Special Issue

it 4/2011

4

Grid vs Cloud — A
Comparison

Grid vs Cloud — Ein Technologischer Vergleich

Technology

Ivona Brandic, Schahram Dustdar, Vienna University of Technology

Summary Cloud Computing represents a novel and promis-
ing approach for implementing scalable ICT systems for
individual-, communities-, and business-use relying on the
latest achievements of diverse research areas, such as Grid
computing, Service oriented computing, business processes,
and virtualization. From the technological point of view Grid
computing is considered as the most related predecessor
technology of Cloud computing. Although, Cloud and Grid
computing differ in many aspects, as for example, in the
general idea of the provision of computational resource,
which is in Clouds commercial based and in Grids community
based, there are many similarities. In this paper we investigate
the similarities and differences between Clouds and Grids by
evaluating two successful projects, namely for the provision
of native hight performance copmputing applications as Grid
workflows and for the self-management of Cloud infrastruc-
tures. »»» Zusammenfassung Cloud Computing ist
eine neuartige Methode fiir die Implementierung skalierbarer

ICT Systeme, die von den Individuen, Gemeinschaften und
Geschaftsprozessen benutzt wird. Cloud Computing basiert
auf diversen Technologien wie z.B. Grid Computing, Service-
orientierte Architekturen, Geschaftsprozess-Management und
Virtualisierung. Von dem technologischen Standpunkt wird
Grid Computing als die wichtigste Vorlaufertechnologie ange-
sehen. Obwohl Grid und Cloud Infrastrukturen sich in vielen
Aspekten unterscheiden, wie z.B. in der Idee wie die Compu-
terressourcen angeboten werden — in Grid basiert dies auf der
gemeinsamen Nutzung der Ressourcen in einer Gemeinschaft,
in Clouds ist es kommerziell — haben beide Systeme auch
sehr viele Gemeinsamkeiten. In dieser Arbeit untersuchen wir
die Ahnlichkeiten und Unterschiede zwischen Grid und Cloud
Systemen durch die Evaluierung von zwei erfolgreichen Pro-

jekten aus beiden Bereichen, namlich eine Infrastruktur fiir die

Bereitstellung der Hochleistungsapplikationen als Services fir
Grid und eine Cloud Infrastruktur fir das Selbstmanagement
der Cloud Applikationen.

Keywords D.2.11 [Software: Software Engineering: Software Architectures]; cloud computing, grid computing »»»
Schlagworter Software, Software Engineering, Software Architectures, cloud computing, grid computing

1 Introduction

Cloud computing represents a novel and promising
approach for implementing scalable ICT systems for
individual-, communities-, and business-use. Resources
are pooled and offered on-demand with ubiquitous
network access to rapidly configurable and elastic IT ca-
pabilities. Resources are delivered following three basic
delivery models: access to applications (SaaS), provision
of platforms to create applications (PaaS), and provision
of infrastructures for processing, storage, and networking

(IaaS). The key benefits of providing computing power

using Clouds are:

1. avoidance of expensive computer systems configured
to cope with peak performance;

2. pay-per-use solutions for computing cycles requested
on-demand, and

3. avoidance of idle computing resources, resulting in
novel business models.

Cloud computing can be defined as the convergence

and evolution of several concepts from virtualization,

it — Information Technology 53 (2011) 4 / DOI 10.1524/itit.2011.0640 ~ © Oldenbourg Wissenschaftsverlag

173

174

y

Special Issue

distributed application design, and enterprise I'T manage-
ment to enable a more flexible approach for deploying
and scaling applications [1;11;12]. From the techno-
logical point of view Grid computing is considered as
the most related predecessor technology of Cloud com-
puting.

Grid computing provides concepts and tools for the
provision of High Performance Computing (HPC) re-
sources and applications as services that may be accessed
transparently and on-demand. Major application area
of Grid computing is interconnection and transparent
use of computational resources for scientific and large
scale applications. The main goal of Grid computing
is to provide on demand access to HPC infrastruc-
tures by augmenting standardized protocols and services.
Based on such an infrastructure pervasive access to
geographically dispersed hardware, software, and infor-
mation resources should be enabled. However, since
HPC resources provided as Grid services are usually
not under the control of end users non functional re-
quirements of Grid applications turn out as the most
challenging issues in utilization of HPC resources as ser-
vices.

