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To optimize the cost and performance of complex cloud services under dynamic require-
ments, workflows and diverse cloud offerings, we rely on different elasticity control pro-
cesses. An elasticity control process, when being enforced, produces effects in different
parts of the cloud service. These effects normally evolve in time and depend on workload
characteristics, and on the actions within the elasticity control process enforced. There-
fore, understanding the effects on the behavior of the cloud service is of utter importance
for runtime decision-making process, when controlling cloud service elasticity.

In this paper, we present a novel methodology and a framework for estimating
and evaluating cloud service elasticity behaviors. To estimate the elasticity behavior,
we collect information concerning service structure, deployment, service runtime, con-
trol processes, and cloud infrastructure. Based on this information, we utilize clustering
techniques to identify cloud service elasticity behavior, in time, and for different parts of
the service. Knowledge about such behavior is utilized within a cloud service elasticity
controller to substantially improve the selection and execution of elasticity control pro-
cesses. These elasticity behavior estimations are successfully being used by our elasticity
controller, in order to improve runtime decision quality. We evaluate our framework with
three real-world cloud services in different application domains. Experiments show that
we are able to estimate the behavior in 89.5% of the cases. Moreover, we have observed
improvements in our elasticity controller, which takes better control decisions, and does
not exhibit control oscillations.

Keywords: Elasticity; elasticity behavior; clustering.

1. Introduction

With the wide adoption of cloud computing across multiple business domains, stake-
holders seek to improve the efficiency of their complex cloud services, while also if
possible to reduce costs, by acquiring on-demand virtualized infrastructure and,
at the same time, benefiting from a pay-as-you-go price model offered by cloud

∗Corresponding author.
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providers. The key technique to achieve these goals is elasticity1,2 — the ability
of cloud services to acquire and release resources on-demand, in response to run-
time fluctuating workloads. From the customer perspective, resource elasticity can
minimize task execution time, without exceeding a given budget. From the cloud
provider perspective, elasticity provisioning contributes to maximizing their finan-
cial gain while keeping their customers satisfied and reducing administrative costs.
However, automatic elasticity provisioning is not a trivial task.

To date, the user utilizes elasticity controllers, offered as a service, by
either cloud providers (e.g. Amazon Auto Scalinga) or third-party vendors (e.g.
Rightscaleb), to scale his/her distributed cloud services. A common approach,
employed by many elasticity controllers,3,4 is to monitor the cloud service and
(de-)provision virtual instances for the service when metric thresholds are violated.
This approach may be sufficient for simple cloud services, but for large-scale dis-
tributed cloud services with complex inter-dependencies among components, we
need a deeper understanding of their elasticity behavior in order to select and
enforce suitable elasticity control processes. For this reason, existing work4,5 has
identified a number of elasticity control processes to improve the performance and
quality of cloud services, while additionally attempting to minimize cost. However,
a crucial question still remains unanswered: Which elasticity control processes are
the most appropriate for a cloud service in a particular situation at runtime? More-
over, can both cloud customers and providers benefit from insightful information
such as how the addition of a new instance to a cloud service will affect the through-
put of the overall deployment and individually each part of the cloud service? Thus,
cloud service elasticity behavior knowledge under various controls and workloads
is of paramount importance to elasticity controllers for improving their runtime
decision making.

To this end, a wide range of approaches relying on service profiling or learning
from historic information were proposed.6,7 However, these approaches limit their
decisions to evaluating only low-level VM metrics (e.g. CPU and memory usage) and
do not support elasticity decisions considering complex cloud service behavior at
multiple levels (e.g. a specific part of the service or the entire service). Additionally,
current approaches only evaluate resource utilization, without considering elasticity
as a multi-dimensional property composed of cost, quality, and resource elasticity.
Finally, existing approaches do not consider the outcome of a control process on the
overall service behavior, where often enforcing a control process on the wrong part
of the cloud service can lead to side effects, such as increasing the cost or decreasing
performance of the overall service.

In this paper, we focus on addressing the previous limitations by introducing a
methodology for estimating cloud service elasticity behavior, and a corresponding
framework named evAluating clouD serVIce elaSticity bEhavior (ADVISE). Our

ahttp://aws.amazon.com/autoscaling/.
bhttp://www.rightscale.com/.
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behavior estimation technique introduces a clustering-based process which consid-
ers heterogeneous information for computing expected elasticity behavior, in time,
for various service parts. To estimate cloud service elasticity behavior, ADVISE
utilizes different types of information, such as service structure, deployment strate-
gies, and underlying infrastructure dynamics, when applying different workload and
elasticity control processes. ADVISE analyzes historical cloud service behavior, at
various levels of abstraction, and produces estimations for elasticity control pro-
cesses evaluated by the elasticity controller, in time, and for all cloud service parts,
not only for the one targeted by the elasticity control process.

For validating our techniques, we integrate ADVISE in rSYBL8 elasticity con-
troller. rSYBL is based on SYBL elasticity requirements specification language,9

which allows service providers to describe invariants and expected service behavior.
rSYBL interprets requirements specified in SYBL, and based on these requirements
it provides multi-grain elasticity control for complex cloud services. To evaluate
ADVISE effectiveness, experiments were conducted on two cloud platforms with a
testbed comprised of three cloud services originating from different service domains.
Results show that ADVISE is able to determine the expected elasticity behavior,
in time, with a low error rate (i.e. average standard deviation 0.46 over all consid-
ered elasticity control processes). Therefore, ADVISE can be integrated by cloud
providers alongside their elasticity controllers to improve the decision quality, or
used by service providers to evaluate and understand how various elasticity control
processes impact their offered services. ADVISE and all the other tools used in this
paper (i.e. rSYBL, JCatascopia,10 and MELA11) are available as open source tools,
thus enabling various stakeholders to apply them, or if needed to extend them, for
obtaining elasticity in their respective domains.

This paper substantially extends and details our previous work,12 as follows:
(i) We detail the methodology used to provide elasticity behavior estimation; (ii)
we integrate ADVISE with the rSYBL elasticity controller, and detail the new
architecture; (iii) we design new decision mechanisms for controlling a service based
on the elasticity behavior evolution, in time, as opposed to discrete values; (iv) we
present further experiments on ADVISE elasticity behavior estimation; and finally,
(v) we present new experiments showing ADVISE-driven control decisions.

