
Computer Networks 90 (2015) 14–33

Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier.com/locate/comnet

PRINGL – A domain-specific language for incentive

management in crowdsourcing✩

Ognjen Scekic∗, Hong-Linh Truong, Schahram Dustdar

Distributed Systems Group, Vienna University of Technology, Austria

a r t i c l e i n f o

Article history:

Received 16 October 2014

Revised 23 February 2015

Accepted 15 May 2015

Available online 9 July 2015

Keywords:

Incentive management

Rewarding

Crowdsourcing

Socio-technical system

Social computing

a b s t r a c t

Novel types of crowdsourcing systems require a wider spectrum of incentives for efficient mo-

tivation and management of human workers taking part in complex collaborations. Incentive

management techniques used in conventional crowdsourcing platforms are not suitable for

more intellectually-challenging tasks. Currently, incentives are custom-developed and man-

aged by each particular platform. This prevents incentive portability and cross-platform com-

parison. In this paper we present PRINGL – a domain-specific language for programming and

managing complex incentive strategies for socio-technical platforms in general. It promotes

re-use of proven incentive logic and simplifies modeling, adjustment and enactment of com-

plex incentives for socio-technical systems. We demonstrate its applicability and expressive-

ness on a set of realistic use-cases and discuss its properties.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Ever since the introduction of the term crowdsourcing in

2006 there has been a debate as to what exactly it should

comprise (see [2]). When most of the community tacitly

started applying the term to a family of micro-task platforms

offered through an ‘open-call’ to anonymous crowds [3,4] a

range of novel systems emerged attempting to leverage ex-

pert humans for more intellectually challenging tasks [5–8],

by actively targeting preferred workers. These novel systems

involve longer lasting worker engagement and complex col-

laboration workflows, often integrating the notion of team
✩ Extended version of: O. Scekic, H.-L. Truong, S. Dustdar, Managing incen-

tives in social computing systems with pringl, in: B. Benatallah, A. Bestavros,

Y. Manolopoulos, A. Vakali, Y. Zhang (Eds.),Web Inf. Systems Engineering

(WISE’14), Vol. 8787 of LNCS, Springer, 2014, pp. 415–424.
∗ Corresponding author. Tel.: +436504977327.

E-mail addresses: oscekic@dsg.tuwien.ac.at, oscekic@gmail.com

(O. Scekic), truong@dsg.tuwien.ac.at (H.-L. Truong), dustdar@dsg.

tuwien.ac.at (S. Dustdar).

URL: http://dsg.tuwien.ac.at (O. Scekic)

http://dx.doi.org/10.1016/j.comnet.2015.05.019

1389-1286/© 2015 Elsevier B.V. All rights reserved.
programmability. To highlight this distinction, some authors

started naming these systems socio-technical or social com-

puting. However, the principal trait of all these systems is that

they need to manage interactions with and among human

elements, referred to as workers, agents, human services or

peers, performing different tasks (jobs) or collaborative work-

flows thereof.

While incentives were identified as one of the funda-

mental characteristics of conventional crowdsourcing sys-

tems [2], supporting more complex work patterns introduces

novel challenges, with respect to finding, motivating and as-

sessing (expert) workers executing them. Furthermore, in or-

der to retain such workers the virtual labor market must be

made more competitive and attractive [9]. In [9] the authors

discuss the recent developments in the area and highlight

a number of important research directions that need to be

investigated in order to build such systems. Incentive man-

agement was identified as one of them. However, contem-

porary approaches to incentive management usually imply

hard-coded, system-specific solutions (see Section 7). Such

approaches are not portable, and prevent reuse of common

incentive logic. That hinders cross-platform application of in-

centives and reputation transfer.

http://dx.doi.org/10.1016/j.comnet.2015.05.019
http://www.ScienceDirect.com
http://www.elsevier.com/locate/comnet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2015.05.019&domain=pdf
mailto:oscekic@dsg.tuwien.ac.at
mailto:oscekic@gmail.com
mailto:truong@dsg.tuwien.ac.at
mailto:dustdar@dsg.tuwien.ac.at
http://dsg.tuwien.ac.at
http://dx.doi.org/10.1016/j.comnet.2015.05.019

O. Scekic et al. / Computer Networks 90 (2015) 14–33 15

Fig. 1. Application context of incentive management systems.

1 PRogrammable INcentive Graphical Language
Our ultimate goal is to develop a general framework for

automated incentive management for the emerging crowd-

sourcing systems. Such an incentive management framework

could be coupled with different workflow or crowdsourcing

systems, and, based on monitoring data they provide, would

perform incentivizing measures and team adaptations. In

this way, incentive management could be externalized and

offered as a service. Fig. 1 visualizes the context in which an

incentive management framework is supposed to operate:

A complex business process is being executed by employ-

ing crowdsourced team(s) of human experts to execute vari-

ous workflow activities. The teams are provisioned by a ded-

icated service (e.g., Social Compute Unit – SCU [10,11]) that

assembles teams of crowd workers based on required elas-

ticity parameters, such as: skills, price, speed or reputation.

However, choosing appropriate workers alone does not guar-

antee the quality of subsequent team’s performance. In or-

der to monitor and influence the behavior of workers during

and across activity executions an incentive scheme needs to

be enacted. This is the task of incentive management frame-

works. They enact the incentive scheme by applying rewards

or penalties in a timely manner to induce a wanted worker

behavior, thus effectively performing runtime team adapta-

tions (e.g., Fig. 1: A′ → A′′).
Designing an incentive scheme is itself a challenging task

performed by domain experts for a particular work pattern

or company. As shown in [4,12] most real-world incentive

strategies used in crowdsourcing environments can be com-

posed of modelable and reusable bits of incentive logic. How-

ever, in Section 7 we also show that the efficacy of incentives

can depend on multiple other factors, such as team size, cul-

tural background, or knowledge of other participants. There-

fore, the challenge is to design an incentive management

framework capable of reusing existing and proven incentive

mechanisms, but also allowing for easy tweaking to particu-

lar application contexts.

1.1. Contribution

The cornerstone of the previously described incentive

management frameworks is the incentive programming

model, consisting of the two conceptual units:

(i) Incentive Model—supporting expression of a wide

spectrum of incentive mechanisms suitable for crowd-

sourcing environments;
(ii) Execution Model—supporting enactment of the incen-

tive mechanisms from i) onto crowd workers.

In this paper we present the programming model of

pringl
1 – a novel domain-specific language (DSL) for mod-

eling incentives for socio-technical and crowdsourcing

systems. We describe pringl’s modeling paradigm, and

demonstrate its expressiveness by modeling a set of realistic

incentive mechanisms. We then show how the modeled

incentives can be enacted on a social-computing platform.

This paper substantially extends and refines our work

presented in [1]. While the initial paper briefly presented the

principal incentive elements, the extended version describes

the entire incentive model, including a description of primi-

tive elements and incentive operators (Section 4.1) and a sig-

nificantly extended section on complex incentive elements

(Section 4.3). Furthermore, we describe the allowed opera-

tions on the introduced incentive elements (Section 4.2.1), as

well as the execution model (Section 4.4). In order to address

the concerns of groundedness and applicability of our contri-

bution, we present a substantial evaluation in Section 5, cov-

ering a set of realistic examples. The evaluation is based on

the methodological approach outlined in the newly-added

Section 2. Finally, the operational context and connectedness

to our previous work are better explained (Section 3.2), and

the Related Work (Section 7) extended.

The paper is organized as follows: Section 2 presents

the research methodology. Section 3 gives an overview of

pringl’s architecture and intended use. In Section 4 the prin-

cipal elements of pringl’s incentive and execution model are

presented. Section 5 shows how to model a set of realistic in-

centive schemes with pringl. Section 6 describes the imple-

mented modeling tools. Section 7 presents the related work.

Section 8 concludes the paper.

2. Methodology & background work

Our work is motivated by the lack of general and con-

figurable incentive management solutions for (novel) types

of crowdsourcing systems [9]. The purpose of any DSL is to

allow the user to solve quickly and more easily some clearly

identifiable problems in a domain, sacrificing in exchange

the generality offered by a general-purpose programming

language. In this case, the problem is to allow quick and

uniform/portable modeling of commonly used incentive

patterns identified in [12]. In order to design a useful DSL, we

followed the general guidelines described in [13] to formu-

late design requirements, based on which we implemented

and evaluated pringl’s programming model.

As is common practice during the prototyping phase of

DSL development, we evaluate the programming model qual-

itatively [13,14] – by establishing whether it is capable of

meeting the formulated design requirements. Concretely, to

establish that the offered functionality is grounded in real-

ity, i.e., able to model a wide spectrum of real-world incen-

tives, we show how pringl can be used to encode a num-

ber of example incentive schemes, chosen to cover most of

the incentive patterns from [12] (Table 4). By describing and

discussing the flexibility offered by pringl when modeling

16 O. Scekic et al. / Computer Networks 90 (2015) 14–33

Fig. 2. A joint overview of pringl’s programing model elements, architecture, users, operative environment and implementation. Implemented elements

(Section 6) are marked in blue (lighter shaded). (For interpretation of the references to color in this figure legend, the reader is referred to the web version

of this article).
incentives in this example suite we argue for the usability as-

pect of pringl as well. Unfortunately, a fully rigorous usabil-

ity claim could only be made after an extensive satisfaction

survey of actual pringl users under real conditions, which is

currently infeasible due to a lack of commercially exploitable

end-to-end systems with incentive management capabilities.

Finally, in Section 6 we present a prototype implementation

of pringl’s programming model, and use the implemented

prototype to fully encode a complex incentive scheme from

the example suite (Ex. 5), thus demonstrating the complete-

ness of the proposed model and practically validating our im-

plementation.

As shown in Section 7, previous research on incentives in

crowdsourcing was mostly focused on concrete, application-

specific incentive design and validation. To the best of our

knowledge, there have been no previous attempts of for-

malizing a general and comprehensive approach to incen-

tive management for crowdsourcing or socio-technical sys-

tems. A comparative evaluation of our research is therefore

not possible. As the topic of this paper is not design or evalu-

ation of particular incentive mechanisms on concrete crowd-

sourcing platforms, our evaluation does not include experi-

mental or simulation testing of incentive application.

The basic incentive modeling concepts that were used to

design pringl were inspired by, or based upon concepts pre-

viously introduced in the set of our background papers: in
[15] we presented a possible model of the abstraction in-

terlayer (Section 3.2); the basic functionality of the inter-

layer’s incentive modeling capabilities were simulated and

tested in [16]; and finally, in [10,17] we present components

of a framework that allows provisioning and communication

with collectives of human workers. We are currently working

on integrating pringl and the aforementioned components

into a single end-to-end socio-technical system with incen-

tive management capabilities.

3. PRINGL overview

3.1. Users

pringl is a domain-specific language intended to be used

by two types of users (Fig. 2): (a) incentive designers – do-

main experts that design and implement incentive scheme

for an organization; and (b) incentive operators – organiza-

tion members responsible for managing the every-day run-

ning and adaptation of the scheme.