Although Cloud and Grid computing differ in many
aspects as, for example, in the general idea of the pro-
vision of computational resource, which is in Clouds
commercial based and in Grids community based, there
are many similarities. One of the most important issues
in both approaches is the management of non functional
properties of the system.

Service provisioning in the Cloud as well as in Grid
systems is based on Service Level Agreements (SLA) rep-
resenting a contract signed between the customer and
the service provider including the non-functional re-
quirements of the service specified as Quality of Service
(QoS). SLA considers obligations, service pricing, and
penalties in case of agreement violations. Flexible and
reliable management of SLA agreements is of paramount
importance for both, Cloud and Grid users. On one
hand, preventions of SLA violations ahead of time can
avoid unnecessary penalties, provider has to pay in case
of violations. Sometimes, simple actions like migrating
VMs to available cores can prevent SLA violations. On
the other hand, based on flexible and timely reactions to
possible SLA violations, interactions with the users can be
minimized increasing the chance for Cloud computing to
take roots as a flexible and reliable form of on demand
computing.

In this paper we evaluate the similarities and differ-
ences between the Grid and Cloud systems focusing on
one and probably the most challenging aspect of both
systems, namely the management of non functional user
requirements. We reflect the past and current develop-
ments, similarities and differences, open research issues
and lessons learned for the management of non func-
tional requirements in Clouds and Grids based on two
successful Grid and Cloud projects.

2 Background and Comparison Criteria
In this section we discuss the major similarities and dif-
ferences between Grids and Clouds and present a criteria
catalog for the detailed evaluation of the QoS and SLA
management techniques for both technologies.

2.1 Grid Characteristics

With the advance of the Internet, Grid Computing
emerged as a new state of the art technology for resource
sharing. Especially in the area of HPC where high end de-
vices, large scale computing resources, and networks are
used for computational science, Grids represent an ef-
ficient solution for sharing of geographically distributed
resources. Thereby, resource sharing is based on prein-
stalled services [8] following the concepts of stateful web
services [13] as defined by Web Service Resource Frame-
work (WSRF). WSRF provides a set of operations that
web services may implement to become stateful. Thus,
additional to the simple URI, which is sufficient to iden-
tify stateless service, stateful services consider a resource
information that can be used by clients to communicate
with services, store and retrieve data, start, stop and re-
sume computations.

The collaborative nature Grids led to the emergence of
multiple organizations that function as one unit through
the use of their shared competencies and resources for
the purpose of one or more identified goals. Thus, ad-
ministration of resources in Grids is solved with the
concept of virtual organization representing a dynamic
set of individuals and/or institutions aligned with a set
of resource-sharing rules and conditions to solve a spe-
cific (research) goal. Thus, organizations and individuals
belonging to a specific virtual organization may share
resources for a specific time frame to achieve certain
research goal. Grid technologies have been successfully
used for the establishment of computational testbeds in
eScience or for various large scale and parallel computa-
tions as for example in the EGEE [15] or myGrid [16]
projects. myGrid project produced a set of tools de-
signed to help e-Scientists modeling and execution of
in silico experiments. The tools support creation of e-
laboratories and have been used in domains such as
systems biology, social science, music, astronomy, multi-
media and chemistry. The Enabling Grids for E-science
(EGEE) project was funded by the European Commission
developing a Grid infrastructure and service Grid infra-
structure which was available to scientists 24 hours-a-day
for the execution of their experiments.

Although Grid computing seems to be obsolete today,
several technologies and concepts relevant for the today’s
Cloud infrastructures appeared as an outcome of different
Grid projects. Major outcomes and achievements from
the Grid era are sophisticated models for the management
of batch systems, which eventually led to the development
of the virtualization middleware like Eucalyptus [11]. One
such example is Oracle Grid Engine [14] representing
a distributed resource management (DRM) system that

manages the distribution of users’ workloads to available
compute resources.

