

Interaction
Type Response

Time

* ****

**

*

*

* *

*

*

performs

* 1

1

1

*

1

*

*
createscreates assigned tobelongs to

works for

assigned to

Figure. 1: Simplified data model of entities and collaborations.

a change in a collaborative relationship, for example,
change in user’s enterprise, team, activity, or E-Role.

• Context-based revocation
The O-Role assigned to be used only in certain context
is revoked when user context changes, for example, a
change in location, online status etc.

• Agreement-based revocation
O-Role assigned based on an agreement is revoked after
the end of agreement or detection of violation of the a-
greement. Example of an agreement is ”i will share my
information as long as you share some specific informa-
tion with me”.

• History-based revocation
Revoke O-Role based on history of interactions, for ex-
ample, no contact from user for the last n days.

B. Entities and Relationships

Our sharing control model is based on hybrid roles as well as
entities and their collaborative relationships. There are five
entity types used in our system which are enterprise, team,
activity, role, and user. Entities in our system are treated
differently during sharing control decision because they are
given priorities in order of (enterprise, team, activity, role,
and user) where enterprise is assigned lowest priority and
user is assigned highest priority.

1) Entities

Entities described in our system are modeled with their inter-
actions, collaborations, and relationships as shown in Figure
1. Entities involved in this system are described below.

• Enterprise
Enterprise is the largest entity and is assigned lowest
priority among entities in our system. Enterprise creates
teams, sharing policies (E-Role), assigns activities and
users to team, and roles to user.

• Team
Team entity can be created by one enterprise indepen-
dently or by more than one enterprises in collaboration.
A team is headed by a team leader who assigns team
activities to users. A user can participate in more than
one team at a time thus resulting in the concept of over-
lapping teams.

• Activity
Activities are defined by the team leader and enterprise
management. Team leader selects expert users for per-
forming particular activities from within or outside of
the enterprise. A team can be considered as collection
of sub-teams based on groups of users performing sep-
arate activities. Users of these sub-teams can take max-
imum benefit of our system to enhance sharing among
them using O-Role.

• Role
E-Roles are assigned by enterprise to users based on
their duty, qualification, and experience. O-roles are as-
signed by the automatic system or manually by the own-
er based on collaborative relationships. One or more
users can have same role and more than one roles can
be assigned to one user.

• User
A user works for an enterprise in one or more teams and
their activities. As an owner of personal and activity
information a user can share this information with oth-
er collaborating users using E-Role. To enhance level
of shared information with some trusted and mutually
collaborating users she can define her O-Role and can
change sharing control policy rules for particular users
or other entities.

2) Collaborative Relationships

Users working at different entity levels have a collaborative
relationship among them. These are relationships among
users performing activities in overlapping teams belonging
to different enterprises. These collaborative relationships are

Enhanced Sharing and Privacy in Collaborative Virtual Teams 64

described as Mutual, Member, and Colleague in our system.
Member relationship is described as Me while non-member is
described as NMe. Similarly Mu and C describe mutual and
colleague while non-mutual and non-colleague are described
as NMu and NC respectively. We describe these three types
of collaborative relationships below.

• Mutual (Mu)
A mutual relationship between users means that they are
involved in same activity. Users in mutual relationship
share maximum information among them as they have
to complete their mutual activity goals within given time
limits. These users take the benefit of our O-Role to
enhance sharing among them.

• Member (Me)
Users working in same team are described having a
member relationship among them. Members of a team
can also benefit from O-Role to enhance their sharing
within a team.

• Colleague (C)
A colleague relationship among users describes that
they are working for same enterprise. Colleagues may
not be a part of same team and activities.

In practice, there exist complex relationships among collab-
orating users due to overlapping teams and collaborating en-
terprises. For example, there can exist a member relationship
between two users while not being mutual and colleague be-
cause they are members of the same team but not employees
of the same enterprise and not working in a mutual activity.
Due to this complexity of relationships, sharing decisions al-
so become complex and it is difficult to define static E-Role
authorization policies in such a dynamic and complex envi-
ronment. It encourages to create fine-grained policies and
fine-grained management of information.

