
Information and Software Technology 54 (2012) 531–552
Contents lists available at SciVerse ScienceDirect

Information and Software Technology

journal homepage: www.elsevier .com/locate / infsof
Compliance in service-oriented architectures: A model-driven and
view-based approach

Huy Tran a,⇑, Uwe Zdun a, Ta’id Holmes b, Ernst Oberortner b, Emmanuel Mulo b, Schahram Dustdar b

a Software Architecture Group, Faculty of Computer Science, University of Vienna, Austria
b Distributed Systems Group, Institute of Information Systems, Vienna University of Technology, Austria

a r t i c l e i n f o
Article history:
Received 27 May 2011
Received in revised form 4 November 2011
Accepted 4 January 2012
Available online 25 January 2012

Keywords:
Compliance
Model-driven
View-based
Service-oriented architectures
Process-driven SOAs
Domain-specific languages
0950-5849/$ - see front matter � 2012 Elsevier B.V. A
doi:10.1016/j.infsof.2012.01.001

⇑ Corresponding author. Address: Software Arch
Computer Science, University of Vienna, Berggasse
Austria. Tel.: +43 1 4277 39693; fax: +43 1 4277 396

E-mail addresses: huy.tran@univie.ac.at (H. Tran
Zdun), tholmes@infosys.tuwien.ac.at (T. Holmes), e.
c.at (E. Oberortner), e.mulo@infosys.tuwien.ac.at (E. M
n.ac.at (S. Dustdar).
a b s t r a c t

Context: Ensuring software systems conforming to multiple sources of relevant policies, laws, and regu-
lations is significant because the consequences of infringement can be serious. Unfortunately, this goal is
hardly achievable due to the divergence and frequent changes of compliance sources and the differences
in perception and expertise of the involved stakeholders. In the long run, these issues lead to problems
regarding complexity, understandability, maintainability, and reusability of compliance concerns.
Objective: In this article, we present a model-driven and view-based approach for addressing problems
related to compliance concerns.
Method: Compliance concerns are represented using separate view models. This is achieved using
domain-specific languages (DSLs) that enable non-technical and technical experts to formulate only
the excerpts of the system according to their expertise and domain knowledge. The compliance imple-
mentations, reports, and documentation can be automatically generated from the models. The applicabil-
ity of our approach has been validated using an industrial case study.
Results: Our approach supports stakeholders in dealing with the divergence of multiple compliance
sources. The compliance controls and relevant reports and documentation are generated from the models
and hence become traceable, understandable, and reusable. Because the generated artifacts are associ-
ated with the models, the compliance information won’t be lost as the system evolves. DSLs and view
models convey compliance concerns to each stakeholder in a view that is most appropriate for his/her
current work task.
Conclusions: Our approach lays a solid foundation for ensuring conformance to relevant laws and regu-
lations. This approach, on the one hand, aims at addressing the variety of expertise and domain knowl-
edge of stakeholders. On the other hand, it also aims at ensuring the explicit links between compliance
sources and the corresponding implementations, reports, and documents for conducting many important
tasks such as root cause analysis, auditing, and governance.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

In general, compliance, in the context of information systems,
means ensuring that the software and systems of an organization
act in accordance with multiple established laws, regulations,
and business policies (from now on called compliance sources)
[1]. Compliance is a major issue in many organizations because
any compliance violation will lead to severe financial penalties or
ll rights reserved.

itecture Group, Faculty of
11/Top 2, A-1090 Vienna,

99.
), uwe.zdun@univie.ac.at (U.
oberortner@infosys.tuwien.a-
ulo), dustdar@infosys.tuwie-
losses of reputation. We highlight two important issues that hinder
the compliance of organizational software and systems.

Firstly, organizations have to deal with an increasing number of
diverse compliance sources, such as the Basel II Accord [2], the
International Financial Reporting Standards (IFRS) [3], the Markets
in Financial Instruments Directive (MiFID) [4], the French financial
security law (LSF) [5], Tabaksblat [6], or the Sarbanes–Oxley Act
(SOX) [7], to name just a few. These compliance sources generally
prescribe business practices for a wide range of compliance
domains such as risk management, privacy, security, quality of ser-
vices, intellectual property or licensing. It is very difficult to devise
a one-size-fits-all representational language or model that is able to
accommodate the divergence of compliance sources in the soft-
ware and systems of a certain organization. Instead, in the current
practice, compliance concerns are implemented on a per-case basis
using ad hoc, hard-coded solutions that are undesirable because

http://dx.doi.org/10.1016/j.infsof.2012.01.001
mailto:huy.tran@univie.ac.at
mailto:uwe.zdun@univie.ac.at
mailto:tholmes@infosys.tuwien.ac.at
mailto:e.oberortner@infosys.tuwien.ac.at
mailto:e.oberortner@infosys.tuwien.ac.at
mailto:e.mulo@infosys.tuwien.ac.at
mailto:dustdar@infosys.tuwien.ac.at
mailto:dustdar@infosys.tuwien.ac.at
http://dx.doi.org/10.1016/j.infsof.2012.01.001
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof

532 H. Tran et al. / Information and Software Technology 54 (2012) 531–552
they are hard to maintain, hard to evolve or change, hard to reuse,
and hard to understand. Moreover, this practice makes it difficult
to systematically and quickly keep up with constant changes in
regulations, laws, and business policies.

Secondly, compliance cannot be implemented and enacted so-
lely by either business experts (or compliance experts) or IT ex-
perts but rather involves an enterprise-wide scope. The fact that
compliance sources are typically specified in highly abstract legal
writing requires business expert (or compliance experts) to inter-
pret and translate them into concrete requirements. Subsequently,
IT experts (e.g., software engineers or system administrators) have
to ensure that their software and systems meet these require-
ments. The aforementioned process of implementing compliance
must be documented and periodically reported to the executive
boards or the auditors [7]. Unfortunately, each stakeholder group
has different interests, knowledge, and expertise, and often their
work is performed at very different abstraction levels. For instance,
domain and compliance concepts and knowledge are primarily for-
mulated by business and compliance experts at analysis and design
time. These experts are, however, often not familiar with software
and system engineering practices, which are specialization areas of
the IT experts involved in implementing, deploying, enacting, and
maintaining organizational software, systems, and compliance. In
addition, from the managers’ or auditors’ perspectives, adequate,
timely reports and documentation of the processes and internal
controls that adhere to the relevant laws, regulations, and business
policies are the most important indicators.

To the best of our knowledge, none of existing approaches to
business compliance have fully addressed the aforementioned is-
sues. A number of existing approaches to business compliance
have been proposed but they rather focus on particular compliance
concerns and/or particular development phases (see [8–34];dis-
cussed in detail in Section 5).

In this article, we propose a model-driven development (MDD)
approach [35–37] for overcoming these issues. We support stake-
holders in dealing with the divergence of compliance sources by
using domain-specific languages (DSLs) which can be tailored to
directly accommodate concepts and rules from particular compli-
ance domains [37]. To support involvement of both non-technical
stakeholders (e.g., business and compliance experts) as well as
technical stakeholders (e.g., software engineers and system admin-
istrators) in the software, system, and compliance engineering pro-
cess, a separation into high-level, domain-oriented and low-level,
technical DSLs is provided. The great advantage of this separation
of abstraction levels is that we can provide different stakeholders
with appropriate representations to formulate the domain problem
(i.e., compliance concerns) according to their particular expertise.
Moreover, the representations of compliance concerns in terms
of DSLs can be independently developed and evolved, which means
we are able to keep up with the constant changes in existing reg-
ulation or creation of new regulation.

However, this raises the challenge of integrating these different
compliance DSLs as well as correlating the compliance DSLs with
the existing business functionality. So far, Tran et al. [38] have
developed a View-based Modeling Framework (VbMF) – a special-
ization of the MDD paradigm – that provides a number of view
models for specifying a service-oriented architecture (SOA). This
approach enables the integration and traceability of different view
models as well as the generation of executable code out of these
models [39–41]. Thus, we exploit this important capability and ex-
tend VbMF with a Compliance Metadata model that serves as a
bridge between compliance DSLs designed by business and compli-
ance experts, the compliance requirements and compliance
sources on the one hand, and the business functionality of software
and systems on the other hand. In addition, we devise a number of
other components extending the framework: a model validator
statically validates the compliance concerns at design time, and
code generators create components for supporting runtime enact-
ment or monitoring compliance as well as to generate reports and
documentation for auditing and compliance demonstration pur-
poses. Our approach aims at supporting the systematic and auto-
mated implementation of various kinds of compliance concerns
including controls in QoS policies, license policies, security policies,
and others.

In the scope of this article, we consider process-driven SOAs – a
particular kind of SOAs utilizing processes to orchestrate services
– to exemplify our approach. The rationale behind the selection
of SOAs is that enterprises increasingly rely on service-oriented
architectures for creating complex distributed software systems
as well as leverage process-centric information systems to auto-
mate their business processes and services. A more detailed discus-
sion of this kind of SOAs is given in Section 2.1. In this article, we
present VbMF as a means to support integrating business compli-
ance concerns in process-driven SOAs. To illustrate these capabili-
ties of VbMF we will present one central field of compliance
concerns in detail: QoS-related compliance concerns. To illustrate
the involvement of the different stakeholders to model the
required QoS compliance concerns, a DSL is exemplified which
was developed especially for the QoS domain. In the same way,
other DSLs developed for other concerns such as licensing [42]
and security [43] (not presented in detail in this article) can also
be integrated using VbMF in the same manner.

The remainder of this article is organized as follows. Section 2.1
explains and illustrates process-driven SOAs as the working con-
text of this article. Next, Section 2.2 describes the problem of deal-
ing with compliance in SOAs in detail. Our view-based model-
driven approach to supporting compliance in SOAs is elaborated
in Section 3. A CRM Fulfillment process with QoS compliance con-
cerns from an industrial case study illustrates our approach and
the realization of our view-based, model-driven compliance frame-
work in Section 4. Section 5 discusses and compares our approach
to the relevant literature. Finally, a summary and an outlook on fu-
ture research are provided in Section 6.
2. Background

2.1. Process-driven service-oriented architectures

SOAs are typically realized as layered architectures [44,45].
Based on a communication layer that abstracts from platform
and communication protocol details, a remoting layer that pro-
vides the typical functionalities of distributed object frameworks,
such as request handling, request adaptation, and invocation. Ser-
vice clients invoke service providers using this infrastructure. In a
process-driven SOA, a service composition layer is provided on top
of the client application/service provider layer. This layer provides
a process engine (or workflow engine) that orchestrates services to
realize individual activities in a business process.

The main goal of such process-driven SOAs is to increase the
productivity, efficiency, and flexibility of an organization via pro-
cess management. This is achieved by aligning the high-level busi-
ness processes with the applications supported by IT. Changes in
business requirements are carried out as changes in the high-level
business processes. The processes are implemented by linking
their activities to existing or new IT-supported applications. Orga-
nizational flexibility can be achieved because explicit business pro-
cess models are easier to change and evolve than hard-coded
business processes. In the long run, the goal is to enable business
process improvement through IT.

A small-scale process-driven SOA is illustrated in Fig. 1. A single
business process engine accesses a service-based message broker,

Fig. 1. Illustrative small-scale SOA.

H. Tran et al. / Information and Software Technology 54 (2012) 531–552 533
e.g., offered by an Enterprise Service Bus (ESB), via service-based
process integration adapters. Service-based business application
adapters are used to access back-end components, such as dat-
abases or legacy systems. A typical SOA in enterprise organizations
today is much larger than this illustrative example. That is, multi-
ple process engines – e.g., one per department – are deployed, plus
multiple instances of all other components. We limit the scope of
our compliance approach to these process-driven SOAs. Apart from
the notion of processes, which is specific to process-driven SOAs,
other concepts and elements considered in our approach such as
services, service collaborations, data objects exist in most of SOA-
based systems. In the next section, we describe various kinds of
compliance concerns that might occur in a process-driven SOA.

