
52 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIETY 0 7 4 0 - 7 4 5 9 / 1 5 / $ 3 1 . 0 0 © 2 0 1 5 I E E E

Run-Time
Variability for
Context-Aware
Smart Workflows
Aitor Murguzur and Salvador Trujillo, IK4-Ikerlan

Hong-Linh Truong and Schahram Dustdar,
Vienna University of Technology

Óscar Ortiz, Technical University of Madrid

Goiuria Sagardui, Mondragon University

// The proposed framework lets developers model

and manage process variability by composing

base models, fragments, and variability models

and by deferring binding to run time. Base models

and fragments are reusable, thereby reducing the

modeling effort for developing variants. //

CURRENT MARKET DYNAMICS in-
creasingly force companies to custom-
ize software products for their custom-
ers. Accordingly, product requirements
are changing rapidly and continuously.
Therefore, software developers need

to flexibly react to these changes and
reduce design time and costs while
maintaining the high quality and
prompt delivery of software.

A well-established approach for
complying with dynamic requirements

is software product lines (SPLs). An
SPL is a set of software products that
are closely related (commonality) and
focused on a particular market seg-
ment, but that exhibit significantly
different requirements (variability).1
Over the last decade, researchers have
proposed several variability-modeling
and SPL approaches for maximiz-
ing reuse. However, product line ap-
proaches remain challenging in dy-
namic environments with frequent
context changes, which often require
run-time adaptation. These new re-
quirements have prompted the emer-
gence of dynamic SPLs (DSPLs) that
leverage context awareness and dy-
namic variability (also called run-time
variability) to defer product configu-
ration to run time.2

In recent years, DSPLs have be-
come frequent in various research
areas, such as workflow-based sys-
tems.3 In those systems, variability
deals with a set of similar processes
(process variants) that contain com-
mon and variable activities, adjust-
ing them to meet custom user re-
quirements and context changes. A
major concern for process variability
in a DSPL, though, is the context-
aware configuration of process vari-
ants. This means that context in-
formation, not users, drives process
configuration. So, the system can
dynamically configure variants on
the basis of context information and
effectively deal with dynamic situa-
tions at run time.4

This is exemplified by automated
warehouse solutions that use opera-
tional processes to move goods be-
tween warehouse locations. Each
operational process consists of com-
mon and variable parts that can be
customized to satisfy a particular
warehouse’s requirements. The vari-
ability among such processes can be

FOCUS: TRENDS IN SYSTEMS AND SOFTWARE VARIABILITY

 MAY/JUNE 2015 | IEEE SOFTWARE 53

denoted by a set of decision points
and resolved on the basis of context
information from underlying sensors
such as presence sensors, scanners,
and RFID. However, to make this
happen, workflow-based systems
must be context-sensitive to support
intelligent, run-time decision making
and enable smart workflows—that
is, processes crossing the boundary
to the physical world.5

In smart workflows, context
awareness and run-time variability
are crucial. Both ensure that once
the system detects context changes,
based on external-sensor data or
new user requirements, it can ap-
propriately decide which features of
the configurable process to activate
or deactivate and can trigger the
best selection by a run-time bind-
ing. In this light, researchers have
proposed approaches and tools to
address standard workflow-based
systems’ shortcomings (see the side-
bar). Although such specialized
workflow systems seem like a nat-
ural way to scope down the chal-
lenging problems in the dynamic
environment, they don’t explicitly
address these requirements:

• Design by reuse. Common and
variable parts can be understood
as connected, reusable process
structures, which might allow
easier, faster development of vari-
ant-rich workflow-based systems.

• Run-time variability. To ef-
fectively deal with dynamic
situations of the process context,
the system should be able to dy-
namically configure variants at
run time.

• Context awareness and au-
tomated decision making. In
context-aware process con-
figuration, the system should

autonomously handle context
information to select different op-
tions depending on the conditions.

Because of these limitations,
a unified dynamic-variability ap-
proach for context-aware smart
workflows would significantly in-
crease both flexibility and usability,
especially for context-aware and
variant-rich workflow-based sys-
tems. The LateVa (Late Variability
for Context-Aware Smart Work-
flows) framework constitutes the
first step toward this goal.