IV. User-defined Role-based Sharing Control
Architecture

The architecture of our system is shown in Figure 2. In con-
sists of user peers, team peers, and enterprise peers. Web
services technology is used to share information among dis-
tributed peers. A user can use the services provided by other
online users. This architecture of a user system consists of
sharing controller, access controller, and context manager.
Sharing controller evaluates the requests for sharing infor-
mation. It contains different components for deciding about
sharing control policies, collaborative relationships etc. Ac-
cess controller is required only if the owner wants to enhance
sharing with another user. It controls role assignment and re-
vocation of O-Roles. Context manager collects context from
sources and manages it in different fine-grained hierarchy
levels. Interoperation and working of these components is
described below.

A. Sharing Controller

Sharing controller is the main component of architecture that
accepts requests from requester and evaluates the request for
sharing information. For enhanced sharing it forwards the re-
quest to access controller. It also contacts context manager

Users ctxRole Activity Activityteam

Web services
Entity &

Relationship

Enterprise

policy

User

policy

Owner interaction

Owner Policy

adaptation

Sharing Controller

Enterprise system Team Leader system User system

Users Policy

Policy Evaluator

Conflict Handler
Collaboration

history

ctx

Priority Evaluator

Revocation

Rules

Role Assignment/

Revocation

Access Controller

Personal

context

Shared

context
Collaboration

context

History

context

Context Manager

Hierarchy Management

Context collection

Collab&cont

act history

Role Manager

Assigned

Roles

Figure. 2: User-defined Role-based Sharing Control Archi-
tecture.

to provide current context for evaluation of the request. It us-
es enterprise policy for E-Roles and user policy for O-Role
to check for evaluation of a request. Requester’s role and
current context conditions are validated first and then it uses
policy evaluator to check entity relationships, their priorities,
and any conflict in policies. After evaluation, either it pro-
vides requester with required information at a fine-grained
level authorized for this requester or it forwards the request
to access controller. Following are the components of shar-
ing controller.

1) Enterprise policy and user policy

Sharing control policy in our system is a hybrid policy which
is used for defining authorization rules for our hybrid roles.
Two types of policies are enterprise-defined sharing control
policy and owner-defined sharing control policy (also called
user policy). Enterprise-defines RBAC based policy is rather
static in nature and we extend it using context constraints
in it. Still the enterprise-defined policy is defined by an ad-
ministrator of enterprise and it is not going to be frequent-
ly changed for any entity if required. To allow an owner
to share personal information we define owner-defined poli-
cy. Owner-defined policy overrides enterprise-defined policy
when there is a conflict between policy rules. An owner can
change her policy for a user at any entity level when it is
required.

2) Policy Evaluator

Policy evaluator uses enterprise policy, user policy, entity re-
lationships, and collaboration history to evaluate the request.
It consists of two components priority evaluator and conflic-
t handler. Priority evaluator uses entity & relationship to
find the collaborative relationship among requester and own-
er and then decides about the priorities of entities in request
and policy rules for that request. First it checks user policy
and finds any authorization rule or negative rule for the entity
having higher priority in request, for example, if a requester

65 Malik et al.

is mutually participating in an activity with owner then any
rule about mutual activity gets highest priority. If user policy
does not contain any rule about the request then it finds enter-
prise policy for the request. Conflict handler handles policy
conflicts mainly using the priorities of entities. If two rules
are of same priority then negative rule gets priority over pos-
itive authorization rule. Once a policy rule for authorization
of request is found context conditions in rule are evaluated.

3) Owner Policy Adaptation

Policy adaptation can be performed only for user policy. An
owner can change own policy at anytime about a certain user
or an entity. In addition system can automatically detect any
change in the collaborative relationship, context, or role of
a user and adapt the policy for that user at runtime. In this
way the user policy can be effectively used in distributed and
dynamic environments which require frequent changes.