2.2. Compliance concerns occurring in SOAs

The compliance laws and regulations like the Basel II Accord or
SOX cover issues such as auditor independence, corporate gover-
nance, and enhanced financial disclosure. Although these are typi-
cal cases for compliance, there are other compliance concerns, with
similar characteristics, that occur in process-driven SOAs
including:

� Compliance to service composition policies: There might be spe-
cific service composition rules for the SOA that must be met. For
instance, a service can require a specific interface or behavior of
another service so that they can be composed, or a service col-
lects a client’s private data for only a particular purpose, e.g., a
credit card number is collected and disclosed only to check the
account solvency and for nothing else.
� Compliance to service deployment policies: The runtime compo-

sition might be governed by business rules as well. For example,
the business might require that a service can only interact with
other service instances deployed within the same geographical
borders, to ensure location-based data correctness.
� Compliance to service sequencing or ordering policies: It is possi-

ble that services may be allowed to compose only in specific
orders. For instance, the business may require that a credit val-
idation process is triggered before a shipment process is started.
� Compliance to information sharing/exchange policies: This

applies to service conversations that follow some information
sharing or exchange protocol. For instance, to get information
from a service, a requestor must use a specific message type
describing the information of interest. In response to such
requests, the service may send a message to the requestor with
a locator for the requested information. The requestor can sub-
sequently obtain the requested information.
� Compliance to security policies: The business may have specific
security requirements that are also pervasive throughout the
SOA, such as the nondisclosure of personal data.
� Compliance to QoS policies: The business may require compli-

ance of the runtime infrastructure to a certain quality of service
(QoS). For instance, a specific performance window, a maximum
latency, a particular mean downtime (i.e., availability), or a cer-
tain throughput, may be required to fulfill a service-level agree-
ment (SLA).
� Compliance to business policies: The business side may provide

specific policies for running the services, triggered by certain
business events. For instance, it might be a business policy in
a company that, upon a server failure, an SMS notification is
sent to an administrator.
� Compliance with jurisdictional policies: Such policies occur in

situations where a service produces a product in location under
different legal jurisdictions. For instance, selling or buying a car
in different EU countries involves different activities, taxes, and
fees.
� Compliance to intellectual property and licenses: In a service

composition there is the need to respect individual services
licenses and terms of use. For instance, a service could include
both royalty-based operations and freely available operations,
only available for non-commercial use. A composed service
has to comply with these licensing clauses, also in a service
composition created on-demand.

Clearly, all of these concerns are driven by the business require-
ments. The concerns arise in process-driven SOAs, firstly, because
SOA is often the integration architecture of an organization, and
therefore, usually concerns all architectural components that must
comply with certain business requirements; also, process-driven
SOAs include high-level abstractions such as business processes,
which implies that the concerns should be integrated in the busi-
ness process perspective offered to the business experts.

There might be compliance issues that can belong to more than
one of the above categories. In fact many elements and concepts of
models and DSLs used in our approach for describing various pro-
cess-driven SOAs and compliance concerns in fact relate to the oth-
ers. Nevertheless, the categorization aims at describing different
aspects of SOAs that might be influenced by laws and regulations
and therefore, need to be considered. It merely serves as back-
ground knowledge and does not influence our approach in the
paper.

An integrated compliance framework can reduce development
and maintenance costs for the IT in large companies, and enable
small companies to compete. Business compliance can achieve

534 H. Tran et al. / Information and Software Technology 54 (2012) 531–552
additional goals: it can be understood as a business and technology
enabler: When tackled using a strategic implementation approach
based on a sound architecture, compliance concerns can drive a
business and offer added value beyond solely meeting specific
compliance demands. Please note that the goal of our approach is
not to implement all of the compliance concerns listed above, but
rather provide the means for an organization to implement any
such compliance concern in process-driven SOA in traceable,
changeable, understandable, and reusable fashion.
3. Model-driven approach to supporting compliance in SOAs

In this section, we discuss our model-driven and view-based ap-
proach for compliance in SOAs in detail. We firstly give a brief
overview of the approach. All aspects of the approach will be ex-
plain in detail, including (i) the view-based modeling framework
and compliance DSLs for explicitly formulating process-driven
SOA and compliance concerns and (ii) a Compliance Metadata
model for explicitly representing the relationships between com-
pliance sources, view models, and DSLs and generating compliance
documentation and reports.

3.1. Approach overview

On the left hand side of Fig. 2, we depict a high-level overview
of our approach in relation to the typical view on compliance from
an auditor’s perspective. As described before, many compliance
requirements are derived from different sources such as laws, reg-
ulations, and business policies. Such compliance sources can be
realized using a number of so-called controls. A control is any mea-
sure taken to assure a compliance requirement is met. For instance,
an intrusion detection system, a penetration test, or a business pro-
cess realizing separation of duty requirements are all controls for
ensuring systems security. Most of compliance sources primarily
focus on the ‘‘what’’ (i.e., what controls are needed), rather than
on ‘‘how’’ to realize the controls. Thus, the regulations are often
mapped to established norms and standards describing more con-
cretely how to realize the controls for a regulation. Controls can
be realized in a number of different ways, including reports, man-
Fig. 2. Overview of the view-based, model-driven
ual controls (e.g., controls that require human intervention), or
automated controls (e.g., controls that can be executed without hu-
man intervention).

Our work shown on the right hand side of Fig. 2 focuses on auto-
mated controls in the area of process-driven SOAs (i.e., mainly pro-
cesses and services are considered). Our goal is to provide a unique
framework for realizing all automatic controls in this realm and
support as many automated controls as possible (that is, poten-
tially increase the level of automation). This is achieved by an
architecture covering the whole compliance life cycle: A view-
based, model-driven framework is introduced for modeling or spec-
ifying the processes, services, and compliance concerns – to realize
the automatic controls. In addition, metadata about the compli-
ance controls is modeled to document the compliance controls.
Some compliance concerns can be statically checked at design time,
for instance, static checking of separation of duties. For many com-
pliance concerns this is not possible: it is necessary to monitor and
assess them at runtime. Hence, the code for implementation and
supporting runtime monitoring the compliance concerns are gen-
erated. Besides, compliance control documentation and reports
for auditing and demonstrating purpose are also automatically
generated. The generation step in our approach is realized using
model-driven development (MDD) paradigm [35–37]. In MDD, do-
main-specific languages (DSLs) are used as specification languages
that are tailored to be particularly expressive in a certain problem
domain. In our approach, DSLs are used to engage different stake-
holders into the SOA and compliance engineering process.

One important aspect of our MDD approach for realizing a com-
pliance framework is that it provides one or more DSLs on top of a
model, either in textual or graphical syntax, representing the
content of the abstract syntax (aka the language models) in a
user-friendly way. That is, the DSLs’ syntaxes are targeted at the
end-user of the DSL. For instance, if a business process is shown,
technical experts might prefer a textual syntax that is machine-
processable and includes the more technically detailed concerns
in various views (such as BPEL/WSDL-specific views). A business
expert might rather prefer a graphical syntax that omits the
technical details and only shows the high-level control flow
augmented with compliance concerns.
approach for supporting compliance in SOAs.

H. Tran et al. / Information and Software Technology 54 (2012) 531–552 535
3.2. View-model-based compliance framework

Our compliance framework for SOAs uses the model-driven ap-
proach to compose business processes and services as a founda-
tional layer. To enable reuse and integration of both compliance
concerns and service compositions, the compliance framework
shall augment business process specifications, such as the Business
Process Model And Notation (BPMN) [46], and Business Process
Execution Language (BPEL) [47], with compliance concerns. As
there are multiple other, similar concerns on which compliance
concerns can be based than the process specifications, such as ser-
vice specifications, collaboration specifications, and data specifica-
tions, and even the process specifications can use multiple
specification types (such as BPEL, BPMN, and UML Activity Dia-
grams [48]), we abstract each of these basic concerns and each of
the compliance concerns in its own model. This, however, imposes
the challenge of how to integrate the various models.

We have solved this problem using a view-based approach (this
is explained in detail in [38,40,41,49–51]). In this approach, a view
is a representation of a process from the perspective of related con-
cerns. A view is specified using an adequate view model. Each view
model is a (semi)-formalized representation of a particular SOA or
compliance concern. Therefore, the view model specifies entities
and their relationships that can appear in the corresponding view.

As mentioned in Section 2.2, there are many different kinds of
business compliance that companies have to consider. Each of
those compliance concerns embodies distinct concepts and con-
straints which are merely interpreted by domain experts or com-
pliance specialists. Therefore, our approach introduces different
DSLs to support those experts in better eliciting such compliance
concepts and constraints and applying the resulting compliance
concerns in the specific context of business processes. We present
our approach for modeling process-driven systems and the compli-
ance concerns in Fig. 3.

On the left hand side, the modeling framework provides view
models for describing the functionality of process-driven SOA-
based software systems. As stated in [38,49], the Flow, Collabora-
Fig. 3. View-based approach for modeling
tion, and Information view models represent the essential concerns
of a business process. Other concerns, such as transactions, human
integration, event handling, and traceability, are also developed
and integrated to VbMF accordingly thanks to its extensibility
[38,40,51]. For the sake of readability and concentration on compli-
ance modeling, these process view models are not presented in
Fig. 3. Dashed rectangle boxes are used to form logical modeling
groups, for instance, a group of view models or compliance DSLs,
in the sense that the elements inside a group shall naturally be
treated in the same way if not explicitly specified otherwise.

On the right-hand side, our approach offers facilities for describ-
ing compliance concerns in terms of DSLs, such as DSLs for repre-
senting security policy, QoS policy, intellectual property and
licenses, and regulatory or legislative provisions. Each DSL can be
seen as an extension view model that derives and enriches the ba-
sic elements of the Core model. That is, these DSLs represent exten-
sional view models for expressing compliance controls in parts of
the SOA that are not directly related to processes and services.
Using extension mechanisms described in [38,49], the framework
can be extended with additional DSLs for expressing various kinds
of compliance concerns. More details on extending the framework
with additional compliance DSLs are elaborated in Section 3.3.
Without loss of generality, we will illustrate in this paper these
capabilities of VbMF for one of these DSLs: the DSL for specifying
QoS-related compliance concerns. Other DSLs can be devised and
integrated to VbMF in the same manner.

Whereas the DSLs mentioned above define compliance controls
in specific areas, namely, security, QoS, intellectual property and li-
censes, and regulatory or legislative provisions, there is another
DSL, namely, Compliance Metadata model, that has a special pur-
pose: To annotate the controls defined both in the VbMF process
views (e.g., the Flow view, Collaboration view, Information view,
etc.) as well as the controls defined in the four extensional DSLs
with compliance metadata. Details on the Compliance Metadata
model are presented in Section 3.4. Using the Compliance Metada-
ta model, all compliance controls can be annotated with metadata
about the compliance, such as which regulation, standard, rules,
processes and business compliance.

Fig. 4. The core model and the flow view model.

1 http://www.eclipse.org/modeling/emf.

536 H. Tran et al. / Information and Software Technology 54 (2012) 531–552
compliance requirements, and so on, have led to the design and
implementation of the control. The main goal of the Compliance
Metadata model is hence to support the automatic documentation
of all compliance-related concerns (cf. Section 4.5.1). In other
words, the Compliance Metadata model allows us to not only mod-
el ‘‘how’’ compliance is achieved, but also ‘‘why’’.

VbMF provides three important mechanisms for formulating
and manipulating view models: view extension, name-base view
integration, and code generation [38,49]. The view extension mech-
anism enables VbMF to be extended to additional modeling con-
cerns by adding new view models that derive and enrich existing
view models and view elements. The Core model shown in Fig. 4
is the basis for creating the other view models. The Flow view
model, which derives and extends the basic concepts of the Core
model, represents the control flows of business processes. Further
examples of existing extensions are including views for data object
access [52] and human interactions [40]. In addition to the afore-
mentioned horizontal extensions, VbMF also considers the separa-
tion of levels of abstraction by organizing view models into two
essential layers: the abstract layer and technology-specific layer
[38,49]. The abstract layer includes the views without the technical
details such that the business experts can better understand and
manipulate these views. The technology-specific layer contains
the views that embody concrete information of technologies or
platforms (e.g., the BPEL-⁄ views in Fig. 3).