Introducing LateVa
LateVa aims at the convergence of
smart workflows and DSPLs to fill
the gap between context provision-
ing and the dynamic-variability

mechanism needed to enable pro-
cess variability at run time. Figure 1
shows the framework’s main build-
ing blocks.

Base Models, Fragments,
and Variability Models
At design time, the LateVa mod-
eler provides an extended BPMN 2
(Business Process Model and Nota-
tion ver. 2.0) editor to let developers
define base models and process frag-
ments (or simply fragments). (The
editor is an extension of the open
source Activiti workflow designer;
www.activiti.org.) A base model de-
scribes the commonality and vari-
ability of a process family—that is,

a set of related process variants. This
model is in essence the intersection
or greatest common denominator
(GCD) of all correlated process vari-
ants. These variants share a common
part of a core process (captured in a
base model), whereas concrete parts
(expressed as fragments) fluctuate
among variants.

A fragment describes a single
variant realization option for each
variation point in a particular base
model. Depending on the variability
description and considering context
data, LateVa selects applicable frag-
ments and executes them to resolve
context-aware process variability.

To represent variability, develop-
ers can annotate a base model with
variation points. Their placement
has two fundamental goals:

• specifying a local or remote data
endpoint from which context
data is gathered and

• indicating a placeholder activity
in which variability occurs.

The LateVa engine (which we de-
scribe in the next section) uses these
variation points to retrieve context
data and guide fragment selection by
exploiting context information and
variability dependencies.

The LateVa modeler uses the
Clafer (class, feature, reference;
www.clafer.org) modeling language
to describe a variability model by
including all fragment choices (vari-
ants) and corresponding context

To fully exploit content data in smart
workflows, context awareness

and run-time variability are crucial.

54 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: TRENDS IN SYSTEMS AND SOFTWARE VARIABILITY

data mappings (context features) in
the form of feature models. A fea-
ture model provides an abstraction
for a base model and its variation
points for variability description. It
includes both the applicable frag-
ments for each variation point and
constraints (variability dependen-
cies) for selecting fragments.

LateVa compiles the base models,
fragments, and variability models
before deployment. In this step, de-
velopers can use the Clafer compiler
to check that all features and con-
straints in the variability models are
well defined—for example, to vali-
date that each feature has a unique
name. Features related to variation

points and fragments use direct
naming compounds for the corre-
sponding process model IDs. So, the
compiler doesn’t check whether the
inserted base model and fragment
references are already in the model
repository (a relational database
management system) in the LateVa
persistence module.

RELATED WORK IN
PROCESS VARIABILITY AND
ADAPTATION FOR SMART WORKFLOWS
To the best of our knowledge, only LateVa (Late Variability for
Context-Aware Smart Workflows; see the main article) en-
ables run-time variability for context-aware smart workflows.
It achieves this by separating the descriptions of commonal-
ity (what is the same across processes) and variability (how
and when processes should differ) and by deferring fragment
binding to execution time.

Process-variability-modeling approaches such as Provop
(Process Variants by Options)1 have extended process-
modeling notations with variability primitives. These ap-
proaches promote reuse in terms of design-time process
variability (static variability). However, variant configuration
is often user-supported rather than automated, and few of
these approaches are executable in practice.2

Extending traditional service composition techniques to
support flexibility is an emerging research challenge.3 Adap-
tive, flexible service composition, which involves the binding
and rebinding of composite services, often driven by quality
of service, is important for determining the optimized service
sequence.4 In a similar vein, variability modeling in dynamic
service adaptation is essential for dynamic-software-product-
line approaches that employ context data for run-time recon-
figuration. Here, the assumption is that a context change will
affect new and running instances, migrating only the compli-
ant running instances to the new configuration.5

In contrast, LateVa focuses not on reconfiguration but on
run-time variability because reconfiguration can be intrusive.
For example, it might interrupt the process execution at the
end of each activity and might incur performance penalties,
as in the DyBPEL (Dynamic Business Process Execution Lan-
guage) framework.6

Several proposals for smart workflows include context-
aware reactive-adaptation support.7 These approaches com-
prise different tasks, depending on the context data gathered
from pervasive and interactive devices, to decompose the
physical–virtual link’s complexity (for example, in mobile
computing).8 But they provide no run-time-variability con-
struct for workflows, which is the core of LateVa.

