
FOCUS: INTERNETWARE AND BEYOND

0 7 4 0 - 7 4 5 9 / 1 5 / $ 3 1 . 0 0 © 2 0 1 5 I E E E 	 JANUARY/FEBRUARY 2015 | IEEE SOFTWARE � 91

Roundtable

The Future
of Software
Engineering
for Internet
Computing
Jian Lü, Nanjing University

David S. Rosenblum, National University of Singapore

Tevfik Bultan, University of California, Santa Barbara

Valerie Issarny, Inria Paris-Rocquencourt

Schahram Dustdar, Vienna University of Technology

Margaret-Anne Storey, University of Victoria

Dongmei Zhang, Microsoft Research, China

FOR THIS SPECIAL ISSUE, seven
research leaders in software engi-
neering for Internet computing dis-
cuss important issues that will shape
this field’s future. The essays cover
opportunities and challenges for the
shifting software paradigm (Jian

Lü); stepping outside the comfort
zone to revisit issues such as soft-
ware correctness (David S. Rosen-
blum); improving Internet software
dependability and programmability
(Tevfik Bultan); addressing software
engineering issues for the Internet of

Things (Valerie Issarny); exploring
the relationships among the Internet
of Things, people, and software ser-
vices (Schahram Dustdar); support-
ing a participatory culture of soft-
ware development (Margaret-Anne
Storey); and rethinking logging in
online services (Dongmei Zhang).
Enjoy! —Antonia Bertolino, M.
Brian Blake, Pankaj Mehra, Hong
Mei, and Tao Xie, guest editors

Internetware: Shifting
the Software Paradigm
toward the Internet

Jian Lü

The Internet, not only of computers
but also of things and human us-
ers, has been rapidly and profoundly
changing how we construct, deploy,
and use software applications. To
achieve their application goals, soft-
ware systems on this Internet plat-
form need to coordinate autonomous
third-party services and resources,
adapt to constant changes in their
environment and the requirements
they must satisfy, and continuously
maintain a quality of service (QoS)
that satisfies users. So, Internet com-
puting poses the significant chal-
lenge of how to help software engi-
neers manage these new dimensions
of complexity.

Conventional software para-
digms, such as structured, object-
oriented, and component-based
methods, are inadequate here. We
need a paradigm shift to comprehen-
sively support Internet-computing
applications that are autonomous,
cooperative, situational, evolvable,
emergent, and trustworthy.1

To this end, Chinese software

FOCUS: INTERNETWARE AND BEYOND

s1rou.indd 91 12/9/14 3:03 PM

92	 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: INTERNETWARE AND BEYOND

engineering researchers have con-
ceptualized and developed the Inter-
netware paradigm, supported by the
National Basic Research Program
of China. Internetware follows two
principles:1,2

•	 Coordination-centric architec-
ture. Programmable connectors
and run-time software archi-
tecture models facilitate flexible
but disciplined coordination of
autonomous entities.

•	 Environment-driven adapta-
tion. Run-time environment
models, built as integral parts of
Internetware systems, direct the
probing and interpretation of the
real environment and drive sys-
tem adaptation when necessary.

Internetware also aims to pro-
vide comprehensive assurance of
system quality. First, besides tradi-
tional quality factors such as cor-
rectness, performance, and reliabil-
ity, it emphasizes quality factors
related to the user experience, such
as energy efficiency, privacy, and
user-friendliness. Second, instead of
setting a universal, fixed QoS target,
it considers user-specific, dynami-
cally tunable targets by taking into
account user preferences and feed-
back. Finally, to ensure trustworthi-
ness in the open Internet, it not only
analyzes software artifacts’ quality
but also manages the trust relation-
ships between the subjects owning
the artifacts.

Internetware researchers have
made progress in architecture mod-
els, middleware frameworks, and
development tools, along with sys-
tem prototypes and case studies.1,2
However, much research remains
to realize the full vision of Inter-
netware. We need more research
on systematic software engineering

methodologies and enabling tech-
niques that will eventually shift the
software paradigm toward Internet
computing.

References
	 1.	 J. Lü et al., “Internetware: A Shift of

Software Paradigm,” Proc. 1st Asia-Pacific
Symp. Internetware (Internetware 09),
2009, article 7.

	 2.	 H. Mei, G. Huang, and T. Xie, “Internet-
ware: A Software Paradigm for Internet
Computing,” Computer, vol. 45, no. 6,
2012, pp. 26–31.