Since the idea of Grid computing was sharing of
geographically distributed resource following the rules
of virtual organization, guarantees to rely on promised
resources availability became indispensable. Thus, QoS
giving non trivial qualities on service execution became
a crucial part of the Grid computing infrastructures.
QoS is negotiated before the service usage and is ex-
pressed by means of SLAs representing popular formats
for the specification of QoS. Similar to the virtualization
technologies, SLAs became one of the major enabling
technologies for the development of Cloud Computing
infrastructures.

However, missing market mechanisms for open and
dynamic Grids and lack of appropriate tools and techno-
logical solutions for the management of SLAs are some
of the most important reasons why Grid computing did
not succeed as a new state of the art technology for on
demand computing [4].

2.2 Characteristics of the Clouds
Cloud computing facilitates on-demand and scalable
resource provisioning as services in a pay-as-you-go man-
ner thereby making resources available at all times from
every location. From the technological point of view
Cloud computing does not represent a new technology,
rather it is considered to be a novel form how existing
technologies are used to achieve efficient resource pooling
and resource management. Thus, Cloud computing relies
on existing technologies like Grid computing, service ori-
ented computing, virtualization, Web 2.0, and similar by
augmenting them and combining them to achieve Cloud
related goals like elasticity and energy efficiency.

On-demand resource provision requires massive scal-
ability achieved through pooling of resources to data
centers and by applying various Cloud engineering ap-
proaches for insourcing or outsourcing of resources to
handle peaks and slopes (e. g., Cloud storming and Cloud
bursting or Cloud federation [12]). Virtualization tech-
nology separating computation and technology from the
hardware layer was the key concept which facilitated on
demand provision of computational resources for ar-
bitrary users. In Grids the relationships are established
offline, usually between academic institutes, and SLAs are
used to guarantee certain performance metrics. However,
Clouds fully rely on the online relationships, which are
established on-demand and on a case by case basis for
the certain business case. This also led to new research
challenges for the development of the QoS and Service
Level Agreements, which are beyond just guaranteeing
some performance metrics. It considers trust establish-
ment, compliance management and appropriate market
mechanisms where potential Cloud users and providers
can meet each other.

While Cloud computing represents a promising tech-
nology for the operation of next generation ICT

infrastructures on the one hand, it exhibits a high rate of
energy waste due to the characteristics of Clouds, like vir-
tualization overhead and massive scalability [17]. Thus,
with the advance of Cloud technologies novel energy effi-
cient resource provisioning models appeared considering
data center consolidation, intelligent workload predic-
tion, knowledge and speculative SLA management [7]
revealing novel challenges for the implementation of
Cloud infrastructures.

2.3 Major Differences between Grids and Clouds
In the following we summarize the major differences be-
tween Grids and Clouds.

Business Models. While in Grid business models are
usually based on bilateral agreements between academic
institutions, provision of resource in Clouds requires
more differentiated business models as discussed next.
Currently, we observe several types of business models
ranging from resource providers who only provide
computing resources (e.g., Amazon, Tsunamic Tech-
nologies), over SaaS providers who sell their own
resources together with their own software services (e. g.,
GoogleApps, Salesforce.com) to companies that attempt
to run a mixed approach, i.e., they allow users to create
their own services but at the same time offer their own
services (Sun N1 Grid, Microsoft Azure).

Resource Management. Resource management repre-
sents another major difference between Grids and Clouds.
While Grids rely on batch systems, utilization of virtual-
ization technologies represents the resource management
solution for the Clouds.

Resource Provision Models. As already discussed in pre-
vious sections Grid resource provisioning models are
based on virtual organisations where the relationships are
established offline. In Clouds usage of SLAs, compliance,
and trust management is essential.

Resource Availability. In Grids resource sharing relies on
the best effort manner, sometimes resources are not avail-
able and sometimes there are plenty of resources which
are idle. Clouds rely on massive elasticity in Clouds. Chal-
lenging issues in Clouds are to find the balance between
wasting resources due to the virtualization overhead and
standby modes of devices on the one hand, and pooling of
resources to facilitate efficient consumption of resources
and reducing energy consumption on the other.

3 Sample Projects

Our comparison is based on two reference projects:
Amadeus for Grid QoS management and FoSII for man-
agement of self-adaptable Cloud infrastructures.

