
1

End-to-End Support for QoS-Aware Service
Selection, Binding and Mediation in VRESCo

Anton Michlmayr, Member, IEEE, Florian Rosenberg, Member, IEEE,
Philipp Leitner, Member, IEEE, and Schahram Dustdar, Member, IEEE

Abstract—Service-oriented Computing has recently received a lot of attention from both academia and industry. However, current
service-oriented solutions are often not as dynamic and adaptable as intended because the publish-find-bind-execute cycle of the SOA
triangle is not entirely realized. In this paper, we highlight some issues of current Web service technologies, with a special emphasis
on service metadata, Quality of Service, service querying, dynamic binding and service mediation. Then, we present the Vienna
Runtime Environment for Service-oriented Computing (VRESCo) that addresses these issues. We give a detailed description of the
different aspects by focusing on service querying and service mediation. Finally, we present a performance evaluation of the different
components, together with an end-to-end evaluation to show the applicability and usefulness of our system.

Index Terms—Web Services Publishing and Discovery, Metadata of Services Interfaces, Advanced Services Invocation Framework

�

1 INTRODUCTION

During the last few years, Service-oriented Architec-
ture (SOA) and Service-oriented Computing (SOC) [1]
has gained acceptance as a paradigm for addressing
the complexity that distributed computing generally in-
volves. In theory, the basic SOA model consists of three
actors that communicate in a loosely coupled way as
shown in Figure 1a. Service providers implement services
and make them available in service registries. Service
consumers (also called service requesters) query service
information from the registry, bind to the corresponding
service provider, and finally execute the service. Due
to platform-independent service descriptions, one can
implement flexible applications with respect to manage-
ability and adaptivity. For instance, services can easily
be exchanged at runtime and service consumers can
switch to alternative services seamlessly, which increases
organizational agility. Web services [2] represent the
most common realization of SOA, building on the stan-
dards SOAP [3] for communication, WSDL [4] for service
interface descriptions, and UDDI [5] for registries.

However, practice has shown that SOA solutions are
often not as flexible and adaptable as claimed. We argue
that there are some issues in current implementations
of the SOA model. First and foremost, service registries
such as UDDI and ebXML [6] did not succeed. We
think this is partly due to their limited querying support
that only provides keyword-based matching of registry
content, and insufficient support for metadata and non-
functional properties of services. This is also highlighted
by the fact that Microsoft, SAP, and IBM have finally

• Anton Michlmayr, Philipp Leitner and Schahram Dustdar are with the
Distributed Systems Group, Vienna Univ. of Technology, Argentinier-
strasse 8, 1040 Vienna, Austria. E-mail: {lastname}@infosys.tuwien.ac.at

• Florian Rosenberg is with CSIRO ICT Centre, GPO Box 664, Canberra
ACT 2601, Australia. E-mail: florian.rosenberg@csiro.au

shut down their public UDDI registries in 2005. As a
result, service registries are often missing in service-
centric systems (i.e., no publish and find primitives). This
leads to point-to-point solutions where service endpoints
are exchanged at design-time (e.g., using E-mail) and
service consumers statically bind to them (see Figure 1b).

Service
Contract

Service
Registry

Service
Provider

Service
Consumer Bind/Execute

PublishFind

(a) SOA Model

Service
Contract

Service
Provider

Service
Consumer Bind/Execute

(b) SOA Practice

Fig. 1: SOA Theory vs. Practice (adapted from [7])

Besides that, support for dynamic binding and invo-
cation of services is often restricted to services having
the same technical interface. In this regard, the lack
of service metadata makes it difficult for service con-
sumers to know if two services actually perform the
same task. Furthermore, support for Quality of Service
(QoS) is necessary to enable service selection based on
non-functional QoS attributes such as response time (in
addition to functional attributes).

In this paper, we discuss the issues we see in current
SOC research and practice by describing the problems
that arise when building SOC applications with current
tools and frameworks. The main contribution is the pre-
sentation of the VRESCO service runtime environment
that aims at solving some of these issues. To be more
specific, the present paper focuses on service metadata,
QoS and service querying, plus dynamic binding, invo-
cation, and mediation of services. Additionally, we pro-
vide an extensive performance evaluation of the different
components and an end-to-end evaluation of the overall

Digital Object Indentifier 10.1109/TSC.2010.20 1939-1374/10/$26.00 © 2010 IEEE

IEEE TRANSACTIONS ON SERVICES COMPUTING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

2

runtime, that shows the applicability of our approach.
The remainder of this paper is organized as follows:

Section 2 presents an illustrative example and summa-
rizes some issues of SOC research and practice. Section 3
describes the details of the VRESCO runtime environ-
ment, while Section 4 gives a thorough evaluation of
our work. Section 5 introduces related approaches and
Section 6 finally concludes the paper.

2 MOTIVATION AND PROBLEM STATEMENT

This section first introduces a motivating example which
is used throughout the paper. Then, we derive the prob-
lems developers face when engineering service-centric
systems with current tools and frameworks.

2.1 Motivating Example
Figure 2 shows a typical enterprise application scenario
from the telecommunications domain. The overview of
this case study is depicted in Figure 2a.

Shippers

Suppliers

Manufacturers

Banks

CPO1
Public Services

Order Service

Roaming/Rate
Information Service

Customer Services

Customer Service

Messaging Services

Inhouse Services

CRM Services

Mobile Operation
Services

Number Porting
Service

Billing Service

CPO3

Number Porting
Service

CPO2

Number Porting
Service

1

(a) Case Study Overview

Mail Service

Partner CPO ServicesProcessInternal Services

Check
Portability

Status

Activate
Number

Notify
Customer

Lookup
Customer

Lookup
Partner

Port
Number

E-Mail Service

SMS Service

CRM Service

CPO Service

Number Porting
Service

Mobile Operation
Service

Internal External

(b) Number Porting Process

Fig. 2: CPO Case Study

Cell phone operator CPO1 provides different kinds of
services: Public Services (e.g., Rate Information Service)
can be used by everyone. Customer Services (e.g., SMS
Service) are used by customers of CPO1, whereas Inhouse
Services (e.g., CRM Services) represent internal services
which should only be accessed by the different depart-
ments of CPO1. Besides that, CPO1 consumes services
from its partners (e.g., cell phone manufacturers and
suppliers) and competitors (e.g., CPO2 and CPO3). As
discussed later, this scenario bears several challenges
that are typical in service-centric software engineering.

According to European law, consumers can keep their
mobile phone number when switching to another CPO.
Figure 2b shows a simplified number porting process
(depicted as oval boxes). This process is interesting
because it contains both internal and external services
(depicted as rectangles), and multiple service candidates.
After the customer has been looked up using the CRM

Service, the external Number Porting Service of the old
CPO has to be invoked. If the number is portable the
porting is executed by the old CPO. If this step was
successful the new CPO is informed, which activates the
new number using the Mobile Operation Service. Finally,
a notification is sent to the customer using the preferred
notification mechanism (e.g., SMS, E-mail, etc.).

2.2 SOC Challenges

Adaptive service-oriented systems bring along several
distinct requirements, leading to a number of challenges
that have to be addressed. In this section, we summa-
rize the current challenges we see most important. The
contribution of VRESCO is to address these challenges
in a comprehensive service runtime environment.

• Service Metadata. Service interface description lan-
guages such as WSDL focus on the interface needed
to invoke a service. However, from this interface it
is often not clear what a service actually does, and if
it performs the same task as another service. Service
metadata [8] can give additional information about
the purpose of a service and its interface (e.g., pre-
and post-conditions). For instance, in the CPO case
study without service metadata it is not clear if the
number porting services of CPO2 and CPO3 actually
perform the same task.

• Service Querying. Once services and associated meta-
data are defined, this information should be dis-
covered and queried by service consumers. This
is the focus of service registry standards such as
UDDI [5] and ebXML [6]. In practice, the service
registry is often missing since there are no public
registries and service providers often do not want
to maintain their own registry [7]. Besides service
discovery, another issue is how to select a service
from a pool of service candidates [9] by means of a
querying language. For instance, CPO1 may want to
select the SMS Service with the highest availability.

• Quality of Service (QoS). In enterprise scenarios QoS
plays a crucial role [10]. This includes both network-
level attributes (e.g., latency and availability), and
application-level attributes (e.g., response time and
throughput). The QoS model should be extensible to
allow service providers to adapt it for their needs.
Furthermore, QoS must be monitored accordingly
so that users can be notified when the measured
values violate Service Level Agreements (SLA).