The rest of this paper is structured as follows: In Sec. 2, we model relevant
information regarding cloud services. In Sec. 3, we present the elasticity behavior
evaluation process. In Sec. 4, we present how ADVISE is integrated into rSYBL
elasticity controller. In Sec. 5, we evaluate ADVISE framework effectiveness. In
Sec. 6, we discuss related work and Sec. 7 concludes this paper.

2. Cloud Service Structural and Runtime Information

2.1. Cloud service information

Following existing common service descriptions,13,14 in our study we refer to cloud
applications, platforms, and systems as cloud services. A cloud service can be
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Fig. 1. An M2M DaaS topology structure.

decomposed into different parts such as individual service units and topologies
of units; in this paper we use the term Service Parts (SP) to refer them. For
understanding the behavior of cloud services, we must gather multiple types of
information, including application-specific behavior for different service parts and
the various virtual resources used, and their characteristics. Taking for instance a
M2M DaaS cloud service, as depicted in Fig. 1 and used in our experimental eval-
uation (see Sec. 5), the M2M DaaS is composed of multiple service units: An event
processing unit, a load balancer unit, a data node unit and a data controller unit.
The first two units are grouped into a service topology, which processes incom-
ing events (i.e. EventProcessingServiceTopology), while events are stored into the
DataEndServiceTopology, composed of the latter two units.

To represent such above-mentioned complex cloud services, we extend the
conceptual cloud service representation model, as proposed in Ref. 8, with a
rich set of information types for determining cloud elasticity behavior. Figure 2
depicts the extensions made (white background) to include elasticity control pro-
cesses, service part behaviors and service parts. Overall, our information model
contains: (i) Structural information, describing the architectural structure of the

Fig. 2. Cloud service information for estimating elasticity behavior.
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cloud service; (ii) infrastructure system information, describing runtime informa-
tion regarding resources allocated for the cloud service by the underlying cloud
platform; and (iii) elasticity information, capturing elasticity metrics, requirements,
and capabilities.

Elasticity information is composed of elasticity metrics (e.g. average response
time, cost, active connections), elasticity requirements (e.g. minimize response time
when cost is small enough), and elasticity capabilities (e.g. add new resources), each
of them being associated to different SPs or infrastructure resources. Elasticity capa-
bilities are grouped together as elasticity control processes (ECPs), as described in
the next subsection, and inflict specific elasticity behaviors upon enforcement on
different SPs, which we model as Service Part Behaviors. We model SP behaviors,
since controllers must determine the effect of enforcing an ECP at different levels.
For instance, in the service previously described, before allocating a new DataN-
odeServiceUnit instance, the effect, in time, at the DataEndServiceTopology (e.g.
latency evolution for the entire cluster), and at the entire cloud service level (e.g.
number of violated requirements while enforcing the ECP) should be determined.

Conceptually, a Service Part Behavior, denoted as BehaviorSPi , in a defined
period of time [start, end], contains all the metrics, MSPi

a , being monitored for SPi.
Therefore, the behavior of a cloud service, denoted as BehaviorCloudService, over a
period of time is defined as the set of all cloud service SP behaviors:

MSPi
a [start, end] = {Ma(tj) | SPi ∈ ServiceParts, j = start, end},

(1)

BehaviorSPi
[start, end] = {MSPi

a [start, end] |Ma ∈ Metrics(SPi)}, (2)

BehaviorCloudService[start, end] = {BehaviorSPi
[start, end] |

SPi ∈ ServiceParts(CloudService)}. (3)

The above information is captured and managed at runtime through an elas-
ticity dependency graph, EDG = {(V, E) |V ∈ SP ∪ InfrastructureInfo, E ∈
Relationships}, which has as nodes instances of concepts from the model in Fig. 2
(e.g. Virtual Machine, Elasticity Metric), and relationships (e.g. Elasticity
Relationship, Inheritance, Composition) as edges. The elasticity dependency
graph is continuously updated with: (i) pre-deployment information, such as ser-
vice topology descriptions (e.g. TOSCA13) or profiling information and (ii) runtime
information, such as metric values from monitoring tools or allocated resources from
provider APIs.

2.2. Elasticity capabilities and control processes

Elasticity capabilities (ECs) are the set of actions associated with a cloud ser-
vice, whose invocation affect the cloud service behavior. Such capabilities can be
exposed by: (i) Different SPs (e.g. change refresh rate for a SP); (ii) cloud providers
(e.g. create new virtual resources); and (iii) resources which are supplied by cloud
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Fig. 3. Elasticity capabilities exposed by different elastic objects.

providers (e.g. change virtual resource characteristics). An EC can be considered as
the abstract representation of API calls, which differ amongst providers and cloud
services. Figure 3 depicts the different subsets of ECs provided for the Event Pro-
cessing Service Unit (i.e. a web service hosted in a web container) when deployed
on two different cloud platforms (e.g. Flexiantc and Openstackd), as well as the
ECs exposed by the cloud service and its containers (e.g. Apache Tomcat). In each
of the two cloud platforms, the cloud service must run on a specific container, and
all these capabilities, when enforced by an elasticity controller, will affect various
cloud service parts (e.g. in the M2M DaaS, elasticity capabilities of Event Processing
Service Unit might affect the performance of the Data End Service Topology).

Elasticity Control Processes (ECP) are processes composed of elasticity capa-
bilities, which can be abstracted into higher level capabilities having predictable
effects on the cloud service. ECPs can be in their simplest forms, sequential elas-
ticity capabilities, while the more complex ECPs are similar to business processes
(e.g. enforcement plans from TOSCA described in BPMN). We model these ECPs
as graphs, ECP = (V = {EC}, E = {CF, DF}), where the vertices are elasticity
capabilities, while edges are flow dependencies among elasticity capabilities. There
are two types of flow dependencies: (i) Control flow (CF) dependencies, which direct
the execution of the process considering the initial state and (ii) data flow (DF)
dependencies, which carry data to be used by the next EC.

An ECP causes a change in the elasticity dependency graph and in the virtual
infrastructures (e.g. a change in the properties of a single VM or tier). For example,
in the case of a distributed database backend which is composed of multiple nodes,
a scale out ECP, with certain parameters, can be applied for both a Cassandra and
an HBase database, with the following ECs: (i) add a new node; (ii) configure node
properties; and (iii) subscribe node to the cluster.