GRID: Amadeus. Figure 1 shows the architecture of the
Amadeus environment used to manage execution of Grid
workflows. Amadeus has been successfully utilized for the

175

176

Special Issue

|
)

E

[

! 3‘@ 3 [XML parser / unparser
3 Model Traverser| 3 WSDL i [MDFA

: Model Checker i ; WF Deployer

; | = A i

' | Teuta Modeling Tool | ! 3
| Visualisation, Infrastructure
\Specification) | QwE

[:] third party components

(

WF Executer J

‘ | 3 VGE Service 3
Static U 3
(Dynamic) | Execution
Workflow Planner Hon—VGE i
WF Negotiator] : 3 Service 3

+ Grid Resources

// language, communication protocol !

() componen

Figure 1 Amadeus architecture.

provision and management of HPC applications as for ex-
ample maxillo facial surgery application used in medical
practice for preparation of medical treatments [5]. The
main components include
1. a Visualization and Specification component,
2. a Planning, Negotiation and Execution component called
QoS-aware Grid Workflow Engine (QWE), and
3. a set of Grid Resources.
The specification and visualization component comprises
a tool for UML-based Grid workflow modeling and visu-
alization. A user may specify the workflow by composing
predefined workflow elements. For each workflow elem-
ent different properties (such as execution time, price
and location affinity) may be specified that indicate the
user’s QoS requirements. After the validation of the
specified workflow, a corresponding XML representa-
tion is generated following the syntax of QoWL [3]. The
QWE engine interprets the QoWL workflow, applies the
selected optimization strategy, negotiates with services,
selects appropriate services and finally executes the work-
flow. The requested QoS and the negotiated QoS may
be expressed using a language for the specification of
electronic contracts, as for example Web Service Level
Agreement (WSLA). For the activities annotated with
QoS constraints, we use QoS aware services (i.e., Vi-
enna Grid Environment (VGE) services), which are able
to provide certain QoS guarantees. For other activities
non-VGE services may be used.

CLOUD: FoSII. The Foundations of Self-governing ICT
Infrastructures (FoSII) research project is proposing so-
lutions for autonomic management of SLAs in the
Cloud. In FoSII we are developing models and con-
cepts for achieving adaptive service provisioning and SLA
management via resource monitoring and knowledge
management techniques. Figure 2 depicts the compo-
nents of the FoSII infrastructure. Each FoSII service
implements three interfaces:
1. the negotiation interface necessary for the establish-
ment of SLA agreements,
2. the service management interface necessary for start-
ing service, uploading data, and similar management
actions, and

Planning, Negotiation and Execution

/\
| Planning | |Execution |-"‘
v P \
‘ \

Knowledge \ o
— 1%

KN ay

Infrastructure Resources

|
o 1 . |
: Monitoring » ‘\
Analysis ! .
| el
! -GN
| I
e __l .
LoM2His Framework N
~a
/\ Control loop
- Service management interface
- - Knowledge access
______ > Input sensor values A Selfmanagement interface
—_—— Output sensor values ‘ Negotiation interface

Figure 2 FoSII architecture.

3. the self-management interface necessary to devise ac-
tions in order to prevent SLA violations.

FoSII is implemented using the principles of autonomic

computing. Autonomic computing research methodology

can be exemplified using QoS, where the management is
done through the following steps:

1. Monitoring: The QoS managed element is monitored
using adequate software sensors;

2. Analysis: The monitored and measured metrics (e.g.,
execution time, reliability, availability, etc.) are ana-
lyzed using the knowledge base (condition definition,
condition evaluation, etc.);

3. Planning: Based on the evaluated rules and the results
of the analysis, the planning component delivers neces-
sary changes on the current setup, e. g., renegotiation
of services which do not satisfy the established QoS
guarantees.

4. Execution: Finally, the planned changes are executed
using software actuators and other tools (e. g., VieSLAF
framework [6]), which query for new services.

4 Grid vs Cloud - A Comparison of

QoS Management Aspects
In order to evaluate QoS management strategies in Grids
and Clouds we analyse different aspects as exemplified in
Table 1. We examine service management, QoS manage-

Table 1 QoS aspects in Grids and Clouds.