• Dynamic Binding and Invocation. One of the main ad-
vantages of service-centric systems has always been
the claim that service consumers can dynamically
bind and invoke services from a pool of candidate
services. However, in practice this requires identical
service interfaces, which is often not the case. There-
fore, we argue that the bind and execute primitives
of SOA are not solved sufficiently. This raises the
need for mechanisms that mediate between alter-
native services possibly having different interfaces.

IEEE TRANSACTIONS ON SERVICES COMPUTING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

3

Considering the CPO case study, the interfaces of
CPO2’s and CPO3’s number porting service might
differ, but the number porting process of CPO1
should still be able to seamlessly switch between
them at runtime.

Besides these core challenges, other aspects such as
service versioning [11] or event processing [12] are of crucial
importance for SOC. However, a detailed description is
out of scope of this paper, and the interested reader is
referred to our previous work.

3 SYSTEM DESCRIPTION

This section describes in detail the VRESCO runtime
which was first sketched in [7]. Besides an architectural
overview, we discuss service metadata and querying,
as well as dynamic binding together with our service
mediation approach.

3.1 Overview

The architectural overview of VRESCO is shown in Fig-
ure 3, which is adapted from [13]. The VRESCO core ser-
vices are provided as Web services that can be accessed
either directly using SOAP or by using the Client Library
that provides a simple API. Furthermore, the DAIOS
framework [14] has been integrated into the Client Li-
brary, and provides stubless, protocol-independent, and
message-driven invocation of services. The Access Con-
trol Layer guarantees that only authorized clients can
access the core services, which is handled using claim-
based access control and certificates [13]. Services and
associated metadata are stored in the Registry Database
which is accessed using the Object-Relational Mapping
(ORM) Layer. Finally, the QoS Monitor is responsible
for regularly measuring the current QoS values. The
overall system is implemented in C# using the Windows
Communication Foundation [15]. Due to the platform-
independent architecture, the Client Library can be pro-
vided for different platforms (e.g., C# and Java).

There are several core services. The Publishing/Meta-
data Service is used to publish services and metadata
into the Registry Database. Furthermore, the Manage-
ment Service is responsible for managing user infor-
mation (e.g., name, password, etc.) whereas the Query
Engine is used to query the Registry Database. The
Notification Engine informs users when certain events of
interest occur inside the runtime, while the Composition
Engine [16] provides mechanisms to compose services by
specifying hard and soft constraints on QoS attributes.
In this paper, we focus on the main requirements for our
client-side mediation approach which are the Metadata
Service (including the models for metadata, services
and QoS), the Query Engine, and the dynamic binding,
invocation and mediation mechanisms.

Service
Client

SOAP

Services

measure

QoS
Monitor

VRESCo Client Library

Daios Client
Factory

invoke

SOAP

VRESCo Runtime Environment

Registry
Database

Notification
Engine

Query
Engine

Composition
Engine

Query
Interface

Publishing
Interface

Metadata
Interface

Notification
Interface

Management
Interface

Composition
Interface

Publishing/
Metadata
Service

Management
Service

O
R

M

La
ye

r

Ac
ce

ss

C
on

tro
l

Certificate
Store

Event
Database

Fig. 3: VRESCo Overview Architecture

3.2 Service Metadata
The VRESCO runtime provides a service metadata
model capable of storing information about services.
This is needed to capture the purpose of services, which
enables mediation between services that perform the
same task. In this section, we describe service metadata
and give examples from the CPO case study.

3.2.1 Metadata Model
The VRESCO metadata model introduced in [17] is
depicted in Figure 4. The main building blocks of this
model are concepts, which represent the definition of
entities in the domain model. We distinguish between
three different types of concepts:

• Features represent concrete actions in the do-
main that implement the same functionality (e.g.,
Check_Status and Port_Number). Features are
associated with categories which express the purpose
of services (e.g., PhoneNumberPorting).

• Data concepts represent concrete entities in the do-
main (e.g., customer or phone_number) which
are defined using other data concepts and atomic
elements such as strings or numbers.

• Predicates represent domain-specific statements that
are either true or false. Each predicate can have a num-
ber of arguments (e.g., for feature Port_Number a
predicate Portability_Status_Ok(Number) ex-
presses the portability status of a given argument
Number).

Furthermore, features can have pre- and postconditions
expressing logical statements that have to hold before
and after the execution of the feature. Both types of
conditions are composed of multiple predicates, each
having a number of optional arguments. These arguments
refer to a concept in the domain model. There are two
different types of predicates:

• Flow predicates describe the data flow required or
produced by a feature. For instance, the feature
Check_Status from our CPO case study could
have the flow predicate requires(Customer)
as precondition and produces(Portability-
Status) as postcondition.

IEEE TRANSACTIONS ON SERVICES COMPUTING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

4

Category

Feature

Concept

Precondition

Postcondition

Predicate

Argument

Data Concept

State
Predicate

Flow
Predicate

isSubCategory

1..*

1

1

1

11 *0..1

1

1

*

0..1

derivedFrom

consistsOf

0..1

*

Fig. 4: Service Metadata Model [17]

• State predicates express global states that are valid
before or after invoking a feature. For instance, state
predicate notified(Customer) can be added as
postcondition to feature Notify_Customer.

3.2.2 Service Model

The VRESCO service model constitutes the basic in-
formation of concrete services that are managed by
VRESCO. The service model depicted on the lower half
of Figure 5 basically follows the Web service notation as
introduced by WSDL with extensions to enable service
versioning and represent QoS on a service runtime level.

Service Operation

Category Feature

Parameter

*

1

*1

Data Concept

*

1

**

1..*
Mapping Function

*

Service Model

Service Metadata Model

Revision

1

1..*

1

*

QoS

QoS

1

1

*

*

Fig. 5: Service Model to Metadata Model Mapping

A concrete service (e.g., Number Porting Service of
CPO1) defines the basic information of a service (e.g.,
name, description, owner, etc.) and consists of a least
one service revision. A service revision (e.g., the most
recent version, or a stable one) contains all technical
information that is necessary to invoke the service (e.g.,
a reference to the WSDL file) and represents a collection
of operations (e.g, Check_Status). Every operation may
have a number of input parameters (e.g., Customer),
and may return one or more output parameters (e.g.,
PortabilityStatus). Revisions can have parent and
child revisions that represent a complete versioning

graph of a concrete service [11]. Both revisions and oper-
ations can have a number of QoS attributes (e.g., response
time is 1200 ms) representing all service-level attributes
as described below. The distinction in revision- and
operation-specific QoS is necessary, because attributes
such as response time depend on the execution duration
of an operation, whereas availability is typically given
for the revision (if a service is not available, all opera-
tions are generally also unavailable). In Section 3.5, we
show how concrete services are mapped to the metadata
and service model in order to perform service mediation.

3.2.3 QoS Model

Besides functional attributes described in the metadata
model, non-functional attributes are also important. For
instance, in our case study CPO1 may want to always
bind to the Notification Service having the lowest re-
sponse time. Therefore, QoS attributes can be associated
with each service revision and operation in VRESCO.
These QoS attributes can be either specified manually
using the Management Service, or measured automati-
cally (e.g., using the QoS Monitor introduced in [18]).

Attribute Formula Unit

Price n/a per invocation

Reliable Messaging n/a {true, false}
Security n/a {None,

X.509,. . .}

Latency qla(n) = 1
n

n∑

i=0

qlai
ms

Response Time qrt(n) = 1
n

n∑

i=0

qrti ms

Availability qav(t0, t1, td) = 1 − td
t1−t0

percent

Accuracy qac(rf , rt) = 1 − rf

rt
percent

Throughput qtp(t0, t1, r) = r
t1−t0

invocations/s

TABLE 1: QoS Attributes

Table 1 briefly summarizes the QoS attributes that
are currently considered in VRESCO. Latency represents
the time a request needs on the wire. It is calculated
as the average value of n individual measuring points.
Response time consists of the latency for request and re-
sponse plus the execution time of the service. Availability
represents the probability a service is up and running
(t0, t1 are timestamps, td is the total time the service
was down). Accuracy is the probability of a service to
produce correct results where rf denotes the number
of failed requests and rt denotes the total number of
requests. Finally, throughput represents the maximum
number of requests a service can process within a certain
period of time (denoted as t1 − t0) where r is the total
number of requests during that time. In addition to these
pre-defined QoS attributes, users can define additional
QoS properties for service revisions or operations.