B. Access Controller

Sharing controller forwards the request to access controller
for providing O-Role to collaborating users for enhanced
sharing. Access controller uses collaboration and contac-
t history database to find requester’s collaboration with the
owner. Access controller consists of two components that
are role manager and role assignment/revocation. Role man-
ager accepts the request and checks for collaboration and as-
signed roles and sends request to role assignment/revocation
component. Role assignment/revocation component assigns
new role or revokes a previously assigned role.

1) Role Manager

Role manager accepts request from sharing controller and
finds the collaborative relationship among requester and
owner. If requester is a mutual in an activity with owner
then an O-Role based on requester’s E-Role is assigned. It
depends on owner which collaborative relationships gets an
O-Role and what level of information the requester can ac-
cess using O-Role. User policy defined by the owner actually
decides what level of information is accessible to a requester
having O-Role.

2) Role Assignment/Revocation

Role assignment/revocation component is used for assigning
owner-defined roles O-Role to requesting users. It uses re-
vocation rules to revoke a role from user. It requests context
manager for the user’s current context to validate revocation
rules. It assigns owner-defined roles to requesting users when
decided by the Role Manager and provides two types of O-
Role for collaborating partners and for private people.

C. Collaboration & contact history

The history of collaborations among users can be effectively
used for enhanced sharing of information. Sharing controller
and access controller both make use of this history. Normal-
ly it is used in a scenarios such as the role of a requester
allows for the requested information but context conditions
or collaborative relationship are not satisfied then the sys-
tem calculates statistics about previous interactions among

requester and owner. When user-defined setting for histo-
ry are provided, the system can automatically decide what
level of recent collaboration history is required to allow for
what level of information sharing. On the other hand system
provides these interaction statistics to the owner. The owner
can check how many times in past this user has requested/-
granted which information under which context conditions
and how many times interaction was successful or unsuccess-
ful. This build trust in requester and helps owner to decide if
she should allow the request.

D. Context Manager

Context manager provides requested context to request e-
valuating components. Context information is collected
from sensors and user’s personal information is also provid-
ed manually. For example, context is provided by context
servers from different sensors in the environment and activi-
ty related context is provided by manual entry. For enhanced
sharing, context information is arranged in hierarchical level-
s and only certain level of context is shared with a requester.
Context in our system is used for multiple purposes. On one
hand it is used to share owner’s context information with col-
laborating partners, on the other hand it is used to evaluate
information sharing request. Our system uses context of re-
quester as well as owner to evaluate the information sharing
request.

1) Context Hierarchies

All requesters cannot be allowed to access all requested in-
formation. It depends on many factors like collaborative re-
lationships, current context, and owner’s trust. For example,
an owner may want to share more information with users
having specific role, context, or relationship. For this pur-
pose our system manages context in fine-grained hierarchies
of context information at three different levels named as L1,
L2 and L3. Level L1 describes the most detailed information
and level L3 describes the least detail.

2) Types of Context

Following types of context is used in our system.

• Personal context include user, resources, and environ-
ment related features. For example, user’s location, de-
vices etc.

• Shared context consists of user’s activity, team, and en-
terprise related features, for example, current activities,
activity status, scheduled activities, calendar of events.

• History context includes features about history of col-
laborations with other users, for example, contact his-
tory, number of accesses, type of sharing, number and
level of successful/unsuccessful sharing.

• Collaborative context, for example, collaborating users
in an activity, team, or enterprise, collaborative relation-
ships, collaboration duration.

