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// The proposed framework lets developers model 

and manage process variability by composing 

base models, fragments, and variability models 

and by deferring binding to run time. Base models 

and fragments are reusable, thereby reducing the 

modeling effort for developing variants. //

CURRENT MARKET DYNAMICS in-
creasingly force companies to custom-
ize software products for their custom-
ers. Accordingly, product requirements 
are changing rapidly and continuously. 
Therefore, software developers need 

to flexibly react to these changes and 
reduce design time and costs while 
maintaining the high quality and 
prompt delivery of software.

A well-established approach for 
complying with dynamic requirements 

is software product lines (SPLs). An 
SPL is a set of software products that 
are closely related (commonality) and 
focused on a particular market seg-
ment, but that exhibit significantly 
different requirements (variability).1 
Over the last decade, researchers have 
proposed several variability-modeling 
and SPL approaches for maximiz-
ing reuse. However, product line ap-
proaches remain challenging in dy-
namic environments with frequent 
context changes, which often require 
run-time adaptation. These new re-
quirements have prompted the emer-
gence of dynamic SPLs (DSPLs) that 
leverage context awareness and dy-
namic variability (also called run-time 
variability) to defer product configu-
ration to run time.2

In recent years, DSPLs have be-
come frequent in various research 
areas, such as workflow-based sys-
tems.3 In those systems, variability 
deals with a set of similar processes 
(process variants) that contain com-
mon and variable activities, adjust-
ing them to meet custom user re-
quirements and context changes. A 
major concern for process variability 
in a DSPL, though, is the context-
aware configuration of process vari-
ants. This means that context in-
formation, not users, drives process 
configuration. So, the system can 
dynamically configure variants on 
the basis of context information and 
effectively deal with dynamic situa-
tions at run time.4

This is exemplified by automated 
warehouse solutions that use opera-
tional processes to move goods be-
tween warehouse locations. Each 
operational process consists of com-
mon and variable parts that can be 
customized to satisfy a particular 
warehouse’s requirements. The vari-
ability among such processes can be 
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denoted by a set of decision points 
and resolved on the basis of context 
information from underlying sensors 
such as presence sensors, scanners, 
and RFID. However, to make this 
happen, workflow-based systems 
must be context-sensitive to support 
intelligent, run-time decision making 
and enable smart workflows—that 
is, processes crossing the boundary 
to the physical world.5

In smart workflows, context 
awareness and run-time variability 
are crucial. Both ensure that once 
the system detects context changes, 
based on external-sensor data or 
new user requirements, it can ap-
propriately decide which features of 
the configurable process to activate 
or deactivate and can trigger the 
best selection by a run-time bind-
ing. In this light, researchers have 
proposed approaches and tools to 
address standard workflow-based 
systems’ shortcomings (see the side-
bar). Although such specialized 
workflow systems seem like a nat-
ural way to scope down the chal-
lenging problems in the dynamic 
environment, they don’t explicitly 
address these requirements:

• Design by reuse. Common and 
variable parts can be understood 
as connected, reusable process 
structures, which might allow 
easier, faster development of vari-
ant-rich workflow-based systems.

• Run-time variability. To ef-
fectively deal with dynamic 
situations of the process context, 
the system should be able to dy-
namically configure variants at 
run time.

• Context awareness and au-
tomated decision making. In 
context-aware process con-
figuration, the system should 

autonomously handle context 
information to select different op-
tions depending on the conditions.

Because of these limitations, 
a unified dynamic-variability ap-
proach for context-aware smart 
workflows would significantly in-
crease both flexibility and usability, 
especially for context-aware and 
variant-rich workflow-based sys-
tems. The LateVa (Late Variability 
for Context-Aware Smart Work-
flows) framework constitutes the 
first step toward this goal.

Introducing LateVa
LateVa aims at the convergence of 
smart workflows and DSPLs to fill 
the gap between context provision-
ing and the dynamic-variability 

mechanism needed to enable pro-
cess variability at run time. Figure 1 
shows the framework’s main build-
ing blocks.