An incentive designer (the Designer) is a multidisci-

plinary domain expert in the areas spanning management,

economy, game theory and psychology. The Designer is hired

by the crowdsourcing platform to design a set of appro-

priate incentive mechanisms for the given business model

of the platform, taking into consideration context-specific

O. Scekic et al. / Computer Networks 90 (2015) 14–33 17
properties pertinent to the targeted population of workers.

An example of how this process is performed for two differ-

ent experimental platforms can be found in [18,19]. The role

of an incentive operator (the Operator) has not been defined

in the existing literature, as its existence is subject to the ex-

istence of the novel type of incentive management platforms

that we describe in this paper. While a Designer can be a per-

son external to the socio-technical platform, the Operator is a

member of the management of the socio-technical platform

in charge of monitoring the application of incentives and tak-

ing operative decisions on adaptations of various incentive

parameters.

While Designers may need to concern themselves with

implementation details of the underlying system in order to

adapt general incentive mechanisms for it, Operators want to

manage the incentive scheme by using a simple and intuitive

user interface without knowing implementation internals. In

Example 3 we showcase the parameters that are under Oper-

ator’s control, while the whole of mechanism and the choice

of which parameters are tweakable were defined by the

Designer.

3.2. Operational environment

In order to enact a pringl-encoded incentive on a socio-

technical platform (i.e., apply the incentives on real crowd

workers), we need a simplified and uniform model of plat-

form’s workers, and the metrics and relationships that de-

scribe them. We call such a model together with the frame-

work that manages it an abstraction interlayer (Fig. 2). More

precisely, we use the term abstraction interlayer to denote

any middleware sitting on top of a socio-technical system,

exposing to external users a simplified model of its em-

ployed workforce and allowing monitoring of the workers’

performance metrics. The existence of an abstraction inter-

layer allows the incentive designer to write fully-portable

incentives.

In [15] we presented a framework for low-level incentive

management – princ. Although princ allowed monitoring of

metrics and application of basic incentive mechanisms for

socio-technical systems in general, it lacked a comprehen-

sive, human-readable way of encoding incentive strategies,

motivating us to design pringl. However, princ possesses

all the characteristics of an abstraction interlayer. It features

an abstract model (RMod) for representing the state of a

socio-technical system, reflecting its quantitative, temporal

and structural aspects. princ’s mapping model (MMod) de-

fines the mappings needed to properly express the platform-

specific versions of metrics, actions, artifacts and attributes

into their RMod cognates. Finally, princ takes care of ex-

changing messages with, and receiving update events from

the underlying socio-technical platform, thus enabling the

RMod abstract model to mirror the state of the underlying

system. This in turn allows us to express incentive mecha-

nisms decoupled from the underlying platform: to apply an

incentive it suffices to alter the RMod state, while the task

of mirroring this change onto the actual socio-technical plat-

form is delegated to princ.

In this paper we assume the existence of princ as abstrac-

tion interlayer. The business logic code provided in the exam-

ples in Section 5 is C# code executable on princ. In theory,
pringl can work without an abstraction interlayer. However,

this would imply that all message handling with the under-

lying crowdsourcing system and complex monitoring logic

would have to be written from scratch and placed into the

incentive logic elements (Section 4.3). This contradicts one of

the principal motives for introduction of pringl, and is more

disadvantageous than building a completely system-specific

incentive management solution.

3.3. Architecture

Fig. 2 shows an overview of pringl’s architecture and us-

age. An incentive designer models an incentive scheme pro-

vided by a domain expert as a pringl program using pringl’s

visuo-textual syntax. The visually-expressed part of the syn-

tax is completely system-independent, while system-specific

business logic can be expressed as source code in an arbitrary

programming language supported by the abstraction inter-

layer (see Section 4.3, Incentive Logic).

Starting from a pringl program the pringl code generator

produces the following artifacts, encoded in a conventional

programming language:

• An incentive model expressed in terms of incentive ele-

ments, basic pringl types and operators. This model also

integrates the business logic code provided by the incen-

tive designer. The incentive element definitions from this

model can optionally be compiled into libraries for later

reuse.

• Code for communication with the abstraction interlayer

and application of the incentives.

• Code for manipulation of the incentive model.

These artifacts can be used to quickly build applications

offering incentive management capabilities, e.g., a GUI-based

application offering an incentive operator the possibility to

change the runtime parameters. As previously explained, the

abstraction interlayer takes care to communicate with the

concrete socio-technical system, forward the rewarding ac-

tions and receive the updates.

3.4. Requirements

As pringl is a domain-specific language, the focus of

the design requirements lies primarily on usability for its

intended users (Section 3.1). In order to design an attrac-

tive language for the targeted users, the process was guided

by the following requirements, formulated according to the

guidelines outlined in [13]:

(a) Usability – provide an intuitive, user-friendly modeling

DSL for incentive operators.

(b) Expressiveness – provide an expressive environment

for programming complex real-world incentive strate-

gies for incentive designers.

(c) Groundedness – allow the use of de facto established

terminology, components and methods for setting up

incentive strategies.

(d) Reusability – support and promote reuse of existing in-

centive business logic.

(e) Portability – support system-independent incentive

mechanisms, agnostic of type of labor or workers, and

of underlying systems.

18 O. Scekic et al. / Computer Networks 90 (2015) 14–33

Table 1

Primitive types.

Type Description

Worker Represents an individual worker and his/her performance metrics.

PoiT Represents a point in time. It can be instantiated by providing a fixed datetime or obtained as result of application of time

operators.

Interval Represents a named, addressable time interval. An interval can be: (a) fixed; and (b) adjustable. Fixed intervals have

predefined starting and ending times, provided by two PoiTs, that cannot subsequently be altered. Adjustable intervals

reflect the external system’s changes intervals, e.g., deadline extensions (cf. iterations [15]). Changes are allowed to affect

only points in future.

Collection<T> An iterable collection of a primitive type T is also considered a primitive type.

Table 2

Built-in operators.

Operators Description

Set operators Union, intersection and complement on Collection<T>.

Time operators Return Collection<PoiT> specifying times in which an action is expected. When working with adjustable intervals,

their use guarantees that external changes will be observed. Commonly used with temporal specifiers.

Temporal specifiers Instruct execution environment when to perform certain actions or evaluate predicates. As such, they cannot be directly

used in user-provided programming code, but are rather offered as a choice through a visual GUI element (drop-down

box), where needed. Internally, they are represented as built-in functions that operate on a collection of PoiTs provided

by the environment at runtime.

Structural operators Perform structural queries/modifications by examining/re-chaining relationships between worker nodes in the abstraction

interlayer’s (graph) model by using graph transformations [20].

Aggregation operators Perform calculations on performance metrics or events over a Collection<PoiT>s in a fashion similar to SQL

aggregate functions. The collection of time points over which they calculate is provided by the runtime environment at

each invocation. A number of context-dependent restrictions apply on where they can be used.

2 Extended descriptions are provided as supplement materials at

http://dsg.tuwien.ac.at/research/viecom/PRINGL/
4. Programming model

To meet the specified requirements pringl was conceived

as a hybrid visual/textual programming language, where in-

centive designers can encode core incentive elements, while

incentive operators can provide concrete runtime parame-

ters to adapt them to a particular situation. The language

supports programming of the real-world incentive elements

described in [4,12] and allows composing complex incentive

schemes out of simpler elements. Such a modular design also

promotes reusability since the same incentive elements with

different parameters can be used for a class of similar prob-

lems, stored in libraries and shared across platforms.

pringl allows incentive designers to model realistic

incentive schemes (i.e., business logic) into a platform-

independent specification through a number of incentive el-

ements represented by a visual syntax (graphical elements

with code snippets). The incentive scheme represents the

whole of business logic needed for managing incentives in

an organization. The scheme is expressed in pringl as a num-

ber of prioritized incentive mechanisms representing a pringl

program. Each mechanism can them be further decomposed

into a number of constituent incentive elements described

in the following subsections. The designer programs new in-

centive elements or reuses existing ones from an incentive

library to compose new, more complex ones. The following

sections describe the incentive elements and operations on

them. Due to spatial and readability constraints, the elements

are not always fully described. For the same reason, the ex-

planation of the code generation process is out of the scope
of this paper. For more information the reader is referred to

the supplement materials2.

4.1. Primitive incentive elements & operators

From business logic perspective, primitive incentive el-

ements represent the basic entities (workers, relationships

and time units) that we use when composing incentive rules.

From programming language perspective, they can be con-

sidered as atomic types that are used in user-provided or

library code that specifies business logic. We use the two

term: ‘type’ and ‘incentive element’ interchangeably. Apart

from the four conventional primitive types: string, bool,

int and double, pringl defines the types shown in Table 1.

They do not have a direct visual representation. Only primi-

tive elements can be used as inputs and outputs of complex

incentive elements (Section 4.2). pringl provides a number of

a useful operators for manipulating these types (Table 2)2.

4.2. Complex incentive elements

Complex types enable pringl’s core functionality and are

represented by corresponding graphical elements. Their key

property is that more complex types can be obtained by visu-

ally combining simpler ones. Visual, rather than purely tex-

tual representation was chosen to allow users to build up

http://dsg.tuwien.ac.at/research/viecom/PRINGL/

O. Scekic et al. / Computer Networks 90 (2015) 14–33 19

Fig. 3. Complex incentive elements class hierarchy.
complex incentive schemes by visually suggesting and re-

stricting the choice of the possible components, thus facili-

tating the process of construction of incentive mechanisms.

Complex incentive elements are managed through the fol-

lowing operations:

4.2.1. Operations on complex incentive elements

Definition – Complex types are defined by inherit-

ing the following abstract metatypes: IncentiveLogic,

WorkerFilter, RewardingAction and Incentive
Mechanism (Fig 3). A new complex type inherits the pre-

defined, addressable fields from the metatype it redefines. In

order for a type definition to be complete, the fields must

be filled out with appropriate values. Some fields are filled

out automatically by pringl depending on the context where

they are used (auto parameters); others must be filled out

by the user (user-fields). The user-fields are: (a) name, which

specifies the name of the new complex type; (b) arbitrary

number of primitive-type input parameters (params) that

can be used in evaluations and passed to other incentive el-

ements; (c) type-specific fields2, specifying how a particu-

lar functionality of the newly defined complex type is go-

ing to be executed – by indicating another incentive ele-

ment to invoke, or by providing an executable code snippet.

Definition is performed through appropriate graphical con-

structs being placed onto the working area. A new type defi-

nition retains its parent-metatype’s graphical representation.

For the non-auto input params (b), pringl visually exposes

appropriate number of GUI form fields accepting the inputs

that are to be filled out manually by the user. The input can

contain expressions with primitive types and/or references

to other accessible fields. To fill out type-specific fields (c),

the user is expected to visually link the appropriate incen-

tive element type, thus effectively declaring/instantiating it

(see below).
Declaration/Instantiation – When defining new com-

plex types, the user indicates (declares) which field/

subcomponent instances will be required for pringl runtime

to instantiate the newly defined object by placing the corre-

sponding graphical (color-filled) element in the appropriate

context within the working area, connecting it with appro-

priate connector from the parent type definition, and over-

riding parameter values from the parent type definition, if

needed. The auto parameters are loaded at instantiation by

pringl transparently to the user. Type instances are address-

able objects that can be referenced (e.g., to read a field value)

or invoked (see below) from other elements.

Indirect invocation – The IncentiveLogic,

WorkerFilter and RewardingAction instances can

also be ‘invoked’ just by being referenced from expressions

in user-code. When the pringl code generator encounters an

instance reference in an expression it transparently replaces

it with an invocation of the default method for that type.