References
 1. A. Hallerbach, T. Bauer, and M. Reichert, “Capturing Variability in

Business Process Models: The Provop Approach,” J. Software Main-
tenance and Evolution: Research and Practice, vol. 6, no. 7, 2010, pp.
519–546.

 2. G. Valença et al., “A Systematic Mapping Study on Business Process
Variability,” Int’l J. Computer Science & Information Technology, vol.
5, no. 1, 2013; http://airccse.org/journal/jcsit/5113ijcsit01.pdf.

 3. A. Murguzur et al., “Process Flexibility in Service Orchestration:
A Systematic Literature Review,” Int’l J. Cooperative Information
Systems, vol. 23, no. 3, 2014.

 4. D. Ardagna and B. Pernici, “Adaptive Service Composition in Flexible
Processes,” IEEE Trans. Software Eng., vol. 33, no. 6, 2007, pp.
369–384.

 5. G.H. Alférez et al., “Dynamic Adaptation of Service Compositions with
Variability Models,” J. Systems and Software, vol. 9, no. 1, 2014, pp.
24–47.

 6. L. Baresi, S. Guinea, and L. Pasquale, “Service-Oriented Dynamic
Software Product Lines,” Computer, vol. 45, no. 10, 2012, pp. 42–48.

 7. S. Smanchat, S. Ling, and M. Indrawan, “A Survey on Context-Aware
Workflow Adaptations,” Proc. Int’l Conf. Advances in Mobile Comput-
ing and Multimedia, 2008, pp. 414–417.

 8. P. Giner et al., “Developing Mobile Business Processes for the Inter-
net of Things,” IEEE Pervasive Computing, vol. 9, no. 2, 2010, pp.
18–26.

MAY/JUNE 2015 | IEEE SOFTWARE 55

After compilation, developers can
deploy the released models to the
model repository. This repository em-
bodies base models, fragments, and
variability models, as well as their
corresponding instances. The LateVa
persistence module also includes a
context data repository as NoSQL-
backed storage to store context data
coming from the context API.

Run-Time Variability
The LateVa engine provides an API
to receive events and trigger base
model execution (see Figure 1). In
each request, the fragment selector
service searches for available base
models in the model repository that
can satisfy user requirements. For in-
stance, considering the context data
from Figure 2, the LateVa engine

will search for base models contain-
ing the storageProcess key.

A base model element stands
for any kind of model asset in a
base model. As Figure 2 shows,
the relationship between a varia-
tion point and base model element
has a zero-to-one cardinality. This
is because not all base model ele-
ments (for example, common activ-
ities among related process models)
are affected by variability. That
is, some activities aren’t placed as
variation points.

A variability element is any fea-
ture or constraint in the variability
model related to process variability
elements (variation points and frag-
ments), context data, and the rela-
tionships among them. The variabil-
ity description represents a variation

point’s variability (see Figure 2), in
terms of

• noncontext features, which are
linked to process variability
elements;

• context features, which are di-
rectly mapped to context data;
and

• cross-tree constraints, which
represent conditions for valid
process con� guration.

In LateVa, users can create noncon-
text features by using naming com-
pounds for the corresponding pro-
cess model IDs (see the patterns for
creating variation point and frag-
ment features in Figure 2).

To realize context-aware smart
work� ows, we must exploit context

Base model Process
fragment

Variability
model

Extended
Activiti BPMN 2
editor and Clafer

LateVa modeler

Fragment
selector
service

Activiti
BPMN 2
engine

Developer

LateVa API Context API

Interaction
service

LateVa engine

LateVa persistence

Context data
acquisition

Service
request

Context model mapping

Deploy

Model
repository

Context data
repository

FIGURE 1. The LateVa (Late Variability for Context-Aware Smart Work� ows) framework. Design and run-time software modules

allow dynamic fragment selection and context-aware smart work� ows.