JIAN LÜ is a professor of computer science in
Nanjing University’s State Key Laboratory for
Novel Software Technology. Contact him at lj@
nju.edu.cn.

Stepping outside
Our Comfort Zone

David S. Rosenblum

The Internet poses many challenges
to software engineering; these chal-
lenges are becoming particularly
acute with the emergence of com-
puting paradigms that exploit the
Internet in new ways. The emer-
gence—and convergence—of mobile
and ubiquitous computing, sensor
networks, cyber-physical systems,
data analytics, and the Internet of
Things is pulling software engineer-
ing further and further from the
comfort zone of principles and tech-
niques that have prevailed for many
decades.

Looking through the prism of
software engineering research, you
get little sense of the enormous
changes taking place and their ac-
companying challenges. Software
engineering researchers largely still
view software and its engineering
precepts and solutions much as they
always have. Yet even something as

basic as the concept of correct be-
havior is being undermined by the
changing nature of software.

Consider the use of machine
learning in software engineering.
Machine-learning research has pro-
duced a rich, diverse collection of ap-
proaches and algorithms for perform-
ing automated statistical classification
of data processed by software at run
time. Machine learning has matured
to the point at which it’s being com-
moditized in powerful tools such as
Weka (Waikato Environment for
Knowledge Analysis) and contribut-
ing powerful functionality to a wide
variety of real-world applications.

At the algorithmic level, it’s chal-
lenging enough to determine whether
some implementation of a machine-
learning algorithm is producing the
outputs it should, given the inputs it
receives. But even if we’re willing to
accept at face value the correctness
of the algorithm’s implementation,
we must still deal with the conse-
quences of the statistical nature of
the algorithm itself, whose classifica-
tion ability typically is less than 100
percent precise. A rose by any other
name is still a rose, but a machine-
learning classifier might occasionally
say it’s a daisy. That might be the
best (the algorithm of) the classifier
can do. So, its output occasionally
might be incorrect, but that doesn’t
mean the classifier itself is incorrect
in the traditional software engineer-
ing sense. If we embed this classifier
within a larger application, and the
application occasionally produces
incorrect output, how can we tell
whether this is due to the classifier’s
imprecision or some fixable bug?

This problem, which Sebastian
Elbaum and I are studying,1 is but
one of the many ways the Internet
threatens some of the bedrock no-
tions of software engineering. We

s1rou.indd 92 12/9/14 3:03 PM

	 JANUARY/FEBRUARY 2015 | IEEE SOFTWARE � 93

as software engineering researchers
have only just begun to understand
and appreciate these challenges’ im-
plications. It’s time for us to step
outside our comfort zone and ad-
dress them.

Reference
	 1.	 S. Elbaum and D.S. Rosenblum, “Known

Unknowns: Testing in the Presence of
Uncertainty,” Proc. 22nd ACM SIGSOFT
Int’l Symp. Foundations of Software Eng.,
2014; pp. 833–836.

DAVID S. ROSENBLUM is a professor of
computer science in the National University of
Singapore’s School of Computing. Contact him at
david@comp.nus.edu.sg.

Internet Software’s
Dependability and
Programmability

Tevfik Bultan

Internet computing has been evolving
rapidly as we keep finding new ways
to build and use network-connected
computing devices (NCCDs). Program-
mable phones and tablets have over-
taken PCs. In a few years, program-
mable glasses, watches, or cars might
be the most common NCCDs.

In concert with NCCDs’ increas-
ing diversity, we see a uniform ap-
proach to software application
development based on the software-
as-a-service paradigm and the multi-
tiered architecture. Nowadays, most
applications are software services
hosted on clouds and accessed by
thin clients that execute on NCCDs.

In this modern computing land-
scape, software engineering research
for Internet computing faces two re-
lated challenges: improving depend-
ability and programmability.1

The necessity to address the first

challenge was made painfully clear
last year by the problems that Health-
Care.gov encountered. Modern soft-
ware applications are distributed sys-
tems comprising multiple components

executing on multiple machines and
interacting with each other by ex-
changing messages over the network.
Given these systems’ complexity, you
could argue that it isn’t surprising to
have many bugs and security vulner-
abilities. However, if we want to con-
tinue making software systems a crit-
ical part of every human endeavor,
we need to develop software engi-
neering techniques that are better at
establishing dependability.