The view extension mechanism facilitates the separating of con-
cern principle to reduce the complexity of tangled process con-
cerns by using different view models and enhance the flexibility
in formulating these view models independently. According to
the specific needs of the stakeholders, views might have to be com-
bined to provide a richer view or a more thorough view of a certain
process. This can be achieved by using the name-based matching
view integration mechanism presented in [41,50]. The view inte-
gration mechanism enables loose-coupling cross references among
view models based on the names of view elements and supports
the integration of view models based on these cross references,
which are called view integration points. During the course of view
integration, static validation can also be leveraged for checking the
conformity and consistency of the involving view models. The
name-based matching technique has been proved to be very effec-
tive at the view level. It can also be enhanced further by incorpo-
rating other model merging approaches such as those using
database schema matching, class hierarchical structures, or ontol-
ogy-based structures. Further details on the name-based matching
view integration can be found in our other works [41,50]. In this
article, the name-based matching view integration is the basis
for relating view models with compliance DSLs and the Compli-
ance Metadata model. Last but not least, code generation mecha-
nism will take view models such as the low-level view models
for describing the technology specifics of the business processes,
the compliance DSLs (cf. Section 3.3), the Compliance Metadata
model, and so on, as inputs for producing code and configurations
that are necessary for deploying and monitoring the execution of
the business process [38,49].

We present a small example of modeling the business process
of a Travel Booking agency [53] using VbMF in Fig. 5. The Travel
Booking process (see Fig. 5a) starts when a customer initiates an
itinerary request. After updating the customer’s profile for later
promotions or advertisements, the process invokes three other ser-
vices for booking airline tickets, hotels, and cars, respectively. Fi-
nally, the process sends back an itinerary confirmation to the
customer. The diagram in Fig. 5a is drawn using BPMN notations
[46] to visualize the main function of the Travel Booking process.

The aforementioned description of the Travel Booking process is
modeled by using VbMF’s views. The Travel Booking Flow view
(see Fig. 5b) specifies necessary tasks to fulfill the customer’s re-
quest and the execution order of these tasks. The details of each
task are not embodied in the Travel Booking Flow view, but repre-
sented in other views of the process concerns. For instance, the
task ReceiveItinerary waits for the customer’s request, and there-
fore, is described in the Travel Booking Collaboration view (see
Fig. 5c and d). Note that the Flow view has been implemented
based on the tree editors of Eclipse Modeling Framework1 for illus-
tration purpose. Nevertheless, it offers basic control flow structures
such as sequential and concurrent executions, and exclusive choices,
that exist in most of existing process modeling languages such as
BPMN, and BPEL [38]. As a result, a more friendly, graphical repre-
sentation of the Flow view similar to the diagram shown in Fig. 5a
can also be achieved with reasonable effort.
3.3. DSLs for compliance concerns

In order to offer expressive and appropriate languages for the
different stakeholders, our approach proposes a separation of DSLs
into multiple sub-languages, where each sub-language can be
tailored for the appropriate stakeholders [54–58]. As such, our
approach is able to target different levels of abstraction where each
level is tailored for the designated stakeholders. The number of dif-
ferent levels of abstraction depends on the problem domain as well

http://www.eclipse.org/modeling/emf

(b) Flow view (c) Collaboration view(a) Travel Booking Process (d) Properties

Fig. 5. Modeling business process with VbMF: a travel booking process example.

2 http://www.eclipse.org/modeling/m2t.

H. Tran et al. / Information and Software Technology 54 (2012) 531–552 537
as on the expertise and interests of the stakeholders. As shown in
Fig. 3, these DSLs shall derive or reference to the basic concepts of
the Core model. The name-based matching view integration mech-
anism shall be used to integrate the information specified in the
DSLs and view models.

The Travel Booking process presented in the subsequent sec-
tions exemplifies (1) how compliance concerns – specifically QoS
compliance concerns – can be integrated into VbMF, (2) how the
low-level DSL extends the high-level DSL with the additionally
needed technical aspects for expressing QoS compliance concerns
of business processes, and (3) how domain and technical experts
can use the high-level and low-level DSLs, respectively. The QoS
compliance concern is targeted in this section as its realizations in-
volve the whole life cycle of a business process from design time to
runtime. Therefore, it is reasonable for conveying the use of DSLs to
specify and incorporate compliance concerns to process-driven
SOAs. Nevertheless, other DSLs can be developed and integrated
with VbMF in the same manner. For this reason, we shall not de-
scribe every detail of the compliance DSLs but rather emphasize
the integration of those with VbMF. Detailed specifications of the
QoS DSLs can be found in [54–58], the descriptions of the licensing
DSLs are proposed in [42], and specifications of the security DSL are
provided in [43].

3.3.1. The high-level QoS DSL
The fundamental purpose of the high-level QoS DSL is to enable

domain experts specify which QoS compliance concerns have to be
measured with regard to Service-Level Agreement (SLA) require-
ments for a particular business process or service. The DSL also
enables specification of actions to be taken whenever SLAs are
violated. As a result, the high-level DSL shall provide expressive
notations for representing concepts and terminologies of the QoS
and SLA domains.

The scope of the high-level QoS DSL covers the annotation of
services and processes with QoS measurements. Each QoS mea-
surement is defined in an SLA between the service provider and
the service consumer. In this work we leverage the definitions of
runtime- and performance-related QoS measurements proposed
in [59]. An example of a high-level specification of the QoS compli-
ance concerns is: ‘‘If the availability of a service is less than 99%, an e-
mail must be sent to the system administrator’’.

The language model of the high-level QoS DSL is shown in Fig. 6.
The elements of this language model extend the aforementioned
VbMF Core model to enable representation of relevant QoS compli-
ance concerns. In particular, the Identifiers – specifically, Service
and Process elements – of the VbMF Core model can be targets of
a QoSMeasurement. This language model provides the possibilities
for specifying PerformanceQoS and RuntimeQoS related QoS mea-
surements. Each QoS measurement has relations to contractually
negotiated ServiceLevelAgreements which might be associated with
a number of Actions. Our QoS DSL also enables the stakeholders to
define appropriate actions that are taken if a certain SLA is violated.
In Fig. 6, we present essential actions such as Mail – for sending
notification emails, SMS – for sending notification SMS messages,
and Logging – for recording execution events to event logs. One
can extend the high-level QoS DSL by defining sub-classes of the
Action element to specify different other types of actions such as
inspection, recovery, adaptations, and so on [60]. Additionally,
we devise OCL-like formal constraints for ensuring the consistency
of high-level QoS models. For illustration purpose, an excerpt of
these constraints is also shown in Listing 1. These constraints have
been implemented in our approach using the Check language pro-
vided in the Eclipse Model to Text (M2T) project.2 Note that the QoS
DSL shall be related to process-driven SOA elements via VbMF view
models by the name-based matching view integration mechanism.
The aforementioned constraints and further constraints can also be
leveraged during this stage to verify the consistency of view models
and DSLs.

To illustrate the use of the high-level QoS DSL, let us assume
that the task ReceiveItinerary of the Travel Booking process
example in Fig. 5 must satisfy a latency of less than 4 days and
an availability of more than 99%. We create new instances of Per-
formanceQoS and RuntimeQoS in order to describe the aforemen-

http://www.eclipse.org/modeling/m2t

Fig. 6. An example of annotating processes or services with QoS compliance concerns.

Listing 1. An excerpt of the OCL constraints for the high-level QoS DSL language model.

Fig. 7. Using concepts of the high-level QoS DSL to represent QoS requirements.

538 H. Tran et al. / Information and Software Technology 54 (2012) 531–552
tioned requirements and associate them with the ReceiveItinerary
task of the Travel Booking process (see Fig. 7).
3 http://cxf.apache.org.
3.3.2. The low-level QoS DSL
The aforementioned high-level QoS DSL is mainly used by the

domain experts to express domain concepts or to communicate
with customers or technical experts in the requirement analysis
stage. Beyond requirements analysis, technical users like develop-
ers and system administrators need to augment specifications in
the high-level DSL with technology-specific details, in order to sup-
port code generation for implementing technologies. For instance,
the ReceiveItinerary task shall be realized by using a Web service
invocation. Therefore, the QoS requirements specified in Fig. 7 shall
be measured in the underlying Web service framework. The low-
level QoS DSL in this case extends the high-level QoS language
model with technology-specific aspects. Note that the constructs
and expressions of the low-level DSL are extracted from the con-
cepts of the underlying technologies that the technical experts
understand and can populate with necessary technical informa-
tion. In Fig. 8, we extend the high-level QoS DSL with technol-
ogy-specific details for the open-source Apache CXF Web service
framework.3

http://cxf.apache.org

Fig. 8. Extending the high-level QoS language model with technology-specific
elements.

H. Tran et al. / Information and Software Technology 54 (2012) 531–552 539
3.3.3. The language model of the low-level QoS DSL
The language model of the low-level QoS DSL shown in Fig. 8

represents the technical details regarding the operation of the
underlying Web service framework. The message-flows between
the service client and the service provider are based on Chains.
Each service client and service provider has two chains. An incom-
ing chain is responsible for incoming messages, and an outgoing
chain is responsible for outgoing messages. Each chain – incoming
or outgoing – consists of a number of Phases, during which the QoS
values can be measured. Every phase can contain one or more
interceptors which are implemented in Java and are responsible
for measuring the QoS values. By specifying QoS measurements
and the corresponding phases, interceptors can be generated auto-
matically. Runtime QoS concerns, such as the ResponseTime, can be
measured within the corresponding phases by these automatically
generated interceptors.

We illustrate how technical experts can use the textual syntax
of the low-level DSL to map the high-level domain concepts to cor-
responding technical aspects (see Fig. 9). The Latency metric shall
be measured between two phases OutSetup and OutSetupEnding,
respectively.

The idea of proposing the two DSLs is, therefore, to separate
platform-independent elements from their platform-specific coun-
terparts. This way, we can map elements of the high-level QoS
model to several technologies by deriving adequate low-level
QoS DSLs. Other Web service technologies can be applied in the
same manner to the example we have presented.

3.4. Compliance metadata model

In this section we present a compliance metadata model which
serves as a bridge between the compliance concerns – represented
in terms of aforementioned compliance DSLs and organizational
functionality specified by VbMF process view models – on the
one hand, and compliance sources on the other hand. As described
in Section 3.2, the Compliance Metadata model correlates process
view models and/or compliance DSLs with compliance metadata
such as compliance documents, requirements, and risks. On the
one hand, such annotations can be used for facilitating automated
compliance controls. That is, services or processes are distinguished
Fig. 9. Using the low-level QoS DSL to rep
by annotation to implement and realize automated controls. On
the other hand, the metadata serves as an information source for
automatically generating reports and documentation of compli-
ance requirements and implementations.

A compliance requirement may directly relate to an organiza-
tional unit such as a process, a service, or a business object. None-
theless compliance requirements not only introduce new but also
depict orthogonal concerns to these: although usually related to
process-driven SOA elements, they are often pervasive throughout
the SOA and express independent concerns. In particular, compli-
ance requirements can be formulated independently until applied
to a SOA. As a consequence, compliance requirements can be re-
used, e.g., for different processes or process elements.

The proposed model for expressing compliance metadata is
shown in Fig. 10. The annotation of specific SOA elements with
compliance metadata are achieved using the Control element that
is associated with concrete compliance implementations such as
processes, process tasks, services, or concepts of the DSLs that de-
rive from the Identifier element the Core model. The aforemen-
tioned association is represented by the relationship
‘‘implements’’. Note that this relationship is the basis based on that
the name-based matching algorithm (cf. [38,41,49,50]) can be used
to correlate and integrate the Compliance Metadata model with
other view models and/or DSLs.

A compliance Control can contain a number of sub-controls. This
way, compliance controls can be grouped and combined. A number
of Controls might fulfill a certain ComplianceRequirement that, in
turn, relates to some ComplianceDocuments such as Regulations,
Legislations, or InternalPolicies. Such RegulatoryDocuments can be
mapped to Standards that represent another type of Compliance-
Document. A compliance requirement often comes with risks that
arise due to compliance violations. Risks have dimensions such as
likelihood or impact. In this work we provide basic support for spec-
ifying such dimensions using linear comparable constants. Of
course, these can be refined with more elaborative modeling ele-
ments that allow for non-trivial functions and the use of parame-
ters, e.g., for probability density functions. For documentation
purposes (see the ‘‘Documentation’’ element in Fig. 3) and for the
implementation of compliance controls, the ControlStandardAttrib-
utes help to specify general metadata for compliance controls, e.g.,
if the control is automated or manual (e.g., using the attribute
isAutomatedManual). Besides these standard attributes, individual
ControlAttributes can be defined for a compliance control within
ControlAttributeGroups.