2.3. Cloud service elasticity

To estimate the effects of ECPs on SPs, we rely on the elasticity dependency graph
which captures all the variables that contribute to cloud service elasticity behavior

chttp://www.flexiant.com/.
dhttps://www.openstack.org/.
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Fig. 4. Elastic cloud service evolution.

evolution. Figure 4 depicts on the left-hand side the cloud service at pre-deployment
time, where automatic elasticity controllers know about it only from structural
information provided by different sources (e.g. TOSCA description). After enforcing
a Deployment Process (e.g. create VM, create network interface and connect to
VPN), the elasticity dependency graph will be updated with infrastructure-related
information obtained from the cloud provider, and elasticity information, obtained
from monitoring services showing metric evolution for different SPs.

Infrastructure resources, as mentioned previously, have associated elasticity
capabilities (EC in Fig. 4), that describe the change(s) to be enforced and the
mechanisms for triggering them (e.g. API call assigned to the EC). In addition, a
cloud platform exposes ECs in order to create new resources or instantiate new ser-
vices (e.g. increase memory is an EC exposed by a VM, while create new VM is an
EC exposed by the cloud platform). In this context, for being able to discover the
effects that an ECP produces in time, for each SP, taking into account correlations
between metrics, we use the elasticity dependency graph. We analyze this informa-
tion to determine the effect of an ECP for all SPs, regardless on whether the ECP
is application specific, or it does not have any apparent direct link to other SPs.

3. Evaluating Cloud Service Elasticity Behavior

Existing behavior learning solutions6,7 learn discrete metric models, without cor-
relating metrics with the multiple variables affecting cloud service behavior. In
contrast to these solutions, we provide behavior learning based on different SPs
and their relation to multiple ECPs, which may or may not be directly linked, esti-
mating the effect of an ECP, in time, considering correlations among several metrics
and SPs. Figure 5 depicts the SP behavior Learning Process which is continuously
executed, refining the previously gathered knowledge base.

3.1. Obtaining necessary information

For evaluating cloud service elasticity behavior, we populate the dependency graph,
described in Sec. 2, with all the necessary information (i.e. service parts, elasticity
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Fig. 5. Modeling cloud service behavior process.

relationships, infrastructure system information). First, we acquire pre-deployment
information to understand the cloud service and its execution environment, such
as: (i) Structural information, regarding the topology of the cloud service and (ii)
cloud infrastructure information. The first, described in Sec. 2, is generally known
by the service provider, and contains the SPs of the service and relationships which
appear among them. The latter describes virtual resources available in the current
cloud infrastructure and their capabilities (e.g. a virtual machine of type x exposes
the capability of memory ballooning). Afterwards, runtime information regarding
the service behavior, is collected via monitoring tools (e.g. using MELA11), and
associated with structural service units or topologies.

Monitoring data is either collected at runtime while a controller is enforcing dif-
ferent ECPs, or through a profiling step, where both rational and incorrect ECPs
are enforced. In both cases, issues may arise, such as application failure or virtual
resource failure, leading to incomplete monitoring data. Therefore, we acknowl-
edge two issue types: (i) recurring issues, which characterize a control step (e.g.
a capability) and must be considered and (ii) random issues which do not affect
the behavior of a service. The first issue type must be reflected in the estimations,
since they characterize the behavior of the service (e.g. while enforcing ECPi SPj

cannot be monitored for X s). However, the second issue type can be ignored. For
this, the following clustering methodology considers both, characterizing recurring
behaviors (e.g. missing measurements each time a typex reconfiguration is enforced)
and filtering outliers (e.g. random issues).

3.2. Learning process

Figure 6 depicts the overall elasticity behavior clustering process via selected metrics
observations, with the three main steps: (a) input data processing, (b) clustering
process, and (c) behavioral clusters update.

3.2.1. Processing input data

The learning process receives as input each metric’s evolution, in time,
MSPi

a [start, current] (see Eq. (3)) starting from the beginning of a service’s lifecy-
cle. To evaluate the expected metric evolution in response to enforcing a specific
ECP, we select for each monitored metric, of each service part, a Relevant Time-
series Section (RTS) (see Fig. 7), in order to compare it with previously encountered
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Fig. 6. Clustering process.

Fig. 7. Relevant timeseries selection.

MSPi
a [start, current]. The RTS size strongly depends on the average time required

to enforce an ECP (see Sec. 5.2.1). Consequently, a metric RTS is a sub-sequence
of MSPi

a , ranging from an interval before and after ECP enforcement:

RTSSPi

Ma
= MSPi

a

[
x − δ + ECPtime

2
, x +

δ + ECPtime

2

]
,

[ECPstartTime, ECPendTime] ⊂
[
x − δ + ECPtime

2
, x +

δ + ECPtime

2

]
,

(4)

where x is the ECP index and δ is the length of the period we aim to evaluate.

Fig. 8. Relevant timeseries sections to points.
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As part of the input pre-processing phase, we represent δ +ECPtime (Fig. 8(a))
as multi-dimensional points (Fig. 8(b) and Eq. (5)) in the n-dimensional Euclidian
space, where the value for dimension t(j) is the timestamp j of the current RTS.

BPSPi
a [j] = RTSSPi

Ma
[t(j)], j = 0, . . . , n, BP : MSP �→ Rn, n = δ + ECPtime.

(5)

3.2.2. Clustering process

To detect the expected behavior of an ECP enforcement result, we construct behav-
ioral point clusters ClusterSPi

, for all SPs and each ECP as defined in Eq. (6). We
do not limit our approach to only considering ECPs available for the current SPi

since, as previously mentioned, enforcing an ECP to a specific SP may affect the
behavior of another SP or the overall cloud service. Our objective function is to find
the multi-dimensional behavior point C(Θ∗), which minimizes the distance among
points belonging to the same cluster Clusterk (Eq. (7)). Since our focus is not to
evaluate the quality of different clustering algorithms, we use the K-means algo-
rithm, which is inexpensive, following the practice where the number of clusters is
K =

√
N/2, N being the number of objects. However, as shown in Sec. 5, even

with a simple K-means algorithm, our approach outputs the expected elasticity
behavior with a low estimation error rate.

dist(BPx
a, BPy

a) =
√∑

i

(BPx
a[i] − BPy

a[i])2, (6)

Θ∗ = arg min
K∑

k=0

N∑
i=0

Θi,kdist(Clusterk, BPi),

θi,k =

{
1 BPi ∈ Clusterk

0 BPi /∈ Clusterk.

(7)

3.2.3. Behavioral clusters update

For the update process, we start from the already existing clusters, and we search
for new behavior points given by new ECP enforcements. We select relevant time-
series RTS for each SP in response to newly enforced ECPs, whenever new data
is available, according to the process presented in Sec. 3.2.1. We represent these
as behavior points BP, and add each of them to the closest clusters. The cluster
update process then consists of moving BPs among the clusters until convergence,
which is a lightweight process compared to running entire clustering algorithm. The
overhead of updating the clusters is proportional with the number of selected RTSs
and the change in cloud service behavior. Even with ECPs enforced very often, the
cluster updating process is still insignificant due to the fact that the RTS dimen-
sions are quite small compared to the overall monitoring data. However, it must
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be noted that repeated ECPs in short intervals reflect a weakness in the controller,
which does not manage to stabilize the system as we can see in Sec. 5.