Enhanced Sharing and Privacy in Collaborative Virtual Teams 66

V. User-defined Role-based Sharing Control
Policy

Our sharing control policy includes two types of sharing con-
trol rules for a hybrid role-based model. Our system uses
Enterprise-defined roles E-Role and owner-defined roles O-
Role. Two types of authorization rules are used for support-
ing these two types of roles. These two types of rules in
our system are described as enterprise policy and user poli-
cy. Enterprise policy is based on conventional RBAC roles
which are static in nature and cannot be used in dynamic sce-
narios. We extend RBAC roles by using context constraints.
Still RBAC based policy is defined by an administrator in an
enterprise and is based on the duty of an employee which
cannot be changed easily. For this reason we use user policy
which is flexible and can be changed according to dynamic
requirements of the system.

<UserRules>
<RuleType="regular">

<Action="+">
<Subject>
<Predicate>
<Op>eq</Op>
<EntityName> Role </EntityName>
<EntityFunc> name </EntityFunc>
<EntityValue>Developer</EntityValue>

</Predicate>
</Subject>
<Object> activity service </Object>
<Condition>
<Predicate>
<Op>eq</Op>
<EntityName> activity </EntityName>
<EntityFunc> name </EntityFunc>
<EntityValue>A1</EntityValue>

</Predicate>
<Exp>AND</Exp>
<Predicate>
<Op>neq</Op>
<EntityName> activity </EntityName>
<EntityFunc> status </EntityFunc>
<EntityValue> finished </EntityValue>

</Predicate>
</Condition>
<AccessLevel>

<Predicate>
<Op>eq<Op>
<EntityName> Relationship </EntityName>
<EntityValue> Mu </EntityValue>

</Predicate>
<Level> L1 </Level>

</AccessLevel>
</Action>

</RuleType>
</UserRules>

Listing 1: An example of enterprise-defined policy

A. Authorization Rules

There are two types of policy rules called regular rules and
exceptional rules used in our system. Both of these rules are
based on priorities. Regular rules are based on entity priori-
ties that are user, role, activity, team, and enterprise written
in highest to lowest priority order. These rules define priority
of one entity over another in case of conflict among entities.
For example, consider two conflicting rules. One rule says
says ”sharing of activity information is allowed to users in-
volved in an activity A”. Other rule says that ”sharing of
activity information is not allowed to members of team T”.
There is conflict in these rules when a user is member of team
T and is also involved in activity A. One rule allow sharing

<UserRules>
<RuleType="exceptional">

<Action="+">
<Subject>
</Predicate>

<Op>eq<Op>
<EntityName> Team </EntityName>
<EntityFunc> name </EntityFunc>
<EntityValue> T2 </EntityValue>

</Predicate>
</Subject>
<Object> activity service </Object>
<Condition>
<Predicate>
<Op>eq<Op>
<EntityName> Role <EntityName>
<EntityFunc> type </EntityFunc>
<EntityValue> O-Role </EntityValue>

</Predicate>
</Condition>
<AccessLevel>
<Predicate>
<Op>eq<Op>
<EntityName> Relationship </EntityName>
<EntityValue> Me </EntityValue>

</Predicate>
<Level> L2 </Level>

</AccessLevel>
</Action>

</RuleType>
</UserRules>

Listing 2: An example of user-defined policy

and other rule disallow. This rule is evaluated based on enti-
ty priority and is called a regular rule. Smaller entities get
higher priority than larger ones because close relationship
between users exist in smaller entities. So in this example,
entity priority decides that activity has higher priority than
team in our system so the user involved in activity is allowed
to share information in presence of the fact that members of
team T are not allowed. If there is conflict between entities
, for example, both rules belong to same entity then negative
rule is given priority over positive rule and sharing is disal-
lowed. Our system utilizes the fact that users collaborating
in same activity have closer relationships than users involved
in different activities. Using these facts our policy supports
fine grained level of sharing.
There are some situations when entity-based priority rules
are not effective. For example restricting a bigger entity in
presence of smaller entity authorizations is ineffective be-
cause smaller entity gets priority and will continue to enjoy
the sharing. In such situations exceptional priority rules are
needed to fulfill user’s sharing requirements [8]. Exceptional
priority rules are rarely used and are needed in some specific
situations and get priority over all other rules.
Our sharing control policy evaluation algorithm is shown in
Algorithm 1.