IEEE TRANSACTIONS ON SERVICES COMPUTING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

5

3.3 Querying Approach

The VRESCO Query Language (VQL) provides a means
to query all information stored in the registry (i.e.,
services and service metadata including QoS). In this
section, we discuss the architecture of VQL followed by
query specification and query processing.

3.3.1 Architecture

The VQL architecture was driven by the following re-
quirements. First of all, declarative query languages such
as SQL refer to database tables and columns, which
makes queries invalid as soon as the database schema
changes. Following the Query Object Pattern [19],
queries can be built programmatically using query crite-
ria that refer to classes and fields instead. These queries
are finally translated into SQL statements, which makes
them independent of the database schema. In this regard,
VQL should provide such object-oriented querying inter-
face and corresponding query expression library (similar
to the Hibernate Criteria API [20]).

Moreover, it should be possible to define both manda-
tory and optional criteria by introducing different query-
ing strategies that enable fuzzy or priority-based query-
ing (e.g., services must have a response time below
500 ms and should be provided by company X). Fi-
nally, VQL queries should be type-safe (i.e., the query
requester specifies the expected type of the query re-
sults) and secure (i.e., queries are protected against well-
known security issues such as SQL injection).

Client Library VRESCo Runtime

Service
Proxies

...

Querier

VQL Library

Expressions

Strategies

Service Layer

Metadata

Registry
Database

Core
Model

Database
Model

ORM
Layer

User
Model

Data
Access
Layer

VQL Engine

Publishing

VQL

Strategies

Exact

Relaxed

Priority

Preprocessor

ResultBuilder

VQL
Query

1. 2.

6.

3.

4.

5.

...

Fig. 6: VQL Architecture

The architecture of the VQL framework is shown in
Figure 6. In general, the Client Library is used to invoke
VRESCO core services (e.g., Publishing Service). Since
these invocations represent remote method invocations,
the Data Transfer Object pattern [19] is used to reduce
the information sent from clients to the core services.
Therefore, the VRESCO runtime operates on the core
model (which represents the service metadata model
introduced in Section 3.2), while clients operate on the
user model. The task of the Data Access Layer (DAL)
is to convert core objects to user objects and vice versa.
The corresponding mapping between the two models is
defined at design time using .NET attributes [21].

The advantage of this architecture is that clients oper-
ate on the user model, which represents a restricted view
of the core model. Therefore, some information can be
hidden from the clients (e.g., database IDs or versioning
information for optimistic locking). Consequently, the
VQL framework has to provide view-based querying, to
be able to query on both models (depending on whether
the query is issued client- or server-side). The task of the
ORM Layer is then to map the entities of the core model
to the database model (i.e., concrete database tables and
columns), which is realized by NHibernate [20] using
dedicated data access objects (DAOs).

According to this architecture, user queries are formu-
lated using the Client Library, that provides an object-
oriented querying interface to define query criteria,
which is discussed in the next section. The query is then
sent to the VRESCO runtime (step 1) and forwarded to
the VQL Engine (step 2). The details of query processing
(steps 3–5) are described in Section 3.3.3. Finally, the
results are sent back to the query requester (step 6).

3.3.2 Query Specification

After describing requirements and architecture of the
querying framework, we present how queries are spec-
ified. In general, VQL queries consist of six elements:

• Return Type R defines the expected data type of
the query results. The return type needs to be an
element of the VRESCO metadata model (e.g., a list
of Feature objects).

• Mandatory Criteria Cm describe constraints which
have to be fulfilled by the query (e.g., response time
must be less than 500 ms).

• Optional Criteria Co add constraints which should
optimally be fulfilled but are not required (e.g.,
service provider should be company X).

• Ordering O can be used to specify the ordering of
the query results (e.g., sort ascending by ID).

• Querying Strategy S finally defines how the query
should be executed (e.g., exact or fuzzy matches).

• Result Limit L can be used to restrict the number of
results (e.g., 10 or 0, which represents no limit).

The most important elements are criteria since they
actually represent the constraints of the query. Moreover,
criteria have different execution semantics depending on
the querying strategy, which is discussed in Section 3.3.4.
However, the main motivation is to allow the specifica-
tion of mandatory and optional criteria.

In general, criteria consist of a set of expressions E
that are used to define common constraints such as
comparison (e.g., smaller, greater, equal, etc.) and logical
operators (e.g., AND, OR, NOT, etc.). Table 2 shows
criteria (C), expressions (E) and orderings (O) which
are currently provided by VQL. Furthermore, the table
indicates how each of these elements is translated to
SQL, which is described in more detail later. It should be
noted that VQL is extensible in that further expressions
can be added easily.

IEEE TRANSACTIONS ON SERVICES COMPUTING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

6

Type VQL SQL Description
Cm Add WHERE Mandatory criteria
Co Match IN/JOIN Optional criteria

E

And AND Conjunction of two expressions
Or OR Disjunction of two expressions
Not NOT Negation of an expression
Eq = Equal operator
Lt < Less operator
Le <= Less or equal operator
Gt > Greater operator
Ge >= Greater or equal operator
Like LIKE Similarity operator for strings

IsNull IS NULL Property is null
IsNotNull NOT NULL Property is not null

In IN Property is in a given collection
Between BETWEEN Property is between two values

O
Order ORDER BY Ordering of query results
Asc ASC Ascending ordering
Desc DESC Descending ordering

TABLE 2: VQL/SQL Translation

Listing 1 shows an example query for finding services
that implement the Notify_Customer feature in our
CPO case study. As described above, queries are pa-
rameterized using the expected return type. In this case,
the type ServiceRevision (line 2) expresses that the
result of the query is a list of service revisions. In our
example, two Add criteria (lines 5–7) are used to state
that services have to be active and that each service has
to implement the Notify_Customer feature (by using
the Eq expression). The first parameter of expressions
is usually a string representing a path in the user or
core model (e.g., Service.Owner.Company describes
the company property of the service owner). These
strings are central to VQL, and are referred to as property
paths. Additionally, three Match criteria are added in
the example (lines 8–14). The first criterion expresses
that services provided by CompanyX are preferred, while
the second criterion defines that revisions should have
tags starting with ’STABLE’ (Like expression). The third
criterion specifies an optional QoS constraint on response
time, which should be less than 1000 ms. The operator
’&’ in line 13 represents a shortcut for an And expression.
All three Match criteria use priority values as third
parameter to define the importance of a criterion.

� �
1 // create query object
2 var query = new VQuery(typeof(ServiceRevision));
3
4 // add query criteria
5 query.Add(Expression.Eq("IsActive", true));
6 query.Add(Expression.Eq("Service.Category.Features.Name",
7 "NotifyCustomer"));
8 query.Match(Expression.Eq("Service.Owner.Company",
9 "CompanyX"), 1);

10 query.Match(Expression.Like("Tags.Property.Name",
11 "STABLE", LikeMatchMode.Start), 3);
12 query.Match(
13 Expression.Eq("QoS.Property.Name", "ResponseTime") &
14 Expression.Lt("QoS.DoubleValue", 1000.0), 5);
15
16 // execute query
17 var querier = VRESCoClientFactory.CreateQuerier(
18 "username", "password");
19 var results = querier.FindByQuery(query, 10,
20 QueryMode.Priority) as IList<ServiceRevision>;

� �

Listing 1: VQL Sample Query

The query is finally executed (lines 17–20) by instan-
tiating a querier object using the Client Factory, and
invoking the FindByQuery method using the desired
querying strategy (e.g., QueryMode.Priority). Fur-
thermore, the result limit of the query is set in order
to return only 10 results.

3.3.3 Query Processing

Query processing is illustrated in Figure 6. When the
query is sent to the VQL Engine, the specified querying
strategy is executed, which is implemented using the
strategy design pattern [22]. The query is forwarded to
the Preprocessor component (step 3), which is responsible
for analyzing the VQL query and generating the corre-
sponding SQL query. Next, a NHibernate session is cre-
ated to execute the generated SQL query on the database
(step 4). After execution, the ResultBuilder component
takes the results from the NHibernate session context.
Since these results represent core objects, they may have
to be converted back into the corresponding user objects
(i.e., if the return type refers to the user model). This
is done dynamically by invoking the constructor of the
corresponding object using reflection. For both models,
however, the ResultBuilder guarantees type-safety of the
results, which are finally sent back to the client (step 5).