3.3. Determining the expected elasticity behavior

3.3.1. Elasticity behavior correlation

After obtaining ‖δ+ECPtime‖-dimensional point clusters, we construct for each SPi

a co-occurence matrix CMSPi
[Cmi

x , Cmj
y ], where Cx is the centroid for Clusterx, and

the value of CM is the probability of clusters from metrics mi and mj to appear
together (e.g. increase in data reliability is usually correlated with increase in cost).
By taking this into consideration, when determining expected behavior points, we
have a better estimation which is also based on correlation among metrics (e.g. when
in M2M DaaS the EventProcessingServiceUnit throughput is high, a Scale IN
ECP will increase response time, while when low, the impact might be negligible).
An item in the CM represents a ratio between the number of times the behavior
points Cx and Cy were encountered together and the total number of behavior
points. This matrix is continuously updated when behavior points move from one
cluster to another, or when new ECPs are enforced, thus, increasing the knowledge
base.

3.3.2. Expected behavior point determination

In the Expected Behavior Generation based on Learning Process step in Fig. 5, we
select the latest metric values for each SPi, MSPi

a [current − δ, current], and the
ECPξ which the controller is considering for enforcement, or for which the user
would like to know the effects. We find the ExpectedBehavior (see Eq. (8)) which
consists of a tuple of cluster centroids from the clusters constructed during the
Learning Process that are the closest to the current metrics behavior for the part of
the cloud service we are focusing on, and which have appeared together throughout
the execution of the cloud service. The result of this step, for each metric of SPi,
is a list of expected values from the enforcement of ECPξ (e.g. all of the expected
metric values for the case the elasticity controller would like to perform a scale out
ECP).

ExpectedBehavior[SPi, BehaviorSPi
[current − δ, current], ECPξ]

= {CMa1

ia1
, . . . , CMam

iam
|Mam ∈ Metrics(SPi)}. (8)

3.4. Parameterizing and qualifying the learning process

The quality of the expected elasticity behavior estimation depends on several, highly
configurable, variables, which are either: (i) The output of a pre-profiling process or
(ii) empirically determined, based on good practices or on observing the behavior of
the estimation process. Such variables include: (i) Variable K, denoting the number
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of expected clusters; (ii) the variable cutoff, denoting the acceptable clustering
convergence error; and (iii) the monitoring information completeness. For K, as
defined above, we follow the rule of thumb proposed by Mardia et al.,15 stating
that the number of clusters in a set of objects is

√
N/2, where N is the total

number of objects. The offset is empirically determined, considering the quality of
the results and the time needed for computing an estimation, as shown in Sec. 5.2.6.

4. Controlling Elasticity with Elasticity Behavior Estimation

We have implemented our elasticity estimation techniques in a framework named
ADVISE. As described in Sec. 2, ADVISE collects the following heterogeneous
types of information, from plugins which we have developed, to populate the elas-
ticity dependency graph: (i) Cloud service structural information, from TOSCA ser-
vice descriptions; (ii) infrastructure and application performance information, from
bothJ Catascopia10 and MELA11 monitoring systems; and (iii) elasticity informa-
tion, regarding ECPs from the rSYBL8 elasticity controller.

We extend rSYBL to integrate ADVISE to support both understanding the
behavior of the different service parts and enforcing control processes in accordance.
Figure 9 depicts the rSYBL framework integrated with ADVISE for estimating
elasticity behavior and considering it when generating ECP plans. The rSYBL
Elasticity Control Engine, now features two planning mechanisms: (i) profiling-based
control, enabled when ADVISE-based estimations are not yet accurate enough (e.g.
average standard deviation is low) and (ii) elasticity behavior-based control, which
considers runtime elasticity behavior estimations for all service parts in order to
evaluate the needed elasticity control process(es). Moreover, ADVISE also exposes
statistics on the time required for an ECP to be enforced, thus being able to refine
the enforcement cool-off period on the controller side as presented in Sec. 5.2.1.

Fig. 9. ADVISE integration into rSYBL.
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Profiling-based control requires as input, per ECP, the expected effects obtained
through manual or automated profiling. The effects which are available for this
case are forecasts for expected metric values after finishing enforcing the respective
ECP, and do not consider relationships among various SPs. The ECPs are enforced
through the rSYBL Interaction Unit, which interacts with both cloud provider-
specific APIs and with application specific control mechanisms.

For generating control plans, we interpret the effect, in time, of ECPs in rela-
tion to expected behavior without enforcing the respective control process. In this
sense, elasticity behavior-based control estimates current metric evolution using a
polynomial fitting approach. We obtain the elasticity requirements to be violated
for the case where we do not enforce ECPξ (Eq. (9)) by computing the inte-
gral of violated requirements over estimated polynomial metric evolutions. Equa-
tion (10) shows the computation method for violated elasticity requirements for
the case of enforcing ECPξ, denoted V iolatedReq(ECPξ), using ADVISE estima-
tions. We compare the two estimations, and select the one with the least violated
requirements.

V iolatedReq(ECPξ) =
∫ current+λ

current

V iolReq(P (SPi, Metricj(x)))dx, (9)

V iolatedReq(ECPξ) =
∫ current+λ

current

V iolReq(ADVISE(SPi, Metricj(x)))dx. (10)

We design the controller in such a way, that when the current behavior cannot
be accurately estimated, we are able to rollback to profiling-based control. In this
way, the enforced ECPs are not restricted solely to information obtained via the pre-
deployment phase, instead the ADVISE behavior estimation is continuously refined
improving the knowledge base and learning new behavior points representative for
each ECP. In other words, when the closest estimated centroids are farther than
a distance dist, empirically defined, the current decision making algorithm rolls
back to the initial decision-making algorithm, as described in Ref. 8.