B. Sharing Control Policy

Sharing control rules are explained with example containing
regular and exceptional rules as well as positive and negative
rules. Listing 1 contains an example of enterprise-defined
authorization rules while Listing 2 describes user-defined
policy rules. As shown in listing 1 and Listing 2, positive
rules symbolized as ”+” are used to allow sharing and neg-
ative rules symbolized as ”-” are used to disallow sharing.
Enterprise-defined policy in Listing 1 is mainly based on
roles. It shows an example policy for developer role who is
allowed to share activity related context information at lev-

67 Malik et al.

el L1 (most detailed level) from the mutual users in activity
named A1 as long as the activity is not finished. The exam-
ple of user policy is shown in Listing 2 where user is using
an exceptional rule to allow all members of team T2 to share
her activity context at level L2 (medium level) as long as they
hold an O-Role provided by the owner.

Algorithm 1 Sharing Control Evaluation Algorithm
1: [Match query and requester context with User Policy]
2: if found owner − defined rule for requester’s

identity, role or requested service then
3: if found negative access then
4: Reply ”Service Unavailable”
5: else if found positive access then
6: if matched requester context with required

context conditions then
7: Find level of context access
8: Grant permitted level of requested service
9: else if found collaborative relationship then

10: Call access controller for enhanced sharing
11: Assign O-Role and set revocation rules
12: Grant permitted level of requested service
13: else if found collaboration history then
14: Calculate and evaluate request based on history

statistics
15: end if
16: else if found conflicting rules then
17: If exist use exceptional priority rule, otherwise en-

tity priority
18: end if
19: else
20: [Match query with Enterprise Policy]
21: if found requesters role and requested service and

context conditions then
22: if found negative access then
23: Reply ”Service Unavailable”
24: else if found positive access then
25: if matched requester context with required

context conditions then
26: Find level of context access
27: Grant permitted level of requested service
28: else
29: Reply ”Service Unavailable”
30: end if
31: else if found conflicting rules then
32: use entity priority to evaluate request
33: end if
34: end if
35: end if

C. Implementation and Discussion

Our user-defined role-based sharing control system is a dis-
tributed and dynamic virtual teams based system. It is im-
plemented using Web services in Java and uses peer to peer
model. In this system, user, team, and enterprise are the inter-
acting peers. Users can send request for accessing informa-
tion from other users using Web services provided by other
users. We implemented the system as a messenger type ap-

plication for sharing limited amount of information among
collaborating users. Most of the information shared among
collaborating users is context information related to their per-
sonal or activity information. This limited amount of context
information sharing is very helpful in knowing about the sta-
tus of current activities and their progress among collaborat-
ing users and with team leader. Distributed and dynamic vir-
tual teams based systems mostly depend on constrained de-
vices like mobile and PDA’s that can share a limited amount
of context information among virtual team users.
User-define role-based sharing control model shows the im-
portance of enhanced sharing and privacy of owner context
being shared in complex real world scenarios involving mul-
tiple entities and their complex collaborative relationships.
The sharing control system allows sharing of information
based on hybrid roles, collaborative relationships, contex-
t conditions, and history of collaborations. It enhances the
sharing of information and at the same time preserve the pri-
vacy of owner by sharing information at a certain level of
granularity using user policy and dynamic constraints.