Essential OCL-like constraints similar to those shown in Fig. 6
are also necessary to ensure the consistency of the Compliance
Metadata model. These constraints shall be used in the model val-
idation step that is described in Section 3.5. We note that a certain
compliance control can be realized by any elements of a software
system, for instance, including a process task, a single service, a
large and complex process or composite service, an event log,
etc. This generality of the compliance meta-data model is inten-
tional as it is not possible to foresee what kinds of other DSLs will
be integrated: These elements might be parts of given view models
and DSLs or can also be parts of extensional views and DSLs added
later using the same techniques presented in our paper. This
resent concrete QoS measurements.

Fig. 10. The compliance metadata model.

540 H. Tran et al. / Information and Software Technology 54 (2012) 531–552
characteristic of our approach backed by the view extension and
name-based matching mechanisms of VbMF aims at supporting
developers on better dealing with changes in regulations and pol-
icies. Nevertheless, that potentially leads to the issue of assuring
the consistency and soundness of these models and DSLs. This is-
sue is solved in our approach from two perspectives. On the one
hand, the DSL approach shall engage compliance and/or domain
experts pro-actively to better formulate the problems/require-
ments in their domain of expertise. On the other hand, we enable
developers to specify additional relevant constraints for validating
view models and DSLs as shown in the validation and code gener-
ation tool chain described in Section 3.5.

One important aspect when implementing compliance for a
SOA is that we want to make the relationship of a compliance
requirement derived from, e.g., a certain regulation or standard,
with the respective annotated SOA element persistent. This enables
further identification and resolution of SOA elements, compliance
controls, regulations, risks and compliance documents, e.g., in the
case of a root-cause analysis of a compliance violations.

A model instance of the compliance metadata that contains a
directive from the European Union on the protection of individuals
with regard to the processing of personal data is given in Fig. 11.
The C1 compliance control instance for a secure transmission of
personal data annotates process TravelBooking. The fulfilled
requirement CR1 follows the legislative document and is associ-
ated with an AbuseRisk.

With the proposed compliance view, it is possible to specify
compliance statements such as CR1 is a compliance requirement that
follows the EU Directive 95/46/EC on Individual Protection4 and is
implemented by the Travel Booking process within the VbMF. Other
processes that implement controls for fulfilling the CR1 requirement
4 http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?ri=CELEX:31995L0046:EN:
NOT.
can easily be identified. Similarly, for a given legislation the various
controls that realize derived compliance requirements can be
listed.

3.5. OCL-based model validation and code generation

To ensure the integrity and correctness of the defined model in-
stances, our approach also aims at supporting the integration of
different kinds of design time validations. The tool chain shown
in Fig. 12 illustrates the model validation and code generation
phase in our framework. As described in the previous sections, var-
ious DSLs exist for creating instances of the compliance concerns’
models whilst VbMF can be used to create process models as well
as correlated elements of the process models with compliance con-
cerns. Process descriptions created by existing process modeling
tools can also be leveraged but at first they need to be adequately
mapped into view models [39] in order to take full advantage of
the VbMF techniques such as view extension, view integration,
code generation, and traceability [38,41]. Example inputs for the
Travel Booking process mentioned above include the process views
such as the Flow view, Collaboration view, Information view
shown in Fig. 5, compliance DSLs such as the high-level and low-le-
vel QoS DSL instances shown in Figs. 7 and 9, respectively, and the
instance of the Compliance Metadata model shown in Fig. 11.

The aforementioned instances shall go through the Model Vali-
dator that is responsible to check whether all static OCL-like con-
straints hold and whether the models can be properly integrated.
The upper box labeled with Constraints shows some constraints
which were defined using the Check language5 – an OCL-like
language for specifying static model constraints. Following our ap-
proach, before the code generation process can start, the defined
constraints have to be checked on the model instances.
5 http://www.eclipse.org/modeling/m2t.

http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?ri=CELEX:31995L0046:EN:NOT
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?ri=CELEX:31995L0046:EN:NOT
http://www.eclipse.org/modeling/m2t

Fig. 11. Example for a compliance metadata model instance.

Fig. 12. Generation and validation example.

H. Tran et al. / Information and Software Technology 54 (2012) 531–552 541
After the validation step, valid process models and
compliance DSLs are handed over to the code generator. The
code generator uses transformation templates to transform the
model instances into code in executable languages such as BPEL
and Java service code. The code generator also generates the
compliance documentation based on the Compliance Metadata
models. We use the template-based transformation technique
provided by the Eclipse Xpand language.6 Xpand is a powerful
typed template language that can be used to generate any kind
of textual output. The generated source code can be used for
checking the runtime compliance rules or generating reports and
documentation. These compliance rules are often encoded in the
6 http://www.eclipse.org/modeling/m2t/?project=xpand.
transformation templates, and therefore, can be reused in other
development scenarios.

Proposing a runtime infrastructure for fully deploying, enacting,
and monitoring compliance is beyond the scope of this article. Nev-
ertheless, our approach aims at supporting compliance at runtime
via model to code transformations that translate the concepts and
rules described in compliance DSLs into runtime components, con-
figuration, or directives. These components, configuration, and
directives can be deployed in process engines, for instance, Apache
ODE BPEL engine,7 application servers, for instance, Apache Tom-
cat,8 and complex event engine, for instance, Esper,9 to monitor
7 http://ode.apache.org.
8 http://tomcat.apache.org/.
9 http://esper.codehaus.org.

http://www.eclipse.org/modeling/m2t/?project=xpand
http://ode.apache.org
http://tomcat.apache.org/
http://esper.codehaus.org

542 H. Tran et al. / Information and Software Technology 54 (2012) 531–552
and assess relevant compliance requirements. In the next section, an
industrial research case study is presented. The case study was used
to test and evaluate the functioning of our approach.

4. Case study

We illustrate the realization of the aforementioned concepts
using the CRM Fulfillment process adapted from an industrial case
study concerning customer care, billing, and provisioning systems
of an Austrian Internet Service Provider. The process is designed
using BPMN [46] and implemented using process-driven SOA tech-
nology: BPEL [47] and WSDL [61]. BPMN, BPEL, and WSDL are used
for exemplification because these are widely adopted in research
and industry today. Nevertheless, our approach is not bound to
those technologies but is generally applicable for other process-
driven SOA technologies. The mapping from and to process-driven
SOA modeling languages such as BPMN, and BPEL can be achieved
by leveraging the view-based reverse engineering approach in our
other works in [39,62].

In the context of the CRM Fulfillment process (see Fig. 13), the
runtime platform provisions a wide variety of in-house services
and external services provided by various partners. For instance,
the company has developed in-house services for customer rela-
tionship information management and assigning fax numbers, SIP
URLs, and mail boxes. Banking partners provide services for verify-
ing the customer account status and charging customer orders. Cus-
tomer premise equipment (CPE) companies supply services for
ordering and shipping home modems or routers. Post-office affilia-
tions are responsible for sending postal invoices to the customers.
These services expose their functionalities in terms of WSDL inter-
faces that can be orchestrated using BPEL processes.

In the subsequent sections, we illustrate the modeling and
development of the CRM Fulfillment process and the implementa-
tion of compliance requirements step by step in our approach.
First, we present the compliance requirements for the CRM Fulfill-
ment process elicited by the collaboration of domain and compli-
ance experts. Next, we develop essential process views including
the Flow view, Collaboration view, and the Information view. These
views accomplish the process modeling part of our framework. The
remainder, which is compliance modeling, follows up with the
high-level and low-level DSLs that capture compliance require-
ments and embody monitoring directives at runtime. The Compli-
Fig. 13. Case study: a CRM
ance Metadata model comes to bridge the process views and the
compliance DSLs. Finally, the automatic generation of the docu-
mentation of the processes and their compliance concerns by using
the Compliance Metadata model is demonstrated.

4.1. CRM Fulfillment process

The CRM Fulfillment process is initiated when a customer
places an order for Internet services. Customer orders are retrieved
via the ReceiveCustomerOrder task. The process then invokes the
customer relationship management services to update the cus-
tomer’s profile extracted from the order. After that, the banking
service is invoked to validate the customer’s account status in
the VerifyBankAccount task. The banking service requires the cus-
tomer’s personal and account data such as the owner’s name, bill-
ing address, account number, and bank routing code, which are
also included in the order. The control after validating the cus-
tomer’s account status is divided into two branches according to
the particular status. In case a negative confirmation is issued from
the bank service, e.g., because the account number is invalid or the
owner and account do not match, the customer will receive an or-
der cancelation response along with an explaining message via the
CancelCustomerOrder task. Otherwise, the positive confirmation
triggers the second branch in which the process continues with
two major concurrent tasks to fulfill customer requests: the Initial-
izeInternetService task invokes an in-house service, namely, Inter-
netService, for initializing the mailbox and for assigning the SIP
URL and the fax number, and the ShipCPE task calls an external ser-
vice of the process’s partner that asks to independently deliver
home router/modem to the customer’s shipping address. As fault
handling is beyond the scope of this article, we assume that those
activities finish without errors. After all of them have finished, the
next task, ChargeCustomerAccount, is activated to receive the pay-
ment from the customer’s account. The SendInvoice task will enact
the postal service affiliation for sending the customer’s invoice to
the appropriate address. The process finishes with a confirmation
of success to the customer.

4.2. Compliance requirements for the CRM Fulfillment process

From the beginning of the development life cycle, business and
domain experts work together with the compliance experts in or-
Fulfillment process.

H. Tran et al. / Information and Software Technology 54 (2012) 531–552 543
der to elicit various necessary compliance requirements for the
CRM Fulfillment process. The interpretation of laws, regulations,
standards, business contracts, etc., given by the business and com-
pliance experts, according to the context of the CRM Fulfillment
process, transforms compliance requirements into corresponding
controls. Because most of the laws and regulations are very vague
and abstract, this kind of transformation is hardly automated, but
requires specific and deep juristic knowledge and experience of
compliance experts to completely and precisely interpret and for-
mulate the compliance requirements. Table 1 shows an excerpt of
compliance requirements used for illustrating our approach in
modeling and developing business compliance. In the subsequent
sections, we present in detail the steps of business process devel-
opment along with the modeling of these compliance require-
ments for the CRM Fulfillment process using our approach in this
article.
4.3. Modeling the CRM Fulfillment process

The view-based modeling framework [38] supports stakehold-
ers in modeling and developing business processes by using the
notion of views to separate the various process concerns. Fig. 14
shows the Eclipse-based realization of the view-based modeling
framework that we use to develop the CRM Fulfillment process.
From left to right of the upper row, three basic views, namely, flow
view, collaboration view, and information view separately repre-
sent the following concerns of the CRM Fulfillment process:

� The flow view embodies the control flow of the process.
� The collaboration view captures the interactions of the CRM ful-

fillment process with other services or processes.
� The Information view represents data objects and data process-

ing of the process.

The stakeholders, for instance, business analysts, process mod-
elers, or developers, according to their specific needs, skills, and
knowledge, can analyze and manipulate the CRM Fulfillment pro-
cess via each of those individual views or a perspective of interest
which combines many, or even all, of those views. Apart from
being able to accommodate different perspectives to the stake-
holders, VbMF is also able to significantly reduce the complexity
of process descriptions by separating tangled process concerns into
(semi-) formalized view models [38,49,63]. The integration of
views can be accomplished by using the name-based matching
and view integration mechanisms developed in VbMF [41]. These
process views are then passed to the VbMF code generator in the
last step described in Section 3.5 for generating process executable
Table 1
Compliance requirements for the CRM Fulfillment process.

Compliance Risk

Information security R1: Customer data (resident address, SSN, bank account,
etc.) are insecure from potential abuses (Basel II Accord)

Order approval R2: Return consignments because of wrong delivery
addresses. R3: Sales to fictitious customers are not
prevented and detected

Segregation of Duties
(SoD)

R4: Duties are not adequately segregated (SOX 404)

QoS (temporal) R5: The order processing is indefinitely delayed

QoS (latency) R6: The verification of bank account is indefinitely late
QoS (latency) R7: The customer wants to cancel the order or the ordered

goods must be shipped for free
QoS (availability) R8: The verification of bank account is not available or

heavily loaded
code in BPEL and process service interface in WSDL. In the lower
part of Fig. 14, we present, from left to right, an excerpt of the tem-
plates for the code generation along with an excerpt of the BPEL
code of the CRM Fulfillment process generated from the process
views. After the business process has been modeled, the appropri-
ate compliance concerns described in terms of DSLs shall be
integrated into the business process through the Compliance Meta-
data model and the name-based matching mechanism [41]. These
steps are explained in the following sections.