Default methods for filters and rewarding actions return the

resulting Collection<Worker>. The default method of

a IncentiveLogic type is a function having input and

output parameters as specified in its definition, and the user-

provided code as the function body. The input parameters

are provided by pringl runtime, so there is no need to pass

any non-user parameters from the user code. Expressions

containing indirect invocations can be used as field values

(see Ex. 2, Fig. 11) or arbitrarily within the user-provided

business-logic code in IncentiveLogic elements (see

Ex. 3, Fig. 12, 1©). Indirect invocation feature allows the user

to pass instance references instead of output types of their

default methods; for example, we can pass a filter instance

to an IncentiveLogic element expecting a single input

parameter of type Collection<Worker>. As these are

common situations, indirect invocation helps cut down on

verbosity of user code.

20 O. Scekic et al. / Computer Networks 90 (2015) 14–33

Fig. 4. Visual element representing an IncentiveLogic definition.

Fig. 5. Visual element used for SimpleWorkerFilter definition.

Fig. 6. An example CompositeWorkerFilter definition.
Static invocation – In addition to indirect invocation,

IncentiveLogic elements can be invoked statically

with arbitrary input parameters from the user code. In

order to make the static invocation, the Incentive
Logic type name is appended with .invokeWith
([<param-list>]); see Ex. 3, Fig. 12, 1©.

4.3. Defining complex incentive elements

Incentive logic . These constructs encapsulate different as-

pects of business logic related to incentives in reusable

bits (e.g., determine whether a condition holds, read a

metric value, or perform a simple action). They can be

thought of as functions/delegates with predefined signa-

tures allowing only certain input and output parameters.

They are invoked from other pringl constructs, including

other IncentiveLogic elements. Implementation is de-

pendent on the abstraction interlayer, but not necessarily on

the underlying socio-technical platform, meaning that many

libraries can be shared across different platforms, promot-

ing reusability of proven incentives, uniformity and reputa-

tion transfer. The Designer is encouraged to implement in-

centive logic elements as small code snippets with intuitive

and reusable functionality. Depending on the intended us-

age, incentive logic elements have different subtypes: Action,

Structural, Temporal, Predicate, Filter. Subtypes are needed

to impose necessary semantic restrictions, e.g., the subtype

prescribes different input parameters and allows pringl to

populate some of them automatically3. Similarly, different

subtypes dictate different return value types. These features

encourage high modularization and uniformity of incen-

tive logic elements. Incentive logic element definition is ex-

pressed in pringl with the visual syntax element shown in a

Fig. 4, with appropriate subtype symbol shown in the upper

left corner. As is the case with other incentive element defini-

tions (presented in subsequent sections), the incentive logic

element incorporates the distinguishing geometrical shape

(diamond in this case), as well as auto-populated and user-

defined parameters. Differently than other elements, it con-

tains a field into which the Designer inputs executable code

in a conventional programming language. The code captures

the business logic specific to the incentive that is being mod-

eled, but must conform to the rules imposed by the incentive

logic subtype. As a shorthand, textual, inline notation for in-

centive logic elements we use a diamond shape surrounding

the letter indicating the subtype, e.g., for temporal logic.
3 Marked with auto in figures
Worker filter . The function of a WorkerFilter ele-

ment is to identify, evaluate and return matching work-

ers for subsequent processing based on user-specified cri-

teria. The criteria are most commonly related (but not lim-

ited) to worker’s past performance and team structure.

The workers are matched across different time points from

the input collection of Workers that is provided by the

pringl environment at runtime. By default, all the work-

ers in the system are considered. The output is a collec-

tion of workers satisfying the filter’s predicate. Therefore,

the functionality of a filter is to return a subset of work-

ers from the input set, i.e., to perform a set restriction. Both

SimpleWorkerFilter and CompositeWorkerFilter
are subtypes of the abstract WorkerFilter metatype

(Fig. 3), and can be used interchangeably where a worker

filter is needed. A SimpleWorkerFilter element defini-

tion is expressed in pringl with the visual syntax element

shown in Fig. 5, while a right-pointed shape is used as the

inline, shorthand, textual denotation. Filter’s type-specific

fields are filled out visually by the user, by connecting them

with appropriate incentive elements. The fields specify the

time ranges over which to evaluate a worker (temp_spec
and time_rest fields) and the predicate(s) (predicate
and auxiliary fields) over metrics that need to hold.

In Fig. 6 we illustrate how a composite filter can be

defined in pringl. It consists of graphical elements repre-

senting instances of previously defined, or library-provided

WorkerFilters. The elements are connected with directed

edges denoting the flow of Workers. There must be exactly

one filter element without input edges representing the ini-

tial filter, and exactly one filter element without output edges

representing the final filter in a composite filter definition.

When a CompositeWorkerFilter is instantiated and ex-

ecuted, pringl provides the input for the initial filter, and re-

turns the output of the final filter as the overall output of the

O. Scekic et al. / Computer Networks 90 (2015) 14–33 21

Fig. 7. Visual element used for SimpleRewardingAction definition.

Fig. 8. An example CompositeRewardingAction definition with

branch delays shown.

Fig. 9. An example IncentiveMechanism definition.
composite filter. As any other pringl composite type, a com-

posite filter can also expose propagated or user-defined pa-

rameters.

A directed edge −→ implies that takes as

input ’s output (the workers matching the criteria of).

The output of is a set containing workers fulfilling both fil-

ters’ conditions, thus effectively representing ∩ opera-

tion. If an edge is marked as negating (�), then � returns

the set complement of ’s input, i.e., input(A) \ . When mul-

tiple edges enter a single filter element, then the union (∪) of

workers coming over the edges is used as the input for the fil-

ter element. When multiple edges go out of a single element,

then the same output set of workers is passed to each receiv-

ing end. Sometimes, we need a filter to forward a same set

of workers to multiple filters or to collect workers from mul-

tiple filters without performing additional restrictions; the

pass-through filter (predefined PassThru type) contains no

logic, except for a predicate always returning true.

Rewarding action . Its function is to notify the abstraction

interlayer (and consequently the crowdsourcing platform)

that a concrete action should be taken against specific work-

ers at a given time, or that certain specific actions should

be forbidden to some workers during a certain time inter-

val. The rewarding actions can include, but are not limited

to, the following: adjust reward rates (e.g., salary, bonus), as-

sign digital rewards (e.g., points, badges, stars), suggest pro-

motion/demotion or team restructuring, display a selected

view of rankings to selected workers. The choice of the avail-

able actions is dependent of the set supported by the inter-

layer and the actual crowdsourcing platform. The abstrac-

tion interlayer is responsible for translating the action into

a system-specific message and delivering it to the underlying

crowdsourcing platform. pringl expects the underlying sys-

tem to acknowledge via abstraction interlayer that the sug-

gested action was accepted and applied to a worker, because

its outcome may affect other incentive mechanisms. We use

a trapezoid shape shown in Fig. 7 to denote the definition of

a SimpleRewardingAction. For the shorthand notation,

we use , both for simple and composite rewarding action

elements.

In pringl’s programming model the output of a

RewardingAction is a Collection<Worker> con-

taining affected workers, i.e., those to which the action was

successfully applied. Informing the abstraction layer is per-

formed a side-effect of executing the rewarding action. In or-
der to perform the action, the runtime environment needs

to know to which workers the action applies, so a worker

filter needs to be used (filter field). In some cases, the

workers that are rewarded/punished may be the same as ini-

tially evaluated ones. In that case we can reuse the original

filter used for evaluation. In other cases, workers may be re-

warded based on the outcome of evaluation of other workers

(e.g., team managers for the performance of team members).

pringl’s runtime also needs to determine the timing for ac-

tion application (temp_spec and exec_times fields). We

use temporal specifiers (see Section 4.1) to determine the

exact time moment(s) of the time series. For defining in-

centives involving deferred compensation [12] we also need

to specify an additional predicate that will be evaluated at

the execution time establishing whether a worker fulfilled

the reward criteria during the period from when the incen-

tive was scheduled until the execution point (exec_cond
field). The actual action to execute is determined by the

action_logic field, pointing to a concrete element.

Similarly to composite filters, a CompositeRewarding
Action definition consists of graphical elements rep-

resenting instances of previously defined Rewarding
Actions (Fig. 8). Both SimpleRewardingAction and

CompositeRewardingAction are subtypes of the ab-

stract RewardingAction metatype (Fig. 3), and can be

used interchangeably where a rewarding action is needed.

The sub-elements are connected with directed edges denot-

ing at the same time: a) worker flow; and b) time delay.

A RewardingAction returns affected workers and

passes them over outgoing edges if it is member of a com-

posite action. Affected workers are those workers on which

the action was successfully applied by the underlying crowd-

sourcing system. The passing of workers is similar to that of

22 O. Scekic et al. / Computer Networks 90 (2015) 14–33
composite filters. The differences are explained in the sup-

plement materials. Each edge can optionally specify a time

delay as a non-negative integer without the unit. If omitted,

zero is assumed. The actual unit is determined transparently

to the user as the basic time unit of the abstraction interlayer.

pringl forwards the delay value to the action that the edge

points to.

Incentive mechanism . IncentiveMechanism is the

main structural and functional incentive element. It uses

the previously defined complex types to select, evaluate

and reward workers of the crowdsourcing platform. A com-

plete incentive scheme can be specified by putting together

multiple incentive mechanisms, prioritizing them, and turn-

ing them on/off when needed. As other complex types, in-

centive mechanism also has dedicated GUI elements for

definition and instantiation (Fig. 9), as well as a short-

hand notation used in this paper – . Table 3 defines the

functionality of ’s fields. We show examples of the us-

age of s and other incentive elements in the following

section.

4.4. Execution model

The execution of a pringl program (incentive scheme) is

performed in cycles, as follows:

All s are triggered for execution whenever a triggering

signal from the abstraction interlayer is received. It is the

responsibility of the Designer to ensure through priorities

and execution conditions that a specific order of execution

of s is achieved. The order of execution of s with the

same priority is not predetermined. Execution conditions of

the s with higher priorities are evaluated first. Only after

the higher-priority s have executed are the conditions of

lower-priority ones evaluated. This allows the higher priority

mechanisms to preemptively control the execution of lower-

priority ones by changing condition variables through side

effects. The execution time of any single is limited by de-

sign to the time needed to pass the message to the under-

lying crowdsourcing platform. The execution of an begins

by evaluating exec_cond. If true, the associated filter
is passed the collection of all the workers in the system

and invoked. The resulting workers are then passed to the

incentive_cond to decide whether the execution should
Table 3

Description of IncentiveMechanism fields.

Field Description

exec_cond An optional element used as execution condition for t

The condition is commonly used to prevent unwanted m

omitted

appl_restr Specifies how often a mechanism can be executed in a g

exec_cond accordingly, transparently to the user. This

incentive scheme configurations

filter An optional specifying the default target Workers for

to the collection of all the workers in the system. The filt

inc_cond An optional used to interpret the workers returned by

condition is meant to be used when the evaluated and ta

decide whether the results of the evaluation performed

Returns true if omitted

rew_action A mandatory assigning the reward or penalty

priority An optional int indicating the priority of mechanism’s
proceed with rewarding. If it returns true, rew_action is

invoked. If the action does not override its filter field

pringl passes the collection of workers returned by the ’s

filter field.