56 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: TRENDS IN SYSTEMS AND SOFTWARE VARIABILITY

data. We do this by correlating context
features in a variability model to those
context variable–value pairs retrieved
from context information. In LateVa,
the context model mapping deter-
mines the relationship between context
features and context data. This model
aims to limit which context data op-
erates at each context feature (see the
lower right of Figure 2). For that pur-
pose, each context data row de� nes its

• contextVariableName, a concrete vari-
able name in a domain context
model;

• featureName, a context feature in a
variability model;

• contextValue, context information
for a context variable; and

• defaultValue, a valid value that can
be assigned to a context variable.

At run time, the interaction ser-
vice deserializes those context

variable–value pairs and parses them
to determine all context mappings.

When LateVa receives a context
message, it creates an internal con-
text object on the context model
mapping. Context data includes
three principal values:

• mappingId refers to a valid context-
model-mapping identi� er,

• service describes the base model to
execute, and

• instance identi� es an already run-
ning base model instance (see
Figure 2).

It could also contain extra data that
the LateVa engine will ignore but that
others (for example, data-monitoring
tools) might recognize. If the LateVa
engine encounters the context model
mapping and base model service de-
scriptions, it follows the preestab-
lished binding type.

The LateVa engine enables two
binding times—startup and pure
run time—to delegate the resolution
of variation points. The engine relies
on context data to automatically de-
termine suitable fragments. Startup
binding can be useful when context
data doesn’t change over time, so the
engine might assign fragments to vari-
ation points before smart- work� ow
instantiation. In contrast, pure-run-
time binding can be necessary when
variation points’ execution depends
on � uctuating context data and thus
faces critical decision making.

In startup binding, the frag-
ment selector service � rst retrieves
base model and variability model
de� nitions from the model reposi-
tory to satisfy the given request.
The fragment selector service trans-
forms a variability model into a con-
straint satisfaction problem (CSP).6

In LateVa, every optional context

Context data

Variation
point

Variability
description

Base
model

element

Constraint

Context
data

1 *

1 0..1

**

Fragment

Variability
element

0..1

1

Context
feature

Noncontext
feature *

Patterns for representing features related to base models and fragments
{D_} + VP_ + {baseModelVPName}
{FR_} + {fragmentId} + {parentFeatureName}

Context model mapping

{message:{"date":"2015-03-05", "time":"09:40:13", "mappingId":"Geneva",
"service":"storageProcess", "instance":"4401", "domain":"SmartLogistics",
"operationalFlow":"HighRates", "scanner":"Barcode","checkpoint":"P2", "boxWidth":"280",
"boxLength":"480", "boxHeight":"520", "boxWeight":"5", "boxInCorridor":"0"}}

Base
model

Variability
model

boxInCorridorboxInCorridor 2 3

490

scanner

operationalFlow

boxWidth

P2

boxLength

501

checkpoint

D_VP_Scanner

featureName

boxWeight

boxLength

OperationalFlow

Barcode

287

P2

defaultValue

boxWeight

boxHeight

boxWidth

Barcode

contextValue

5 6

HighRates

530boxHeight

491

D_VP_Checkpoint

280

contextVariableName

HighRates

FIGURE 2. Variations of a variability model and context model mapping. The variability model represents both context and

noncontext features.

 MAY/JUNE 2015 | IEEE SOFTWARE 57

feature from the variability model
becomes a Boolean variable of the
CSP with the domain {false, true} or {0,
1}, and every mandatory feature be-
comes a {true}. (For example, in Figure
3. Barcode will be set as true for the D_
VP_Scanner option.) On the other hand,
dynamic context features in the vari-
ability model are determined by set-
ting context values (for example, box-
Width will set 280 as an integer value).

After processing all context val-
ues and setting up constraints, the
fragment selector service relies on
the Clafer solver to run propaga-
tion and search and to derive a valid
fragment for a given variation point
execution. At this point, the engine
might handle three situations:

• No solution. No suitable frag-
ment choice exists for the cur-
rent context, so a default frag-
ment is preestablished.

• One solution. Just one fragment
option exists.

• n solutions. The solver returns
more than one valid alternative
for the current context.

For n solutions, we can select from
two strategies:

• Get first gets the first feasible
fragment.

• Manual selection enables user
decision making.