5. Experiments

In this section, we provide an evaluation of the ADVISE framework,e focusing on
the clustering-based behavior estimation process to determine the effectiveness of
our approach as ADVISE can be used in both service profiling/pre-deployment or
during runtime, for various service types, whenever monitoring information and
enforced ECPs are available. As described in Sec. 2, ADVISE collects the follow-
ing heterogeneous types of information, from plugins which we have developed, to
populate the elasticity dependency graph: (i) Cloud service structural information,
from TOSCA service descriptions; (ii) infrastructure and application performance

eCode, detailed descriptions and more charts at http://tuwiendsg.github.io/ADVISE.

1541002-13

In
t. 

J.
 C

oo
p.

 I
nf

o.
 S

ys
t. 

20
15

.2
4.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 M
rs

. G
eo

rg
ia

na
 C

op
il 

on
 1

0/
07

/1
5.

 F
or

 p
er

so
na

l u
se

 o
nl

y.



2nd Reading

September 3, 2015 15:49 WSPC/S0218-8430 111-IJCIS 1541002

G. Copil et al.

information, from both JCatascopia10 and MELA11 monitoring systems; and (iii)
elasticity information, regarding ECPs from the rSYBL8 elasticity controller.

Our evaluation is divided into two phases: (i) ADVISE framework evaluation;
and (ii) ADVISE-enabled rSYBL evaluation. To evaluate the functionality of the
ADVISE framework, we established a testbed on the Flexiant public cloud com-
prised of three cloud services originating from different service domains featuring
distinct structural and behavior requirements. On the selected cloud services, we
first, enforce ECPs exposed by their respected SPs randomly, and then study, at
runtime, their behavior at multiple levels of the cloud service. It must be noted,
that we did not configure rSYBL as a rational controller, since we are interested in
estimating the elasticity behavior for all SPs as a result of enforcing both good and
bad elasticity control decisions. For the second phase, we established a testbed on
an OpenStack private cloud, with rSYBL elasticity control for a cloud service. We
evaluate how ADVISE affects rSYBL elasticity control on various workloads.

5.1. Experimental cloud services

The first cloud service is a three-tier web application providing video
streaming services to online users, comprised of: (i) an HAProxy Load Balancer
which distributes client requests across multiple application servers; (ii) an Applica-
tion Server Tier, where each application server is an Apache Tomcat server expos-
ing the video streaming web service; and (iii) a Cassandra NoSQL Distributed Data
Storage Backend from where the necessary video content is retrieved. The database
backend initially holds 2GB of data while at the end of the experiment the size
approaches 6GB. To stress this cloud service, we generate client requests under a
fixed request rate, though the load is not stable and depends on the type of the
requests (e.g. download video) and the size of the requested video, as shown in the
workload pattern in Fig. 10(a).

The second cloud service in our evaluation is a Machine-to-Machine
(M2M) DaaS which processes information originating from several different types
of remote data sensors (e.g. temperature, atmospheric pressure, or pollution).
Specifically, the M2M DaaS is comprised of an Event Processing Service Topol-
ogy and a Data End Service Topology. Each service topology consists of two service
units, one with a processing goal, and the other acting as the balancer/controller.
To stress this cloud service, we generate random sensor event information (see
Fig. 10(b)) which is processed by the Event Processing Service Topology, and
stored/retrieved from the Data End Service Topology.

The third cloud service showcased is a two-tier OLTP service deployed as
an online business directory hosting 7503 local business listings and their prod-
ucts.f The topology of this service is comprised of a Document Store Controller,

fOur dataset is synthetic, created from real data and workload patterns from www.
finditcyprus.com.
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Fig. 10. Workload applied on the three services.

under a public domain, distributing client requests (i.e. create new listing, get direc-
tions to Restaurant X ) to a Document Store Nodes, forming a Distributed Document
Store which is a Couchbase database backend. Specifically, the database backend
is a distributed, shared-nothing NoSQL (JSON-like) document store, optimized for
interactive web applications, incorporating in its core application logic allowing
developers to prepare and expose to their users queries as light-weight map/reduce
functions (i.e. top-k breweries in town Nicosia, etc.). We stress this service by gen-
erating client requests under a variable read-heavy request rate, mimicking a real
online directory’s behavior, as depicted in Fig. 10(c) (writes occur only when adding
a new listing or updating an existing one and constitute less than 10% of the load).
Tables 1 and 2 list the ECPs associated to each SP and the monitoring metrics
analyzed for the three cloud services respectively.

5.2. Cloud service elasticity behavior evaluation

5.2.1. ECP temporal effect

ADVISE computes, as shown in Table 3, the average time required for an ECP
to be completed, and returns also a standard deviation which gives the degree of
confidence with regard to this estimation. This application-specific information is of
high importance and affects the decision-making process of the elasticity controller
since it is an indicator of the grace period which it should await until effects of the
resizing actions are noticeable. Thus, it can define the time granularity of which
resizing actions should be taken into consideration. For example, we observe that
the process of reconfiguring and removing an instance from the video service’s
storage backend requires an average time interval of 160 s which is mainly due the
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Table 1. Elasticity control processes available for the cloud services.

Cloud ECP ID Action Sequence
Service

Video Service ECP1 Scale In Application Server Tier : (i) stop the video streaming
service, (ii) remove instance from HAProxy, (iii) restart
HAProxy, (iv) stop JCatascopia Monitoring Agent, (v) delete
VM

ECP2 Scale Out Application Server Tier : (i) create new network
interface, (ii) instantiate new VM, (iii) deploy and configure
video streaming service, (iv) deploy and start JCatascopia
Monitoring Agent, (v) add VM IP to HAProxy, (vi) restart
HAProxy

ECP3 Scale In Distributed Video Storage Backend : (i) select VM to
remove, (ii) decommission instance data to other nodes,
(iii) stop JCatascopia Monitoring Agent, (iv) delete VM

ECP4 Scale Out Distributed Video Storage Backend : (i) create new
network interface, (ii) instantiate new VM, (iii) deploy and
configure Cassandra (e.g. assign token to node), (iv) deploy
and start JCatascopia Monitoring Agent, (v) start Cassandra

M2M DaaS ECP5 Scale In Event Processing Service Unit : (i) remove service from
HAProxy, (ii) restart HAProxy, (iii) remove recursively VM

ECP6 Scale Out Event Processing Service Unit : (i) create new network
interface, (ii) create new VM, (iii) add service IP to HAProxy

ECP7 Scale In Data Node Service Unit : (i) decommission node (copy
data from VM to be removed), (ii) remove recursively VM

ECP8 Scale Out Data Node Service Unit : (i) create new network
interface, (ii) create VM, (iii) set ports, (iv) assign token to
node, (v) set cluster controller, (vi) start Cassandra

Online
Directory

ECP9 Scale In Distributed Document Store: (i) select Couchbase-server
to remove, (ii) decommission node from Couchbase cluster,
(iii) rebalance cluster data, (iv) remove VM

ECP10 Scale Out Distributed Document Store: (i) create new network
interface, (ii) instantiate VM, (iii) configure interfaces, ports,
and Couchbase-server (iv) start Couchbase-server, (v) join
Couchbase cluster, (vi) rebalance cluster

Table 2. Elasticity metrics per cloud service for different service parts.