4.4. Modeling the QoS compliance concerns of the CRM Fulfillment
process

Following the examples of Section 3.3, in this section we want
to illustrate the use of the high-level and low-level QoS DSLs for
annotating the CRM Fulfillment process with the required QoS
compliance concerns as mentioned in Table 1.

4.4.1. Using the high-level QoS DSL
Using the implemented high-level QoS DSL, one can annotate

the CRM Fulfillment process with QoS compliance concerns as
illustrated in Fig. 15. We exemplify the modeling of the two con-
trols C6 and C7 described in Table 1. First, the business expert will
import the CRM Fulfillment process which was modeled in the
VbMF. Now, the QoS compliance concerns can be specified and as-
signed to the process, its activities, or services. The excerpt of the
high-level QoS DSL shown in Fig. 15 states that the allowed latency
of the CRM Fulfillment process must be less than 3 h and the avail-
ability of the banking service must be greater than 99%.

4.4.2. Using the low-level QoS DSL
In Fig. 16, we present how the low-level QoS DSL is applied in

the CRM scenario. The technical expert shall specify that two
phases, namely, OutSetup and OutSetupEnding of the Apache CXF
Web service framework shall be used to measure the Latency ele-
ment specified in the high-level QoS DSL shown in Fig. 15. Note
that the CustomerOrderLatency element is a sub-class of Latency,
and therefore, shall be measured by the two phases mentioned
above. As we can see, the low-level specification in Fig. 16 are sim-
ilar to the one shown in Fig. 9.

Now, we can see the advantage of the separation of high- and
low-level languages. The QoS values have to be measured always
in the same phases of the Apache CXF Web service framework.
Hence, the technical experts have to specify the technological as-
pects just once. The requirements of the used technology do not
change as often as the compliance concerns of process-driven
SOAs. That is, the low-level requirements do not change as often
Control

C1: Communicating channels of customer personal data must be adequately
encrypted to ensure privacy
C2: Customer’s identifications are verified with respect to identification types
and information, customer’s shipping and billing addresses are checked against
some pre-defined constraints (countries, post code, phone number, etc).
C3: The status of the account verification must be checked and set by a
Financial Department staff. The customer’s invoice must be checked and signed
by a Sales Department staff.
C4: The CRM Fulfillment process must be initiated immediately after receiving
a customer order
C5: The verification process must be finished within a certain amount of time
C6: The CRM Fulfillment process must finish as soon as possible

C7: The banking service must be checked to ensure a negotiated availability

Fig. 14. Using VbMF to model the CRM Fulfillment process.

Fig. 15. Specifying the required QoS compliance concerns by using the high-level QoS DSL.

544 H. Tran et al. / Information and Software Technology 54 (2012) 531–552
as the high-level ones. In case the underlying technology changes,
for instance, due to a software update, it is likely that the technical
aspects have to be re-modeled to accommodate these changes. By
extending the number of QoS measurements, such as by adding
scalability and throughput measurements, the main work lies in
the extension of the code generator which generates executable
code.

After all needed compliance concerns are associated with pro-
cesses or services, the compliance experts can specify the meta-
data of the compliance aspects by using the compliance meta-data

Fig. 16. Specifying the additionally needed technical aspects by using the low-level
QoS DSL.

H. Tran et al. / Information and Software Technology 54 (2012) 531–552 545
model. Afterwards, the model validation and code generation
phases can start.
4.4.3. Generated code for QoS compliance concerns
The specified QoS compliance concerns have to be measured

during runtime. Now, some generated codes are presented which
is executed during the runtime of the system to measure the re-
quired QoS values. In the used technology, the Apache CXF Web
service framework, interceptors can be integrated into the mes-
sage-flow between service consumer and service provider. In our
case, such interceptors shall be used for measuring the required
QoS concerns (cf. Section 3.3.2). Fig. 17 illustrates excerpts of the
generated interceptors for measuring the required latency of the
banking service.

The first interceptor, BankingServiceLatencyInterceptor1, is
responsible for storing the current timestamp into the header of
the message which flows between the service clients and the ser-
vice providers. The second interceptor, BankingServiceLatencyInter-
ceptor2, retrieves the first timestamp of the message’s header and
compares it with the current timestamp. If there is no timestamp
in the header of the message, an exception is thrown. Otherwise,
the actual latency of the banking service is determined by the dif-
ference between both timestamps. The measured latency is deliv-
ered to a monitor component that monitors and stores the
Fig. 17. The generated interceptors for m
measured QoS values during the runtime of the system. The
phases, in which the interceptors have to be executed, are specified
in their constructors.

After the generation of executable code of the process and its
services as well as the interceptors for measuring the required
QoS values, the compliance metadata can be specified. The follow-
ing section shows the specification of the compliance metadata
and the generated compliance metadata matrix for reporting and
documentation to managers or auditors.

4.5. Compliance metadata: the coalescence of process-driven SOAs and
business compliance

So far we have presented the modeling of the CRM Fulfillment
process using VbMF and the expressing of concrete compliance
concerns using multiple DSLs. Now, we take the final step in which
we correlate the process and its services and compliance DSLs with
compliance metadata.

We demonstrate an instance of the compliance metadata model
in Fig. 18. The model instance describes the control C1 of Table 1.
The CRMFulfillment process must implement the control C1 which
fulfills the compliance requirement CR1. The compliance require-
ments CR1 originate from the Basel_II Standard compliance docu-
ment and have an AbuseRisk. The impact and likelihood of the risk
are HIGH.

Finally, let us consider that compliance stakeholders need to re-
act to changes quickly because legislations and policies are subject
to change and hence, compliance requirements alter too. There-
fore, and because such changes often need to be implemented on
time, existing processes need to be adapted. Using our approach,
the stakeholders benefit from the separation of concerns, and
therefore, only have to formulate the compliance metadata model
for accommodating a relevant control with the current require-
ments and compliance concerns. That is, a new requirement is
easuring the required QoS values.

Fig. 18. Compliance metadata view for the information security compliance requirement.

546 H. Tran et al. / Information and Software Technology 54 (2012) 531–552
added by the compliance expert by specifying the relation to the
corresponding compliance documents and associated risks. Fur-
thermore, the compliance expert substitutes a deprecated require-
ment within the accordant compliance control. Similarly, the
compliance concerns are formulated and associated with the
control. As a consequence, it is not necessary to modify the, e.g.,
control flow, information, or collaboration model of a process
when compliance changes occur. Existing metadata and DSLs can
be reused for annotating SOA elements and changes to the compli-
ance metadata can be realized in an agile way.

4.5.1. Compliance documentation
The compliance metadata not only serves for specifying the

compliance aspects of a process-driven SOA but also can be used
for reporting and documentation purposes. In particular, it can
be used for generating documentation. Such documentation visu-
alizes compliance relevant information for relevant stakeholders,
such as executive managers and auditors, and therefore, help them
to quickly gain an overview of a thorough view. Hyperlinks to other
documentation pages allow the user to navigate to related infor-
mation or to request more specific details.

Other generated documentation of the compliance metadata fo-
cuses on e.g., the relation of compliance requirements and compli-
ance documents, such as standards or legislative documents. Also,
the coverage of SOA elements in regard to compliance aspects with
their relation to compliance documents can be visualized and
highlighted.

In Fig. 19, we present an excerpt of the matrix for the CRM Ful-
fillment process that depicts the relation of different compliance
controls with some risks. The corresponding Xpand template is
shown in Fig. 20. Compliance controls, such as QoS or SoD, are
associated with risks of legal sanctions. In contrast, the Information
Security compliance control also comes with a loss of customer
trust risk. If the availability of the banking service is inadequate,
it may result in a loss of total sales.
5. Related work

As mentioned above in the introduction, our previous works in
[38,40,41,49,50] are the foundation of the approach presented in
this paper. Besides, Tran et al. [64] briefly summarize the overall
achievements of the COMPAS project10 of which the methods and
techniques presented in this paper play a crucial role. This paper tar-
gets the creation and integration of compliance metadata, compli-
10 http://www.compas-ict.eu.
ance DSLs, and SOA concepts through the view-model-based
approach. Oberortner et al. provided detailed specifications of the
QoS DSL in [54–58] whilst the specifications of the licensing DSL
and security DSL are provided in [42] and in [43], respectively. The
traceability approach, namely, VbTrace, proposed in [41] can com-
plement to the work in this paper in the sense that VbTrace can en-
able us to efficiently establish and maintain the dependency links
between model artifacts.

Assuring compliance can be broadly categorized into two main
strategies: ‘‘compliance by design’’, i.e., implementation of compli-
ance through designing it into a system, and ‘‘compliance by detec-
tion’’, i.e., implementation of compliance by observing a system to
ensure that its execution was compliant [65]. The different works
presented in this section address compliance from either one of
or both of these perspectives. Our approach aims at supporting
both compliance strategies assuring perspectives in one integrated
framework. This is necessary because these two perspectives are
not mutual alternatives for fully solving all compliance problems
but both approaches can be useful in different design situations.
In the subsequent paragraphs, we briefly summarize existing
works relate to our approach. Then, we clarify the crucial distinc-
tion of our approach to the related work.

Elgammal et al. [34,66] present a thorough study of existing ap-
proaches for formalizing compliance requirements such as Linear
Temporal Logic (LTL), Computational Tree Logic (CTL), and Formal
Contract language (FCL). Based on that, the authors suggest essen-
tial features for a comprehensive formal language aiming at pro-
viding powerful expressiveness with reasonable complexity as
well as supporting design time verification and runtime monitor-
ing. Arbab et al. proposed a channel-based, formal coordination
model, namely, REO, that can be used to model compliance for
behavioral models, including business processes represented in,
for instance, BPMN and BPEL [8]. The behavior of a business pro-
cess is mapped to so-called REO circuits (the channel-based coor-
dination models). Other types of compliance concerns than
behavioral models cannot be supported. This approach can be ex-
tended by mapping other behavioral models to REO circuits with
additional efforts. Ghose and Koliadis [14] present an approach
for ensuring compliance in which process tasks, such as atomic
tasks, loops, and compensations, and sub-processes are annotated
with (in) formal annotations. Compliance violations can be de-
tected by an exhaustive path exploration algorithm. Ly et al.
[11,12] report a semantic-based compliance verification approach
in which compliance requirements are transformed into mutual
exclusion constraints and dependency constraints. These con-
straints are used to verify the semantic correctness of process mod-
els, process instances, and process evolutions. Another compliance

http://www.compas-ict.eu

Fig. 19. Compliance risk-control matrix.

Fig. 20. Templates written in Xpand language for generating the compliance risk-control matrix.

H. Tran et al. / Information and Software Technology 54 (2012) 531–552 547
validation approach introduced by Namiri et al. [13] is based on the
assumption that process models are by default not compliant.
These non-compliant processes are enriched with controls by the
compliance experts and executed with the support of a monitoring
infrastructure and a knowledge base of controls and process mod-
els to detect compliance violation at runtime. The disadvantage of
this approach is that the compliance rules that are intrusively
embedded in process descriptions can be unintentionally broken
by developers due to their unawareness of those rules. The separa-
tion of compliance concerns and process models in our approach
can help the developers avoid this issue. Awad et al. [15] introduce
an automated approach for checking compliance of business pro-
cess models based on a visual query language BPMN-Q to describe
compliance rules and model checking to assure compliance
requirements are fulfilled. Schumm et al. [33] propose the notion
of process fragments and techniques for extraction, integration,
and visualization of such fragments for modeling compliance in
business processes. Kabicher et al. [28] propose an activity-ori-
ented clustering technique for managing the dependencies be-
tween process models and compliance rules and optimizing
compliance and consistency checking with regard to a consider-
ably large amount of business processes. Schleicher et al. [67] tar-
get the compliance concerns of business processes in cloud-based
systems but merely focus on the data-sovereignty issues. Weigand

548 H. Tran et al. / Information and Software Technology 54 (2012) 531–552
et al. [31] propose an approach to business policy compliance in
SOA-based systems that addresses a clear separation of business
level and execution level in order to achieve more flexibility and
adaptability. In [32], Schleicher et al. introduce the concept of com-
pliance scopes that are the area where certain compliance condi-
tions must hold. The main objective is to better support human
business process designers at design time.