A executes by checking for each worker from the input

collection whether it fulfills the provided predicate. This

is done for each PoiT returned by time_restr (). The

results are then interpreted in accordance with the provided

temp_spec. For example, if the specifier is Once() then it

suffices that the worker fulfilled the predicate in at least one

of the PoiTs in order to be placed in the resulting collec-

tion. In case of composite filters the constituent sub-filters

are executed in the defined order. The initial filter receives

the initial collection of workers from the environment, which

is then passed on to subsequent filters. The resulting collec-

tion of workers from the final filter is returned as the overall

result.

A simple is executed if the exec_cond () returns

true. In this case, the execution PoiTs for the action are ob-

tained from exec_times () and then interpreted in accor-

dance with the temp_spec. Once the times are determined,

the environment schedules the action in the abstraction in-

terlayer (in our case princ’s Timeline) and provides the actual

code that performs the action from the action_logic ().

However, during the entire runtime pringl keeps track of the

scheduled action, in order to honor temporal specifications

and to detect re-scheduling due to Interval redefinitions.

The workers to which the action applies are taken from the

associated filter. As explained, if the local filter is omitted,

pringl assumes the workers from the parent ’s filter.

The execution of a composite action starts by first break-

ing it into linear execution paths containing constituent

simple actions. For each execution path pringl takes into

account specified delays and adjusts the elements in

constituent actions to account for provided delays, which are

then (re-)scheduled with the abstraction interlayer. However,

as in this case we need to pass worker sets between actions

happening at different times pringl stores the intermedi-

ate results (worker sets) that actions scheduled for a future

moment will collect when executed (memoization). In case

more than one action is scheduled for execution at the same

time, the order is unspecified.

Executing incentive logic elements equals to invok-

ing the instance similarly to a conventional function. The
he entire mechanism. Used to check global and time constraints.

ultiple executions of the same mechanism. Defaults to true if

iven interval. The runtime environment then alters the

field can be used to turn mechanisms on or off to obtain different

the specified in field rew_action. If not provided, if defaults

er is used to evaluate workers’ past or current performance

the filter and decide whether to proceed with the rewarding. This

rgeted worker groups are not the same. In that case, we need to

through the filter should cause the invocation of the action(s).

execution. Zero by default

O. Scekic et al. / Computer Networks 90 (2015) 14–33 23
environment passes both the auto parameters and any user-

defined ones. If user-defined parameters are omitted when

a is invoked from the code by indirect invocation the pa-

rameters are obtained from the visually exposed parameter

fields. However, when supplied, the arguments provided in

the code override those provided in the fields. If the param-

eter value cannot be resolved in either way, the invocation

fails.

Overall, pringl’s execution is ‘best effort’. This means

that pringl expects the interlayer to pass to the underlying

socio-technical system the rewarding actions to be taken, but

will not expect them to be necessarily observed. Acknowl-

edgments are used to keep track of successfully applied re-

warding actions. If any error is encountered during the ex-

ecution, the currently invoking incentive mechanism fails

gracefully, but the execution of other mechanisms contin-

ues. The incentive scheme’s execution needs to be stopped

explicitly.

5. Evaluation

A domain-specific language (DSL) can be evaluated both

quantitatively and qualitatively. Quantitative analysis of the

language is usually performed once the language is consid-

ered mature [13], since this type of evaluation includes mea-

suring characteristics such as productivity and subjective sat-

isfaction, that require an established community of regular

users [14].

During the initial development and prototyping phase, we

use the qualitative evaluation [13], which, in general, can in-

clude: comparative case studies, analysis of language charac-

teristics and monitoring/interviewing users. Analysis of lan-

guage characteristics was chosen as the preferred method in

our case, since it was possible to perform it on the basis of the

findings gathered through analysis of numerous existing in-

centive models [12]. Due to difficulties in engaging a relevant

number of domain experts willing to take part in monitoring

we were unable to perform this type of user-based evalua-

tion at this point. Comparative analysis was not applicable in

this case, due to nonexistence of similar languages.

In order to qualitatively evaluate characteristics of pringl

in Section 5.2 we constructed an example suite covering re-

alistic incentive elements identified in [12]. By implement-

ing the suite examples we showcase the various language

characteristics necessary for a comprehensive coverage of the

domain, thus demonstrating pringl’s groundedness and ex-

pressiveness. Through discussion of particular implementa-

tion details, we demonstrate pringl’s reusability and porta-

bility. While lacking the necessary conditions and metrics to

conclusively show the usability of the language, the imple-

mented set of examples allows us to argue for certain aspects

of usability, such as ‘usefulness’ and ‘portability’ (from [14]).

5.1. Modeling real-world incentive elements

Paper [12] presents a review of literature on incentives

and surveys existing incentive practices of 140 crowdsourc-

ing companies and organizations. Based on the outcomes of

this survey, the paper identifies the basic categories of in-

centives, and their key building elements – evaluation meth-
ods and rewarding actions. A short description is provided

below:

Incentive categories

• Pay per performance (PPP) – workers are rewarded propor-

tionally to the contribution. The contribution is calculated

through context-specific metrics.

• Quota system/Discretionary bonus – the contribution is as-

sessed at known time points or over predefined intervals.

If the level of contribution exceeds a threshold for the

monitored time frame, the worker is rewarded.

• Deferred compensation – a worker is promised a reward for

current effort, but the actual rewarding action is applied

after some time, and only if a condition is satisfied at that

specified moment in future.

• Relative evaluation – a worker/artifact is evaluated with

respect to other workers/artifacts within a specific group

and rewarded according to the relative score.

• Promotion – a limited number of better positions are

available for a group of workers to compete for (tourna-

ment theory). Involves a structural change reflecting the

change in position and managerial relations.

• Team-based compensation – when individual contribu-

tions are not easily distinguishable, team members are

equally compensated according to the overall, measur-

able success of the team as a whole.

• Psychological incentives – designed to act on human feel-

ings. They usually provoke competitive reaction, but other

consequences are possible as well, such as respect from

colleagues, professional satisfaction, fear of dismissal.

Psychological incentives need to be carefully tailored to

suit the targeted social milieu.

Each of these incentive categories can be generalized and

implemented to use different evaluation methods and/or re-

warding actions. Sometimes, they can be interchangeable; in

other cases, the context narrows down the choice. For ex-

ample, if a crowdsourced worker is participating in a text-

translation task, then the metric based on which the worker

is evaluated in a PPP type of incentive can be obtained by

monitoring the amount of translated text, or alternatively

other translators can be asked to provide a vote on the qual-

ity of the translated text. As long at the evaluation can be

quantified, the actual way how a particular evaluation is ob-

tained remains transparent to the rest of the incentive. In

the design-contests, on the other hand, the quantity of pro-

duced designs is largely irrelevant. The quality of artistic con-

tribution can be evaluated only through human-based peer

evaluation. The rewarding actions and evaluation methods

encountered in practice and literature can be classified as

follows ([12]):

Rewarding actions

• Quantitative reward– a quantitative change of the param-

eters targeting directly/indirectly worker’s performance

(e.g., salary increase, bonus, free days).

• Structural change – restructuring of collaboration, com-

munication or management relationships in which

worker takes part (e.g., change of collaborators/teams,

delegation patters, promotion).

24 O. Scekic et al. / Computer Networks 90 (2015) 14–33

Table 4

Coverage of incentive categories, rewarding actions and evaluation meth-

ods by the provided examples.

Ex. 1 Ex. 2 Ex. 3 Ex. 4 Ex. 5

Incentive category

PPP �
Quota/Discretionary �
Deferred compensation �
Relative evaluation �
Promotion �
Team-based compensation �
Psychological � �

Rewarding action

Quantitative � �
Structural �
Psychological � �

Evaluation method

Quantitative � � �
Peer voting �

Fig. 10. A CompositeWorkerFilter for referral bonuses.
• Psychological action – indirect motivation of workers

by exposing them to information designed to increase

competitiveness, collaboration, compassion, sense of

belonging. Examples include: displaying rankings of sim-

ilar/competing workers and digital badges.

Evaluation methods

• Quantitative evaluation – rating of individuals based

on objective, measurable properties of their contribu-

tion. Does not require human participation. Fully imple-

mentable in software only.

• Indirect evaluation – rating of individuals calculated based

on objective, relative evaluation of artifacts they produce

with respect to artifacts produced by other participating

individuals, under a closed-world assumption. Fully im-

plementable in software only.

• Subjective evaluation – based on subjective opinion of a

single peer-worker (e.g., manager, team leader), or statis-

tically insignificant number of peers.

• Peer voting – based on aggregated votes of a statistically

significant number of peer workers.

5.2. Examples

In this section, we present an example suite designed to

cover most of the presented real-world incentive categories

and their constituent parts (see Table 4)4. Due to spacing con-

straints, some examples are presented partially.

5.2.1. Example 1 – employee referral

A company introduces employee referral process5 in which

an existing employee can recommend new candidates and

get rewarded if the new employee spends a year in the com-

pany having exhibited satisfactory performance.
4 Note that the Indirect and Subjective evaluation methods have been

omitted from Table 4. Former, because it implies use of sophisticated evalua-

tion algorithms, but implementation-wise would not differ from the Quanti-

tative evaluation. Latter, because is not easy to uniformly model in software,

as it implies subjective human opinions that are unknown at design-time.
5 http://en.wikipedia.org/wiki/Employee_referral
Solution: In order to pay the referral bonuses (deferred

compensation) the company needs to: (a) identify the newly

employed workers; and (b) assess their subsequent perfor-

mance. Let us assume that the company already has the busi-

ness logic for assessing the workers implemented, and that

this logic is available as the library filter GoodWorkers.

In this case, we need to define one additional simple fil-

ter NewlyEmployed, and combine it with the existing

GoodWorkers filter. In Fig. 10 we show how the new

composite ReferralFilter is constructed. The in-

stance n:NewlyEmployed makes use of: (a) Past
Months returning PoiTs representing end-of-month time

points for the given number of months (12 in this particular

case); and (b) predicate Pred2 checking if the employee

got hired 12 months ago. Pred2’s general functionality is to

check whether the abstraction interlayer (RMod) registered

an event of the given name at the specified time.

Discussion: The shown implementation fragment illus-

trates how easy it is to expand on top of the existing function-

ality. Under the assumption that there exists a metric for as-

sessing the workers’ performance, and that it can be queried

for past values (cf. princ’s Timeline), introducing the ‘em-

ployee referral’ mechanism is a matter of adding a handful of

new incentive elements.

5.2.2. Example 2 – peer voting

Equally reward each team member if both of the following

conditions hold: (a) each team member’s current effort metric is

over a specific threshold; and (b) the average vote of the team

manager, obtained through anonymous voting of its subordi-

nates, is higher than 0.5 [0–1].

