
Quality Aware Context Information Aggregation System for Pervasive Environments

Atif Manzoor, Hong-Linh Truong, Schahram Dustdar
Distributed Systems Group, Vienna University of Technology

{manzoor, truong, dustdar}@infosys.tuwien.ac.at

Abstract

Sensing context information and making it available to
the people, involved in coordinating a collaborative task,
is a preliminary phase in making a system adaptable to
the prevailing situation in pervasive environments. However,
the diversity of the sources of context information, the
characteristics of pervasive environments, and the nature of
collaborative tasks pose a stern challenge to the efficient
management of context information by sensing a lot of
redundant and conflicting information. Quality of Context
parameters can be used to resolve the conflicts in context
information. In this paper, we present a context aggregation
system that detects and removes the duplicates and conflicts
from context information by using the policies based on
Quality of Context parameters. This system effectively aggre-
gates the continuously evolving context information and ef-
ficiently uses the scare resources in pervasive environments.

1. Introduction

Context information plays a vital role in coordinating the
collaborative tasks and adapting them to the prevailing situ-
ation in mobile and pervasive environments. Such collabora-
tive tasks include performing rescue activities in disaster re-
sponse, coordinating a sport festival, or arranging a carnival.
In these situations, information is typically gathered from a
variety of sources ranging from the sensors pre-installed in
the environment to the sensors embedded in the applications
on the devices carried by the participants of these tasks
[1]. In most cases, information is evolved continuously and
uninterrupted updates are received from the sensors [2]. We
consider the cases in which more than one sensors collect
the information about the same entity in the environment,
giving rise to the redundant and conflicting information. For
example, sensors embedded in the user interface application
of the mobile devices of different disaster response workers
that perform activities on the same site can send inconsistent
information about that site. Because of these circumstances
context information is not only voluminous but also most
likely contains duplicate and conflicting context objects that
unnecessarily use the limited resources of mobile devices.

This research is partially supported by the European Union through the
FP6-2005-IST-5-034749 project WORKPAD.

The Nature of task in these emerging situations poses
more challenges on devising a conflict resolution strategy.
Different types of information have different significance
in different circumstances, e.g., the information about the
victims and the infrastructure is more critical than the in-
formation about the profile of the personnel participating in
the rescue activities to carry on the relief work and to make
decisions in coordinating disaster response. Single technique
to resolve the conflict among all types of context information
is insufficient in those cases. Simple conflict resolution
techniques such as add, min, and average can also decrease
the quality of context information. So far, there has not been
enough research to address these issues. A mechanism that
effectively resolves the conflicts in continuously evolving
context information to make it consistent and coherent and
efficiently uses the scare resources in pervasive environments
is indispensable in such situations.

Quality of Context(QoC), defined as “any information
that describes the quality of information that is used as
context information” [3], can play an important role in
resolving the conflicts in the context information [4]. In
this paper, we present a mechanism that will detect the
duplicate and conflicting information from the continuously
updating context information. This system will also dy-
namically select and use a conflict resolving policy, based
on QoC parameters, to resolve the conflicts. We have also
described the implementation of the system and discussed
its evaluation.

The rest of the paper is organized as follows. Section 2
gives an overview of related work. Section 3 gives an
account of our context monitoring and management frame-
work. Section 4 discusses our context information aggre-
gation system. Section 5 describes the implementation and
the evaluation of our system. Finally Section 6 presents the
conclusion and the future work.

2. Related Work

Along with smart and pervasive environments, data ag-
gregation has also been a popular research topic in sensor
networks. Typical applications for the sensor networks are
object tracking, surveillance, and environmental monitoring
[5]. Data in these applications is usually handled using
a simple data structure, e.g., numerical value. The main
emphasis is on finding different data routing protocols for

2009 International Conference on Advanced Information Networking and Applications Workshops

978-0-7695-3639-2/09 $25.00 © 2009 IEEE

DOI 10.1109/WAINA.2009.144

266

in-network data aggregation and very simple aggregation
functions such as count, min, max, sum, average, and
median are applied on data [6]. Comparatively, pervasive
environments have a wider range of applications such as per-
forming collaborative work. Hence, complex data structures
are used to gather data from sources ranging from the simple
senors to user interfaces and applications in mobile devices.
Therefore data aggregation techniques from sensor networks
are not sufficient for context aggregation in mobile and
pervasive environments. In remaining section, we present
a comparison of existing techniques for context aggregation
in pervasive environments with our work.