Liu et al. [9] propose a framework for static checking of business
processes in which BPEL processes are transformed into Finite
State Machine (FSM) whilst the compliance requirements are
translated into LTL. Static compliance checking is accomplished
by the model-checker NuSMV2 [68] that validates FSM and LTL
expressions. This framework merely supports checking behavioral
compliant requirements at design time. Lotz et al. propose a com-
pliance framework within the scope of the EU project MASTER [10]
to map abstract controls to concrete control structures and pro-
cesses, enforce the controls in business operations, and evaluate
the effectiveness of the controls. This approach merely focuses on
security related control objectives, i.e., those controls that are lev-
eraged for protecting assets.

The conformity of processes with business contracts which are
legal document and important sources of compliance requirements
are exploited in [16,17]. Both approaches use the same formal rep-
resentation, namely, Formal Contract Language (FCL), for express-
ing the compliance constraints derived from business contracts.
In [17], the authors introduce the Ideal semantics to indicate the
compliance degree ranging from no violation, some repairable vio-
lations, non-repairable violations, and irrelevant. Execution paths
of business processes represented in an event-oriented language
are checked against contract conditions, described in FCL, to
determine the compatibility of business contracts and the business
processes fulfilling the contracts. The approach in [16] goes further
by translating the FCL representation of a business contract into
BPMN-based abstract processes that consists of different parties
involving the contract and the message exchanges between the
parties or private processes that specifies the internal business
logic of a certain party. The contract specifies legal constraints
between parties, and therefore, embodies compliance require-
ments that the (as-is or to-be) business process implementing
the contract have to satisfy (i.e., WHAT) rather than the actual
business logic of the process (i.e., HOW). As a consequence, the
processes translated from business contracts are far from being
executable.

The compliance aware business process design framework pro-
posed by Sadiq et al. [18–22] supports stakeholders at design time
wherein processes, represented in graph based models, are anno-
tated with control tags derived from FCL expressions of compliance
requirements. These control tags represent control objectives and
relevant internal controls that enable the visualization of the con-
trols attached to a particular process as well as support an analysis
tool that generates a quantitative measure of deviation of a process
to certain compliance rules [17]. The framework described in
[69,70] supports stakeholders in representing compliance regula-
tions and laws using a formal policy language, namely, ExPDT,
which is extended to enable it to specify and validate the adher-
ence of business processes to compliance regulations. This ap-
proach concentrates on automatically assuring enforceable
policies. Non-enforceable policy rules are manually handled via
log auditing. Giblin et al. [23,24] propose REALM, a meta-model
for the specification of different regulation, and a compliance man-
agement framework based on REALM. REALM provides a concept
model that captures the concepts and relationships in the regula-
tions, a compliance rule set in a real-time temporal object logic,
and a meta-data providing information of the source regulations
and validity dates. Compliance policies are then translated into
monitoring rules used for runtime monitoring. The transformation
from REALM models, i.e., policy rule, into process models is an
important and difficult step of the framework but has not been
fully described. The support for other compliance requirements,
for example, those considered in this article, have not been covered
by this approach. Mahoney and Gandhi [29] develop an integrated
framework, namely, SCADASiM, for simulating and monitoring reg-
ulatory compliance, especially security concern, in near-real-time
for SCADA-based systems. The root-cause analysis approach based
on property patterns presented in [71] can be used at design time
to specify compliance constraints as well as detect compliance vio-
lations. Our framework can leverage this work as an important
suitable mean for enabling business experts to involve more in
describing and analyzing compliance requirements.

These aforementioned approaches mostly focus on the design
time. However, some compliance concerns, for instance, QoS
latency or availability, can not be verified at design time but run-
time. Van der Aalst et al. [26] proposed an approach for checking
compliance at runtime wherein an extended LTL is used for formal-
izing the dynamic properties of the running systems. These proper-
ties then can be checked against the events mined from log files.
Rozinat et al. [25] presented another approach focusing on confor-
mance checking of processes at runtime. Processes are formalized
using Petri-net and an event log is represented by a set of event se-
quences. Validations are performed to answer whether the real
processes behaviors, recorded in the event logs, actually comply
with the specified behaviors in the process models. In his disserta-
tion work [27], Accorsi tackles the shortcomings of existing poste-
riori auditing systems by using a policy language to describe
policies and automatically examine selected system log records
against the corresponding policy and generate evidence. The exam-
ination is supported by a falsification method which retrieves
counterexamples of adherence to the policy from the log records
in order to refute compliance violations of the corresponding
system.

In summary, we discuss the distinct characteristics of our view-
based model-driven approach for business compliance with re-
spect to the aforementioned work. Firstly, most of these ap-
proaches concentrate on control-flow related aspects, which is
called behavioral compliance in these approaches. Our approach
aims at supporting a wider range of compliance concerns as men-
tioned in Section 2.2 by adequately using different DSLs which are
tailored for particular business and compliance domains.

Secondly, these approaches (except those of [9,19]) are still very
distant from the perception of an important stakeholder: the busi-
ness analyst (or the compliance expert) due to the lack of suitable
and tailorable languages with respect to his/her knowledge and
expertise. We address this issue by the separation of high level
and low level DSLs as well as the separation of DSLs into sub-lan-
guages which are appropriately tailored for particular stakehold-
ers. Furthermore, the separation of abstraction levels along with
the separation of process concerns and compliance concerns en-
hances the extensibility of our approach into both vertical and hor-
izontal dimensions.

Thirdly, these approaches (except [10]), support business
compliance at a certain phase, for instance, either design time or
runtime. On the contrary, our approach is a fully integrated ap-
proach aiming at supporting stakeholders in achieving compliance
by design, statically assessing compliance at design time (cf. Sec-
tion 4.4) as well as automatically generating of processes, services,
monitoring directives, etc., that define rules for runtime checks (cf.
Section 4.4.3).

Last but not least, documentation of the implementation of rel-
evant compliance requirements in business processes are crucial
evidence for compliance auditing. Moreover, the documentation
are important for stakeholders to better understand and analyze
processes and the associated compliances. This aspect has not been

Table 2
Comparing compliance solutions.

Support for compliance by design Support for compliance by detection at design
time

Support for compliance by detection at
runtime

Awad et al. [15] Not supported External model checking validates queried
process models against compliance
constraints and PLTL expressions

Not supported

ExPDT [69,70] Compliance concerns are interpreted
by domain experts and partially
translated into policy rules which are
inputs for automatic validation

Potentially but not mentioned Policy rules derived from compliance
requirements can be inputs for runtime
checking doned by other works, e.g., REALM
[23]

Contract compliance [16,17] Business contracts are translated into
formal representations (deontic logic
and FCL), then mapped to event-based
BPMN processes

Model-checking via formal representations of
business contracts represented by FCL
expressions and business processes mapped
into event-oriented languages

Not supported

Ghose et al. [14] Not supported Exhaustive path explorations for detecting
compliance violations on the BPMN models
annotated with effect annotations in formal
languages, e.g., FCL or informal, e.g.,
Controlled Natural Languages (CNLs)

Not supported

Liu et al. [9] Not supported Process models in BPELs are mapped into Pi-
calculus, then, into Finite State Machine, and
checked against compliance rules being
represented in Business Property
Specification Language (BPSL) and translated
into Linear Temporal Logic (LTL)

Not supported

Ly et al. [11,12] Not supported Process models are verified against semantic
constraints for their correctnesses

Not supported

MASTER [10] Introduce a full life cycle for
modeling, assessment, monitoring,
etc., for security related compliance
concerns

Compliance detection at design time is
performed within the assessment
infrastructure and/or with the feedback from
the online enforcement infrastructure

The observation layer that includes
monitoring infrastructure on top of an event-
based signaling infrastructure for collecting
and processing events generated by
underlying services

Namiri et al. [13] Compliance experts add control
patterns to the process models to
make processes compliant

Not supported Unintentional removing of controls in the
annotated processes by process developers
can be detected at runtime. Events emitting
during the execution of annotated processes
are monitored and validated in the
SemanticMirror detecting violations and firing
relevant recovery actions

REALM [23,24] Not supported Not supported Regulations are interpreted and translated into
REALM policy rules and relevant correlation
rules. The runtime monitoring is enacted by
IBM Active Correlation Technology

REO [8] Modeling compliance in BPMN
process models and mapping them to
REO circuits.

Model verification of the REO circuit via
constraint automata and other formalisms

Not supported

Run-time validation
approaches [26,25,27]

Not supported Not supported Process models formalized and verified against
the events producing during process
executions to detect the non-compliant
behaviors

SCADASiM [29] Not supported Not supported Event-based monitoring capabilities support
near real-time monitoring of security
compliance concerns

Sadiq et al. [18–22] Regulatory compliances are described using
FCL rules whilst process models are graph-
based representations wherein each node has
semantic annotations. These formalizations
are compared to measure the deviations of
compliance that lead to the reparation of
process models

Not supported

SoaML [72] Support for defining service contracts,
such as QoS agreements

Not supported Not supported

VbMF Supported through view-based
models in various compliance
concerns

Support via model validation Supported via code generation of processes,
services, monitoring directives, etc. that define
rules for runtime checks

Weigand et al. [31] Partially supported by transforming
formal business rules to executable
descriptions

Partially supported by formal model checking Not supported

H. Tran et al. / Information and Software Technology 54 (2012) 531–552 549
considered in any of above literatures yet. In our approach, the
Compliance Metadata model, which is the bridge between compli-
ance sources and requirements and the realization of compliance
in terms of compliance DSLs and process models (see Fig. 3), can
be used to generate documentation for the processes and relevant
business compliance (cf. Section 4.5.1).

Tables 2 and 3 summarize these distinctions in details through a
qualitative comparison of the state-of-the art and our approach.

Table 3
Comparing compliance solutions (cont’d).

Supported compliance concerns Extensibility options Support for involving domain experts Documentation of compliance

Awad et al. [15] Mainly support the control flow related compliance
rules

Not supported The query language based on BPMN is intuitive
for domain experts

Not supported

Contract compliance
[16,17]

Formal languages for representing compliances
(FCL, deontic) solely cover behavioral compliance
concerns

Based on FCL and deontic logic, this approach hardly
support other compliance concerns which are not
mappable to deontic logic and FCL, for instance,
temporal and licensing requirements, etc.

Formal languages used in this approach have
friendly syntax and semantics for domain
experts whilst process models are supposed to
be BPMN alike

Not supported

ExPDT [69,70] Supported privacy related concerns Not supported ExPDT is the formal language aiming at
supporting domain experts in translating
compliance requirements into policy rules

Potentially supported, especially
on privacy based compliance
concerns, but not mentioned

Ghose et al. [14] Control flow-based concerns akin to BPMN process
models which are then mapped to Semantic
Process Networks (SPNets)

(1) Merely focuses on the control flow; (2) Mapping of
compliance requirements from CNLs to effect
annotations leads to the fact that only the compliance
concerns which are able to be described in CNLs akin
are supported

(1) High-level process models, such as BPMN
diagrams alike, are supported; (2) Compliance
requirements are encoded using CNLs which are
close to domain experts

Not supported

Liu et al. [9] Mainly dealing with the compliant requirements
which can be described by temporal logics. Other
concerns, such as those considering in this article,
are not mentioned

There is no support for the other formalisms which
are different from those using in this approach, i.e., Pi-
calulus, FSM, LTL, and BPSL

BPSL is an intuitive formalism for business
experts, but BPEL is much more technology-
specific. High level languages, for instance,
BPMN, are often hardly leveraged due to the
difference of formalisms

Compliance checking reports

Ly et al. [11,12] Semantic constraints are used to describe the
mutual exclusion and dependency of process tasks

Semantic constraints are not rich enough for other
kinds of compliance concerns, such as obligations,
locative, QoS, licensing, etc.

Semantic constraints and graph-based process
models are suitable for domain experts

Not supported

MASTER [10] Solely focus on security related compliance
concerns

Not supported Introduce two level of abstractions: business
models for domain experts, and technical
models for IT experts

Potentially supported but not
mentioned

Namiri et al. [13] Mainly focus on behavioral compliance concerns
that can impact the process execution

Some other concerns exist in the high level control
patterns, but are not mentioned how to apply those
patterns in business processes

Compliance representations (i.e., control
patterns) and the graph-based process model
are suitable for compliance experts

Not supported

REALM [23,24] REALM is intentionally designed to support the
formalization of regulations

Supporting other compliance concerns, such as those
mentioned in this article, are not mentioned

REALM provides adequate representations and
tool supports for domain experts

REALM potentially provides
documentation for regulatory
associated with policy rules via
the metadata

REO [8] Behavioral concerns akin to BPMN process models
(other process models such as UML activity
diagrams can be mapped to REO circuits, too)

REO is extensible with new channels, new import
mappings, and additional formal semantics and
model checkers

High-level model such as BPMN models can be
mapped to REO.