Solution: As shown in Fig. 11 we compose the incen-

tive scheme consisting of two s – i1:PeerAssessIM, in

charge of peer voting; and i2:RewardTeamIM in charge

of performing team-based compensation. i1 will exe-

cute first due to the higher priority, and set the global vari-

able done, through which the execution of i2 can be con-

trolled (PeerVoteDone). PeerAssessIM uses the

TeamMembers to exclude the manager from the rest

of team members. The TeamMembers is a composite filter

composed of two subfilters GetManager GetTeam,

borrowed from Ex.5, Fig. 15. The resulting workers are passed

to DoPeerVote which performs the actual functional-

ity of peer voting. The referenced rewarding action is sim-

ple; it just passes to PeerVote the workers that need

to participate. The PeerVote is performed by dispatch-

ing messages to the workers and receiving and aggregating

http://en.wikipedia.org/wiki/Employee_referral

O. Scekic et al. / Computer Networks 90 (2015) 14–33 25

Fig. 11. An incentive scheme example combining peer voting and team-based compensation.
their feedback through the abstraction interlayer. Once the

peer voting has been performed, the manager’s assessment

is stored in _global.mark, and the flag_global.done is

set to allow execution of i2. Once set to execute, the i2
first reads all the team members via GetTeam. Whether

they ultimately receive the reward depends on the evalua-

tion of the inc_cond field. The field contains a conjunc-

tion of two indirectly invoked elements (Section 4.2.1).

The condition expresses the two constraints from the in-

centive formulated in natural language. If it resolves to

‘true’, the DoRewardTeam applies a predefined mone-

tary reward, sharing it equally among all team members (via

RewardTeam).

Discussion: The key question here is how to support in-

centives requiring direct human feedback, such as peer vot-

ing. Such interactions require support from the abstraction

interlayer. To support this functionality, the abstraction in-

terlayer can either rely on the functionality offered by the un-

derlying crowdsourcing platform, or provide this functional-

ity independently to safeguard the voting privacy and incite

expression of honest opinions. In [17] we presented Smart

COM – a framework for virtualization and communication

with human agents. In this example we model the latter op-

tion in pringl, assuming the use of princ with SmartCOM for

interaction with workers.

5.2.3. Example 3 – bonus

Award a 10% bonus to each worker W that sometimes in

the past 12 months had higher value of metric ‘effort’ than the

average of workers related to W via relationship of type ‘collab’,

and not rewarded in the meantime.

Solution: Fig. 12 shows the bottom-up implementa-

tion of this incentive (1©– 5©). First, at level 1© we de-

fine novel or context-specific business logic fragments as

IncentiveLogic elements. This level relies on the

abstraction interlayer to read the updated worker metrics,

obtain data about recorded events, or send system mes-

sages. At 2© we define new and types. Similarly,

and definitions are further used for defining new com-

posite filters and actions (3©) and IncentiveMechanisms

(4©). By setting the parameter fields the designer specifies

the necessary runtime parameters for different instances.

Apart from constants, a field can contain references to other
fields ‘visible’ from that element. The environment collects

the field values (parameters) from all the constituent sub-

components and propagates them upwards, possibly un-

til the top-most component’s GUI form. Through the +/−
symbols the designer controls whether to propagate a pa-

rameter and, thus, delegate the responsibility for filling it

out to the upper level, or provide a value at the current

level and hide it from upper levels. Parameter propagation

is one of pringl’s usability features. In Fig. 12 we show an

example of parameter propagation (marked in orange/light

shade). Element PastProjects (1©) exposes the pa-

rameter months. The same parameter is then re-exposed

by BetterThanAvg (2©) that uses PastProjects as

its time restriction. The parameter is further propagated up

through MyExampleFilter until it finally gets assigned

the value in EndProjectBonus (4©).

Discussion: This incentive mechanism was chosen to high-

light a number of important concepts. Every underlined term

in the natural language formulation of this incentive mech-

anism is a specific value of a different parameter that can

be changed at will. In pringl terms, this means that incen-

tive operator can easily switch between different (library)

incentive elements of the same type/signature and tweak

the parameters to obtain different incentive mechanism in-

stances. In this way, incentive designers or operators can

adapt generic mechanisms to fit their needs. If we analyze

the generic version of this incentive mechanism, we can see

that it embodies the principles of pay-per-performance in-

centives, based on the value of a quantifiable metric, but cou-

pled with the additional condition that is evaluated relatively

to co-workers. In addition, the mechanism contains two tem-

poral clauses (‘in past 12 months’ and ‘in the meantime’),

making it also a representative of a quota-system type of in-

centive.

The example also demonstrates reusability – the

PastProjects is reused twice in two different s. Also,

steps Fig 12: 1©– 4© can be skipped altogether if the neces-

sary type definitions are already available from the incen-

tive library. As we can see, at levels 2©– 5© only visual pro-

gramming is required. This means that there is no need to

know any interlayer internals, apart from understanding the

meaning of propagated parameters. So, if different platforms

offer standardized implementations of the commonly used

26 O. Scekic et al. / Computer Networks 90 (2015) 14–33

Fig. 12. Incentive scheme from Example 3, illustrating the decreasing of complexity going from modeling of (low-level) incentive elements by incentive designers

to adjusting existing incentive schemes by incentive operators. (For interpretation of the references to colour in this figure in the text, the reader is referred to

the web version of this article).

O. Scekic et al. / Computer Networks 90 (2015) 14–33 27
incentive logic, the incentive elements become completely

portable.

5.2.4. Example 4 – rankings

Let us assume that the imaginary platform from Exam-

ple 3 wants to extend the existing incentive scheme with

an additional incentive mechanism in an (admittedly over-

simplified) attempt to raise competitiveness of underper-

forming workers: Show the list of the awarded employees and

their performance (rankings) to those workers that did not get

the reward through application of EndProjectBonus in

Ex. 3 (Fig. 12).

Solution: Fig. 13 shows the additional elements

needed to support the new mechanism. The composite

NonRewardedOnes reuses the existing MyExample
Filter from Ex. 3 as initial subfilter, and returns the set

complement, i.e., the non-rewarded workers to which the

rankings need to be shown. In order to display the rankings,

we copy-paste the existing RewardAtEndProject from

Ex. 3 and change only the value of the field action_logic
to point to the newly defined ShowRankings, also

shown in Fig. 13. Let us name the newly obtained

RankingsAtEndProject. In the same fashion, we

copy-paste the existing EndProjectBonus from

Ex. 3, make its filter and rew_action fields point

to the newly defined NonRewardedOnes and

RankingsAtEndProject, respectively. The obtained

performs the requested functionality.

Discussion: This example shows a common, realistic sce-

nario, where additional incentive mechanisms need to be

added to complement the existing ones. In this case, the

added mechanism acts on the underpeforming workers psy-

chologically by showing them how they fare in comparison

to the rewarded workers. Such mechanisms can be used to

motivate better-performing underperformers (‘lucky losers’),

while having a de-motivating effect on the worst performing

ones. As we have shown, such a mechanism can be easily and

quickly constructed in pringl with a minimal effort.

5.2.5. Example 5 – rotating presidency

Teams of crowd workers perform work in iterations. In each

iteration one of the workers acts as the manager of the whole

team. This scheme motivates the best workers competitively by

offering them a more prestigious position in the hierarchy. How-

ever, in order to keep team connectedness in a longer run, foster

equality and fresh leadership ideas, a single person is prevented

from staying too long in the managerial position. Therefore, in

the upcoming iteration the team becomes managed by the cur-

rently best-performing team member, unless that team member

was already presiding over the team in the past k iterations.6

Solution: For demonstration purposes, we are going to

model on-the-spot all the type definitions necessary for im-

plementing the rotating presidency incentive scheme. How-

ever, in practice it is reasonable to expect that a significant

number of commonly-used type definitions would be avail-

able from a library, cutting down the incentive modeling

time.
6 An iteration can represent a project phase, a workflow activity or a time

period.
Contrary to Example 3, this time we adopt a top-down ap-

proach in modeling. In order to express the high-level func-

tionality of the rotating presidency scheme the Designer uses

pringl’s visual syntax to define an incentive scheme named

RotatingPresidency (Fig 14, top) containing (referenc-

ing) two instances – i1 and i2, with the same prior-

ity (0). The RotatingPresidency scheme definition also

contains a set of global parameters that are used for config-

uring the execution of the scheme: teamID uniquely defines

the team that we want the scheme applied to, while iters
specifies the maximum number of consecutive iterations a

team member is allowed to spend as a manager. By choosing

different parameter values an incentive operator (Operator)

can later adjust the scheme for use in an array of similar sit-

uations in different organizations.

The two incentive mechanisms that the scheme ref-

erences – i1 and i2, are instances of the types

RewardBest and PreventTooLong, respectively (Fig 14,

bottom). The RewardBest installs the best worker as

the new manager if (s)he is not the manager already. The

PreventTooLong will replace the current manager if

the worker stayed too long in the position, even if the man-

ager resulted again as the best performing team member. ‘In-

stalling’ or ‘replacing’ a manager is actually performed by re-

chaining of management relations in the structural model of

the team by applying appropriate graph transformations [21]

through the abstraction interlayer.

When the incentive condition (inc_cond field) of

PreventTooLong evaluates to true, this means that

the actual manager occupied the position for too long,

and that it should be now replaced by the second-

best worker. pringl does this by invoking the specified

RewSecondBest and passing it the collection of work-

ers returned by the Candidates. The Candidates
returns potential candidates for the manager position – the

best performing Worker and the current manager. The same

filter is referenced from both s.

Two rewarding actions are instantiated and invoked

from the s. The RewBest monitors the ‘effort’ met-

ric and rewards the best worker in the current iteration.

The RewSecondBest replaces the current team manager

with the second-best performing worker when needed. The

inc_cond fields make sure that the two actions do not

get executed in the same iteration.

We now show how the previously referenced filters are

defined. We will first describe the definitions of the three

simple filters (Fig 15, right) and then use them to visually

assemble the definitions for another four composite filters

(Fig 15, left).

• GetTeam: Returns all the workers belonging to the team

with the specified teamID.

• GetBest: Returns the worker having achieved the

highest value of the ‘effort’ metric by invoking the

GetWrkBestMetric and then just formally matching

it with the IsBest predicate. In this example we use the

‘effort’ metric [11], but any other compatible performance

metric could have been used and exposed as a global pa-

rameter. This filter does not care to which team the eval-

uated worker belongs – if used independently, it would

28 O. Scekic et al. / Computer Networks 90 (2015) 14–33

Fig. 13. Additional incentives elements needed to augment the incentive scheme from Example 3 (Fig. 12) in order to display motivational rankings to the

non-rewarded workers from Example 3.

Fig. 14. Modeling the rotating presidency incentive scheme in pringl. Segment showing the incentive scheme (top right), rewarding actions (top center and

left), and incentive mechanisms (bottom).
evaluate all the workers in the system. This is why we

always use it in composite filters, where we initially re-

strict its input set with another filter.

• GetManager: Invokes a GetMgrByRelations that

performs a graph query [21] on the team model through

the abstraction interlayer to determine the manager

within the provided input set of workers.

Composite filter type definitions are constructed visually.

The following composite filters are defined:
• CurrentMgr: Returns the current team manager. The

subfilter a returns all the workers belonging to the team

with the given teamID, while the subfilter b uses man-

agerial relationships to determine the manager among

those workers.

• BestTeamWrk: Returns the best individual from a pre-

viously identified collection of team members.

• SecondBestTeamWrk: Returns the second best worker

in the team. The subfilter a returns the best worker of the

team and passes it forward to the subfilter b via a negated

O. Scekic et al. / Computer Networks 90 (2015) 14–33 29

Fig. 15. Modeling the rotating presidency example: Segment showing simple filters (right) and composite ones (left).