In pure-run-time binding, each
base model instance interacts with
different services exposed in the con-
text. Such services provide access to
existing context data via the context
API. During execution, for each vari-
ation in a wait state, the LateVa en-
gine parses context data to set con-
text features in a variability model
that’s restored from the model re-
pository by the specified base model

instance ID (for example, 4401 in
Figure 2). The Clafer solver uses this
altered model as an input and con-
cludes whether any sound configu-
ration exists. If just one is valid, all
unresolved variation points are de-
termined by a suitable fragment to
ensure a proper configuration. How-

ever, the existence of multiple solu-
tions after variation point resolution
implies the activation of the selected
n-solutions strategy (for example, get
first) to assign a fragment for pend-
ing variation points. Hence, varia-
tion points are subsequently resolved
on the basis of context data to start
an applicable fragment instance.

Example: Smart
Workflows for
Automated Warehouses
In an automated warehouse, au-
tomated systems carry out some
or all of the tasks related to stor-
ing, retrieving, and moving inven-
tory. Warehouse goods are tagged
so that software systems such as
warehouse management systems
(WMSs) can locate them. The inven-
tory can be continuously updated
as goods move in, out, and around
the warehouse. This is achieved by
automated identification and data
capture systems employing tech-
nologies such as RFID and presence
sensors. Once the overall system has
collected data, it can perform batch
synchronization, real-time transmis-
sion to a datastore, or both. It can
even report the status of goods in

the warehouse to running opera-
tional processes.

An operational process encom-
passes a group of structured, iden-
tifiable activities that contribute to
moving a specified and measurable
number of objects inside or outside
the warehouse. Each automated

warehouse is complex and might
comprise many operational pro-
cesses, such as

• storage—storing goods at differ-
ent warehouse locations,

• putaway—removing goods from
the warehouse, following differ-
ent extraction strategies (first in,
first out; last in, first out; least
quantity; or expiration time),
and

• picking—taking and collecting a
specified quantity of goods.

Each operational process might
differ from the preceding one, influ-
enced in various ways by warehouse
and location types, storage areas, and
sensors. But some processes might
have similarities allowing their reuse,
to some degree, in different ware-
house installations. Such variability
should be managed because design-
ing ad hoc operational processes
could be time-, resource- and cost-
consuming, as well as error prone.

However, in context-aware sys-
tems, static variability is often insuf-
ficient because you can’t predefine
which control flow to activate owing
to the unpredictability of upcoming

Each automated warehouse might
comprise many operational processes
and include exchanging sensor data.

58 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: TRENDS IN SYSTEMS AND SOFTWARE VARIABILITY

...

Corridor A Corridor B

Context data

e

Box entry
point

Checkpoint Decision
point A

Decision
point B

D_VP_Scanner Move forward
to checkpoint D_VP_Checkpoint

D_VP_Decisionpoint

invalidBox

validBox

AutomatedWarehouse

Layout OperationalFlow D_VP_Scanner

Basic HighRates RFID Barcode ManualD_VP_Checkpoint D_VP_Decisionpoint

P2

FR_checkpointToInit FR_checkpointToDecisionpoint

FR_moveToLocation FR_recirculate FR_barcodeEntry

boxWidth < 288
boxLength < 492
boxHeight < 531
boxWeight < 7

boxInCorridor >1

Constraints
Basic excludes FR_recirculate
FR_checkpointToInit implies D_VP_Decisionpoint
FR_checkpointToDecisionpoint excludes D_VP_Decisionpoint

Optional
Mandatory

Alternative (XOR)

Operational �ow

{“serviceName”:“storageProcess”, “operationalFlow”:”Basic”, “scanner”:“Barcode”, “checkpoint”:“p2”}

{“box”:“B01”, “boxWidth”:“280”, “boxLength”:“490”, “boxHeight”:“530”, “boxWeight”:“2”}

{“box”:“B01”, “boxInCorridor”:“1”}

(1) (2) (3) (4)

(1)

(2)

(3) & (4)

...

p2p1 p3 p4 p5 p7 p10 p11 p12 p13 p16 p17

p8

p9

p14

p15

p18

p6

(a)

(b)

(c)

FIGURE 3. The execution of smart work� ows in automated-warehouse logistics. (a) The automated-warehouse layout. (b) The

storage base model. (c) The variability model. A service request triggers the execution of a base model instance. At each variation

point, LateVa uses context data to select a suitable fragment.