Algorithm 1 processQuery(R,C, S, O)
1: if (isUserObject(R)) then
2: R ←MapUserToCoreObject(R)
3: end if
4: assocInfo ← R
5: for all (crit ∈ C) do
6: for all (expr ∈ GetExpressions(crit)) do
7: assocInfo←assocInfo ∪ ResolveAssoc(expr)
8: propInfo← params ∪ ResolveProp(expr)
9: end for

10: end for
11: query ← BuildFrom(assocInfo, propInfo, S)
12: query ← BuildWhere(query, assocInfo, propInfo, S)
13: query ← BuildOrder(query, O)
14: return query

Algorithm 1 depicts the pseudo-code of the Prepro-
cessor. If the query refers to the user model, it is first
transformed to the core model (lines 1–3). The Preprocessor
then iterates over all criteria and expressions (lines 5–
10). The ResolveAssoc function recursively analyzes the
property paths of each expression to determine the
necessary table joins. Similarly, the ResolveProp function
extracts the property values of each expression. To give
an example, reconsider line 8 of Listing 1: The property
path Service.Owner.Company represents two associ-
ations Service and Owner that will be resolved using
joins, and one property Company that will be compared
with the expression’s property value CompanyX. The
concrete association/table and property/column names
are retrieved using the ORM Layer. The collected infor-
mation is finally used to build FROM, WHERE and ORDER
clauses of the SQL query (lines 11–13), according to the
VQL/SQL translation shown in Table 2.

IEEE TRANSACTIONS ON SERVICES COMPUTING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

7

3.3.4 Querying Strategies

The querying strategy influences how queries are ex-
ecuted. More precisely, it defines the Preprocessor’s be-
havior during SQL generation. The basic transformation
process can be summarized as follows: Add criteria are
transformed to predicates within the SQL WHERE clause,
whereas Match criteria are handled as SQL sub-selects
(IN or JOIN, see Table 2).

The exact querying strategy forces all criteria to be
fulfilled, irrespective whether this is Add or Match.
However, there are scenarios where Match has to be
used instead of Add in order to get the desired results
(i.e., by enforcing sub-selects using IN instead of WHERE
predicates). In particular, when mapping N:1 and N:M
associations (i.e., collection mappings in Hibernate ter-
minology), a query cannot have the same collection more
than once in the WHERE predicate. The use of sub-selects
eliminates this effect in VQL, otherwise such queries
would result in null since the associated tables are
joined more than once. As an example reconsider the
query in Listing 1 using the exact strategy. When having
only one criterion with respect to QoS, Add can be used.
However, if there would be a second QoS criterion,
Match is required.

The priority querying strategy uses priority values for
each criterion in order to accomplish a weighted match-
ing of results. Therefore, each Match criterion allows
to append a weight to specify its priority, which is
internally added if the criterion is fulfilled. The query
finally returns the results sorted by the sum of priority
values. To give an example, the query in Listing 1 uses
the priority values “1”, “3” and “5”. This means that
the constraint on response time is more important than
the constraint on revision tags. More precisely, queries
that fulfill only the third Match criterion are preferred
over queries that fulfill the first and the second Match
criterion (since 5 > 3 + 1).

The relaxed querying strategy represents a special vari-
ant of priority querying where each Match criterion has
priority 1. Thus, this strategy simply distinguishes be-
tween optional and mandatory criteria. Results are then
sorted based on the number of fulfilled Match criteria.
This allows to define fuzzy queries by relaxing the
criteria, which can be useful when no exact match can be
found for a query. To achieve the necessary behavior, re-
laxed and priority querying both translate Match criteria
into sub-selects using JOIN predicates.

3.4 Dynamic Binding

Dynamic binding is claimed to be one of the main
advantages of SOA. In practice, however, services are
often bound using pre-generated stubs that do not pro-
vide support for dynamic binding. Similar to querying
strategies, we use the strategy pattern to implement a
number of different rebinding strategies. We summarize
all available strategies in Table 3.

Strategy Proxy reconsiders binding. . .
Fixed never

Periodic periodically
OnDemand on client requests

OnInvocation prior to service invocations
OnEvent on event notifications

TABLE 3: Rebinding Strategies

All rebinding strategies have their advantages and
disadvantages. Fixed proxies are used in scenarios where
rebinding is not needed (e.g., because of existing contrac-
tual obligations). Periodic rebinding causes background
queries on a regular basis, which is inefficient if invoca-
tions happen infrequently. OnDemand rebinding results
in low overhead but has the drawback that the binding
is not always up-to-date. In contrast to this, OnInvocation
rebinding guarantees accurate bindings but seriously de-
grades the service invocation time since service bindings
are checked before every invocation. Finally, OnEvent re-
binding uses the VRESCO Event Notification Engine [12]
to combine the advantages of all strategies. Therefore,
clients use subscriptions for defining in which situations
to rebind, which is then triggered by events.

3.5 Service Mediation
Dynamic binding as described above naturally brings
up the problem of how differences in service interfaces
can be resolved at runtime. In this section, we introduce
the VRESCO Mapping Framework (VMF) that handles
the mapping from abstract features to concrete service
operations (as described in Section 3.2), and perform
mediation between different services that implement the
same feature. The elements of the service model are
mapped to our service metadata model as follows (see
Figure 5): services are grouped into categories, where
every service may belong to several categories at the
same time. Services within the same category provide
at least one feature of this category. Service operations
are mapped to features, where every operation imple-
ments exactly one feature. However, we plan to provide
support for more complex mappings using the VRESCO
Composition Engine [16] (i.e., features will be repre-
sented as compositions of several service operations).
The input and output parameters of service operations
map to data concepts. Every parameter is represented
by one or more concepts in the domain model. This
means that all data that a service accepts as input or
passes as output is well-defined using data concepts and
annotated with the flow predicates requires (for input)
and produces (for output). The concrete mapping of
service parameters to concepts is described using map-
ping scripts, which will be discussed extensively below.

In general, the mediation approach follows the
“feature-driven” metadata model. Therefore, a client that
wants to invoke a service does not provide the input of
the concrete service directly but in the conceptual high-
level representation (i.e., the feature input in VRESCO
terminology). The runtime takes care of lowering and

IEEE TRANSACTIONS ON SERVICES COMPUTING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

8

lifting the feature input and output, respectively. Low-
ering represents the transformation from high-level con-
cepts into a low-level format (i.e., feature input to SOAP
input) whereas lifting is the inverse operation (i.e., SOAP
output to feature output).

VRESCo Client Library VRESCo Runtime

Registry
Database

Metadata ServiceClient Mapping Library

Mapper

Mapping Mediator

Output

Input

M
ap

pi
ng

 T
im

e
E

xe
cu

tio
n

Ti
m

e

Web Services

Fig. 7: VMF Architecture

Figure 7 shows an overview of the VMF architecture.
Generally, VMF comprises two main components. Firstly,
at mapping time, the Mapper component is used to
create lifting and lowering scripts for each service. This
information is stored in the VRESCO Registry Database
using the Metadata Service. Secondly, at execution time,
DAIOS is used as a dynamic service invocation frame-
work. The Mediator component is used as an interceptor
in DAIOS following the ideas presented in [23]. This
mediator retrieves the lifting and lowering scripts from
the VRESCO Metadata Service at runtime, and executes
the corresponding mapping. This is done by applying
all mapping functions sequentially, in the order they
have been specified. In that sense, VMF implements an
imperative, interpreted domain-specific language. In its
current form, VMF does not optimize mapping scripts
in any way.

Functions Description
Assign Link one parameter to another (source and destination must

have the same data type)
Constants Define simple data type constants

Conversion Convert simple data types to other simple data types
Array Create arrays and access array items
String String manipulation operations (e.g., substring, concat)
Math Basic mathematical and logical operations (e.g., addition,

round, and, or)
CSScript Define complex mappings directly in C#

TABLE 4: VMF Mapping Functions

Mapping scripts are defined using the Mapping Library,
which includes a number of Mapping Functions. Mapping
functions are the atomic building blocks from which all
mapping scripts are constructed. We have summarized
the provided mapping functions in Table 4 (grouped into
7 categories). Probably the most important function is
Assign, which is used to map one input parameter
or intermediary result to an output parameter (i.e., a
Web service operation parameter in case of a lowering
script, a feature output parameter in case of a lifting
script). Functions from the Constants group are used to
create new data directly in the mapping. All remaining
mapping functions are used to transform parameters in

various ways, e.g., from one data type to another, using
string manipulation, or using mathematical and logical
operations. Furthermore, more complex mappings can
be defined in the CS-Script language [24]. Essentially, this
allows to deploy custom mapping functions by using
the full power of the C# programming language. For
instance, this can be used to invoke external Web services
at mediation time.