The second significant challenge
is, how can we make software de-
velopment easier, so that even end
users can participate in basic ap-
plication development or custom-
ization? This challenge is critical
because the explosive increase in
software applications will likely
continue as novel NCCDs are intro-
duced and people find new uses for
them. I don’t think we’ll be able to
produce enough computer scientists
to meet the demand for application
development. We’ll need to provide
mechanisms that let end users cre-
ate applications or customize exist-
ing ones.

The following research directions
can help us address these two funda-
mental challenges.

Current software development
practices based on general-purpose
programming languages rely on the

talents of individual developers. Suc-
cess in state-of-the-art software de-
velopment isn’t easily repeatable and
scalable. We must develop higher-
level abstractions for modern soft-

ware application development. We
need to think about what’s the best
way to specify a software service’s
behavior rather than focus on pieces
of the problem such as client-side
versus server-side programming. We
should develop high-level modeling
languages that can be automatically
compiled to executable code. Let the
compiler decide where to run the
code (on the client or server side). We
should be thinking about what’s the
best abstraction for specifying the
application’s behavior.

In addition, we should devise
modular software development tech-
niques that let us write an applica-
tion as a combination of multiple
policies, each specifying a certain as-
pect of the application behavior. For
example, you could think of a mod-
ern Web application as a combina-
tion of several policies, such as

•	 a navigation policy identifying
the flow between different views
of the application,2

•	 a data update policy specifying
how the data in the persistent
storage is updated,3

•	 a UI policy identifying how to
present the views to the user,

•	 an access control policy iden-
tifying which data a user has
access to,4

We need to develop software
engineering techniques that are better

at establishing dependability.

s1rou.indd 93 12/9/14 3:03 PM

94	 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: INTERNETWARE AND BEYOND

•	 an authentication policy specify-
ing how users are identified, and

•	 an input validation and sanitiza-
tion policy specifying how the
user input is accepted.5

Existing Web application devel-
opment frameworks somewhat sup-
port modularization along these
lines. However, these policies are
written using general-purpose pro-
gramming languages, which make
their analysis and verification dif-
ficult. We should develop high-level
domain-specific languages that fa-
cilitate modular application devel-
opment with formal guarantees for
separation of concerns. (For exam-
ple, an access control policy can’t be
violated by the navigation policy.)

Finally, improving dependabil-
ity and programmability require in-
creasing the level of automation in
application development. We can
achieve such automation by increas-
ing the level of abstraction and mod-
ularity. So, contributions in the two
research directions I just outlined
would facilitate better automated
techniques for code analysis, synthe-
sis, verification, and repair.

References
	 1.	 T. Bultan, “Software for Everyone by Ev-

eryone,” Proc. FSE/SDP Workshop Future
of Software Eng. Research (FoSER 10),
2010, pp. 69–74.

	 2.	 S. Hallé et al., “Eliminating Naviga-
tion Errors in Web Applications via
Model Checking and Runtime Enforce-
ment of Navigation State Machines,”
Proc. 25th IEEE/ACM Int’l Conf.
Automated Software Eng. (ASE 10),
2010, pp. 235–244.

	 3.	 I. Bocić and T. Bultan, “Inductive Verifica-
tion of Data Model Invariants for Web
Applications,” Proc. 36th Int’l Conf. Soft-
ware Eng. (ICSE 14), 2014, pp. 620–631.

	 4.	 F. Sun, L. Xu, and Z. Su, “Static Detection
of Access Control Vulnerabilities in Web
Applications,” Proc. 20th USENIX Conf.
Security (SEC 11), 2011, p. 11.

	 5.	 M. Alkhalaf et al., “ViewPoints: Dif-
ferential String Analysis for Discovering
Client- and Server-Side Input Validation

Inconsistencies,” Proc. 2012 Int’l Symp.
Software Testing and Analysis (ISSTA 12),
2012, pp. 56–66.

TEVFIK BULTAN is a professor in the Univer-
sity of California, Santa Barbara’s Department
of Computer Science. Contact him at bultan@
cs.ucsb.edu.

Software Engineering
for the Internet of Things

Valerie Issarny

The vision of pervasive comput-
ing, since its introduction by Mark
Weiser in the early ’90s and through-
out its redefinition along the years,
hasn’t evolved much. Furthermore,
this is clearly no longer a vision;
nevertheless, in many of its aspects,
it still challenges the computer sci-
ence communities at large. The soft-
ware engineering community is no
exception, and the challenge is even
more so with the advent of the Inter-
net of Things (IoT). The IoT prom-
ises to blend the physical and virtual
worlds, hence introducing a vast
amount of knowledge into our now
largely pervasive, distributed soft-
ware systems.