Aspect Grid QoS

Cloud QoS

Pre-installed services [2]
Application based [5]
Request/response models [5]

Service management
QoS management
SLA attainment strategies

Installation on demand [9]
Application agnostic [6]
Self-adaptable models [7]

ment, and SLA attainment strategies for sample Grid and
Cloud systems, namely Amadeus and FoSII.

4.1 Service Management

Grid: Vienna Grid Environment — VGE. As shown in
Fig. 1 Amadeus uses the Vienna Grid Environment (VGE)
service for the provision of native HPC applications. Ser-
vices have to be preinstalled while QoS is negotiated on
demand as discussed next. VGE services may be con-
figured in order to offer QoS guarantees with respect
to response time, price and location affinity. VGE ser-
vices support a dynamic QoS negotiation model where
clients may negotiate various QoS guarantees with multi-
ple service providers [2] relying on a generic QoS module,
which usually comprises an application-specific perform-
ance model, a pricing model, a compute resource manager
that supports advance reservation, and a QoS manager.
An application-specific performance model usually takes
as input a request descriptor, containing input meta data,
and a machine descriptor which specifies the amount of
machine resources (e.g., number of processors, main
memory, etc.) that may be provided for an application.
Input meta data indicates the information that describes
the input data of a service. Commonly, meta data is used
for the performance evaluation of a service during the
generation of QoS offers. Payload data denotes input and
output data of a service operation.

Cloud: Automatic Service Deployer (ASD). In FoSII we
use the Automatic Service Deployer (ASD) where services
are installed on demand using Virtual Appliances (VA),
which store service images [9]. As shown in Fig. 3 to
interface with a broker ASD considers a repository (e. g.,
Application Content Service (ACS), standard proposed
by the OGF). All the master copies of all the deployable
services, 1. e., VAs, are stored in the repository. The VAs
are either defined by an external entity or the ASD is
capable of acquiring it from a running system. The re-
pository allows the broker to determine which services
are available for deployment and which are the static

Broker

XEN
Domain,,

XEN
Domain,

Figure 3 ASD architecture.

ones. If the deployed services are not available, it checks
whether any of the latter resources can deliver the service
taking into account the deployment cost. The Workspace
Service (WS) offers the virtualization capabilities — vir-
tual machine creation, removal and management — of
a given site as a WSRF service. A typical service broker
has two main connections with the outside world: the
Candidate Set Generators (CSG), and the Information
Services. The task of the CSG is to offer a list of sites,
which can perform the requested service according to the
SLA and other requirements. In most of the cases the
candidate set generator is an integral part of the broker
thus instead of the candidate set adjustments, the broker
queries the candidate site list as it would do without ASD.
As a result the service call is executed as a composed ser-
vice instead of a regular call. The composition contains
the deployment task as its starting point and the actual
service call as its dependent task. Since both, the CSG
and the brokers heavily rely on the information system,
the ASD can influence their decision through publishing
dynamic data. This data could state service presence on
sites where the service is not even deployed.

4.2 QoS Management

Grid: Application based QoS Management. A distin-
guishing feature of Amadeus is the QoS support during
all stages of the workflow lifecycle. At specification time
Amadeus provides an adequate tool-support for high-
level graphical specification of QoS-aware workflows,
which allows the association of comprehensive set of
QoS constraints to any activity or to the whole work-
flow. During the planning phase Amadeus provides a set
of QoS-aware service-oriented components that support
automatic constraint-based service negotiation and work-
flow optimization. During the execution phase, using the
information from the planning phase, Amadeus attempts
to execute the workflow activities in the manner that the
specified requirements in terms of QoS constraints are
met. QoS-aware services, which are able to give QoS guar-
antees, serve as resources that are invoked by the QoS-
aware workflow. A QoS-aware service can provide QoS
guarantees, and enables clients to negotiate about its QoS
properties. This kind of support is provided by the VGE
services [2]. VGE provides application level QoS support,
for example with respect to execution time or price. VGE
has been successfully used for the development of a Grid
testbed for medical simulation services [3] in the context
of the European Commission funded GEMSS project.