Base Models, Fragments,  
and Variability Models
At design time, the LateVa mod-
eler provides an extended BPMN 2 
(Business Process Model and Nota-
tion ver. 2.0) editor to let developers 
define base models and process frag-
ments (or simply fragments). (The 
editor is an extension of the open 
source Activiti workflow designer; 
www.activiti.org.) A base model de-
scribes the commonality and vari-
ability of a process family—that is, 

a set of related process variants. This 
model is in essence the intersection 
or greatest common denominator 
(GCD) of all correlated process vari-
ants. These variants share a common 
part of a core process (captured in a 
base model), whereas concrete parts 
(expressed as fragments) fluctuate 
among variants.

A fragment describes a single 
variant realization option for each 
variation point in a particular base 
model. Depending on the variability 
description and considering context 
data, LateVa selects applicable frag-
ments and executes them to resolve 
context-aware process variability.

To represent variability, develop-
ers can annotate a base model with 
variation points. Their placement 
has two fundamental goals:

• specifying a local or remote data 
endpoint from which context 
data is gathered and

• indicating a placeholder activity 
in which variability occurs.

The LateVa engine (which we de-
scribe in the next section) uses these 
variation points to retrieve context 
data and guide fragment selection by 
exploiting context information and 
variability dependencies.

The LateVa modeler uses the 
Clafer (class, feature, reference; 
www.clafer.org) modeling language 
to describe a variability model by 
including all fragment choices (vari-
ants) and corresponding context 

To fully exploit content data in smart 
workflows, context awareness  

and run-time variability are crucial.
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data mappings (context features) in 
the form of feature models. A fea-
ture model provides an abstraction 
for a base model and its variation 
points for variability description. It 
includes both the applicable frag-
ments for each variation point and 
constraints (variability dependen-
cies) for selecting fragments.

LateVa compiles the base models, 
fragments, and variability models 
before deployment. In this step, de-
velopers can use the Clafer compiler 
to check that all features and con-
straints in the variability models are 
well defined—for example, to vali-
date that each feature has a unique 
name. Features related to variation 

points and fragments use direct 
naming compounds for the corre-
sponding process model IDs. So, the 
compiler doesn’t check whether the 
inserted base model and fragment 
references are already in the model 
repository (a relational database 
management system) in the LateVa 
persistence module.

RELATED WORK IN  
PROCESS VARIABILITY AND
ADAPTATION FOR SMART WORKFLOWS
To the best of our knowledge, only LateVa (Late Variability for 
Context-Aware Smart Workflows; see the main article) en-
ables run-time variability for context-aware smart workflows. 
It achieves this by separating the descriptions of commonal-
ity (what is the same across processes) and variability (how 
and when processes should differ) and by deferring fragment 
binding to execution time.

Process-variability-modeling approaches such as Provop 
(Process Variants by Options)1 have extended process-
modeling notations with variability primitives. These ap-
proaches promote reuse in terms of design-time process 
variability (static variability). However, variant configuration 
is often user-supported rather than automated, and few of 
these approaches are executable in practice.2

Extending traditional service composition techniques to 
support flexibility is an emerging research challenge.3 Adap-
tive, flexible service composition, which involves the binding 
and rebinding of composite services, often driven by quality 
of service, is important for determining the optimized service 
sequence.4 In a similar vein, variability modeling in dynamic 
service adaptation is essential for dynamic-software-product-
line approaches that employ context data for run-time recon-
figuration. Here, the assumption is that a context change will 
affect new and running instances, migrating only the compli-
ant running instances to the new configuration.5

In contrast, LateVa focuses not on reconfiguration but on 
run-time variability because reconfiguration can be intrusive. 
For example, it might interrupt the process execution at the 
end of each activity and might incur performance penalties, 
as in the DyBPEL (Dynamic Business Process Execution Lan-
guage) framework.6

Several proposals for smart workflows include context-
aware reactive-adaptation support.7 These approaches com-
prise different tasks, depending on the context data gathered 
from pervasive and interactive devices, to decompose the 
physical–virtual link’s complexity (for example, in mobile 
computing).8 But they provide no run-time-variability con-
struct for workflows, which is the core of LateVa.
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After compilation, developers can 
deploy the released models to the 
model repository. This repository em-
bodies base models, fragments, and 
variability models, as well as their 
corresponding instances. The LateVa 
persistence module also includes a 
context data repository as NoSQL-
backed storage to store context data 
coming from the context API.