VI. Related Work

To enhance sharing of information among collaborating user-
s in dynamic virtual team environment, we extend RBAC
model [14] using context constraints, collaborative relation-
ships, owner-defined roles. In addition we use fine-grained
context information management [18] and entity priorities.
We use all this to cope with the changing requirements of
the system and to provide user with information as much
as possible. Ad-hoc collaborations in virtual teams are de-
scribed in [19] and the sharing challenges are described in
[15]. In past access control list and capability list were used
to implement access control [7]. Scalability of access right-
s management was a major problem until the development
of Role-Based Access Control (RBAC) model [14] and later
standardized in [12]. Requirements of access control in col-
laborative environments are described by [28] and survey is
presented in [6]. RBAC has been extended using addition-
al roles in [25] which creates environment roles. Dynamic
adaptation of policies for access control systems is described
in [36] and [37].
The importance of context-aware systems is highlighted in
[20] and [21] and preferences for access control in awareness
systems is given in [38]. The DySCon system [39] extends
RBAC using context of requester, owner, and environment.
In this paper, we extend DySCon to provide hybrid roles and
policy creating owner-defined roles that can be revoked us-
ing predefined context conditions. Owner-defined roles are
also described by [40] in which requester selects one role out
of many role provided by owner. It leaves the difficulty of
role selection to requester. In our system [35], we use two
types of roles, enterprise-defined roles E-Role and owner-
defined role O-Role and provide methods to handle hybrid
roles. Conflicts in policies can occur in complex environ-
ment where many entities are involved. We use entity pri-
ority mechanism and exceptional priorities for handling con-
flicts. Some strategies for rule conflict handling are described
in [9] and [8]. The sharing control system [23] describes a
conflict handling mechanism for dynamic collaborative en-
vironments using collaborative relationships and priorities of

Enhanced Sharing and Privacy in Collaborative Virtual Teams 68

all entities in the environment.

VII. Conclusion and Future Work

Hybrid roles and collaborative relationships are used in this
system to provide enhanced sharing control and privacy to
owner’s personal and activity related context information.
The paper describes user-defined role-based sharing control
model, its architecture, and implementation using Web ser-
vices technology. The RBAC model is extended with con-
text constraints, owner-defined roles O-Role, collaborative
relationships, and collaboration history. The O-Roles assign-
ment and revocation rules are provided. Architecture of the
system using Web services and Peer to Peer model is pre-
sented and interoperation and working of all components of
the architecture is described to provide required level of en-
hanced sharing and privacy. Due to the involvement of multi-
ple entities and their collaborative relationships, system and
its policies becomes complex. Handling of these complex-
ities using extended enterprise-defined RBAC-based policy
and user policy based on O-Role is described. The evalu-
ation of sharing control request in presence of these hybrid
roles and policies is explained using an algorithm. Future
work includes the use of autonomic and semantic techniques
for dynamic policy adaptation and for description of entities,
relationships, and policy rules respectively.

Acknowledgments

This work is partially supported by the Higher Educa-
tion Commission (HEC) Pakistan and the European Union
through the FP7-216256 project COIN.

References

[1] M. Jaume. A formal approach to implement access con-
trol models, Journal of Information Assurance and Se-
curity, 1 (2), pp. 137-148, 2006.

[2] W. Zhou. Authorization Constraints Specification and
Enforcement, Journal of Information Assurance and
Security, 3 (1), pp. 38-50, 2008.

[3] M. Menzel. Access Control for Cross-Organisational
Web Service Composition, Journal of Information As-
surance and Security, 2 (2), pp. 155-160, 2007.

[4] L. Habib. Formal definition and comparison of access
control models, Journal of Information Assurance and
Security, 4 (4), pp. 372-381, 2009.

[5] E. Lupu. Conflicts in policy-based distributed system-
s management, IEEE Transactions on Software Engi-
neering, 25 (6), pp. 852-869, 1999.

[6] W. Tolone, G. Ahn, T. pai. Access control in collabo-
rative systems, ACM Comput. Surv., 37 (1), pp. 29-41,
2005.

[7] R. Sandhu and P. Samarati. Access control: Principles
and practice, IEEE Communications, 32 (9), pp. 40-48,
1994.

[8] F. Cuppens. High Level Conflict Management Strate-
gies in Advanced Access Control Models, Electron.
Notes Theor. Comput. Sci., 186, pp. 3-26, 2007.