Cloud SP Name Metrics
Service

Video Service Application Server
Tier

Cost, busy thread number, request throughput

Distributed Video
Storage Backend

Cost, CPU usage, memory usage, query latency

M2M DaaS Cloud Service Cost per client per hour
Event Processing

Service Topology
Cost, response time, throughput, number of clients

Data End Service
Topology

Cost, latency, CPU usage

Online
Directory

Document Store
Controller

Cost, request rate, active sessions, error rate, CPU
usage, network I/O

Distributed Store
Node

Cost, throughput, cache miss rate, disk I/O, memory
usage, CPU usage, query response time
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Table 3. Elasticity control processes time statistics.

ECP Standard Deviation Average ECP Time (s)

Video Service ECP1 0.06 90
ECP2 0.12 25
ECP3 0.13 160
ECP4 0.11 30

M2M Service ECP5 0.34 45
ECP6 0.16 20
ECP7 0.11 70
ECP8 0.14 20

Online Directory ECP9 0.29 110
ECP10 0.12 25

time required to receive and store data from other nodes of the ring. If decisions
are taken in smaller intervals, the effects of the previous action will not be part
of the current decision process and may cause cascading ping-pong effects where a
Scale In ECP followed by a slight increase in metric utilization (in the grace period)
causes a false Scale Out ECP.

5.2.2. Online video streaming service — Elasticity behavior estimation

Figure 11 depicts both the observed and the estimated behavior for the Video Ser-
vice Application Server Tier when ECPs of type ECP1 (remove application server)
are enforced. At first, we observe that the average request throughput per appli-
cation server is decreasing. This is due to two possible cases: (i) The video storage
backend is under-provisioned and cannot satisfy the current number of requests
which, in turn, results in requests being queued; (ii) there is a sudden drop in client
requests which indicates that the application servers are not utilized efficiently.
For an elasticity controller driven by simple “if-then-else” policies for application-
specific metrics (e.g. request throughput) there is no apparent way in determining
the case in hand and it will act upon metric violations without considering if an
ECP will indeed improve QoS or cost. From Fig. 11, we observe that after the Scale
In ECP occurs, the average request throughput and busy thread number rises
which denotes that this behavior corresponds to the second case where resources
are now efficiently utilized. ADVISE revealed an insightful correlation between two
metrics to consider in the decision process.

Similarly, in Fig. 12, we depict both the observed and the estimated behavior
for the Distributed Video Storage Backend when a Scale Out ECP is enforced (add
Cassandra Node to ring) due to high CPU utilization. We observe that after the
Scale Out ECP is enforced, the actual CPU utilization decreases to a normal
value as also indicated by the estimation.

Analyzing the estimations made for this service (i.e. Figs. 11 and 12), we con-
clude that the estimations provided by ADVISE successfully follow the actual
behavior pattern and that, as time intervenes, the curves tend to converge.
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Fig. 11. Effect of ECP1 on the application server tier.

Fig. 12. Effect of ECP4 on the entire video streaming service.

5.2.3. M2M DaaS — Elasticity behavior estimation

Figure 13 showcases how an ECP targeting a service unit affects the entire cloud
service. The Cost/Client/h is a complex metric (see Table 2) which depicts how
profitable is the service deployment in comparison to the current number of users.
Although Cost/Client/h is not accurately estimated, due to the high fluctuation in
number of clients, our approach approximates how the cloud service would behave in
terms of expected metric fluctuations. This information is important for elasticity
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Fig. 13. Effect of ECP7 on M2M DaaS.

controllers to improve their decisions when enforcing ECPs by knowing how the
Cost/Client/h for the entire cloud service would be affected. Although CPU usage

is not estimated perfectly, since it is a highly oscillating metric, and it depends on
the CPU usage at each service unit level, knowing the baseline of this metric can
also help in deciding whether this ECP is appropriate (e.g. for some applications
CPU usage above 90% for a period of time might be inadmissible). Figure 14 shows
estimations of behavior for the Event Processing Service Topology, when a Scale

Fig. 14. Effect of ECP6 on the event processing service topology.
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Out ECP occurs on the Event Processing Service Unit. Although the throughput is
accurately estimated with a slight lag, response time is estimated with a slightly
larger error due to the fact that a down peak is not estimated, as not being part of
the usual behavior for the current SP.

ADVISE can estimate the effect of an ECP of a SP, on a different SP, even if
apparently unrelated and therefore provide, multi-grain elasticity behavior evalu-
ation. Figure 15 depicts an estimation on how the Data Controller Service Unit
is impacted by the data transferred at the enforcement of ECP8. In this case, the
controller CPU usage initially, as one would expect, decreases since the new node
will offload other nodes, however, effort is required in transferring data to the new
node which rises utilization due to the fact that reconfigurations are also neces-
sary on the controller, following a slight decrease and then stabilization. Therefore,
even in circumstances of random workload, ADVISE can give useful insights on
how different SPs behave when enforcing ECPs exposed by other SPs which, again,
elasticity controllers have no knowledge of.

5.2.4. Online directory — Elasticity behavior estimation

Figure 16 depicts the observed and estimated throughput and CPU usage measured
at the Document Store Controller after a Scale Out ECP is enforced. The Document
Store Controller is a document store node itself, however, it features additional func-
tionality: It supervises (meta-)data migration when the cluster is re-balanced as in
the case of a Scale In/Out ECP enforcement. While other nodes continue to accept
client requests when an ECP is enforced, the Document Store Controller prioritizes
the supervisioning of data movement and thus, ceases to process client requests.
This is evident in Fig. 16, where we observe that when the cluster is rebalanced,
throughput drops to zero while CPU usage does not decrease, as one would expect,

Fig. 15. Effect of ECP8 on the data controller service unit.
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Fig. 16. Effect of ECP10 on the document store controller.