Run-Time Variability
The LateVa engine provides an API 
to receive events and trigger base 
model execution (see Figure 1). In 
each request, the fragment selector 
service searches for available base 
models in the model repository that 
can satisfy user requirements. For in-
stance, considering the context data 
from Figure 2, the LateVa engine 

will search for base models contain-
ing the storageProcess key.

A base model element stands 
for any kind of model asset in a 
base model. As Figure 2 shows, 
the relationship between a varia-
tion point and base model element 
has a zero-to-one cardinality. This 
is because not all base model ele-
ments (for example, common activ-
ities among related process models) 
are affected by variability. That 
is, some activities aren’t placed as 
variation points.

A variability element is any fea-
ture or constraint in the variability 
model related to process variability 
elements (variation points and frag-
ments), context data, and the rela-
tionships among them. The variabil-
ity description represents a variation 

point’s variability (see Figure 2), in 
terms of

• noncontext features, which are 
linked to process variability 
elements;

• context features, which are di-
rectly mapped to context data; 
and

• cross-tree constraints, which 
represent conditions for valid 
process con� guration.

In LateVa, users can create noncon-
text features by using naming com-
pounds for the corresponding pro-
cess model IDs (see the patterns for 
creating variation point and frag-
ment features in Figure 2).

To realize context-aware smart 
work� ows, we must exploit context 
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FIGURE 1. The LateVa (Late Variability for Context-Aware Smart Work� ows) framework. Design and run-time software modules 

allow dynamic fragment selection and context-aware smart work� ows.
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data. We do this by correlating context 
features in a variability model to those 
context variable–value pairs retrieved 
from context information. In LateVa, 
the context model mapping deter-
mines the relationship between context 
features and context data. This model 
aims to limit which context data op-
erates at each context feature (see the 
lower right of Figure 2). For that pur-
pose, each context data row de� nes its

• contextVariableName, a concrete vari-
able name in a domain context 
model;

• featureName, a context feature in a 
variability model;

• contextValue, context information 
for a context variable; and

• defaultValue, a valid value that can 
be assigned to a context variable.

At run time, the interaction ser-
vice deserializes those context 

variable–value pairs and parses them 
to determine all context mappings.

When LateVa receives a context 
message, it creates an internal con-
text object on the context model 
mapping. Context data includes 
three principal values:

• mappingId refers to a valid context-
model-mapping identi� er,

• service describes the base model to 
execute, and

• instance identi� es an already run-
ning base model instance (see 
Figure 2).

It could also contain extra data that 
the LateVa engine will ignore but that 
others (for example, data-monitoring 
tools) might recognize. If the LateVa 
engine encounters the context model 
mapping and base model service de-
scriptions, it follows the preestab-
lished binding type.

The LateVa engine enables two 
binding times—startup and pure 
run time—to delegate the resolution 
of variation points. The engine relies 
on context data to automatically de-
termine suitable fragments. Startup 
binding can be useful when context 
data doesn’t change over time, so the 
engine might assign fragments to vari-
ation points before smart- work� ow 
instantiation. In contrast, pure-run-
time binding can be necessary when 
variation points’ execution depends 
on � uctuating context data and thus 
faces critical decision making.

In startup binding, the frag-
ment selector service � rst retrieves 
base model and variability model 
de� nitions from the model reposi-
tory to satisfy the given request. 
The fragment selector service trans-
forms a variability model into a con-
straint satisfaction problem (CSP).6

In LateVa, every optional context 
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FIGURE 2. Variations of a variability model and context model mapping. The variability model represents both context and 
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feature from the variability model 
becomes a Boolean variable of the 
CSP with the domain {false, true} or {0, 
1}, and every mandatory feature be-
comes a {true}. (For example, in Figure 
3. Barcode will be set as true for the D_
VP_Scanner option.) On the other hand, 
dynamic context features in the vari-
ability model are determined by set-
ting context values (for example, box-
Width will set 280 as an integer value).