[9] S. Jajodia. A unified framework for enforcing multiple
access control policies, SIGMOD Rec., 26 (2), pp. 474-
485, 1997.

[10] B. Carminati, E. Ferrari. Access control and privacy in
web-based social networks, IJWIS, 4 (4), pp. 395-415,
2008.

[11] Q. Ni. Privacy-aware role-based access control, ACM
Trans. Inf. Syst. Secur., 13 (3), pp. 1-31, 2010.

[12] D. Ferraiolo. Proposed NIST Standard for Role-Based
Access Control, ACM Trans. on Information and Sys-
tem Security (TISSEC), 4 (3), pp. 224-274, 2001.

[13] K. Boulos. The emerging Web 2.0 social software: an
enabling suite of sociable technologies in health and
health care education, Health Information & Libraries
Journal, 24 (1), pp. 2-23, 2007.

[14] R. Sandhu, E. Coyne, H. Feinstein. C. Youman. Role-
Based Access Control Models, IEEE Computer, 29 (2),
pp. 38-47, 1996.

[15] K. Smith, L. Seligman, V. Swarup. Everybody Share:
The Challenge of Data-Sharing Systems, IEEE Com-
puter, 41 (9), pp. 54-61, 2008.

[16] A. McAfee. Enterprise 2.0: The Dawn of Emergent
Collaboration, MIT Sloan Management Review, 47 (3),
pp. 21-28, 2006.

[17] N. Eagle, A. Pentland. Social Serendipity: Mobilizing
Social Software, IEEE Pervasive Computing, 4 (2), pp.
28-34, 2005.

[18] C. Dorn. Sharing hierarchical context for mobile web
services, Distrib. Parallel Databases, 21 (1), pp. 85-
111, 2007.

[19] S. Dustdar. Caramba – A Process-Aware Collaboration
System Supporting Ad hoc and Collaborative Processes
in Virtual Teams, Journal of Distributed and Parallel
Databases, 15 (1), pp. 45-66, 2004.

[20] M. Baldauf. A survey on context-aware systems, I-
JAHUC, 2 (4), pp. 263-277, 2007.

[21] H. Truong. A survey on context-aware web service sys-
tems, IJWIS, 5 (1), pp. 5-31, 2009.

[22] S. Murugesan. Understanding Web 2.0, IT Profession-
al, 9 (4), pp. 34-41, 2007.

[23] A. Malik, S. Dustdar. Enhanced sharing and privacy in
distributed information sharing environments. In Pro-
ceedings of the 7th International Conference on In-
formation Assurance and Security (IAS), pp. 286-291,
2011.

69 Malik et al.

[24] N. Dunlop. Dynamic conflict detection in policy-based
management systems. In Proceedings of the Sixth Inter-
national Conference on Enterprise Distributed Object
Computing (EDOC), pp. 15-26, 2002.

[25] M. Convington. Securing context-aware application-
s using environment roles. In Proceedings of the 6th
ACM SACMAT, pp. 10-20, 2001.

[26] R. Hulsebosch. Context sensitive access control. In
Proceedings of the 10th ACM SACMAT, pp. 111-119,
2005.

[27] G. Ahn. Authorization management for role based col-
laboration. In Proceedings of the IEEE int. conf. on Sys-
tem, Man and Cybernetic, pp. 4128-4134, 2003.

[28] H. Shen, P. Dewan. Access control for collaborative
environments. In Proceedings of the ACM conference
on Computer-supported cooperative work (CSCW), pp.
51-58, 1992.

[29] G. Karjoth, M. Schunter. A Privacy Policy Model for
Enterprises. In Proceedings of the 15th IEEE Computer
Security Foundations Workshop (CSFW), pp. 271-281,
2002.

[30] B. Carminati, E. Ferrari. Enforcing relationships priva-
cy through collaborative access control in web-based
Social Networks. In Proceedings of the Collaborate-
Com, pp. 1-9, 2009.