With the IoT, sensing and actua-
tion are called on to become a utility.
To make the IoT a reality, research
must solve these challenges:1

•	 enable massive scaling, consid-
ering the foreseen trillions of
things;

•	 devise system architectures that
cope with the networking en-
vironment’s high heterogeneity
and dynamics;

•	 extract knowledge from the
sensed raw data;

•	 support an open environment,
whereas sensor-based systems
so far have been mostly closed
domain-specific systems;

•	 guarantee robustness of the
enacted systems despite the
mostly unknown networking
environment;

•	 enforce security and privacy;
and

•	 allow the synergistic operation
of humans and things.

Addressing these challenges will af-
fect the development of the support-
ing software systems.

To meet these challenges, our
group at Inria Paris-Rocquencourt
has been studying extensively how
to leverage but also revisit the tradi-
tional service-oriented-architecture
paradigms.2 Indeed, service orienta-
tion combined with semantic tech-
nologies allows dealing with the
IoT’s dynamics and heterogeneity.
Still, the massive scale of the net-
work of things calls for completely
new protocols to discover, access,
and coordinate things, including
mobile things.3 In addition, devel-
opment environments for applica-
tions to be deployed over the IoT re-
main pretty much an open issue in
light of the requirements for open-
ness and robustness. Similarly, we
need software tools that enable rea-
soning about applications’ security
and privacy. Finally, software tools
to process and analyze the big data
made available by the IoT have yet
to be devised.

A key issue underlying these chal-
lenges is the traditional centralized
architecture versus a distributed ar-
chitecture. Distribution is crucial to
meeting these challenges. Moreover,
solutions must be probabilistic, given
the uncertainty of the target network-
ing environments.

s1rou.indd 94 12/9/14 3:03 PM

	 JANUARY/FEBRUARY 2015 | IEEE SOFTWARE � 95

References
	 1.	 J.A. Stankovic, “Research Directions for

the Internet of Things,” IEEE Internet of
Things J, vol. 1, no 1, 2014, pp. 3–9.

	 2.	 T. Teixeira et al., “Service Oriented
Middleware for the Internet of Things: A
Perspective,” Towards a Service-Based
Internet, LNCS 6994, Elsevier, 2011, pp.
220–229.

	 3.	 S. Hachem, A. Pathak, and V. Issarny,
“Service-Oriented Middleware for the
Mobile Internet of Things: A Scalable Solu-
tion,” to be published in Proc. 2014 IEEE
Global Communications Conf. (GLOBE-
COMM 14), 2014.

VALERIE ISSARNY is a senior research scien-
tist at Inria Paris-Rocquencourt. Contact her at
valerie.issarny@inria.fr.

The Internet of Things,
People, and
Software Services

Schahram Dustdar

The Internet has undergone an es-
sential transformation and has been
a stunning success. It changed from
being a network of networks en-
abling access to remote machines to
a network of content, applications,
people, and (software) services,
thereby weaving itself into the fabric
of today’s global and interconnected
society. We can safely claim that to-
day’s use of the Internet constantly
transforms how people, businesses,
and society as a whole operate.

The interactions we witness are
such that some claim they defy the
laws of behavioral physics because
they’re built by autonomously inter-
acting people who are often unpaid
and intrinsically motivated. Assump-
tions about interaction models and
patterns (between humans, systems,
processes, and organizations) are
seriously challenged. Novel foun-
dational technologies and methods

need proper attention from science,
particularly computer science and
information systems.

Future Internet (FI) research’s goal
therefore must be to provide the in-
frastructure (networks and services)
and means to deal with the changing

novel requirements of today’s society.
Doing this will pave the way to the
convergence of application-specific
networks, supporting the Internet
of Services (IoS), Internet of Things
(IoT), and Internet of Content (IoC)
in a homogeneous network.

Research has to provide the mod-
ern algorithmic, engineering, and
methodological foundations for dy-
namic aspects, which are essential
for building FI computing systems.
In many scientific disciplines, as in
most political matters today, we face
grand challenges that increasingly
require deep collaboration among
scientists, government agencies, po-
litical decision makers, and the gen-
eral public. Such challenges require
dynamic infrastructures supporting
novel ways of collaboration, coordi-
nation, and communication between
social and technical subsystems.