Not supported

Run-time validation
approaches
[26,25,27]

Mainly focus on the behavioral concerns Not supported Process models are represented in high level and
intuitive formalisms, e.g., Petri-net

Not supported

SCADASiM [29] Mainly support security compliance Not supported Not supported Partially supported via an XML-
based security compliance
specification

Sadiq et al. [18–22] Based on FCL, same as [16,17] Same as [16,17] [19] Provides annotated process visualizations
for domain experts

Potentially supported but not
mentioned

SoaML [72] Provides modeling of service contracts between
service provider and service client, such as
requirements, service interactions, QoS
agreements, interface and choreography
agreements, and commercial agreements

SoaML is implemented as a UML2 profile and hence
can be extended easily

Domain experts must have UML2 knowledge Not supported

VbMF Views for compliance in process models,
compliance in services, QoS policies, licenses,
regulatory provisions, compliance in data models,
security policies

View models are extensible with any new kind of
view

Support for high-level/low-level DSLs; reports,
visualizations, and documentation can be
generated

Compliance Metadata model:
reports, visualizations, and
documentation can be generated

Weigand et al. [31] Business policies and business rules Not supported Partially supported by separation of business
rules and policies from the execution level

Partially supported via the
business policies and business
rules specifications

550
H

.Tran
et

al./Inform
ation

and
Softw

are
Technology

54
(2012)

531–
552

H. Tran et al. / Information and Software Technology 54 (2012) 531–552 551
6. Conclusions

There are crucial shortcomings of existing approaches to busi-
ness compliance for SOAs, for instance, concentrating on control-
flow aspects, lacking of suitable and tailorable languages that
appropriately target stakeholders with respect to his/her domain
knowledge and expertise, addressing business compliance at a cer-
tain phase, for instance, either design time or runtime, and not con-
sidering the documentation of the implementation of compliance
requirements in business processes which are vital evidences for
compliance auditing.

We have presented in this article a novel approach and associ-
ated architecture for dealing with compliance in process-driven
SOAs. Our approach can support stakeholders in a more extensible
and flexible way, comparing to the existing works, in dealing with
the divergence of multiple compliance sources realized using all
possible kinds of automatic controls, including, but not limited
to, controls in processes, services, QoS policies, license policies,
security policies, and so on. This includes both design time and
runtime controls. The control code, as well as the compliance con-
trol documentation, can be automatically generated from the mod-
els. Due to the generated documentation that is associated with the
models, the compliance information cannot get lost during the
evolution of the architecture. DSLs and view models can be used
to present compliance concerns to each stakeholder in a view that
is most appropriate for the stakeholder’s current work task.

The view-based, model-driven framework for compliance in
SOAs presented in this article lays a solid foundation for compliance
engineering. Our ongoing work is to complement this framework
with an integrated development environment that facilitates col-
laborative model-driven design with different stakeholders as well
as a runtime governance infrastructure that enacts the detection of
compliance violations and compliance enforcement according to
the monitoring directives generated from compliance DSLs and
the Compliance Metadata model. Besides, we also consider to im-
prove the capability of transforming or importing compliance
sources specified in standard specification languages.
Acknowledgments

We would like to thank the anonymous reviewers for providing
insightful and constructive comments that greatly help us to im-
prove this article. This work was partially supported by the Euro-
pean Union FP7 Project COMPAS (http://www.compas-ict.eu),
Grant No. 215175 and the European Union FP7 Project INDENICA
(http://www.indenica.eu), Grant No. 257483.
References

[1] A. Tarantino, Governance, Risk, and Compliance Handbook: Technology,
Finance, Environmental, and International Guidance and Best Practices,
Wiley, 2008.

[2] Basel Committee on Banking Supervision, Basel II: International Convergence
of Capital Measurement and Capital Standards: a Revised Framework, June
2004, <http://www.bis.org/publ/bcbs107.htm> (accessed 01.11.11).

[3] IASB, International Financial Reporting Standards (IFRSs), 2007, <http://
www.ifrs.org/IFRSs/IFRs.htm> (accessed 01.11.11).

[4] UK Financial Services Authority, Markets in Financial Instruments Directive
(MiFID), November 2007, <http://www.fsa.gov.uk/pages/About/What/
International/mifid> (accessed 01.11.11).

[5] Ministre de l’ conomie, des finances et de l’industrie, Loi de Sécurité Financière
(LSF), August 2003, <http://www.senat.fr/leg/pjl02-166.html> (accessed
01.11.11).

[6] The Netherlands Corporate Governance Committee, The Dutch Corporate
Governance Code, December 2003, http://commissiecorporategovernance.nl/
page/downloads/CODE (accessed 01.11.11).

[7] US Congress, Sarbanes-Oxley Act of 2002, January 2002, <http://frwebgate.
access.gpo.gov/cgi-bin/getdoc.cgi?dbname=107_cong_bills&docid=f:h3763enr.
tst.pdf> (accessed 01.11.11).
[8] F. Arbab, N. Kokash, S. Meng, Towards using reo for compliance-aware business
process modeling, in: Proc. of the Third Intl. Sym. on Leveraging Applications of
Formal Methods, Verification and Validation (ISoLA 2008), CCIS, vol. 17,
Springer, 2008, pp. 108–123.

[9] Y. Liu, S. Müller, K. Xu, A static compliance-checking framework for business
process models, IBM Syst. J. 46 (2) (2007) 335–361.

[10] V. Lotz, E. Pigout, P.M. Fischer, D. Kossmann, F. Massacci, A. Pretschner,
Towards systematic achievement of compliance in service-oriented
architectures: the MASTER approach, WIRTSCHAFTSINFORMATIK 50 (5)
(2008) 383–391.

[11] L.T. Ly, K. Gser, S. Rinderle-Ma, P. Dadam, Compliance of semantic constraints –
A requirements analysis for process management systems, in: 1st Int’l
Workshop on Governance, Risk and Compliance – Applications in
Information Systems (GRCIS’08), 2008.

[12] L.T. Ly, S. Rinderle, P. Dadam, Integration and verification of semantic
constraints in adaptive process management systems, Data Knowl. Eng. 64
(1) (2008) 3–23.

[13] K. Namiri, N. Stojanovic, Pattern-based design and validation of business
process compliance, in: Proceedings of the 2007 OTM Confederated
International Conference on the Move to Meaningful Internet Systems:
CoopIS, DOA, ODBASE, GADA, and IS – Volume Part I, Springer-Verlag, 2007,
pp. 59–76.

[14] A. Ghose, G. Koliadis, Auditing business process compliance, in: 5th
International Conference on Service-Oriented Computing (ICSOC), Springer-
Verlag, 2007, pp. 169–180.

[15] A. Awad, G. Decker, M. Weske, Efficient compliance checking using BPMN-Q
and temporal logic, in: 6th International Conference on Business Process
Management (BPM), Springer-Verlag, 2008, pp. 326–341.

[16] Z. Milosevic, S.W. Sadiq, M.E. Orlowska, Translating business contract into
compliant business processes, in: Tenth IEEE International Enterprise
Distributed Object Computing Conference (EDOC 2006), 16–20 October
2006, IEEE Computer Society, Hong Kong, China, 2006, pp. 211–220.

[17] G. Governatori, Z. Milosevic, S.W. Sadiq, Compliance checking between
business processes and business contracts, in: Tenth IEEE International
Enterprise Distributed Object Computing Conference (EDOC 2006), 16–20
October 2006, Hong Kong, China, 2006, pp. 221–232.

[18] R. Lu, S.W. Sadiq, G. Governatori, Compliance aware business process design,
in: Proceedings of the 2007 International Conference on Business Process
Management, Springer-Verlag, 2008, pp. 120–131.

[19] S.W. Sadiq, G. Governatori, K. Namiri, Modeling control objectives for business
process compliance, in: Proceedings of the 5th International Conference on
Business Process Management (BPM), Springer-Verlag, 2007, pp. 149–164.

[20] R. Lu, S.W. Sadiq, G. Governatori, Measurement of compliance distance in
business processes, IS Manage. 25 (4) (2008) 344–355.

[21] S. Sadiq, G. Governatori, Managing Regulatory Compliance in Business
Processes, second ed., Handbook of Business Process Management, Springer,
2010.

[22] G. Governatori, J. Hoffmann, S. Sadiq, I. Weber, Detecting regulatory
compliance for business process models through semantic annotations, in:
BPD-08: 4th Intl. Workshop on Business Process Design, 2008, pp. 5–17.

[23] C. Giblin, S. Müller, B. Pfitzmann, From regulatory policies to event monitoring
rules: towards model-driven compliance automation, Tech. Rep. RZ 3662, IBM
Research, 2006.

[24] C. Giblin, A.Y. Liu, X. Zhou, Regulations expressed as logical models (REALM),
in: A.I.O.S. Press (Ed.), Proc. of the 18th Annual Conference on Legal Knowledge
and Information Systems (JURIX 2005), 2005, pp. 37–48.

[25] A. Rozinat, W.M.P. van der Aalst, Conformance checking of processes based on
monitoring real behavior, Inf. Syst. 33 (1) (2008) 64–95.

[26] W.M.P. van der Aalst, H.T. de Beer, B.F. van Dongen, Process mining and
verification of properties: an approach based on temporal logic, in: On the
Move to Meaningful Internet Systems 2005: CoopIS, DOA, and ODBAS,
Springer, 2005, pp. 130–147.

[27] R. Accorsi, Automated counterexample-driven audits of authentic system
records, Ph.D. thesis, University of Freiburg, Germany, 2008.

[28] S. Kabicher, S. Rinderle-Ma, L.T. Ly, Activity-oriented clustering techniques in
large process and compliance rule repositories, in: Proc. BPM’11 Workshops,
1st Int. Workshop on Process Model Collections (PMC 2011), Springer, 2011.

[29] W. Mahoney, R.A. Gandhi, An integrated framework for control system
simulation and regulatory compliance monitoring, Int. J. Crit. Infrastruct.
Prot. 4 (1) (2011) 41–53.

[30] P. Silveira, C. Rodrguez, A. Birukou, F. Casati, F. Daniel, V. D’Andrea, C.
Worledge, Z. Taheri, Aiding Compliance Governance in Service-Based Business
Processes, Non-Functional Properties for Service-Oriented Systems: Future
Directions (NFPSLA-BOOK-2011) Edition, IGI Global, 2011.

[31] H. Weigand, W.-J. van den Heuvel, M. Hiel, Business policy compliance in
service-oriented systems, Inf. Syst. 36 (4) (2011) 791–807 (Selected Papers
from the 2nd International Workshop on Similarity Search and Applications
SISAP 2009. doi:DOI: 10.1016/j.is.2010.12.005).

[32] D. Schleicher, F. Leymann, D. Schumm, M. Weidmann, Compliance scopes:
Extending the BPMN 2.0 meta model to specify compliance requirements, in:
International Conference on Service-Oriented Computing and Applications
(SOCA 2010), 2010, pp. 1–8.

[33] D. Schumm, F. Leymann, A. Streule, Process views to support compliance
management in business processes, in: E-Commerce and Web Technologies,
11th International Conference, EC-Web 2010, Bilbao, Spain, September 1–3,
2010. Proceedings, 2010, pp. 131–142.

http://www.compas-ict.eu
http://www.indenica.eu
http://www.bis.org/publ/bcbs107.htm
http://www.ifrs.org/IFRSs/IFRs.htm
http://www.ifrs.org/IFRSs/IFRs.htm
http://www.fsa.gov.uk/pages/About/What/International/mifid
http://www.fsa.gov.uk/pages/About/What/International/mifid
http://www.senat.fr/leg/pjl02-166.html
http://commissiecorporategovernance.nl/page/downloads/CODE
http://commissiecorporategovernance.nl/page/downloads/CODE
http://frwebgate.access.gpo.gov/cgi-bin/getdoc.cgi?dbname=107_cong_bills&docid=f:h3763enr.tst.pdf
http://frwebgate.access.gpo.gov/cgi-bin/getdoc.cgi?dbname=107_cong_bills&docid=f:h3763enr.tst.pdf
http://frwebgate.access.gpo.gov/cgi-bin/getdoc.cgi?dbname=107_cong_bills&docid=f:h3763enr.tst.pdf

552 H. Tran et al. / Information and Software Technology 54 (2012) 531–552
[34] A. Elgammal, O. Turetken, W.-J. van den Heuvel, M. Papazoglou, On the formal
specification of regulatory compliance: a comparative analysis, in: Proceedings
of the 2010 International Conference on Service-Oriented Computing (ICSOC),
Springer-Verlag, Berlin, Heidelberg, 2011, pp. 27–38.