Fig. 17. Effect of ECP9 on the document store node.

until after rebalancing is complete. In turn, Fig. 17 depicts the effects of a Scale In
ECP on one of the document store nodes. ADVISE identifies the increase in memory

utilization as the node receives part of the load from the decommissioned node,
while the estimation for CPU utilization follows the observed oscillating trend.

On the other hand, Fig. 18 depicts both CPU usage and cost of a document
store node before and after a Scale Out ECP. We observe that before the ECP
enforcement the ADVISE estimation follows the observed values, however, after
the ECP enforcement, the provided estimation slightly deviates from the observed
CPU utilization before converging again. The reason behind this slight deviation
is due to, an out of the ordinary, large data movement, not evident in most Scale
Out ECPs, where the whole dataset must be replicated since the Scale Out ECP
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Fig. 18. Effect of ECP10 on the data node.

occurs immediately after a series of multiple Scale In ECPs which left the cluster
with only two instances.

5.2.5. Quality of results

ADVISE is able to estimate, in time, the elasticity behavior of different SPs by
considering the correlations amongst metrics and the ECPs which are enforced.
To evaluate the quality of our results, we have considered the fact that existing
tools do not produce continuous-time estimations. Thus, we evaluate ADVISE by
computing the variance Var and standard deviation StdDev (Eq. (11)), over 100
estimations as the result differs little afterwise

Varmetrici =

∑ P
i=[0,rtssize] (estMetrici−obsMetrici)

2

rtssize

nbEstimations− 1
StdDevmetrici

=
√

Varmetrici . (11)

Table 4 presents the accuracy of our results. When comparing the three services,
the Video Service achieves a higher accuracy (smaller standard deviation), since the
imposed workload is considerably stable. Focusing on the M2M DaaS estimation
accuracy, we observe that it depends on the granularity at which the estimation
is calculated, and on the ECP. Moreover, the standard deviation depends on the
metrics monitored for the different parts of the cloud service. For instance, in the
case of the M2M Service, the number of clients metric can be hardly predicted,
since we have sensors sending error or alarm-related information. This is evident
for the Event Processing Service Topology, where the maximum variance for the
number of clients is 4.9.

Overall, even in random cloud service load situations, the ADVISE frame-
work analyzes and provides estimations for elasticity controllers, allowing them
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Table 4. ECPs effect estimation quality statistics.

Cloud Observed Cloud Elasticity Average Maximum Minimum
Service Service Part Control Standard Variance Variance

Process Deviation

Video Video Service ECP3 0.23 0.09 0.03
Service ECP4 0.61 0.99 0.23

Distributed Video Storage ECP3 0.28 0.14 0.034
Backend ECP4 0.2 0.042 0.04

Application Server ECP1 0.43 0.4 0.06
ECP2 0.31 0.47 0.01

M2M Cloud Service ECP5 0.9 6.65 0.24
Service Data End Service Topology ECP5 0.23 0.35 7.44E-05

Event Processing Service ECP7 1.1 4.9 0.046
Topology ECP8 0.76 2.46 0.027

Data Controller Service ECP6 0.12 0.25 0
Unit ECP8 0.22 0.41 0

Data Node Service Unit ECP5 0.572 0.68 0.32
ECP6 0.573 1.4 0.07

Event Processing Service ECP7 1.08 3.59 0.11
Unit ECP8 0.77 1.9 0.14

Online Document Store Node ECP9 0.19 0.05 0.29
Directory Document Store Node ECP10 0.14 0.005 0.18

Document Store Controller ECP10 0.13 0.023 0.38

to improve the quality of control decisions, with regard to the evolution of moni-
tored metrics at the different cloud service levels. Moreover, these estimations are
delivered together with the confidence of the estimation, given by the distance
from current behavior point to the estimated behavior point. Without this kind of
estimation, elasticity controllers would need to use VM-level profiling information,
while having to control complex cloud services. This information, for each SP, is
valuable for controlling elasticity of complex cloud services, which expose complex
control mechanisms.

Fig. 19. ECP5 estimation time under different cutoff values.
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Fig. 20. Estimation variance for ECP5 under different cutoff values.

5.2.6. Sensitivity of results

For analyzing the sensitivity of our results, we evaluated how our empirically deter-
mined parameters (e.g. clustering offset) affect the variance of the estimation in
regards to the observed behavior. Figure 20 concludes that our results are very
little affected by the choice of the offset.

When analyzing the impact that the choice of the offset has over time
(Fig. 22(b)), we can see that very small offset values reflect in a considerable
increase in the estimation time. This is why, the offset was chosen at 0.2, as a
tradeoff between estimation time and estimation quality.

5.3. rSYBL elasticity control enhanced with ADVISE estimations

As described in Sec. 4, we integrate the ADVISE behavior estimation into the
rSYBL elasticity controller, which controls elasticity at multiple levels of abstrac-
tion.8

We use the M2M DaaS service with fixed Data End Topology, while control-
ling Event Processing Topology using ECP5 (i.e. Scale In) and ECP6 (i.e. Scale
Out) elasticity control processes on an OpenStack private cloud, with the following
SYBL9 elasticity requirements:

• EventProcessingTopology — Co1:CONSTRAINT responseTime < 100ms.
• EventProcessingTopology — St1:STRATEGY CASE responseTime < 12 AND
throughput< 100: minimize (cost).

We compare the elasticity control performed by ADVISE-enabled rSYBL deci-
sion making and respectively the profiling-based decision making. We apply a
stepwise workload in order to observe controller’s behavior under different cir-
cumstances. Figure 21 shows at (a) the outcome of controlling the service with
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(a)

(b)

Fig. 21. Event Processing Topology control. (a) rSYBL with ADVISE knowledge, (b) rSYBL
without ADVISE.