177

178

y

Special Issue

Cloud: Application Agnostic QoS Management. The
self-management interface as shown in Fig. 2 specifies
operations for sensing changes of the desired state and
for reacting to those changes. The host monitor sensors
continuously monitor the infrastructure resource metrics
(input sensor values arrow a in Fig. 2) and provide the
knowledge component with the current resource status.
The run-time monitor sensors sense future SLA violation
threats (input sensor values arrow b in Fig. 2) based on
resource usage experiences and predefined thresholds. As
shown in Fig. 2, the Low-level Metric to High-level SLA
(LoM2HiS) framework is responsible for monitoring and
sensing future SLA violation threats. It comprises the host
monitor and the run-time monitor. The host monitor
monitors low-level resource metrics such as CPU, mem-
ory, disk space, incoming bytes, and similar. It extracts the
monitored output from the agents, processes them and
sends the metric-value pairs through our implemented
communication model to the run-time component.

The run-time component receives the metric-value
pairs and based on predefined mapping rules maps them
into equivalent high-level SLA parameters. An example
of an SLA parameter is service availability Av, which is
calculated using the resource metrics downtime and up-
time as follows:

Av = (1 — downtime/uptime) * 100 .

During the analysis and planning phases the knowledge
component then suggests appropriate actions to solve
SLA violation threats. As a conflicting goal, it also tries to
reduce energy consumption by removing resources from
over-provisioned services. Reactive actions thus include
increasing or decreasing memory, storage or CPU usage
for each service. After the action has been executed the
knowledge component learns the utility of the action in
this specific situation via Case Based Reasoning (CBR).
CBR contains previously solved cases together with their
actions and utilities, and tries to find the most similar
case with the highest utility for each new case. Further-
more, it examines the timing and the effectiveness of an
action, i.e., whether the action would have helped but
was triggered too late, or was unnecessarily triggered too
early, and consequently, it updates the threat thresholds
from the monitoring component.

4.3 SLA Attainment Strategies

Grid: Request/Response Models. The basic QoS negoti-
ation in VGE is based on a request/offer model where
the client requests offers from a set of pre-selected ser-
vices (e. g., through the VGE registry service). If the client
confirms a QoS offer, a QoS contract is established and
signed by both parties. Initially the client has to supply
a request descriptor containing concrete values for all
performance-relevant parameters specified in the appli-
cation descriptor as well as a QoS request with requested
QoS properties (i. e., begin and end time as well as price)

to a service. On the service side the QoS management
module utilizes heuristics that consider the outcome of
the application performance model (i.e., performance
descriptor), the availability of resources via the resource
manager and the service provider’s pricing model for
creating appropriate offers to the client’s demands. If
an appropriate QoS offer can be made and a temporary
resource reservation has been made, the QoS offer is re-
turned to the client. Since clients usually negotiate with
multiple services, each QoS offer has a short expiration
time and eventually it is up to the client to confirm a spe-
cific offer before it expires or restart the negotiation with
different parameters (i. e., with a new QoS descriptor). If
a QoS offer is confirmed by the client, a QoS contract
is established and signed by both parties. However, the
renegotiation is done on behalf of the users and there are
no mechanism for the automatic renegotiation in case of
failures.

Cloud: Self-adaptable Models. In FoSII we developed
a knowledge management tool to sense possible SLA vi-
olations before they happen. For the decision making we
use knowledge data bases proposing the reactive actions
by utilizing CBR.

CBR is the process of solving problems based on past
experience. It tries to solve a case (a formatted instance
of a problem) by looking for similar cases from the past
and reusing the solutions of those cases to solve the cur-
rent one. In order to define similarity we use similarity
measures as described in [10]. In general, a typical CBR
cycle consists of the following phases assuming that a new
case was just received: (i) retrieve the most similar case
or cases to the new one, (ii) reuse the information and
knowledge in the similar case(s) to solve the problem,
(iii) revise the proposed solution, (iv) retain the parts
of this experience likely to be useful for future problem
solving.

(
(App, 1),

(

((Incoming Bandwidth, 12.0),

(Outgoing Bandwidth, 20.0),

(Storage, 1200),

(Availability, 99.5),

(Running on PMs, 1)),

(Physical Machines, 20)

10.),

11. "Increase Incoming Bandwidth shareby 5%",
12. |

OWooJoulidWN R

13. ((Incoming Bandwidth, 12.6),
14. Outgoing Bandwidth, 20.1),
15. Storage, 1198),

(
(
(
16. (Availability, 99.5),
(
(

17. Running on PMs, 1)),
18. Physical Machines, 20)
19),

20. 0.002

21.)