Fig. 16. Modeling the rotating presidency example: Segment showing the incentive logic elements.
edge (�). This means that b now receives as input: in-

put(a) \ a, i.e., in this particular case the collection of all

workers belonging to the team minus the best worker.

Subfilter b returns the best worker from this collection,

and thus effectively the second best worker of the team.

• Candidates: This filter simply uses the previously de-

fined filters CurrentMgr and BestTeamWrk and re-

turns the set union of their results.

Incentive logic elements, shown in Fig. 16, contain the

low-level business logic and code7 that communicates with
7 In this paper we use C# in all but elements, which are

shown in the original GrGen.NET rule language: http://www.info.uni-

karlsruhe.de/software/grgen/
the abstraction interlayer. Designer takes care to implement

incentive logic elements as small code snippets with in-

tuitive and reusable functionality. A short description of

the functionality of the employed elements is provided in

Table 5.

Discussion: This example combines the promotion and

psychological incentives. The promotion is performed

through a structural rewarding action, and is designed to fos-

ter competitiveness and self-prestige. At the same time, team

spirit and good working environment are being promoted

by limiting the number of consecutive terms, thus giving a

chance to other team members. This example shows a fully

implemented and executable incentive scheme. Although the

model may seem complex at the first glance, it is worth not-

ing that the type definitions of the two actions (Fig 14, top)

http://www.info.uni-karlsruhe.de/software/grgen/

30 O. Scekic et al. / Computer Networks 90 (2015) 14–33

Table 5

Incentive logic elements used in the rotating presidency example.

Element Symbol Description

IsTeamMember Determines whether a worker belongs to a team.

IsManager Checks if the currently evaluated worker has the ID previously determined to belong to the team

manager by GetMgrByRelations.

IsBest Checks if the currently evaluated worker is the same as the one identified by the

GetWrkBestMetric.

NotSame Determines if the input contains two manager candidates.

WasTooLong Keeps track of how many times a worker was in the manager position, and returns true if the worker is

not supposed to become manager in the upcoming iteration.

GetWrkBestMetric Reads the value of the ‘effort’ metric for each of the passed workers in _ws and updates the best

worker.

GetMgrByRelations Invokes the read-only structural query GET_MANAGER.

SetManager Invokes the modifying structural query SET_MANAGER.

GET_MANAGER Contains a compiled non-modifying GrGen.NET graph query, here expressed in GrGen rule language.

Matches and returns a node that other nodes point to via ManagedBy relations, but itself is not

managed by another team member.

SET_MANAGER Contains a compiled modifying GrGen.NET graph query matching the old and the new manager, and

re-chaining the ManagedBy relations to point to the new manager node.

Fig. 17. Partial screenshot of the implemented pringl DSL metamodel.

8 Source code, screenshots and additional info available at:

http://dsg.tuwien.ac.at/research/viecom/PRINGL/
are almost identical, differing only in the filter they use –

with former using the BestTeamWrk and the latter the

SecondBestTeamWrk. This means that once the De-

signer has modeled one of them, the other one can be cre-

ated by copy-pasting and referencing a different filter. Simi-

larly, if at a later time the underlying crowdsourcing platform

decided to use a different to reward the best workers (e.g.,

to pay out money instead of rotating team managers) the De-

signer would only need to partially adapt the scheme by ref-

erencing a different from the ’s action_logic fields.

Such adaptations can also be performed by incentive opera-

tors with minimal understanding of the underlying code.

Filters like GetTeam, GetBest and GetManager per-

form very common incentive functionality. In practice, this

means that such components could be readily available as

library elements. Of course, if we need to use a company-

specific flavor, we can easily replace the default one with a

proprietary element. For example, a GetManager may be

available with a default auxiliary field that looks for a

manager in the team model by inspecting the node tags for a

given manager tag. In that case, to adapt such a filter for our

rotating presidency example the Designer would need to ex-

change the default, tag-based with a structural one, such

as GetMgrByRelations.

6. Implementation

This section describes the prototype implementation of

two entities: (a) Implementation of the pringl metamodel

and the derived Microsoft Visual Studio pringl IDE; and (b)

Implementation of Example 5 (Rotating Presidency) from

Section 5.2.5 by using the tools from (a). The implementa-

tion of the rotating presidency example serves to evaluate:

(i) Feasibility of implementation of (a); and (ii) Fulfillment of

the stated requirements from Section 3.4.

6.1. Metamodel implementation

Fig. 2 in Section 3 shows the overview of imple-

mented components. pringl’s language metamodel was im-
plemented8 in Microsoft’s Modeling SDK for Visual Studio

2013 (MSDK) – Fig. 17. MSDK allows defining visual DSLs and

translating them to an arbitrary textual representation. Us-

ing MSDK we generated a Visual Studio plug-in providing

a complete IDE for developing pringl projects. In it, an in-

centive designer can create a dedicated Visual Studio pringl

project and implement/model real-world strategies using the

visuo-textual elements introduced in this paper (Fig. 18). The

graphical elements provided in the implemented Visual Stu-

dio pringl environment, although not as visually appealing

as those presented in this paper, functionally and structurally

match them fully. pringl models are stored in .pringl files

that get automatically transformed to the corresponding C#

http://dsg.tuwien.ac.at/research/viecom/PRINGL/

O. Scekic et al. / Computer Networks 90 (2015) 14–33 31

Fig. 18. Implementing the rotating presidency incentive scheme (Example 5) using generated pringl Visual Studio environment.
(.cs) equivalents. The generated code can then be used in the

rest of the project as regular C# code or compiled in .NET as-

semblies (e.g., libraries or executables).

6.2. Rotating presidency example implementation

Fig. 18 shows a screenshot of the implementation8 of the

rotating presidency example using the VS pringl IDE. The

implemented incentive elements correspond to the individ-

ual element descriptions presented in Section 5.2.5 (Ex. 5).

The entire scheme was modeled using the generated pringl

tools, demonstrating the feasibility of the proposed architec-

tural design. The C# code obtained from the implemented

model can be used to produce a custom-made incentive

management application using princ as the acting interlayer,

as shown in Section 3.3.

The implemented example supports an arbitrary num-

ber and structure of Workers (represented as graph nodes)

and their ‘effort’ metrics. Worker nodes are inter-connected

with arbitrary-typed graph edges representing different re-

lations. Our pringl-encoded incentive scheme will only con-

sider the workers belonging to the team denoted by the

teamID identifier, and only the managerial relations rep-

resented by ManagedBy-typed edges. Events notify princ

when iterations end and ‘effort’ metrics change. The code

generated from the implemented example monitors these

events and executes the incentive mechanisms that make

sure the best-performing worker is installed as the man-

ager, but for not more than two consecutive iterations,

subject to being replaced by the runner up in such a

situation.
7. Related work

Previous research on incentives for socio-technical sys-

tems is dispersed and problem-specific, often spanning or

originating from different areas, such as Management, Game

Theory, Computer-Supported Collaborative Work, Human-

Computer Interaction, Multiagent Systems. Due to this vari-

ety, the selection we present here is meant to give the reader

an overview, rather than an in-depth coverage of the area. For

further information, the reader is referred to [4,12,22,23].

The approaches in researching incentives in socio-

technical systems can be roughly categorized in two groups.

One group seeks to find optimal/appropriate incentives in

formally defined environments through mathematical mod-

els and game-theoretical approaches [22–24]. The incentive

is modeled as a monetary or quantifiable compensation to

workers/agents to disclose their private information, and the

proposed models are often simulated (e.g., [25]). Although

successfully used in microeconomic models, these incen-

tive models do not fully capture the diversity and unpre-

dictability of human behavior that become accentuated in

socio-technical systems [18]. In such cases the incentives pre-

dominantly help by identifying better workers, rather than

increasing effort of the worse ones.

The other group examines the effects of existing or new

incentives empirically, by running experiments or observing

data from existing crowdsourcing platforms or social net-

works involving real human subjects. The number of top-

ics here is more varied. In [26,27] the authors examine the

effects of incentives by running experiments on existing

crowdsourcing platforms and rewarding real human subjects

with actual monetary rewards. In [28] the authors compare

32 O. Scekic et al. / Computer Networks 90 (2015) 14–33

9 http://www.smart-society-project.eu/
the effects of lottery incentive and competitive rankings in a

collaborative mapping environment. In [29] the authors ana-

lyze two commonly used approaches to detect cheating and

properly validate crowdsourced tasks. In [6] the focus is on

pricing policies that should elicit timely and correct answers

from crowd workers. Paper [30] examines which psycholog-

ical and monetary incentives are used to lure social network

users to click on malicious links. In [31] the authors analyze

how incentive schemes relying on peer voting can influence

the decisions of workers from a crowdsourcing platform.

The major limitation of this research approach [32] is that the

findings are applicable only for a limited range of activities,

considered as conventional crowdsourcing tasks, such as im-

age tagging, multiple-choice question answering, text trans-

lation, or design contests. Furthermore, cultural background

[33] can also skew the findings.

None of the two research approaches is suitable for eval-

uating pringl as we do not design nor evaluate particular in-

centive mechanisms. However, both approaches provide use-

ful, generalizable findings that need to be taken into account

when designing an incentive management system. For ex-

ample, the finding that the transparency of actors and pro-

cesses in a socio-technical system will likely improve the

overall performance [34] for pringl translates to the require-

ment of portability and transparency of incentives. The find-

ings of [35] indicate that for performing more intellectu-

ally challenging tasks smaller groups of expert workers may

be more effective than web-scale crowd collectives. Again,

this is in line with pringl’s motivation of supporting novel

socio-technical systems employing smaller teams of experts

rather than large anonymous crowds only. Similarly, the

aforementioned difference of effectiveness in different cul-

tural backgrounds maps to the requirements of usability and

expressivenes, to offer to incentive designers a tool for quick

adaptations of general incentive mechanisms into the locally-

effective versions. At the moment of writing, we are un-

aware of any similar languages or frameworks offering gen-

eral incentive management functionality for socio-technical

systems.

8. Conclusions and future work

In this paper we presented the programming model of

pringl – a domain-specific language for programming incen-

tives for socio-technical/crowdsourcing systems. pringl al-

lows the incentives to stay decoupled of the underlying sys-

tems. It fosters a modular approach in composing incentive

strategies that promotes code reusability and uniformity of

incentives, while leaving the freedom to incentive operators

to adjust the strategies to their particular needs helping cut

down development and adjustment time and creating a basis

for development of standardized, but tweakable, incentives.

This in turn leads to more transparency for workers and cre-

ates a basis for an incentive uniformity across companies; a

necessary precondition for worker reputation transfer [9].

Design of the language and its programming model was

guided by the requirements obtained through an extensive

survey of crowdsourcing techniques used in commercial en-

vironments. The model was evaluated qualitatively by mod-

eling a suite of demonstrative examples selected to cover

many realistic incentive categories. We implemented tools
based on this model, supporting the creation of executable

incentive schemes in pringl and evaluated them functionally

on a realistic use case.

At this stage pringl is in an active state of development.

Currently, pringl’s default abstraction interlayer princ is un-

dergoing a restructuring and integration with the human

worker provisioning engine [10], worker orchestration com-

ponents [36] and the virtualization and communication mid-

dleware SmartCOM [17] in the context of the SmartSociety9

socio-technical platform. The integration will allow building

an end-to-end framework for applying pringl-modeled in-

centives on human crowd workers engaged in realistic ex-

ecution scenarios. This is also a necessary precondition for

running further quantitative evaluation of the usability of the

language. Future work will see the integration of pringl’s

programming model into the general programming model of

the SmartSociety platform.