After processing all context val-
ues and setting up constraints, the 
fragment selector service relies on 
the Clafer solver to run propaga-
tion and search and to derive a valid 
fragment for a given variation point 
execution. At this point, the engine 
might handle three situations:

• No solution. No suitable frag-
ment choice exists for the cur-
rent context, so a default frag-
ment is preestablished.

• One solution. Just one fragment 
option exists.

• n solutions. The solver returns 
more than one valid alternative 
for the current context.

For n solutions, we can select from 
two strategies:

• Get first gets the first feasible 
fragment.

• Manual selection enables user 
decision making.

In pure-run-time binding, each 
base model instance interacts with 
different services exposed in the con-
text. Such services provide access to 
existing context data via the context 
API. During execution, for each vari-
ation in a wait state, the LateVa en-
gine parses context data to set con-
text features in a variability model 
that’s restored from the model re-
pository by the specified base model 

instance ID (for example, 4401 in 
Figure 2). The Clafer solver uses this 
altered model as an input and con-
cludes whether any sound configu-
ration exists. If just one is valid, all 
unresolved variation points are de-
termined by a suitable fragment to 
ensure a proper configuration. How-

ever, the existence of multiple solu-
tions after variation point resolution 
implies the activation of the selected 
n-solutions strategy (for example, get 
first) to assign a fragment for pend-
ing variation points. Hence, varia-
tion points are subsequently resolved 
on the basis of context data to start 
an applicable fragment instance.

Example: Smart 
Workflows for  
Automated Warehouses
In an automated warehouse, au-
tomated systems carry out some 
or all of the tasks related to stor-
ing, retrieving, and moving inven-
tory. Warehouse goods are tagged 
so that software systems such as 
warehouse management systems 
(WMSs) can locate them. The inven-
tory can be continuously updated 
as goods move in, out, and around 
the warehouse. This is achieved by 
automated identification and data 
capture systems employing tech-
nologies such as RFID and presence 
sensors. Once the overall system has 
collected data, it can perform batch 
synchronization, real-time transmis-
sion to a datastore, or both. It can 
even report the status of goods in 

the warehouse to running opera-
tional processes.

An operational process encom-
passes a group of structured, iden-
tifiable activities that contribute to 
moving a specified and measurable 
number of objects inside or outside 
the warehouse. Each automated 

warehouse is complex and might 
comprise many operational pro-
cesses, such as

• storage—storing goods at differ-
ent warehouse locations,

• putaway—removing goods from 
the warehouse, following differ-
ent extraction strategies (first in, 
first out; last in, first out; least 
quantity; or expiration time), 
and

• picking—taking and collecting a 
specified quantity of goods.

Each operational process might 
differ from the preceding one, influ-
enced in various ways by warehouse 
and location types, storage areas, and 
sensors. But some processes might 
have similarities allowing their reuse, 
to some degree, in different ware-
house installations. Such variability 
should be managed because design-
ing ad hoc operational processes 
could be time-, resource- and cost-
consuming, as well as error prone.

However, in context-aware sys-
tems, static variability is often insuf-
ficient because you can’t predefine 
which control flow to activate owing 
to the unpredictability of upcoming 

Each automated warehouse might 
comprise many operational processes  
and include exchanging sensor data.
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FIGURE 3. The execution of smart work� ows in automated-warehouse logistics. (a) The automated-warehouse layout. (b) The 

storage base model. (c) The variability model. A service request triggers the execution of a base model instance. At each variation 

point, LateVa uses context data to select a suitable fragment.
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context data (for example, sen-
sor data). This means it’s crucial to 
pick up events just-in-time to decide 
which predefined flows (for example, 
expressing fragments as variation 
points’ alternatives) to activate. Oth-
erwise, inadequate event processing 
might negatively affect the day-to-day 
warehouse operation, often requiring 
manual intervention (for example, in-
trusive process reconfiguration).