As shown in the code snippet a complete case consists of

1. the id of the program being concerned (line 2),

2. the initial case (measurements by the monitoring com-
ponent and mapped to the SLAs) consisting of the SLA

parameter values of the program and global Cloud in-

formation like number of running virtual machines

(lines 4-10),

the executed action (line 11),

4. the resulting case (measured some time interval later)
(lines 12—-18) as in (b), and

5. the resulting utility (line 20).

As shown in [7], FoSII’s knowledge management tool has

been successfully utilized not only to manage and prevent

SLA violations but also to manage energy efficiency in

Clouds.

©

5 Conclusion

In this paper we compared Grid and Cloud systems con-
sidering QoS aspects like service provisioning and SLA
attainment strategies. In many aspects Cloud systems,
like the FoSII infrastructure, represent continuance in
development of infrastructure for the provision of com-
putational resources as utilities. Although, there are some
differences in usage mode of Grid and Clouds, in both
approaches there is significant work done towards im-
plementation of QoS management strategies. While in
Grid QoS is usually application based and relies on user
driven negotiations, Cloud facilitates application agnostic
QoS and matured self-management features.

References

[1] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz, A. Kon-
winski, G. Lee, D. A. Patterson, A. Rabkin, I. Stoica, and M. Za-
haria. Above the clouds: A berkeley view of cloud computing.
EECS Department, University of California, Berkeley, Tech. Rep.
UCB/EECS-2009-28.

[2] S. Benkner, L. Brandic, G. Engelbrecht, and R. Schmidt. VGE —
A Service-Oriented Grid Environment for On-Demand Supercom-
puting. In: Proc. of the Fifth IEEE/ACM Int’l Workshop on Grid
Computing (Grid 2004), Pittsburgh, PA, USA, Nov 2004.

[3] I Brandic, S. Benkner, G. Engelbrecht, and R. Schmidt. QoS Sup-
port for Time-Critical Grid Workflow Applications. In: Proc. of the
Ist IEEE Int’l Conf. on eScience and Grid Computing, Melbourne,
Australia, Dec 2005.

[4] I.Brandic. Mapping the SLA Landscape for High Performance
Clouds. HPC in the Cloud, 7. Feb. 2011. http://www.hpcinthecloud
.com/hpccloud/2011-02-07/mapping_the_sla_landscape_for_high
_performance_clouds.html.

[5] I Brandic, S. Pllana, and S. Benkner. Specification, Planning, and
Execution of QoS-aware Grid Workflows within the Amadeus
Environment. In: Concurrency and Computation: Practice and
Experience 20(4):331-345, Mar 2008.

[6] I.Brandic, D. Music, and S. Dustdar. VieSLAF Framework: Fa-

cilitating Negotiations in Clouds by Applying Service Mediation

and Negotiation Bootstrapping. In: Scalable Computing: Practice
and Experiences (SCPE), Special Issue of Scalable Computing on

Grid Applications and Middleware & Large Scale Computations

in Grids 11(2):189-204, June 2010.

V. Emeakaroha, M. Maurer, I. Brandic, and S. Dustdar. FoSII —

Foundations of Self-Governing ICT Infrastructures. In: ERCIM

News 83, Special Theme: Cloud Computing Platforms, Software,

and Applications, Oct 2010.

I. Foster, Y. Zhao, 1. Raicu, and S. Lu. Cloud computing and grid

computing 360-degree compared. In: Grid Computing Environ-

ments Workshop 2008 (GCE’08), pages 1-10, Nov 2008.

~

£

[9] A. Kertész, G. Kecskeméti, and 1. Brandic. Autonomic SLA-aware
Service Virtualization for Distributed Systems. In: Proc. of the
19th Euromicro Int’l Conf. on Parallel, Distributed and Network-
Based Computing, Ayia Napa, Cyprus, Feb 2011.

[10] M. Maurer, I. Brandic, and R. Sakellariou. Enacting SLAs in
Clouds Using Rules. In: Proc. of Euro-Par 2011, Bordeaux, France,
Aug-Sep 2011.