[31] R. Thomas, R. Sandhu. Task-based authorization con-
trols(TBAC): A family of models for active and
enterprize-oriented management. In Proceedings of the
Database Security XI, pp. 166-181 , 1997.

[32] C. Georgiadis. Flexible Team-based access control us-
ing context. In Proceedings of the ACM SACMAT, pp.
21-30 , 2001.

[33] R. Thomas. Georgiadis. Team-based access control (T-
MAC): a primitive for applying role-based access con-
trols in collaborative environments. In Proceedings of
the second ACM workshop on Role-based access con-
trol, pp. 13-19 , 1997.

[34] A. Kalam. Organization based access control. In Pro-
ceedings of the International Workshop on Policies for
Distributed Systems and Networks, pp. 120-131 , 2003.

[35] A. Malik. Context-aware Sharing Control using Hybrid
Roles in Inter-enterprise Collaboration. In Proceedings
of the Fifth International Conference on Software and
Data Technologies, pp. 42-48 , 2010.

[36] Y. Kim. Context-Aware Access Control Mechanism
for Ubiquitous Applications. In Proceedings of the
Third International Atlantic Web Intelligence Confer-
ence, (AWIC), pp. 236-242 , 2005.

[37] A. Toninelli. A Semantic Context-Aware Access Con-
trol Framework for Secure Collaborations in Pervasive
Computing Environments. In Proceedings of the 5th
International Semantic Web Conference, (ISWC), pp.
473-486 , 2006.

[38] P. Sameer. Who gets to know what when: configur-
ing privacy permissions in an awareness application. In
Proceedings of ACM CHI 2005 Conference on Human
Factors in Computing Systems, pp. 101-110 , 2005.

[39] A. Malik. DySCon: Dynamic Sharing Control for Dis-
tributed Team Collaboration in Networked Enterprises.
In Proceedings of the 11th IEEE International Confer-
ence on Commerce and Enterprise Computing, (CEC),
pp. 279-284 , 2009.

[40] C. Groba. Context-Dependent Access Control for Con-
textual Information. In Proceedings of ARES Confer-
ence, pp. 155-161 , 2007.

Author Biographies

Dr. Ahmad Kamran Malik is an Assistant Pro-
fessor at the Institute of Information Technolo-
gy, Quaid-i-Azam University, Islamabad, Pakistan.
He received his PhD in Comput-
er Science from the Vienna Uni-
versity of Technology in 2011.
He studied MS in Computer
Science at Muhammad Ali Jin-
nah University, Islamabad, Pak-
istan and M.Sc. in Comput-
er Science at Gomal University,
D.I. Khan, Pakistan. From 1999
to 2007 he has been teaching
and supervising computer science students at bachelors and
masters level. Currently his research interest is focused on
Collaborative systems, Information management and shar-
ing, Information privacy, and Access Control. He has been
working on Distributed Databases, Data Integration, Peer da-
ta management, and Query processing.

Prof. Schahram Dustdar is Full Professor of Com-
puter Science with a focus on Internet Technologies
heading the Distributed System-
s Group at Vienna University of
Technology, Vienna, Austria. S-
ince 2009 he is an ACM Distin-
guished Scientist. He received
his M.Sc. (1990) and PhD. de-
grees (1992) in Business Infor-
matics from the University of
Linz, Austria. In April 2003 he
received his Habilitation degree
for his work on Process-aware Collaboration Systems - Ar-
chitectures and Coordination Models for Virtual Teams. He
has published more than 300 scientific papers as conference-,
journal-, and book contributions. His research focus is on In-
ternet Technologies and he is head of the Distributed System-
s Group. In particular, his interests are in Service-oriented
Architectures and Computing, Mobile and Ubiquitous Com-
puting, Complex-, Autonomic-, and Adaptive Systems, and
Context-aware Computing including all aspects related to
collaborative systems (e.g., Workflow technologies).