 MAY/JUNE 2015 | IEEE SOFTWARE 59

context data (for example, sen-
sor data). This means it’s crucial to
pick up events just-in-time to decide
which predefined flows (for example,
expressing fragments as variation
points’ alternatives) to activate. Oth-
erwise, inadequate event processing
might negatively affect the day-to-day
warehouse operation, often requiring
manual intervention (for example, in-
trusive process reconfiguration).

To illustrate a first step toward dy-
namic, variant-rich, workflow-based
systems, the following automated-
warehouse example shows how
LateVa can maximize reuse and in-
crease flexibility. The storage work-
flow reflects a typical scenario in
which packaged goods are stored ac-
cording to different location search
strategies (for example, in terms of
manual location, fixed location, next
empty location, and storage unit type).

Figure 3 presents the storage pro-
cess’s main activities. LateVa orches-
trates the entire process to track and
control all warehouse flows. It also
enables interaction between physi-
cal devices (for example, conveyor
systems, transelevators, pick-to-light
systems, RFID devices, and pres-
ence sensors) and warehouse opera-
tors (for example, the maintenance
manager, workstation agents, and
pickers). This provides smart moni-
toring of the operational process and
warehouse status, as well as complex
event triggering from context layers.

In this example, the warehouse
(see Figure 3a) consists of

• one material entry point at
which goods are packed in card-
board boxes and

• two corridors, each containing
2,000 locations.

To initiate the storage base model
(see Figure 3b), the box is registered

in the WMS and placed in p1 (each
p indicates a point in the conveyor
system). This entrance takes place
through complex material entry
strategies (RFID, barcode scan-
ner, or manual entry). After p1 is
scanned, the box moves to p2, where
a loading-gauge checkpoint operates.

At this point, the LateVa engine
receives checkpoint data to decide

whether the box can be routed to the
selected warehouse location. If not,
it dispatches a move-backward activ-
ity and sends the box to the material
entry point for dimension checking,
shape checking, or both (FR_checkpoint-
ToInit in Figure 3c). If the LateVa en-
gine concludes that the box is quali-
fied to be placed in the warehouse,
the storage process executes up to a
decision point by executing the spe-
cific fragment (FR_checkpointToDecision-
point in Figure 3c).

An automated warehouse must
guarantee high rates of operational
flow so that smart workflows for
storage, putaway, and picking are
aware of existing boxes in shared
conveyors. This is guaranteed by
presence sensors, which might indi-
cate the total number of boxes in the
shared conveyor systems. The sen-
sors might also ensure that a given
threshold isn’t exceeded—for exam-
ple, accepting all moves that fulfill
a criterion (boxInCorridor > 1 in Figure
3c). If no boxes are waiting to leave
the warehouse, the system routs the
box to a fixed location (FR_moveToLoca-
tion in Figure 3c). Otherwise, LateVa

recirculates the box through convey-
ors (FR_recirculate in Figure 3c) until it
can go to its location.

I n context-aware systems, mod-
eling variant-rich smart work-
flows enhances reuse of variable

parts (fragments), thereby increasing
developer productivity. To achieve

this, these systems preserve the sepa-
ration of concerns by modeling pro-
cess variability into disjoint models
such as the base models, fragments,
and the variability models. Develop-
ers can manage process variability
independently, reducing its impact
on process variants’ commonalities.
Thus, developers can associate as
many variability models as needed
with a unique base model, even rep-
resenting multiple perspectives for
different customers. Moreover, con-
tinuous context-data processing per-
mits the execution of context-aware
smart workflows through consis-
tent mapping between context data
and context features in a variability
model, thus supporting efficient run-
time variability.

LateVa offers a framework for
realizing such systems. So far, be-
sides the basic framework, we’ve de-
veloped a running prototype of the
LateVa engine.7 We plan to extend
our models to incorporate exception
handling and to integrate the excep-
tion handling with monitoring capa-
bilities to increase availability. We’re
also extending fragment binding by

LateVa uses context information
for process configuration

of process variants at run time.