Acknowledgments

This work is supported by the EU FP7 SmartSociety

project under Grant no. 600854.

References

[1] O. Scekic, H.-L. Truong, S. Dustdar, Managing incentives in so-
cial computing systems with pringl, in: B. Benatallah, A. Bestavros,

Y. Manolopoulos, A. Vakali, Y. Zhang (Eds.), Proceedings of the Web
Information Systems Engineering (WISE’14), volume 8787 of LNCS,

Springer, 2014, pp. 415–424.
[2] M. Hosseini, K. Phalp, J. Taylor, R. Ali, The four pillars of crowdsourcing:

A reference model, in: Proceedings of the IEEE Internationl Conference

on Research Challenges in Information Science (RCIS), 2014, pp. 1–12.
[3] A. Doan, R. Ramakrishnan, A.Y. Halevy, Crowdsourcing systems on the

world-wide web, Commun. ACM 54 (4) (2011) 86–96.
[4] O. Tokarchuk, R. Cuel, M. Zamarian, Analyzing crowd labor and design-

ing incentives for humans in the loop, IEEE Internet Comput. 16 (5)
(2012) 45–51.

[5] S. Ahmad, A. Battle, Z. Malkani, S. Kamvar, The jabberwocky program-

ming environment for structured social computing, in: Proceedings of
the 24th Annual ACM Symposium on User Interface Software and Tech-

nology, in: UIST ’11, ACM, 2011, pp. 53–64.
[6] D.W. Barowy, C. Curtsinger, E.D. Berger, A. McGregor, Automan: a plat-

form for integrating human-based and digital computation, SIGPLAN
Not. 47 (10) (2012) 639–654.

[7] P. Minder, A. Bernstein, Crowdlang: a programming language for the

systematic exploration of human computation systems, in: K. Aberer,
A. Flache, W. Jager, L. Liu, J. Tang, C. Guret (Eds.), Social Informatics,

volume 7710 of LNCS, Springer, 2012, pp. 124–137.
[8] D. Miorandi, L. Maggi, Programming social collective intelligence, IEEE

Technology and Society (forthcoming).
[9] A. Kittur, J.V. Nickerson, M. Bernstein, E. Gerber, A. Shaw, J. Zimmer-

man, M. Lease, J. Horton, The future of crowd work, in: Proceedings of

the 2013 Conference on Computer Supported Cooperative Work, CSCW
’13, ACM, 2013, pp. 1301–1318.

[10] M.Z.C. Candra, H.-L. Truong, S. Dustdar, Provisioning quality-aware
social compute units in the cloud, in: proceedings of the 11th In-

ternational Conference on Service Oriented Computing (ICSOC 2013),
Springer, Berlin, Germany, December 2-5, 2013.

[11] M. Riveni, H.-L. Truong, S. Dustdar, On the elasticity of social compute
units, in: M. Jarke, J. Mylopoulos, C. Quix, C. Rolland, Y. Manolopoulos,

H. Mouratidis, J. Horkoff (Eds.), Advanced Information Systems Engi-

neering, volume 8484 of LNCS, Springer, 2014, pp. 364–378.
[12] O. Scekic, H.-L. Truong, S. Dustdar, Incentives and rewarding in social

computing, Commun ACM 56 (6) (2013) 72.
[13] P. Mohagheghi, Ø. Haugen, Evaluating domain-specific modelling solu-

tions, in: J. Trujillo, G. Dobbie, H. Kangassalo, S. Hartmann, M. Kirch-
berg, M. Rossi, I. Reinhartz-Berger, E. Zimnyi, F. Frasincar (Eds.), Ad-

vances in Conceptual Modeling Applications and Challenges, volume

6413 of LNCS, Springer, 2010, pp. 212–221.

http://refhub.elsevier.com/S1389-1286(15)00220-0/sbref0001
http://refhub.elsevier.com/S1389-1286(15)00220-0/sbref0001
http://refhub.elsevier.com/S1389-1286(15)00220-0/sbref0001
http://refhub.elsevier.com/S1389-1286(15)00220-0/sbref0001
http://refhub.elsevier.com/S1389-1286(15)00220-0/sbref0002
http://refhub.elsevier.com/S1389-1286(15)00220-0/sbref0002
http://refhub.elsevier.com/S1389-1286(15)00220-0/sbref0002
http://refhub.elsevier.com/S1389-1286(15)00220-0/sbref0002
http://refhub.elsevier.com/S1389-1286(15)00220-0/sbref0002
http://refhub.elsevier.com/S1389-1286(15)00220-0/sbref0003
http://refhub.elsevier.com/S1389-1286(15)00220-0/sbref0003
http://refhub.elsevier.com/S1389-1286(15)00220-0/sbref0003
http://refhub.elsevier.com/S1389-1286(15)00220-0/sbref0003
http://refhub.elsevier.com/S1389-1286(15)00220-0/sbref0004
http://refhub.elsevier.com/S1389-1286(15)00220-0/sbref0004
http://refhub.elsevier.com/S1389-1286(15)00220-0/sbref0004
http://refhub.elsevier.com/S1389-1286(15)00220-0/sbref0004
http://refhub.elsevier.com/S1389-1286(15)00220-0/sbref0005
http://refhub.elsevier.com/S1389-1286(15)00220-0/sbref0005
http://refhub.elsevier.com/S1389-1286(15)00220-0/sbref0005
http://refhub.elsevier.com/S1389-1286(15)00220-0/sbref0005
http://refhub.elsevier.com/S1389-1286(15)00220-0/sbref0005
http://refhub.elsevier.com/S1389-1286(15)00220-0/sbref0006
http://refhub.elsevier.com/S1389-1286(15)00220-0/sbref0006
http://refhub.elsevier.com/S1389-1286(15)00220-0/sbref0006
http://refhub.elsevier.com/S1389-1286(15)00220-0/sbref0006
http://refhub.elsevier.com/S1389-1286(15)00220-0/sbref0006
http://refhub.elsevier.com/S1389-1286(15)00220-0/sbref0007
http://refhub.elsevier.com/S1389-1286(15)00220-0/sbref0007
http://refhub.elsevier.com/S1389-1286(15)00220-0/sbref0007
http://refhub.elsevier.com/S1389-1286(15)00220-0/sbref0008
http://refhub.elsevier.com/S1389-1286(15)00220-0/sbref0008
http://refhub.elsevier.com/S1389-1286(15)00220-0/sbref0008
http://refhub.elsevier.com/S1389-1286(15)00220-0/sbref0008
http://refhub.elsevier.com/S1389-1286(15)00220-0/sbref0008
http://refhub.elsevier.com/S1389-1286(15)00220-0/sbref0008
http://refhub.elsevier.com/S1389-1286(15)00220-0/sbref0008
http://refhub.elsevier.com/S1389-1286(15)00220-0/sbref0008
http://refhub.elsevier.com/S1389-1286(15)00220-0/sbref0008
http://refhub.elsevier.com/S1389-1286(15)00220-0/sbref0009
http://refhub.elsevier.com/S1389-1286(15)00220-0/sbref0009
http://refhub.elsevier.com/S1389-1286(15)00220-0/sbref0009
http://refhub.elsevier.com/S1389-1286(15)00220-0/sbref0009
http://refhub.elsevier.com/S1389-1286(15)00220-0/sbref0010
http://refhub.elsevier.com/S1389-1286(15)00220-0/sbref0010
http://refhub.elsevier.com/S1389-1286(15)00220-0/sbref0010
http://refhub.elsevier.com/S1389-1286(15)00220-0/sbref0010
http://refhub.elsevier.com/S1389-1286(15)00220-0/sbref0011
http://refhub.elsevier.com/S1389-1286(15)00220-0/sbref0011
http://refhub.elsevier.com/S1389-1286(15)00220-0/sbref0011
http://refhub.elsevier.com/S1389-1286(15)00220-0/sbref0011
http://refhub.elsevier.com/S1389-1286(15)00220-0/sbref0012
http://refhub.elsevier.com/S1389-1286(15)00220-0/sbref0012
http://refhub.elsevier.com/S1389-1286(15)00220-0/sbref0012
http://www.smart-society-project.eu/

O. Scekic et al. / Computer Networks 90 (2015) 14–33 33
[14] A. Seffah, M. Donyaee, R.B. Kline, H.K. Padda, Usability measurement
and metrics: a consolidated model, Softw. Qual. Control 14 (2) (2006)

159–178.
[15] O. Scekic, H.-L. Truong, S. Dustdar, Programming incentives in informa-

tion systems, in: C. Salinesi, M.C. Norrie, Pastor (Eds.), Advanced In-
formation Systems Engineering, volume 7908 of LNCS, Springer, 2013,

pp. 688–703.

[16] O. Scekic, C. Dorn, S. Dustdar, Simulation-based modeling and eval-
uation of incentive schemes in crowdsourcing environments, in:

R. Meersman, H. Panetto, T. Dillon, J. Eder, Z. Bellahsene, N. Ritter, P. De
Leenheer, D. Dou (Eds.), On the Move to Meaningful Internet Systems:

OTM 2013 Confs, volume 8185 of LNCS, Springer, 2013, pp. 167–184.
[17] P. Zeppezauer, O. Scekic, H.-L. Truong, S. Dustdar, Virtualizing com-

munication for hybrid and diversity-aware collective adaptive systems,
in: Proceedings of the 10th International Workshop on Engineering

Service-Oriented Applications, WESOA’14, Springer, 2014. p. Forthcom-

ing
[18] D.D. Fehrenbacher, Design of Incentive Systems, Contributions to Man-

agement Science, Springer, 2013.
[19] Smartsociety consortium, deliverable 5.3 - specification of ad-

vanced incentive design and decision-assisting algorithms for cas,
http://www.smart-society-project.eu/publications/deliverables/2015.

[20] L. Baresi, R. Heckel, Tutorial introduction to graph transformation: a

software engineering perspective, in: A. Corradini, H. Ehrig, H.-J. Kre-
owski, G. Rozenberg (Eds.), Graph Transformation, volume 2505 of

LNCS, Springer, 2002, pp. 402–429.
[21] E. Jakumeit, S. Buchwald, M. Kroll, GrGen. NET, Int J. Softw. Tools Tech-

nol. Transf. 12 (3) (2010) 263–271.
[22] J.-J. Laffont, D. Martimort, The Theory of Incentives, Princeton Univer-

sity Press, New Jersey, 2002.

[23] J. Witkowski, Y. Bachrach, P. Key, D.C. Parkes, Dwelling on the negative:
incentivizing effort in peer prediction, in: Proceedings of the First AAAI

Conference on Human Computation and Crowdsourcing, AAAI, Palm
Springs, CA, USA, 2013, pp. 190–197.

[24] M. Bloom, G. Milkovich, The relationship between risk, incentive pay,
and organizational performance, Acad. Manag. J. 41 (3) (1998) 283–297.

[25] N. Peled, Y.K. Gal, S. Kraus, A study of computational and human strate-

gies in revelation games, Auton. Agents Multi-Agent Syst. 29 (1) (2015)
73–97.