One hope is that the FI enables the
construction and execution of such
highly dynamic novel infrastruc-
tures based on the IoS, IoT, and IoC.
These main building blocks of FI sys-
tems will thus include both execut-
able software-based services and hu-
man-provided services. In the latter
case, the provider of some function-
ality won’t be a machine (in the form

of a software executable) but a hu-
man being. This person will (through
machine-processable interfaces) pro-
vide services and (automated) inter-
actions, called service ensembles.
The building blocks of service en-
sembles are active, which renders

their composition a challenge.
A service ensemble consists of hu-

mans and software services. Inter-
action in service ensembles includes
people communicating and coordi-
nating with other people, people us-
ing (human- or software-based) ser-
vices, and services invoking other
services. Service ensembles aren’t a
purely social system because services
greatly affect how people interact.
Services determine how people can
coordinate, communicate, and carry
out their joint work. Neither is a
service ensemble a purely technical
system. The social structure greatly
influences the required service ca-
pabilities. Groups that exhibit great
trust among members want to col-
laborate more freely and with less
structure than groups that follow a
rigid organizational structure.

We must work on the scientific
foundations for building and testing
FI systems that allow construction
and deployment of service ensembles.

SCHAHRAM DUSTDAR is a professor in
the Vienna University of Technology’s Fac-
ulty of Informatics. Contact him at dustdar@
dsg.tuwien.ac.at.

With the Internet of Things, sensing and
actuation are called on to become a utility.

s1rou.indd 95 12/9/14 3:03 PM

96	 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: INTERNETWARE AND BEYOND

Supporting a
Participatory Culture
of Software Development

Margaret-Anne Storey

Over the past few decades, software
development has transitioned from
a predominantly solo activity of de-
veloping standalone programs to
a highly distributed, collaborative
approach that depends on or con-
tributes to large, complex software
ecosystems. The distributed and col-
laborative nature of software devel-
opment continues to grow as new
Web-based tools are proposed and
adopted. These tools offer social
networking features (for example,
watching and following other devel-
opers or projects) and lightweight,
transparent channels for knowledge
sharing. Such features facilitate the
emergence of a participatory devel-
opment culture,1 in which developers
are keen to learn from and cocreate
with others.2

This participatory culture
emerged not just because of social

tools but also owing to the advance-
ment of remote systems and the
wider availability of the Internet in
the early ’80s. Development commu-
nities naturally formed around free
and open source projects, with com-
munication tools such as email, ver-
sion control, and Usenet playing an
important role in community forma-
tion. This participatory culture isn’t
isolated to open source projects; it’s

also clearly evident in industrial dis-
tributed and global software devel-
opment projects. Nowadays, we see
social coding, microblogging, social
news sites, cloud-based development
tools, and question-and-answer web-
sites playing an essential role across
many development contexts. The
participatory nature of software de-
velopment is embedded in and facili-
tated by an ecosystem of tools, de-
velopers, and content. The continued
adoption of social systems and on-
line development tools leads to three
major trends.

First, we see the emergence of so-
cial developers who are passionate
about contributing to community re-
sources and who care deeply about
what others think of their contribu-
tions. They nurture and use their so-
cial networks to stay up to date with
technological changes, to broaden
their skills and manage their own
identity. Furthermore, their devel-
opment tasks shift from writing
new code to reusing or mashing up
existing solutions. So, their success
and effectiveness rely not only on

their technical skills but also on how
they can use their social networks
to find, curate, and share important
information.

Second, the Internet as a hosting
platform and environment for soft-
ware development increases the em-
phasis on data over code in software
engineering processes. Continuous
release cycles, large-scale testing
in the wild, user feedback through

social media, and operational data
from distributed development are
just some of the data resources that
can be analyzed and visualized to
improve software quality, the user
experience, and developer produc-
tivity.3 The ability to continuously
analyze and visualize real-time
information plays an important
feedback role in the participatory-
development culture.

Third, the use of the Internet to
host community projects and tools
across diverse domains broadens
participation (for example, to scien-
tists and other end-user program-
mers). Such participation will likely
expand further owing to the ubiq-
uitous nature of computation that’s
visible across the Internet of Things.
The Internet together with social
tools supports community-authored
and community-curated resources
that help attract and retain those
participants. However, the trans-
parency these environments afford
might also lead to participation bar-
riers that shouldn’t be ignored.

Finally, software developers are
sometimes called the “prototype
knowledge workers of tomorrow.”4
Developers are the creators or early
adopters of new technologies that
knowledge workers (for example,
in healthcare, the sciences, or jour-
nalism) might rely on in the future.
So, the impact of understanding
the challenges of and opportunities
from adopting and using social tools
could reach across many knowledge
domains.