<<Feature>>
Notify_Customer

<<InParameter>>

<<DataConcept>>
Message : string

<<InParameter>>

<<DataConcept>>
SenderNr : string

<<InParameter>>

<<DataConcept>>
ReceiverNr : string

<<OutParameter>>

<<DataConcept>>
sendStatus : bool

<<Operation>>
SendSMS1

<<InParameter>>
message : string

<<InParameter>>
areaCodeSender : int

<<InParameter>>
sender : int

<<InParameter>>
areaCodeReceiver : int

<<InParameter>>
receiver : int

Assign

Assign

Assign

Assign

AssignConvertToInt

ConvertToInt

ConvertToInt

SubString(0,4)

SubString(4,8)

SubString(0,4)

AssignConvertToIntSubString(4,8)

<<OutParameter>>
status : string

ConvertToBoolean

Fig. 8: VMF Mapping Example

We give a concrete mapping example in Figure 8. In
this example, the abstract feature Notify_Customer
from the CPO case study (see Section 2) is mapped to
the concrete operation SendSMS1. The feature provides
three input parameters and produces one output param-
eter. The parameter Message is identical in both inter-
faces, and can therefore be mapped directly (using only
Assign). Note that for the Assign function to work
both sides need to be represented using the same data
concept (in this case string). The parameter SenderNr
is split into the area code and the actual number. This
is done using the string operation SubString, which
takes the start index of the string and the length of the
substring as parameters. Afterwards, both substrings are
converted to integers using the ConvertToInt func-
tion. This is necessary since assigning a string to an
integer is not possible. The ReceiverNr is handled sim-
ilarly. So far, only input parameters have been mapped
(i.e., all information given so far forms the lowering
script for this service). The lifting script, which defines
how the service output is mapped to the feature output,
consists only of a ConvertToBoolean and another
Assign function.

Listing 2 illustrates the first two mappings (Message
and SenderNr) in C# code. Lines 4–5 show how the
Mapper is created for feature Notify_Customer and
operation SendSMS1. Both objects have to be queried
beforehand (not shown in Listing 2 for brevity). The
Assign function is again used as a connector to link
the Message from the feature to the Message of the
operation, whereas mapper.AddMappingFunction()
adds the function to the mapping. Lines 14–21 get the
area code from the feature’s SenderNr as substring and
convert it with the ConvertToInt function to an integer

IEEE TRANSACTIONS ON SERVICES COMPUTING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

9

� �
1 // query NotifyCustomer and SendSMS1 instances using VQL
2
3 // create mapper from feature and operation
4 Mapper mapper = metadataService.CreateMapper(
5 NotifyCustomer, SendSMS1);
6
7 // map feature message to operation message
8 Assign messageAssign = new Assign(
9 mapper.FeatInParams[0],

10 mapper.OpInParams[0]);
11 mapper.AddMappingFunction(messageAssign);
12
13 // get AreaCode, convert to int and map it to operation
14 Substring acSenderStr = new Substring(
15 mapper.FeatInParams[1], 0, 4);
16 acSenderStr = mapper.AddMappingFunction(acSenderStr);
17 ConvertToInt acSenderInt = new ConvertToInt(
18 acSenderStr.Result);
19 acSenderInt = mapper.AddMappingFunction(acSenderInt);
20 mapper.AddMappingFunction(new Assign(acSenderInt.Result,
21 mapper.OpInParams[1]));

� �

Listing 2: VMF Mapping Example Code

which is finally assigned to operation’s input parameter
AreaCodeSender. All further mappings from Figure 8
are implemented analogously.

4 EVALUATION

In this section, we give an evaluation of the VRESCO
runtime focusing on the topics covered in this paper. The
purpose of this evaluation is twofold: Firstly, we show
the runtime performance regarding service querying,
rebinding, and mediation by using synthetic data. The
main goal of this evaluation is to analyze the perfor-
mance impact of each aspect in isolation. Secondly, we
combine these aspects into a coherent end-to-end evalu-
ation using an order processing workflow. The main goal
is to understand the influence of each aspect with regard
to the overall process duration in a realistic setting.
Additionally, we show how the individual results of
the first part interrelate in an end-to-end setting. All
experiments have been executed on an Intel Xeon Dual
CPU X5450 with 3.0 GHz and 32GB RAM running under
Windows Server 2007 SP1. Moreover, we use .NET v3.5
and MySQL Server v5.1.

For mediation, rebinding and end-to-end evaluation
we have created different sets of test services and QoS
configurations (with varying response times) using the
Web service generation tool GENESIS [25]. These testbeds
are described in detail in the corresponding subsections.

4.1 Querying Performance

First of all, we show the performance of the VQL Engine,
which has been measured using the query shown in List-
ing 1. The test data are generated automatically: In every
step, 5 categories are inserted, each having 5 alternative
services with 10 revisions, while every revision has 1 tag
and 11 QoS attributes with random values. It should be
noted that in every step 20% of all services match the
queried feature Notify_Customer and service owner
CompanyX, while only 2% of all service revisions match

 0

 20

 40

 60

 80

 100

 120

 140

 0 5000 10000 15000 20000

E
xe

cu
tio

n
Ti

m
e

(in
 m

s)

Service Revisions

 SQL
 HQL
 VQL

Fig. 9: Query Performance (NL)

all query criteria. To eliminate outliers, the results rep-
resent the median of 10 runs, while the database and
Hibernate session cache are cleared after each run.

Figure 9 compares the performance of the queries
generated by SQL, HQL and VQL. Therefore, the query
from Listing 1 was manually translated into HQL and
SQL, while the VQL query is executed on core objects
using the exact strategy without result limit (NL). The
queries return only the ID of the matching revisions.
Therefore, this table shows the performance of the native
queries and does not include the time needed for con-
verting the results back into ServiceRevision objects.
The results indicate that the queries generated by all
three approaches perform equally. In this regard, all
approaches exhibit the same peaks, which are due to
internal processing of the database.

 0

 200

 400

 600

 800

 1000

 1200

 0 2000 4000 6000 8000 10000

E
xe

cu
tio

n
Ti

m
e

(in
 m

s)

Service Revisions

 EXACT
 RELAXED
 PRIORITY

Fig. 10: Querying Strategies (User, L10)

Figure 10 compares the querying strategies using the
same query on user objects and limited to 10 results (L10).
The limit was chosen since relaxed and priority return
more revisions than exact (which influences the results).
It can be seen that exact is much faster than relaxed, while
relaxed and priority have similar performance. The reason
for the significant difference is that relaxed and priority
use different table joins, and need to sum up and order
by the total sum of priority values, while the query in
exact mode can be optimized by the database.

IEEE TRANSACTIONS ON SERVICES COMPUTING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

10

Finally, Table 5 depicts the duration of the individ-
ual steps during VQL query processing. Therefore, the
previous query is executed on both core and user objects
using the exact strategy. Generation (G) indicates how
long the Preprocessor needs to analyze and generate the
query. Execution (E) depicts the actual query execution
time, while Conversion (C) represents the time needed
by the ResultBuilder to convert the query results.

Revisions User Core
G E C G E C

1000 4,8 3,8 84,7 3,1 3,6 7,1
2000 4,8 14,6 87,5 3,2 14,4 6,8
3000 4,8 7,7 87,0 3,2 7,6 6,5
4000 4,8 9,8 77,5 3,2 9,7 6,5
5000 4,8 12,0 81,4 3,2 11,7 6,4
6000 4,8 13,5 83,7 3,1 13,5 7,0
7000 4,8 15,9 86,9 3,2 15,5 6,8
8000 4,8 17,9 86,3 3,2 17,6 7,3
9000 4,8 19,8 82,4 3,2 19,8 7,2
10000 4,8 22,2 86,6 3,1 20,5 6,8

TABLE 5: VQL Query Processing (in ms, User/Core, L10)

The results show that G is almost constant for core/user
objects, while the latter is slightly slower since queries
have to be translated to refer to core objects. Obviously,
E is almost equal for both approaches. Finally, the table
indicates that C is fast for core objects, while it takes some
time for user objects. The main reason is that queries
actually return IDs, while the corresponding entities
are loaded from the NHibernate session context. Fur-
thermore, revision objects have a number of collections
(e.g., tags, QoS, etc.) that have to be converted by the
ResultBuilder using reflection, which internally leads to
a number of additional queries (since most collections
are lazy-loaded [19]). In this setting, the time for C is
constant for all revisions due to the result limit of 10.