[35] T. Stahl, M. Völter, Model-Driven Software Development, John Wiley & Sons,
2006.

[36] J. Greenfield, K. Short, S. Cook, S. Kent, Software Factories: Assembling
Applications with Patterns, Frameworks, Models & Tools, J. Wiley and Sons
Ltd., 2004.

[37] S. Kelly, J.P. Tolvanen, Domain-Specific Modeling: Enabling Full Code
Generation, John Wiley & Sons, 2008.

[38] H. Tran, U. Zdun, S. Dustdar, View-based and model-driven approach for
reducing the development complexity in process-driven SOA, in: Intl. Working
Conf. on Business Process and Services Computing (BPSC’07), vol. 116 of LNI,
2007, pp. 105–124.

[39] H. Tran, U. Zdun, S. Dustdar, View-based reverse engineering approach for
enhancing model interoperability and reusability in process-driven SOAs, in:
10th Intl. Conf. on Software Reuse (ICSR’08), LNCS, Springer, 2008, pp. 233–
244.

[40] T. Holmes, H. Tran, U. Zdun, S. Dustdar, Modeling human aspects of business
processes – a view-based, model-driven approach, in: Proceedings of the 4th
European Conference on Model Driven Architecture: Foundations and
Applications (ECMDA-FA), Springer, 2008, pp. 246–261.

[41] H. Tran, U. Zdun, S. Dustdar, Name-based view integration for enhancing the
reusability in process-driven SOAs, Int. J. Bus. Process Integr. Manage. 5 (3)
(2011) 229–239, doi:10.1504/IJBPIM.2011.042527.

[42] G.R. Gangadharan, V. D’Andrea, Managing copyrights and moral rights of
service-based software, IEEE Softw. 28 (2011) 48–55.

[43] COMPAS Deliverable D5.4, Reasoning Mechanisms to Support the
Identification and the Analysis of Problems Associated with User Requests,
December 2009, <http://compas-ict.eu/compas_results/deliverables/m23/
D5.4_Reasoning-mechanisms.pdf>.

[44] C. Hentrich, U. Zdun, Patterns for process-oriented integration in service-
oriented architectures, in: Proceedings of 11th European Conference on
Pattern Languages of Programs (EuroPLoP 2006), Irsee, Germany, 2006, pp.
1–45.

[45] U. Zdun, S. Dustdar, Model-driven and pattern-based integration of process-
driven SOA models, Int. J. Bus. Process Integr. Manage. (IJBPIM) 2 (2) (2007)
109–119.

[46] OMG, Business Process Model and Notation (BPMN) 2.0, January 2011, <http://
www.omg.org/spec/BPMN/2.0/PDF>.

[47] OASIS, Web Services Business Process Execution Language (WSBPEL) v2.0, May
2007, <http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.pdf>.

[48] OMG, Unified modelling language 2.0, July 2005, <http://www.omg.org/spec/
UML/2.0>.

[49] H. Tran, T. Holmes, U. Zdun, S. Dustdar, Modeling process-driven SOAs – a
view-based approach, in: J. Cardoso, W.M.P. van der Aalst (Eds.), Handbook of
Research on Business Process Modeling, IGI Global, 2009, <https://
www.infosci-online.com/reference/details.asp?id=33287> (Chapter 2).

[50] H. Tran, U. Zdun, S. Dustdar, Name-based view integration for enhancing the
reusability in process-driven SOAs, in: BPM 2010 International Workshops and
Education Track, Hoboken, NJ, USA, September 13–15, 2010, Revised Selected
Papers, vol. 66 of LNBIP, Springer, 2010, pp. 338–349.

[51] H. Tran, U. Zdun, S. Dustdar, VbTrace: using view-based and model-driven
development to support traceability in process-driven SOAs, Softw. Syst.
Model. 10 (1) (2011) 5–29. doi:10.1007/s10270-009-0137-0.

[52] C. Mayr, U. Zdun, S. Dustdar, Model-driven integration and management of
data access objects in process-driven SOAs, in: Proceedings of the 1st European
Conference on Towards a Service-Based Internet: ServiceWave ’08, Springer-
Verlag, 2008, pp. 62–73.

[53] IBM, Travel Booking Process, 2006, <http://publib.boulder.ibm.com/bpcsamp/
scenarios/travelBooking.html> (accessed 01.11.11).

[54] E. Oberortner, U. Zdun, S. Dustdar, Tailoring a model-driven quality-of-service
DSL for various stakeholders, in: MISE ’09: Proceedings of the 2009 ICSE
Workshop on Modeling in Software Engineering, Vancouver, BC, Canada, 2009,
pp. 20–25.
[55] E. Oberortner, U. Zdun, S. Dustdar, Patterns for measuring performance-related
QoS properties in distributed systems, in: 17th Conference on Pattern
Languages of Programs (PLOP), Nevada, USA, 2010.

[56] E. Oberortner, U. Zdun, S. Dustdar, A.B. Cavalcante, M. Tluczek, Supporting the
evolution of model-driven service-oriented systems: a case study on QoS-
aware process-driven SOAs, in: IEEE International Conference on Service-
Oriented Computing and Applications (SOCA 2010), Perth, Australia, 2010, pp.
1–4.

[57] E. Oberortner, S. Sobernig, U. Zdun, S. Dustdar, Monitoring of performance-
related qoS properties in service-oriented systems: a pattern-based
architectural decision model, in: Proceedings of the 16th European
Conference on Pattern Languages of Programs (EuroPLoP), Irsee, Germany,
2011.

[58] E. Oberortner, D. Damian, Towards patterns to enhance the communication in
distributed software development environments, in: 18th Conference on
Pattern Languages of Programs (PLOP), Portland, OR, USA, 2011.

[59] S. Ran, A model for web services discovery with QoS, SIGecom Exch. 4 (1)
(2003) 1–10.

[60] L. Baresi, S. Guinea, Self-supervising BPEL processes, IEEE Trans. Softw. Eng. 37
(2011) 247–263. doi:http://dx.doi.org/10.1109/TSE.2010.37.

[61] W3C, Web Services Description Language (WSDL), May 2007, <http://
www.w3.org/TR/wsdl>.

[62] H. Tran, U. Zdun, S. Dustdar, View-based integration of process-driven SOA
models at various abstraction levels, in: Int’l Workshop on Model-Based
Software and Data Integration (MBSDI), Springer CCIS, Berlin, Germany, 2008,
<http://cis.cs.tu-berlin.de/Forschung/Projekte/bizycle/mbsdi2008/>.

[63] H. Tran, T. Holmes, U. Zdun, S. Dustdar, Using model-driven views and trace
links to relate requirements and architecture: a case study, in: J. Grundy, J.G.
Hall, P. Avgeriou, Patricia Lago, I. Mistrik (Eds.), Relating Software
Requirements and Architectures, Springer, 2011, pp. 233–256 (Chapter 14).

[64] H. Tran, T. Holmes, E. Oberortner, E. Mulo, A.B. Cavalcante, J. Serafinski, M.
Tluczek, A. Birukou, F. Daniel, P. Silveira, U. Zdun, S. Dustdar, An end-to-end
framework for business compliance in process-driven SOAs, in: International
Symposium on Symbolic and Numeric Algorithms for Scientific Computing,
IEEE Computer Society, 2010, pp. 407–414. doi:doi.ieeecomputersociety.org/
10.1109/SYNASC.2010.52.

[65] S. Sackmann, M. Kahmer, M. Gilliot, L. Lowis, A classification model for
automating compliance, in: Proceedings of the 2008 10th IEEE Conference on
E-Commerce Technology and the Fifth IEEE Conference on Enterprise
Computing, E-Commerce and E-Services, IEEE Computer Society, 2008, pp.
79–86.

[66] A. Elgammal, O. Türetken, W.-J. van den Heuvel, M.P. Papazoglou, On the
formal specification of regulatory compliance: a comparative analysis, in:
ICSOC Workshops, 2010, pp. 27–38.

[67] D. Schleicher, C. Fehling, S. Grohe, F. Leymann, A. Nowak, P. Schneider, D.
Schumm, Compliance domains: a means to model data-restrictions in cloud
environments, in: Proceedings of the 15th IEEE International Enterprise
Distributed Object Computing Conference (EDOC 2011), 2011, pp. 257–266.

[68] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri, R.
Sebastiani, A. Tacchella, NuSMV 2: an opensource tool for symbolic model
checking, in: 14th Intl. Conf. Computer Aided Verification (CAV’02), Springer,
2002, pp. 241–268.

[69] M. Kähmer, M. Gilliot, G. Muller, Automating privacy compliance with ExPDT,
in: Proceedings of the 2008 10th IEEE Conference on E-Commerce Technology
and the Fifth IEEE Conference on Enterprise Computing, E-Commerce and E-
Services, 2008, pp. 87–94.

[70] S. Sackmann, M. Kähmer, ExPDT: a policy-based approach for automating
compliance, WIRTSCHAFTSINFORMATIK 50 (5) (2008) 366–374.

[71] A. Elgammal, O. Türetken, W.-J. van den Heuvel, M.P. Papazoglou, Root-cause
analysis of design-time compliance violations on the basis of property
patterns, in: Service-Oriented Computing – ICSOC 2010 International
Workshops, PAASC, WESOA, SEE, and SOC-LOG, Revised Selected Papers,
2010, pp. 17–31.

[72] OMG, Service-Oriented Architecture Modeling Language (SoaML) –
Specification for the UML Profile and Metamodel for Services, Tech. rep.,
OMG , 2008.

http://dx.doi.org/10.1504/IJBPIM.2011.042527
http://compas-ict.eu/compas_results/deliverables/m23/D5.4_Reasoning-mechanisms.pdf
http://compas-ict.eu/compas_results/deliverables/m23/D5.4_Reasoning-mechanisms.pdf
http://www.omg.org/spec/BPMN/2.0/PDF
http://www.omg.org/spec/BPMN/2.0/PDF
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.pdf
http://www.omg.org/spec/UML/2.0
http://www.omg.org/spec/UML/2.0
http://https://www.infosci-online.com/reference/details.asp?id=33287
http://https://www.infosci-online.com/reference/details.asp?id=33287
http://publib.boulder.ibm.com/bpcsamp/scenarios/travelBooking.html
http://publib.boulder.ibm.com/bpcsamp/scenarios/travelBooking.html
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/wsdl
http://cis.cs.tu-berlin.de/Forschung/Projekte/bizycle/mbsdi2008/

	Compliance in service-oriented architectures: A model-driven and view-based approach
	1 Introduction
	2 Background
	2.1 Process-driven service-oriented architectures
	2.2 Compliance concerns occurring in SOAs

	3 Model-driven approach to supporting compliance in SOAs
	3.1 Approach overview
	3.2 View-model-based compliance framework
	3.3 DSLs for compliance concerns
	3.3.1 The high-level QoS DSL
	3.3.2 The low-level QoS DSL
	3.3.3 The language model of the low-level QoS DSL

	3.4 Compliance metadata model
	3.5 OCL-based model validation and code generation

	4 Case study
	4.1 CRM Fulfillment process
	4.2 Compliance requirements for the CRM Fulfillment process
	4.3 Modeling the CRM Fulfillment process
	4.4 Modeling the QoS compliance concerns of the CRM Fulfillment process
	4.4.1 Using the high-level QoS DSL
	4.4.2 Using the low-level QoS DSL
	4.4.3 Generated code for QoS compliance concerns

	4.5 Compliance metadata: the coalescence of process-driven SOAs and business compliance
	4.5.1 Compliance documentation

	5 Related work
	6 Conclusions
	Acknowledgments
	References