[11] D.Nurmi, R. Wolski, Ch. Grzegorczyk, G. Obertelli, S.Soman,
L. Youseff, and D. Zagorodnov. The Eucalyptus Open-source
Cloud-Computing System. In: Proc. of Cloud Computing and
Its Applications 2008, Chicago, Illinois, Oct 2008.

[12] B.Rochwerger, D. Breitgand, E.Levy, A.Galis, K. Nagin,
1. M. Llorente, R. Montero, Y. Wolfsthal, E. Elmroth, J. Caceres,
M. Ben-Yehuda, W. Emmerich, and F. Galan. The RESERVOIR
Model and Architecture for Open Federated Cloud Computing.
In: IBM System Journal Special Edition on Internet Scale Data
Centers 53(4):535-545, 2009.

[13] The WS-Resource Framework, http://www.globus.org/wsrf/.

[14] Oracle Grid Engine, http://www.oracle.com/technetwork/oem/
grid-engine-166852.html, 2011.

[15] Enabling Grids for eScience, http://www.eu-egee.org, 2011.

[16] MyGrid, http://www.mygrid.org.uk, 2011.

[17] A. Orgerie and L. Lefevre. When Clouds become Green: the Green
Open Cloud Architecture. In: Proc. of the Int’l Conf. on Parallel
Computing (Parco2009), pages 228-237, Lyon, France, 2009.

Received: November 22, 2010

Dr. Ivona Brandic is Assistant Professor at the
Distributed Systems Group, Information Systems
Institute, Vienna University of Technology (TU
Wien). Prior to that, she was Assistant Profes-
sor at the Department of Scientific Computing,
Vienna University. She received her PhD degree
i from Vienna University of Technology in 2007.
M She is leading the Austrian national FoSII (Foun-
% dations of Self-governing ICT Infrastructures)
project funded by the WWTE.

Address: Vienna University of Technology, Infor-
mation Systems Institute, Argentienierstrasse 8,
1040 Vienna, Austria, Tel.: +43 158801 58417,
Fax: +43 158801 18491,

e-mail: ivona@infosys.tuwien.ac.at

Prof. Dr. Schahram Dustdar is Full Professor
of Computer Science (Informatics) with a fo-
cus on Internet Technologies heading the Dis-
tributed Systems Group, Institute of Informa-
tion Systems, Vienna University of Technology
(TU Wien) where he is director of the Vita
Lab. In April 2003 he received his Habilita-
tion degree (Venia Docendi) for his work on
Process-aware Collaboration Systems — Archi-
tectures and Coordination Models for Virtual
Teams. More information can be found at:
http://www.infosys.tuwien.ac.at/Staff/sd

Address: Vienna University of Technology, Infor-
mation Systems Institute, Argentienierstrasse 8,
1040 Vienna, Austria, Tel.: +43-1-58801-18414,
Fax: +43 1 58801 18491,

e-mail: sd@infosys.tuwien.ac.at

179

http://www.hpcinthecloud.com/hpccloud/2011-02-07/mapping_the_sla_landscape_for_high_performance_clouds.html
http://www.hpcinthecloud.com/hpccloud/2011-02-07/mapping_the_sla_landscape_for_high_performance_clouds.html
http://www.hpcinthecloud.com/hpccloud/2011-02-07/mapping_the_sla_landscape_for_high_performance_clouds.html
http://www.globus.org/wsrf/
http://www.oracle.com/technetwork/oem/grid-engine-166852.html
http://www.oracle.com/technetwork/oem/grid-engine-166852.html
http://www.eu-egee.org
http://www.mygrid.org.uk
http://www.infosys.tuwien.ac.at/Staff/sd
mailto:ivona@infosys.tuwien.ac.at
mailto:sd@infosys.tuwien.ac.at

	1 Introduction
	2 Background and Comparison Criteria
	2.1 Grid Characteristics
	2.2 Characteristics of the Clouds
	2.3 Major Differences between Grids and Clouds

	3 Sample Projects
	4 Grid vs Cloud – A Comparison of QoS Management Aspects
	4.1 Service Management
	4.2 QoS Management
	4.3 SLA Attainment Strategies

	5 Conclusion
	References