ADVISE-enabled rSYBL and at (b) the outcome of controlling the service consid-
ering profiling information, consisting of how much the metrics would be affected
by enforcing an ECP. At first, we observe that ADVISE-based control provides the
elasticity controller with a better elasticity behavior understanding, even in cases
where metric values exceed their expected values (i.e. in this case due to a mem-
ory bottleneck). However, it accomplishes this with a bigger cost, as one would
expect, since it is using more resources to fulfill the requirements (e.g. in this case
ADVISE-enabled controller achieves a cost 27.5% higher). In contrast with this, the
profiling based elasticity controller is not able to find appropriate ECPs in unex-
pected situations, when the value observed exceeds its possibilities of controlling the
metric, as known from profiling information (e.g. if the response time is expected
to decrease with 200ms whenever ECP6 is enforced, while current metric values
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are 2000ms). Moreover, the ADVISE-based control considers the following interval
when analyzing the expected behavior, not only the final metric values. Thus, when-
ever enforcing an ECP results in comparable requirements violation over the whole
period as for the case of no ECP enforcement, the controller chooses not to take
any action. When applying a steady/fix workload, depending on the formulated
requirements, some controllers can reach continuous control oscillations. This was
also the case for rSYBL with profiling information, as we can see from Fig. 22(a).
Due to the continuous effects which are being used by rSYBL with ADVISE, on
the same workload, and the same elasticity requirements, this “ping-pong” effect
is avoided (see Fig. 22(b)), since the controller knows that the enforcement ECP5

will imply the overall increase of the response time, after a time period.
Using ADVISE in elasticity control can also avoid situations where various con-

trol processes are enforced without understanding their outcome. For instance,

(a)

(b)

Fig. 22. Ping-pong effect. (a) “Ping-pong” effect for steady workload with rSYBL, (b) no “ping-
pong” when using ADVISE.
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enforcing Scale Out when response time satisfies a condition does not always
result in response time decrease. Moreover, in some cases, where the service is
not truly elastic, enforcing ECPs considering expected discrete effects would only
cause increase in costs. With ADVISE and SYBL, the control processes are enforced
only when, considering current and previous behavior, the ECP would help fulfilling
SYBL requirements (e.g. increase throughput, minimize response time).

6. Related Work

In our previous work, we focused on modeling current and previous behavior with
the concepts of elasticity space and pathway,11 where we utilize different algorithms
to determine enforcement times in observed service behavior (e.g. with change-point
detection), but without modeling expected behavior of different service parts, in
time. Verma et al.5 study the impact of reconfiguration actions on system perfor-
mance. They observe infrastructure level reconfiguration actions, with actions on
live migration, and observe that the VM live migration is affected by the CPU
usage of the source virtual machine, both in terms of the migration duration and
application performance. The authors conclude with a list of recommendations on
dynamic resource allocation. Kaviani et al.16 propose profiling as a service, to be
offered to other cloud customers, trying to find tradeoffs between profiling accu-
racy, performance overhead, and costs incurred. Zhang et al.7 propose algorithms
for performance tracking of dynamic cloud applications, predicting metrics values
like throughput or response time.

Dean et al.17 propose an approach for predicting running application perfor-
mance anomalies, self-organizing maps for capturing emergent behavior and predict-
ing unknown anomalies. Using unsupervised learning, this approach also identifies
previously unknown anomalies/faults which may appear in the system (e.g. mem-
ory leaks, cpu leaks). For cloud service SLA violation prediction several solutions
have been proposed, such as Refs. 18 and 19, which use statistical models (e.g.
decision trees, artificial neural networks) or naive bayes classifiers, predicting when
the SLA would be violated without focusing on the violation cause. LaCurts et al.20

propose Cicada, a framework which predicts network traffic for cloud applications,
without making assumptions about application structure. The authors argue that
cloud providers should offer predictive guarantees as a service, instead of bandwidth
guarantees, which would also encapsulate application runtime changes. Similarly,
ADVISE-enabled rSYBL can be used to guarantee or to sell as a service cloud
service elasticity, with little specifications coming from the user.

Juve et al.21 propose a system which helps automating the provisioning process
for cloud-based applications. They consider two application models, one workflow
application and one data storage case, and show how for these cases the appli-
cations can be deployed and configured automatically. Li et al.22 propose Cloud-
Prophet framework, which uses resource events and dependencies among them for
predicting web application performance on the cloud. Shen et al.6 propose the
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CloudScale framework which uses resource prediction for automating resource allo-
cation according to service level objectives (SLOs) with minimum cost. Based on
resource allocation prediction, CloudScale uses predictive migration for solving
scaling conflicts (i.e. there are not enough resources for accommodating scale-up
requirements) and CPU voltage and frequency for saving energy with minimum
SLOs impact. Compared with this research work, we construct our model consid-
ering multiple levels of metrics, depending on the application structure for which
the behavior is learned. Moreover, the stress factors considered are also adapted to
the application structure and the elasticity capabilities (i.e. action types) enabled
for that application type.

Compared with presented research work, we focus not only on estimating the
effect of an elasticity control process on the service part with which it is associated,
but on different other parts of the cloud service. Moreover, we estimate and evaluate
the elasticity behavior of different cloud service parts, in time, because we are not
only interested in the effect after a predetermined period, but also with the pattern
of the effect that the respective ECP introduces.

7. Conclusions and Future Work

It is important to understand elasticity behavior of complex cloud services due
to different control processes, in order to support better elasticity provisioning.
In this paper, we have presented a methodology for estimating cloud service elas-
ticity behavior, and implemented it in our ADVISE framework. ADVISE is able
to estimate the behavior of cloud service parts, in time, when enforcing various
ECPs, by considering different types of information represented through the elas-
ticity dependency graph. Experiments from three different cloud services, show that
ADVISE framework is indeed able to advise elasticity controllers about cloud ser-
vice behavior, contributing towards improving cloud service elasticity. We show how
we integrate ADVISE with the rSYBL elasticity controller,8 and the decision mech-
anisms we refined in order to consider continuous ECP effects. We have shown the
improvement that ADVISE brings to the rSYBL elasticity controller, and discussed
the various decision types that ADVISE influences.

As future work, we will focus on further understanding how heterogeneous
resources used in the control process would affect the cloud service elasticity behav-
ior. Moreover, we are considering various aspects which are dynamic in a complex
cloud service. For instance, communication patterns might change at runtime as
a reaction of the service to incoming load properties (e.g. service units which are
re-grouping into other topologies when the users interests, and load characteris-
tics, change). Moreover, enforcing elasticity capabilities can also involve changes
in service structure (e.g. adding another layer of balancing involves creating a
sub-topology in an already existing topology). Focusing on these aspects, we are
investigating how communication and structural dynamism affect the cloud service
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behavior, how these can be estimated, and finally, how can they be integrated in
the ADVISE framework.
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