4.2 Rebinding Performance

In the following subsection, we give an evaluation of the
different rebinding strategies introduced in Section 3.4.
For measuring the rebinding performance, we used
GENESIS to simulate 10 services that implement the same
feature. Then, we leveraged the QoS plug-in to contin-
uously modify the response time of all services using
a Gaussian distribution, and we additionally increased
the variance after each step in order to simulate an
environment where the QoS of services is subject to
significant change. Finally, we implemented one client
for each rebinding strategy and measured the average
response time when invoking the service. As a result, we
can see the impact of the different rebinding strategies
for each client.

The results of this experiment are depicted in Fig-
ure 11. It should be noted that the response time of the
best service is decreasing since we increase the variance.
All services start with a (server-side) execution time of
2000 ms. The (client-side) response time differs about 400
ms which is caused by the network latency and the time
needed for wrapping SOAP messages.

 0

 1000

 2000

 3000

 4000

 5000

 0 5 10 15 20 25 30 35

R
es

po
ns

e
Ti

m
e

(in
 m

s)

Execution Time Variation

Fixed Binding
Periodic Rebinding

On Invocation Rebinding
On Event Rebinding

Fig. 11: Rebinding Strategies Performance

Obviously, clients with fixed binding usually perceive
the worst response time because they are always bound
to the same service. Clients using periodic rebinding
mostly use services with good response time. However,
since rebinding is done in pre-defined intervals the
bindings are not always up-to-date (e.g., steps 17–18, 24–
25, and 27–28 represent such situations). In contrast to
that, clients with OnInvocation rebinding always invoke
the best service since the rebinding is re-considered just
before the service is invoked. However, this leads to
a constant overhead of about 400 ms which is needed
to check the binding and update if necessary. Finally,
clients with OnEvent rebinding always bind to the best
service without invocation overhead because the clients
are notified asynchronously when the QoS changes and
better services get available. However, the (optional)
VRESCO eventing support must be turned on and the
client needs a listener Web service. It should be noted
that the performance of the Event Engine is sufficient
which is detailed in [12]. Thus, all rebinding strategies
have their strengths and weaknesses, and it depends on
the specific situation which strategy to use.

4.3 Mediation Performance

Besides rebinding, we have also evaluated the overhead
introduced by the VRESCO mediation facilities. We have
again used the GENESIS tool for these tests.

Figure 12 depicts the response time of a single Web
service invocation depending on the size of the message
sent to the service. We have evaluated five different sce-
narios: (1) no mediation, (2) mediation using only con-
stant mapping functions (replacing an input parameter
with a constant string), (3) using mathematical functions
(replacing a parameter with a calculated value), (4) using
string modification functions (adding a constant string
to a string parameter), and finally (5) using CS-Script
(a simple script which exchanges the order of two pa-
rameters). Unsurprisingly, unmediated invocations are
generally faster than any type of mediation. The perfor-
mance of mediated invocations is similar no matter what
type of mapping functions have been applied. However,

IEEE TRANSACTIONS ON SERVICES COMPUTING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

11

 200

 300

 400

 500

 600

 700

 0 500 1000 1500 2000 2500 3000 3500

R
es

po
ns

e
Ti

m
e

(in
 m

s)

Payload Size (in KB)

Unmediated
Constants

Math Functions
String Operations

CS-Script

Fig. 12: Mediation Performance (Message Size)

in our experiments mediation using string operations
introduces slightly more overhead than the other types.
This is due to the fact that string operations naturally
become more expensive when the strings become bigger.

 190

 200

 210

 220

 230

 240

 0 20 40 60 80 100

R
es

po
ns

e
Ti

m
e

(in
 m

s)

Mapping Functions

Constants
Math Functions

String Operations
CS-Script

Fig. 13: Mediation Performance (Mediation Steps)

In Figure 13 we have studied the overhead introduced
by different mapping functions in more detail. We have
evaluated how the overhead introduced by mediation
depends on the amount of mediation necessary (mea-
sured in the number of mapping functions applied). We
have evaluated the same scenarios as before, but omitted
the tests using unmediated invocations. Generally, the
additional overhead introduced by a larger number of
mapping functions is rather small: the difference be-
tween 1 and 100 mapping functions varies between 5 and
20 ms, which seems acceptable. As before, the overhead
introduced by string operations heavily depends on
the size of the strings to modify. Our experimentation
string was rather sizable at 73 kByte, which explains
the comparatively big overhead incurred by this type of
mapping function. Note that the overhead of CS-Script
mappings is constantly around 10 ms since the main
overhead is the initialization of the scripting engine,
while the execution of the actual script is negligible (as
long as the script does not do any heavy computation,
which would not be typical for mapping scenarios).

4.4 End-to-End Evaluation and Discussion
The end-to-end scenario combines all aforementioned
aspects (i.e., querying, rebinding, mediation and invo-
cation) into a larger order processing case study with
the goal of ordering new cell phone contracts online
(including mobile phone and SIM card). We imple-
mented this workflow in C#. It consists of 19 overall
activities split into 4 subprocesses. Basically, the process
starts upon receiving an order via the company Web
site. Afterwards the internal stock is checked for the
availability of the phone and the SIM card. If one of
those components is missing, it is ordered by using one
of the internal or external suppliers, which is followed by
a contracting subprocess. This subprocess creates a new
contract and, if necessary, it adds a new customer to the
CRM system. If the customer wants to transfer her old
number, the number porting subprocess as depicted in
Figure 2b is executed. Finally, the payment and shipping
subprocesses are enacted and the cell phone number is
activated in the GSM network.

The services used in the case study have been de-
ployed on a different machine using GENESIS [25]. For
each internal service (e.g., CRM, contracting) we have
deployed only one alternative, whereas for each external
service (e.g., Credit Card Service) multiple alternatives
are available (between 60 and 250). For the internal
notification service which is used to notify customers
of their order status (using SMS, E-mail, mail, etc.) 30
alternatives are provided. This service is the only one
that requires significant mediation. We use GENESIS to
simulate a response time of 30–100 ms for each service.

 0

 5000

 10000

 15000

 20000

 25000

 30000

00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00

Ti
m

e
(m

s)

Experiment Runtime

Sum of Service Response Times
Sum of Mediation

Sum of Queries
Other

Fig. 14: End-to-End Performance

In Figure 14, we show the average process duration in
this case study based on 40 concurrent clients running on
one host that is also hosting the VRESCO environment.
Each client continuously executes the process over an
experiment time of 16 min. We have chosen the Periodic
rebinding strategy for this scenario, to accommodate for
our highly dynamic scenario with many alternatives for
each external service. In order to get a big number of
rebindings during our experiment time we have chosen
a rebinding interval of 5 sec. The x-axis of the figure
shows the experiment time (in minutes) and the y-axis

IEEE TRANSACTIONS ON SERVICES COMPUTING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

12

depicts the averaged process durations of the currently
executing process instances. Right after bootstrapping
the system, there is a steep incline in the overall duration
because each client performs some initialization. This in-
cludes querying the available services (red part), as well
as creating proxies and binding to one service candidate
(blue part). Additionally, the services are invoked (green
part) and a certain amount of mediation occurs (black
part). After the initialization phase, the system stabilizes
and the response times and mediation time are constant.
The mediation overhead reflects our detailed media-
tion results from Figure 12. Together, service response
times and mediation accounts for about 92% of the
average process duration after the initialization phase.
The remaining 8% (blue part) represent other factors
such as thread handling or the workflow business logics.
Please note that querying and an occasional rebinding
still happens after the initialization phase, but it is no
longer part of the average process execution times (on
the y-axis). This is because the rebinding clients perform
querying and rebinding asynchronously in a separate
thread. Therefore, it solely depends on the rebinding
strategy whether querying and rebinding is part of the
process execution time or just part of the initialization
phase (as shown in Figure 14). In case of the OnInvo-
cation rebinding strategy, there would be querying and
rebinding overhead in the overall process execution time,
whereas for OnDemand and OnEvent the behavior would
be similar as shown above.