To illustrate a first step toward dy-
namic, variant-rich, workflow-based 
systems, the following automated- 
warehouse example shows how  
LateVa can maximize reuse and in-
crease flexibility. The storage work-
flow reflects a typical scenario in 
which packaged goods are stored ac-
cording to different location search 
strategies (for example, in terms of 
manual location, fixed location, next 
empty location, and storage unit type). 

Figure 3 presents the storage pro-
cess’s main activities. LateVa orches-
trates the entire process to track and 
control all warehouse flows. It also 
enables interaction between physi-
cal devices (for example, conveyor 
systems, transelevators, pick-to-light 
systems, RFID devices, and pres-
ence sensors) and warehouse opera-
tors (for example, the maintenance 
manager, workstation agents, and 
pickers). This provides smart moni-
toring of the operational process and 
warehouse status, as well as complex 
event triggering from context layers.

In this example, the warehouse 
(see Figure 3a) consists of

• one material entry point at 
which goods are packed in card-
board boxes and

• two corridors, each containing 
2,000 locations.

To initiate the storage base model 
(see Figure 3b), the box is registered 

in the WMS and placed in p1 (each 
p indicates a point in the conveyor 
system). This entrance takes place 
through complex material entry 
strategies (RFID, barcode scan-
ner, or manual entry). After p1 is 
scanned, the box moves to p2, where 
a loading-gauge checkpoint operates.

At this point, the LateVa engine 
receives checkpoint data to decide 

whether the box can be routed to the 
selected warehouse location. If not, 
it dispatches a move-backward activ-
ity and sends the box to the material 
entry point for dimension checking, 
shape checking, or both (FR_checkpoint-
ToInit in Figure 3c). If the LateVa en-
gine concludes that the box is quali-
fied to be placed in the warehouse, 
the storage process executes up to a 
decision point by executing the spe-
cific fragment (FR_checkpointToDecision-
point in Figure 3c).

An automated warehouse must 
guarantee high rates of operational 
flow so that smart workflows for 
storage, putaway, and picking are 
aware of existing boxes in shared 
conveyors. This is guaranteed by 
presence sensors, which might indi-
cate the total number of boxes in the 
shared conveyor systems. The sen-
sors might also ensure that a given 
threshold isn’t exceeded—for exam-
ple, accepting all moves that fulfill 
a criterion (boxInCorridor > 1 in Figure 
3c). If no boxes are waiting to leave 
the warehouse, the system routs the 
box to a fixed location (FR_moveToLoca-
tion in Figure 3c). Otherwise, LateVa 

recirculates the box through convey-
ors (FR_recirculate in Figure 3c) until it 
can go to its location.

I n context-aware systems, mod-
eling variant-rich smart work-
flows enhances reuse of variable 

parts (fragments), thereby increasing 
developer productivity. To achieve 

this, these systems preserve the sepa-
ration of concerns by modeling pro-
cess variability into disjoint models 
such as the base models, fragments, 
and the variability models. Develop-
ers can manage process variability 
independently, reducing its impact 
on process variants’ commonalities. 
Thus, developers can associate as 
many variability models as needed 
with a unique base model, even rep-
resenting multiple perspectives for 
different customers. Moreover, con-
tinuous context-data processing per-
mits the execution of context-aware 
smart workflows through consis-
tent mapping between context data 
and context features in a variability 
model, thus supporting efficient run-
time variability.

LateVa offers a framework for 
realizing such systems. So far, be-
sides the basic framework, we’ve de-
veloped a running prototype of the 
LateVa engine.7 We plan to extend 
our models to incorporate exception 
handling and to integrate the excep-
tion handling with monitoring capa-
bilities to increase availability. We’re 
also extending fragment binding by 

LateVa uses context information  
for process configuration  

of process variants at run time.
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reducing the optimization overhead 
to facilitate the management of large-
scale multiple instances of the same 
smart work� ow. As for monitoring, 
we’ll also investigate constraints on 
the correctness of dynamically con-
� gured smart work� ows.
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