[26] G. Little, Exploring iterative and parallel human computation pro-
cesses, in: Ext. Abstracts on Human Factors in Comp. Sys., CHI EA ’10,

ACM, 2010, pp. 4309–4314.
[27] W. Mason, D.J. Watts, Financial incentives and the “performance of

crowds”, in: Proceedings of the ACM SIGKDD Workshop on Human

Computation, HCOMP ’09, ACM, 2009, pp. 77–85.
[28] S.D. Ramchurn, T.D. Huynh, M. Venanzi, B. Shi, Collabmap: crowdsourc-

ing maps for emergency planning, in: Proceedings of the 5th ACM Web
Science Conference, Paris, France, 2013, pp. 326–335.

[29] M. Hirth, T. Hoßfeld, P. Tran-Gia, Analyzing costs and accuracy of valida-
tion mechanisms for crowdsourcing platforms, Math. Comput. Model.

57 (1112) (2013) 2918–2932.

[30] T.-K. Huang, B. Ribeiro, H.V. Madhyastha, M. Faloutsos, The socio-
monetary incentives of online social network malware campaigns, in:

Proceedings of the ACM Conference on Online Social Networks, COSN
’14, ACM, 2014, pp. 259–270.

[31] H. Rao, S. Huang, W. Fu, What will others choose? how a majority vote
reward scheme can improve human computation in a spatial location

identification task, in: B. Hartman, E. Horvitz (Eds.), Proceedings of
the First AAAI Conference on Human Computation and Crowdsourcing,

HCOMP, Palm Springs, CA, USA AAAI, 2013.
[32] E. Adar, Why i hate mechanical turk research (and workshops), in: Pro-
ceedings of the CHI’11 Workshop on Crowdsourcing and Human Com-

puter, ACM, Vancouver, Canada, 2011.
[33] M. Gunkel, Country-Compatible Incentive Design, DUV, Wiesbaden,

2006.
[34] S.-W. Huang, W.-T. Fu, Don’t hide in the crowd!: increasing social trans-

parency between peer workers improves crowdsourcing outcomes, in:

Proceedings of the SIGCHI Conference on Human Factors in Computer
Systems, CHI ’13, ACM, 2013, pp. 621–630.

[35] D.G. Goldstein, R.P. McAfee, S. Suri, The wisdom of smaller, smarter
crowds, in: Proceedings of the ACM Conference on Economics and

Computation, EC ’14, ACM, 2014, pp. 471–488.
[36] Smartsociety consortium, deliverable 6.2 - static social orches-

tration: implementation and evaluation, http://www.smart-society-
project.eu/publications/deliverables/, 2015.

Ognjen Scekic is a research assistant at the Dis-

tributed Systems Group, Institute of Information
Systems, Vienna University of Technology, where

he is working towards his PhD in the context of
socio-technical systems, with particular focus on

incentive management and programming models
for human-based services. He received his M.Sc.

degree in Computer Science from the School

of Electrical Engineering, University of Belgrade,
Serbia. His research interests include distributed

and parallel computing and collective adaptive
systems (CAS).

Hong-Linh Truong is an assistant professor for
Service Engineering Analytics at the Distributed

Systems Group, Institute of Information Systems,

Vienna University of Technology. He received his
Habilitation in Practical Computer Science, from

Vienna University of Technology, and a PhD in
Computer Science from the same university. His

research interests include distributed and paral-
lel systems with an applied, systems-oriented fo-

cus, from parallel and elastic cloud computing,

to context-aware computing and socio-technical
services.

Schahram Dustdar is a full professor of com-
puter science and head of the Distributed Sys-

tems Group, Institute of Information Systems, at

the Vienna University of Technology. Dustdar is
an ACM Distinguished Scientist and IBM Faculty

Award recipient. He received his Habilitation de-
gree in Computer Science at Vienna University

of Technology, and received his M.Sc. and PhD.
degrees in Business Informatics from the Uni-

versity of Linz, Austria. His research interests in-

clude service-oriented architectures and comput-
ing, cloud and elastic computing, socio-technical

and adaptive systems.

http://refhub.elsevier.com/S1389-1286(15)00220-0/sbref0013
http://refhub.elsevier.com/S1389-1286(15)00220-0/sbref0013
http://refhub.elsevier.com/S1389-1286(15)00220-0/sbref0013
http://refhub.elsevier.com/S1389-1286(15)00220-0/sbref0013
http://refhub.elsevier.com/S1389-1286(15)00220-0/sbref0013
http://refhub.elsevier.com/S1389-1286(15)00220-0/sbref0014
http://refhub.elsevier.com/S1389-1286(15)00220-0/sbref0014
http://refhub.elsevier.com/S1389-1286(15)00220-0/sbref0014
http://refhub.elsevier.com/S1389-1286(15)00220-0/sbref0014
http://refhub.elsevier.com/S1389-1286(15)00220-0/sbref0015
http://refhub.elsevier.com/S1389-1286(15)00220-0/sbref0015
http://refhub.elsevier.com/S1389-1286(15)00220-0/sbref0015
http://refhub.elsevier.com/S1389-1286(15)00220-0/sbref0015
http://refhub.elsevier.com/S1389-1286(15)00220-0/sbref0016
http://refhub.elsevier.com/S1389-1286(15)00220-0/sbref0016
http://refhub.elsevier.com/S1389-1286(15)00220-0/sbref0016
http://refhub.elsevier.com/S1389-1286(15)00220-0/sbref0016
http://refhub.elsevier.com/S1389-1286(15)00220-0/sbref0016
http://refhub.elsevier.com/S1389-1286(15)00220-0/sbref0017
http://refhub.elsevier.com/S1389-1286(15)00220-0/sbref0017
http://www.smart-society-project.eu/publications/deliverables/
http://refhub.elsevier.com/S1389-1286(15)00220-0/sbref0018
http://refhub.elsevier.com/S1389-1286(15)00220-0/sbref0018
http://refhub.elsevier.com/S1389-1286(15)00220-0/sbref0018
http://refhub.elsevier.com/S1389-1286(15)00220-0/sbref0019
http://refhub.elsevier.com/S1389-1286(15)00220-0/sbref0019
http://refhub.elsevier.com/S1389-1286(15)00220-0/sbref0019
http://refhub.elsevier.com/S1389-1286(15)00220-0/sbref0019
http://refhub.elsevier.com/S1389-1286(15)00220-0/sbref0020
http://refhub.elsevier.com/S1389-1286(15)00220-0/sbref0020
http://refhub.elsevier.com/S1389-1286(15)00220-0/sbref0020
http://refhub.elsevier.com/S1389-1286(15)00220-0/sbref0021
http://refhub.elsevier.com/S1389-1286(15)00220-0/sbref0021
http://refhub.elsevier.com/S1389-1286(15)00220-0/sbref0021
http://refhub.elsevier.com/S1389-1286(15)00220-0/sbref0021
http://refhub.elsevier.com/S1389-1286(15)00220-0/sbref0021
http://refhub.elsevier.com/S1389-1286(15)00220-0/sbref0022
http://refhub.elsevier.com/S1389-1286(15)00220-0/sbref0022
http://refhub.elsevier.com/S1389-1286(15)00220-0/sbref0022
http://refhub.elsevier.com/S1389-1286(15)00220-0/sbref0023
http://refhub.elsevier.com/S1389-1286(15)00220-0/sbref0023
http://refhub.elsevier.com/S1389-1286(15)00220-0/sbref0023
http://refhub.elsevier.com/S1389-1286(15)00220-0/sbref0023
http://refhub.elsevier.com/S1389-1286(15)00220-0/sbref0024
http://refhub.elsevier.com/S1389-1286(15)00220-0/sbref0024
http://refhub.elsevier.com/S1389-1286(15)00220-0/sbref0025
http://refhub.elsevier.com/S1389-1286(15)00220-0/sbref0025
http://refhub.elsevier.com/S1389-1286(15)00220-0/sbref0025
http://refhub.elsevier.com/S1389-1286(15)00220-0/sbref0026
http://refhub.elsevier.com/S1389-1286(15)00220-0/sbref0026
http://refhub.elsevier.com/S1389-1286(15)00220-0/sbref0026
http://refhub.elsevier.com/S1389-1286(15)00220-0/sbref0026
http://refhub.elsevier.com/S1389-1286(15)00220-0/sbref0026
http://refhub.elsevier.com/S1389-1286(15)00220-0/sbref0027
http://refhub.elsevier.com/S1389-1286(15)00220-0/sbref0027
http://refhub.elsevier.com/S1389-1286(15)00220-0/sbref0027
http://refhub.elsevier.com/S1389-1286(15)00220-0/sbref0027
http://refhub.elsevier.com/S1389-1286(15)00220-0/sbref0028
http://refhub.elsevier.com/S1389-1286(15)00220-0/sbref0028
http://refhub.elsevier.com/S1389-1286(15)00220-0/sbref0028
http://refhub.elsevier.com/S1389-1286(15)00220-0/sbref0028
http://refhub.elsevier.com/S1389-1286(15)00220-0/sbref0028
http://refhub.elsevier.com/S1389-1286(15)00220-0/sbref0029
http://refhub.elsevier.com/S1389-1286(15)00220-0/sbref0029
http://refhub.elsevier.com/S1389-1286(15)00220-0/sbref0029
http://refhub.elsevier.com/S1389-1286(15)00220-0/sbref0029
http://refhub.elsevier.com/S1389-1286(15)00220-0/sbref0030
http://refhub.elsevier.com/S1389-1286(15)00220-0/sbref0030
http://refhub.elsevier.com/S1389-1286(15)00220-0/sbref0031
http://refhub.elsevier.com/S1389-1286(15)00220-0/sbref0031
http://refhub.elsevier.com/S1389-1286(15)00220-0/sbref0032
http://refhub.elsevier.com/S1389-1286(15)00220-0/sbref0032
http://refhub.elsevier.com/S1389-1286(15)00220-0/sbref0032
http://refhub.elsevier.com/S1389-1286(15)00220-0/sbref0033
http://refhub.elsevier.com/S1389-1286(15)00220-0/sbref0033
http://refhub.elsevier.com/S1389-1286(15)00220-0/sbref0033
http://refhub.elsevier.com/S1389-1286(15)00220-0/sbref0033
http://www.smart-society-project.eu/publications/deliverables/

	PRINGL - A domain-specific language for incentive management in crowdsourcing
	1 Introduction
	1.1 Contribution

	2 Methodology & background work
	3 PRINGL overview
	3.1 Users
	3.2 Operational environment
	3.3 Architecture
	3.4 Requirements

	4 Programming model
	4.1 Primitive incentive elements & operators
	4.2 Complex incentive elements
	4.2.1 Operations on complex incentive elements

	4.3 Defining complex incentive elements
	4.4 Execution model

	5 Evaluation
	5.1 Modeling real-world incentive elements
	 Incentive categories
	 Rewarding actions
	 Evaluation methods

	5.2 Examples
	5.2.1 Example 1 - employee referral
	5.2.2 Example 2 - peer voting
	5.2.3 Example 3 - bonus
	5.2.4 Example 4 - rankings
	5.2.5 Example 5 - rotating presidency

	6 Implementation
	6.1 Metamodel implementation
	6.2 Rotating presidency example implementation

	7 Related work
	8 Conclusions and future work
	 Acknowledgments
	 References