Generally, the decision which rebinding strategy to
use depends on the particular domain and the require-
ments. For example, for the Number Porting Service
fixed binding is not a reasonable choice because even
simple changes of the partner CPO’s services (e.g., a
different endpoint) would break the process. OnDemand
is only reasonable if changes happen infrequently, and
adaptation to changes is not time-critical. Periodic rebind-
ing, on the other hand, is only adequate when services
change frequently enough to warrant permanent polling
for updates. Since number porting is not time-critical, we
could have also used the OnInvocation rebinding strategy,
which has a constant invocation overhead but always
finds the best available service, or even better OnEvent
which also eliminates this invocation overhead.

5 RELATED WORK

In this section, we review related work concerning ser-
vice repositories and service metadata, as well as service
selection, invocation, and mediation.

Currently, several approaches and standards for ser-
vice registries exist. We have compared some exist-
ing solutions with the VRESCO runtime, considering
a carefully selected range of established standards, ma-
ture open-source frameworks and commercial tools. We
consider the standards UDDI [5] and ebXML [6] (with
special emphasis on the registry), Mule ESB and Galaxy
repository [26], WSO2 ESB and registry [27], and IBM

WebSphere [28] (including ESB, service registry and
repository). Our comparison in Table 6 is structured
according to the challenges introduced in Section 2.

Generally, all systems allow to store service metadata.
Mostly, this is done in an unstructured way (e.g., us-
ing tModels in UDDI). There is only limited support
for structured metadata in most approaches, whereas
WebSphere provides an extensive structured metadata
model (e.g., supporting OWL). To access data and meta-
data within the registry a query language or API is
needed, which is provided by all approaches (WSO2
supports querying only based on Atom [29]). In contrast
to VRESCO, type-safe queries are not supported by
most approaches since querying is usually done on the
unstructured service metadata model using languages
such as SQL. Only WebSphere provides partial sup-
port by using XPath expressions for querying. Cur-
rently, explicit support for QoS attributes is not widely
available – it is to some extent possible in WSO2 and
WebSphere, and fully supported by VRESCO. WSO2
supports QoS only in terms of WS-Security and WS-
ReliableMessaging. However, none of these frameworks
except VRESCO provide QoS monitoring. Integration of
dynamic binding, invocation and mediation of services
is obviously not supported by pure registries such as
UDDI or the ebXML registry. The other systems provide
support in this respect due to their integrated ESBs. All
systems except UDDI and VRESCO allow to store multi-
ple versions of service metadata in the registry. However,
only VRESCO provides end-to-end versioning support,
which enables to seamlessly rebind and invoke different
service revisions at runtime [11]. Finally, all approaches
provide basic event notifications (e.g., if services are
published) using E-mail, Web service notifications or
Atom. Only WebSphere and VRESCO allow clients to
subscribe to more complex events and event patterns
using a rich subscription language.

Besides UDDI and ebXML, there are other standards
for describing service metadata [8]. Some of them are
used by semantic Web service approaches [30] (such as
OWL-S [31], WSML [32] and SAWSDL [33]). It should
be noted, however, that the VRESCO service metadata
model introduced in Section 3.2 is not intended to
compete with these approaches. We aim at enterprise
development where metadata is an important business
asset which should not be accessible for everyone, as
opposed to the semantic Web service community where
domain ontologies should be public to facilitate integra-
tion among different providers and consumers.

In general, several standards and research approaches
have emerged that address the complexities of managing
and deploying Web services [34]. In these approaches,
service querying and selection play a crucial role, espe-
cially regarding service composition (e.g., [10], [35], [16]).
However, the query models of current registries and Web
service search engines [36] mainly focus on keyword-
based matching of service properties which often do not
cover the rich semantics of service metadata.

IEEE TRANSACTIONS ON SERVICES COMPUTING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

13

Challenge UDDI ebXML Mule WSO2 WebSphere VRESCO

Service Metadata Unstructured + + + + + ∼
Structured ∼ ∼ ∼ ∼ + +

Service Querying Query Language/API + + + ∼ + +
Type-safe Query – – – – ∼ +

Quality of Service Explicit QoS Support – – – ∼ ∼ +
QoS Monitoring – – – – – +

Dynamic Service Invocation Binding & Invocation – – + – ∼ +
Service Mediation – – + + + +

Service Versioning Metadata Versioning – + + ∼ ∼ –
End-to-End Support – – – – – +

Event Processing Basic Notifications + + + ∼ + +
Complex Event Processing – – – – ∼ +

TABLE 6: Related Enterprise Registry Approaches

Yu and Bouguettaya [37] introduce a Web service
query algebra and optimization framework. This frame-
work is based on a formal model using service and oper-
ation graphs that define a high-level abstraction of Web
services, and also includes a QoS model. Service queries
are specified as algebraic operators on functionality,
quality and composition of services, and finally result
in service execution plans. Optimization techniques are
then applied to select the best service execution plan
according to user-defined QoS properties. This work
is complementary to ours: while the authors focus on
their formal service model and introduce a query alge-
bra for this model, we present a service runtime that
provides end-to-end support for service management
and querying functionality. Furthermore, we address
dynamic binding and service mediation since service
interfaces of different service providers are not always
identical in practice. Dynamic binding of services has
been addressed by other approaches (e.g., [38], [39]).

Pautasso and Alonso [38] discuss various binding
models for services, together with different points in
time when bindings are evaluated. They present a flexi-
ble binding model in the JOpera system where binding
is done using reflection and does not require a specific
language construct. Di Penta et al. [39] present the WS-
Binder framework for enabling dynamic binding within
WS-BPEL processes. Their approach uses proxies to sep-
arate abstract services from concrete service instances.
Both approaches have in common that they rather focus
on dynamic binding with respect to composition envi-
ronments whereas VRESCO addresses binding at the
core SOA level.

6 CONCLUSION

One of the main promises of SOC is the provisioning of
loosely-coupled applications based on the publish-find-
bind-execute cycle. In practice, however, these promises
can often not be kept due to the lack of expressive ser-
vice metadata and type-safe querying facilities, explicit
support for QoS, as well as support for dynamic binding
and mediation. In this paper, we have proposed the QoS-
aware VRESCO runtime environment which has been
designed with these requirements in mind. VRESCO
offers an extensive structured metadata model and VQL
as type-safe query language. Furthermore, we provide

dynamic binding and mediation mechanisms that use
pre-defined service mappings. We have evaluated our
work regarding performance and discussed the results
together with the experience gained in the CPO case
study. The results show that the VRESCO runtime is ap-
plicable to large-scale adaptive service-centric systems.

As part of our ongoing and future work we want to
link the VRESCO eventing [12] and composition [16]
mechanisms. Furthermore, we envision to integrate SLA
enforcement capabilities on top of VRESCO.

ACKNOWLEDGEMENTS

The research leading to these results has received fund-
ing from the European Community’s Seventh Frame-
work Programme [FP7/2007-2013] under grant agree-
ment 215483 (S-Cube). Additionally, we would like to
thank Lukasz Juszczyk for providing the Web service
testbed GENESIS, and our master students Andreas Hu-
ber and Thomas Laner for their contribution to VRESCO.

REFERENCES
[1] M. P. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann,

“Service-Oriented Computing: State of the Art and Research
Challenges,” IEEE Computer, vol. 40, no. 11, pp. 38–45, 2007.

[2] S. Weerawarana, F. Curbera, F. Leymann, T. Storey, and D. F.
Ferguson, Web Services Platform Architecture : SOAP, WSDL, WS-
Policy, WS-Addressing, WS-BPEL, WS-Reliable Messaging, and More.
Prentice Hall PTR, 2005.

[3] SOAP Version 1.2, World Wide Web Consortium (W3C), 2003, http:
//www.w3.org/TR/soap/.

[4] Web Services Description Language (WSDL) 1.1, World Wide Web
Consortium (W3C), 2001, http://www.w3.org/TR/wsdl.

[5] Universal Description, Discovery and Integration (UDDI), Organiza-
tion for the Advancement of Structured Information Standards
(OASIS), 2005, http://oasis-open.org/committees/uddi-spec/.

[6] ebXML Registry Services and Protocols, Organization for the Ad-
vancement of Structured Information Standards (OASIS), 2005,
http://oasis-open.org/committees/regrep.

[7] A. Michlmayr, F. Rosenberg, C. Platzer, M. Treiber, and S. Dustdar,
“Towards Recovering the Broken SOA Triangle – A Software
Engineering Perspective,” in Proceedings of the 2nd International
Workshop on Service Oriented Software Engineering (IW-SOSWE’07),
co-located with ESEC/FSE’07. ACM, 2007.