References
	 1.	 H. Jenkins et al., Confronting the Chal-

lenges of Participatory Culture: Media
Education for the 21st Century, MIT
Press, 2006.

	 2.	 M.-A. Storey et al., “The (R) Evolution of
Social Media in Software Engineering,”
Proc. the Future of Software Eng. (FOSE
14), 2014, pp. 100–116.

The use of the Internet to host community
projects and tools across diverse domains

broadens participation.

s1rou.indd 96 12/9/14 3:03 PM

	 JANUARY/FEBRUARY 2015 | IEEE SOFTWARE � 97

	 3.	 D. Zhang et al., “Software Analytics in
Practice,” IEEE Software, vol. 30, no. 5,
2013, pp. 30–37.

	 4.	 A. Kelly, Changing Software Develop-
ment: Learning to Become Agile, John
Wiley & Sons, 2008.

MARGARET-ANNE STOREY is a professor in
the University of Victoria’s Department of Com-
puter Science. Contact her at mstorey@uvic.ca.

Rethinking Logging in
Online Services

Dongmei Zhang

Logging is important for recording
program execution process and de-
bugging problems that occur dur-
ing execution. It’s widely used in
in-house software development and
in telemetry that collects program
run-time information in the large.
In the Internet computing era, log-
ging has become even more critical
in the quality management of online
services because it’s almost the only
feasible diagnosis mechanism for
large-scale distributed service sys-
tems. Although logging’s value is in-
disputable, it faces new challenges in
the context of online services.

The first challenge is cost. Owing
to the massive user base and enor-
mous volume of transactions served
by online services, the volume of logs
will increase significantly, result-
ing in huge storage and processing
costs. Additionally, a huge number
of logs often poses serious challenges
to problem diagnosis. For example,
many logs are often irrelevant to the
problem under investigation, thus
making diagnosis like finding a nee-
dle in a haystack.

The second challenge is how to
control logging quality. Logging
quality deals mainly with two issues.

One is to detect and avoid logging
incorrect information—data bugs.
Data bugs are more likely to occur
in a fast-paced dynamic development
environment with many engineers.
Flexible logging schemas, frequent
code changes, code maintenance,
and so on can cause data bugs.

The other logging-quality issue
relates to effectiveness and efficiency.
Insufficient logging might impact the
logs’ effectiveness because it might
miss run-time information needed
for postmortem analysis. Excessive
logging might impact the logs’ effi-
ciency because the extra logs might
incur a prohibitive cost at run time
and in offline storage and processing.

Finally, the huge quantity of logs
demands scalable, effective analysis
techniques and tools to help engi-
neers gain insights into their service
systems’ quality. On one hand, this
lets engineers diagnose and resolve
service problems as quickly as pos-
sible to reduce the mean time to re-
covery. On the other hand, engineers
can use the insights to proactively
detect and fix hidden problems in
the systems and to enhance the mon-
itoring mechanism accordingly.

It’s great to see the research con-
ducted and published on logging
over the past few years.1–3 I hope
to see more researchers and practi-
tioners rethink logging in the con-
text of online services, and tackle
the aforementioned challenges with
breakthroughs in both research and
practice.

References
	 1.	 W. Xu et al., “Large-Scale System Problem

Detection by Mining Console Logs,” Proc.
22nd ACM Symp. Operating Systems
Principles (SOSP 09), 2009, pp. 117–132.

	 2.	 D. Yuan et al. “Be Conservative: Enhanc-
ing Failure Diagnosis with Proactive
Logging,” Proc. 10th USENIX Conf.
Operating Systems Design and Implemen-
tation (OSDI 12), 2012, pp. 293–306.

	 3.	 Q. Fu et al., “Where Do Developers Log?
An Empirical Study on Logging Practices
in Industry,” Companion Proc. 36th Int’l
Conf. Software Eng., 2014, pp. 24–33.

DONGMEI ZHANG is a principal researcher
at Microsoft Research, China. Contact her at
dongmeiz@microsoft.com.

Take the CS Library
wherever you go!

IEEE Computer Society magazines and Transactions are now
available to subscribers in the portable ePub format.

Just download the articles from the IEEE Computer Society Digital
Library, and you can read them on any device that supports ePub. For
more information, including a list of compatible devices, visit

www.computer.org/epub

Selected CS articles and columns
are also available for free at
http://ComputingNow.computer.org.

s1rou.indd 97 12/9/14 3:03 PM