60 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: TRENDS IN SYSTEMS AND SOFTWARE VARIABILITY

reducing the optimization overhead
to facilitate the management of large-
scale multiple instances of the same
smart work� ow. As for monitoring,
we’ll also investigate constraints on
the correctness of dynamically con-
� gured smart work� ows.

References
 1. P. Clements and L. Northrop, Software

Product Lines: Practices and Patterns,
Addison-Wesley Longman, 2001.

 2. S. Hallsteinsen et al., “Dynamic Software
Product Lines,” Computer, vol. 41, no. 4,
2008, pp. 93–95.

 3. R.S. Rocha and M. Fantinato, “The Use
of Software Product Lines for Business
Process Management: A Systematic Litera-
ture Review,” Information and Software
Technology, vol. 55, no. 8, 2013, pp.
1355–1373.

 4. R. Capilla and J. Bosch, “The Promise and
Challenge of Runtime Variability,” Com-
puter, vol. 44, no. 12, 2011, pp. 93–95.

 5. M. Wieland, P. Kaczmarczyk, and D.
Nicklas, “Context Integration for Smart
Work� ows,” Proc. 2008 IEEE Int’l Conf.
Pervasive Computing and Communica-
tions, 2008, pp. 239–242.

 6. D. Benavides et al., “Automated Analysis
in Feature Modelling and Product Con� g-
uration,” Safe and Secure Software Reuse,
LNCS 7925, Springer, 2013, pp. 160–175.

 7. A. Murguzur et al., “Context-Aware
Staged Con� guration of Process Variants@
Runtime,” Advanced Information Systems
Engineering, LNCS 8484, Springer, 2014,
pp. 241–255.

Selected CS articles and columns
are also available for free at
http://ComputingNow.computer.org.

AITOR MURGUZUR is a PhD candidate in computer science at
the IK4-Ikerlan Research Center. His research interests include
distributed systems, cloud manufacturing, big data, machine
learning, the Internet of Things, and work� ows. Murguzur re-
ceived an MSc in computer science from Mondragon University.
Contact him at amurguzur@ikerlan.es.

SALVADOR TRUJILLO is the software production area man-
ager at the IK4-Ikerlan Research Center. His research focuses
on model-driven engineering, embedded systems, model-based
system engineering, and software product lines. Trujillo received
a PhD in computer science from the University of the Basque
Country. Contact him at strujillo@ikerlan.es.

HONG-LINH TRUONG is an assistant professor in the Vienna
University of Technology’s Distributed Systems Group. His
research focuses on service-engineering analytics, particu-
larly for cloud computing; service-oriented architectures and
computing; distributed and parallel computing; the Internet of
Things; complex and elastic distributed systems; and context-
aware computing. Truong received a Habilitation in computer
science from the Vienna University of Technology. Contact him
at truong@dsg.tuwien.ac.at.

SCHAHRAM DUSTDAR is a full professor of computer sci-
ence at the Vienna University of Technology and the head of the
university’s Distributed Systems Group. His research interests
are service-oriented architectures and computing; mobile
and ubiquitous computing; complex, autonomic, and adaptive
systems; and context-aware computing. Dustdar received a
PhD in business informatics from the University of Linz. He’s an
ACM Distinguished Scientist and IBM Faculty Award recipient.
Contact him at dustdar@dsg.tuwien.ac.at.

ÓSCAR ORTIZ is an associate professor of computer science
and a PhD candidate in the Polytechnical University of Madrid’s
Telematic and Electronic Engineering Department. His research
interests include computer networks, software variability, and
self-adaptive systems. Ortiz received an MSc in telecommunica-
tions engineering from the Polytechnical University of Madrid.
Contact him at oscar.ortiz@upm.es.

GOIURIA SAGARDUI is the head of Mondragon University’s
embedded-software research group. Her research focuses on
software engineering, including software product lines and
model-driven engineering. Sagardui received a PhD in computer
science from the University of the Basque Country. Contact her
at gsagardui@mondragon.edu

A
B

O
U

T
 T

H
E

 A
U

T
H

O
R

S