[8] D. Bodoff, M. Ben-Menachem, and P. C. Hung, “Web Meta-
data Standards: Observations and Prescriptions,” IEEE Software,
vol. 22, no. 1, pp. 78–85, 2005.

[9] T. Yu, Y. Zhang, and K.-J. Lin, “Efficient Algorithms for Web
Services Selection with End-to-End QoS Constraints,” ACM Trans-
actions on the Web, vol. 1, no. 6, p. 6, 2007.

[10] L. Zeng, B. Benatallah, A. H. Ngu, M. Dumas, J. Kalagnanam, and
H. Chang, “QoS-Aware Middleware for Web Services Composi-
tion,” IEEE Transactions on Software Engineering, vol. 30, no. 5, pp.
311–327, May 2004.

IEEE TRANSACTIONS ON SERVICES COMPUTING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

14

[11] P. Leitner, A. Michlmayr, F. Rosenberg, and S. Dustdar, “End-to-
End Versioning Support for Web Services,” in Proceedings of the
International Conference on Services Computing (SCC 2008). IEEE
Computer Society, 2008.

[12] A. Michlmayr, F. Rosenberg, P. Leitner, and S. Dustdar, “Ad-
vanced Event Processing and Notifications in Service Runtime
Environments,” in Proceedings of the 2nd International Conference
on Distributed Event-Based Systems (DEBS’08). ACM, 2008.

[13] ——, “Service Provenance in QoS-Aware Web Service Runtimes,”
in Proceedings of the 7th International Conference on Web Services
(ICWS’09). IEEE Computer Society, 2009.

[14] P. Leitner, F. Rosenberg, and S. Dustdar, “Daios – Efficient Dy-
namic Web Service Invocation,” IEEE Internet Computing, vol. 13,
no. 3, pp. 30–38, 2009.

[15] J. Löwy, Programming WCF Services. O’Reilly, 2007.
[16] F. Rosenberg, P. Celikovic, A. Michlmayr, P. Leitner, and S. Dust-

dar, “An End-to-End Approach for QoS-Aware Service Composi-
tion,” in Proceedings of the 13th International Enterprise Computing
Conference (EDOC’09). IEEE Computer Society, 2009.

[17] F. Rosenberg, P. Leitner, A. Michlmayr, and S. Dustdar, “Inte-
grated Metadata Support for Web Service Runtimes,” in Proceed-
ings of the Middleware for Web Services Workshop (MWS’08), co-
located with EDOC’08. IEEE Computer Society, 2008.

[18] F. Rosenberg, C. Platzer, and S. Dustdar, “Bootstrapping Perfor-
mance and Dependability Attributes of Web Services,” in Proceed-
ings of the IEEE International Conference on Web Services (ICWS’06).
IEEE Computer Society, 2006.

[19] M. Fowler, Patterns of Enterprise Application Architecture. Addison-
Wesley, 2002.

[20] Hibernate Reference Documentation v3.3.1, Red Hat, Inc., 2008, http:
//www.hibernate.org/.

[21] J. Liberty and D. Xie, Programming C# 3.0. O’Reilly Media, Inc.,
2007.

[22] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley,
1995.

[23] P. Leitner, A. Michlmayr, and S. Dustdar, “Towards Flexible Inter-
face Mediation for Dynamic Service Invocations,” in Proceedings of
the 3rd Workshop on Emerging Web Services Technology (WEWST’08),
co-located with ECOWS’08, 2008.

[24] O. Shilo, “CS-Script – The C# Script Engine,” 2009, http://www.
csscript.net/.

[25] L. Juszczyk, H.-L. Truong, and S. Dustdar, “GENESIS - A Frame-
work for Automatic Generation and Steering of Testbeds of
Complex Web Services,” in Proceedings of the 13th IEEE Inter-
national Conference on Engineering of Complex Computer Systems
(ICECCS’08). IEEE Computer Society, 2008.

[26] Mule Galaxy, v1.5.1, MuleSoft, Inc., Nov. 2009, http://www.
mulesoft.org/display/GALAXY/Home.

[27] WSO2 Registry, v2.0, WSO2, Inc., Feb. 2009, http://wso2.org/
projects/registry.

[28] WebSphere Service Registry and Repository, v6.2, IBM, Inc., Jul. 2008,
http://www.ibm.com/software/integration/wsrr.

[29] R. Sayre, “Atom: The Standard in Syndication,” IEEE Internet
Computing, vol. 9, no. 4, pp. 71–78, 2005.

[30] S. A. McIlraith, T. C. Son, and H. Zeng, “Semantic Web Services,”
IEEE Intelligent Systems, vol. 16, no. 2, 2001.

[31] OWL-S: Semantic Markup for Web Services, World Wide Web Con-
sortium (W3C), 2004, http://www.w3.org/Submission/OWL-S/.

[32] Web Service Modeling Language (WSML), ESSI WSMO Working
Group, 2008, http://www.wsmo.org/wsml/wsml-syntax.

[33] Semantic Annotations for WSDL and XML Schema, World Wide Web
Consortium (W3C), 2007, http://www.w3.org/TR/sawsdl/.

[34] Q. Yu, X. Liu, A. Bouguettaya, and B. Medjahed, “Deploying and
Managing Web Services: Issues, Solutions, and Directions,” The
VLDB Journal, vol. 17, no. 3, pp. 537–572, 2008.

[35] J. Harney and P. Doshi, “Selective Querying for Adapting Web
Service Compositions Using the Value of Changed Information,”
IEEE Transactions on Services Computing, vol. 1, no. 3, pp. 169–185,
2008.

[36] C. Platzer and S. Dustdar, “A Vector Space Search Engine for Web
Services,” in Proceedings of the 3rd European IEEE Conference on Web
Services (ECOWS’05). IEEE Computer Society, 2005.

[37] Q. Yu and A. Bouguettaya, “Framework for Web Service Query
Algebra and Optimization,” ACM Transactions on the Web (TWEB),
vol. 2, no. 1, pp. 1–35, 2008.

[38] C. Pautasso and G. Alonso, “Flexible Binding for Reusable Com-
position of Web Services,” in Proceedings of the 4th International
Workshop on Software Composition (SC’2005). Springer, 2005.

[39] M. D. Penta, R. Esposito, M. L. Villani, R. Codato, M. Colombo,
and E. D. Nitto, “WS Binder: A Framework to Enable Dynamic
Binding of Composite Web Services,” in Proceedings of the Interna-
tional Workshop on Service-oriented Software Engineering (SOSE’06).
ACM, 2006.

Anton Michlmayr received the MSc degree
in computer science from Vienna University
of Technology in 2005. He is currently a
PhD candidate and university assistant in the
Distributed Systems Group at Vienna Univer-
sity of Technology. His research interests in-
clude software architectures for distributed sys-
tems with an emphasis on distributed event-
based systems and service-oriented com-
puting. More information can be found at
http://www.infosys.tuwien.ac.at/Staff/michlmayr.

Florian Rosenberg is currently a research sci-
entist at the CSIRO ICT Centre in Australia. He
received his PhD in June 2009 with a thesis on
”QoS-Aware Composition of Adaptive Service-
Oriented Systems” while working as a research
assistant at the Distributed Systems Group, Vi-
enna University of Technology. His general re-
search interests include service-oriented com-
puting and software engineering. He is partic-
ularly interested in all aspects related to QoS-
aware service composition and adaptation. More

information can be found at http://www.florianrosenberg.com.

Philipp Leitner has a BSc and MSc in busi-
ness informatics from Vienna University of Tech-
nology. He is currently a PhD candidate and
university assistant at the Distributed Systems
Group at the same university. Philipp’s research
is focused on middleware for distributed sys-
tems, especially for SOAP-based and RESTful
Web services. More information can be found at
http://www.infosys.tuwien.ac.at/Staff/leitner.

Schahram Dustdar is Full Professor of Com-
puter Science with a focus on Internet Technolo-
gies heading the Distributed Systems Group,
Vienna University of Technology (TU Wien). He
is also Honorary Professor of Information Sys-
tems at the Department of Computing Science at
the University of Groningen (RuG), The Nether-
lands. Since 2009 he is an ACM Distinguished
Scientist. More information can be found at
http://www.infosys.tuwien.ac.at/Staff/sd.

IEEE TRANSACTIONS ON SERVICES COMPUTING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