OASIS [7] is a framework for context information in-
tegration and presentation based on ontologies. But it had
not considered the scenario of resolving the conflicts in
context information. In [8], they used the conflict resolving
policy to delete the conflicting objects with smaller value
of a measure, relative frequency, that is based on the time
of the generation of that context object. In our work, we
have used more sophisticated policies to resolve the conflict
among context objects. These policies are based on trust-
worthiness, completeness, and significance of context object
along with its up-to-datedness. In XMIDDLE [9], simple
conflict resolution techniques, such as, add, last, random,
first, and greatest are considered to reconcile the data entered
about the same entity by different hosts. As compared to
conflict resolution techniques used in this work, we will also
be using the trustworthiness of a specific source to report
about an event and QoC parameters to resolve the conflict
in information.

MoGATU [10] was presented as a framework for data
management in pervasive computing environments. Main
emphasis is on processing and routing the queries to get the
information. This system has not discussed the scenarios in
which duplicate or conflicting information can be provided
by more than one sources in the environment. In [11], a
layered model for using context management has been pre-
sented. This model has used the age of context information
to decide about the validity of the context information. How-
ever, age of context information is not enough for context
data management in more dynamic pervasive environments,
e.g., if a new context information is received from a source
that have lower value of trustworthiness as compared to the
source of already available information, this system will
delete the context information from more trusted source.
Such situations are considered in our system by using more
dynamic conflict resolving policies.

3. Context Monitoring and Management
Framework

In this section, we give an overview of context mon-
itoring and management framework(CMMF) as shown in
Figure 1. We have extended our CMMF presented in

Figure 1. System Components of Context Monitoring
and Management Framework

Escape [12] by adding context aggregation system based
on QoC information. We consider three type of nodes
in the environment. These nodes are context producer,
context consumer and the nodes that act as both context
consumer and context producer. Context producer directly
gathers the context information from the environment, e.g.,
temperature sensors, device sensors, and software sensors
embedded in the user interface and applications on mobile
devices. Context consumers are the higher level applications,
systems, and personnel involved in decision making that
uses the context information. The third type of node act
as an intermediary between context producers and context
consumers, by collecting the context from low level context
producers and providing it to high level context consumers.
Context Monitoring and Management Framework(CMMF)
works on these nodes to provide the mechanism to discover,
query, subscribe, update, and provide the context information
to the middleware. Attributes of the context information
services are used to describe the information presented
by that service in the middleware. Context consumers can
discover, query, and subscribe to the context information of
their interest. They are also notified when new information
is gathered at the context producer. Context consumer can
also query the required information in environment. Our
context aggregation service works as the part of CMMF
to effectively combine the context information provided by
different sources. Removing the redundant and conflicting
context information enables CMMF to efficiently use the
scare resources of mobile devices and increase its efficacy
to provide context information to interested applications and
systems.

4. Context Aggregation System

Context aggregation system, shown as a part of CMMF in
Figure 1, works both locally and globally on a node. Locally,
it aggregates all context information received at a node and
globally it aggregates the context information from lower
level nodes before forwarding it to the higher level nodes,

267

node.role=teamLeader
hierarchicalValue.max=4
hierarchicalValue.min=1
node.hierarchicalValue=2
device.type=pda
criticalValue.max=5
criticalValue.min=1
infrastructure.criticalValue=3
Infrastructure.totalAttributeCount=4
infrastructure.lifetime=60 minutes
infrastructure.source=userInterface

Figure 2. System configuration file sample

in case of context information queries from those higher
level nodes. This system takes the System Configuration,
Context Data Model, and Conflict Resolving Policies as the
input to the system. QoC Evaluator, Duplicate and Conflict
Detector, Conflict Resolver, and Context Integrator are the
components of the system. In the following section, we will
be describing them in detail.

4.1. System Configuration

As it have been described in the previous section, our
system works on three type of nodes. These nodes range
from the handheld devices with very limited resources to
high power back end systems. Therefore, we need to change
the behavior of system according to the requirements and
the resources of the node. This information is provided
to the system by the configuration file. For example, if
our system is working on a PDA that is receiving context
information from the sensors installed on that device only,
it can be mentioned in the configuration file that the system
should only search for duplicates. It should not unnecessarily
consume the processing power in looking for the conflicting
context objects, as it is rare chance if information is being
gathered only from the same sensors. Information related
to the concepts in the context data model that is used to
evaluate the QoC parameters is also provided in the system
configuration. Figure 2 shows a sample configuration file
that describes that the person on this node is working as the
team leader and is carrying a PDA device.

4.2. Context Information Model

Our context aggregation system takes the context informa-
tion model as an input to the system. In context information
model, every context object contains the information about
the identification of the source that gathered the context
object, identification of the entity about which that context
object is gathered, time at which that information is gathered,
and the context information itself. The information about
the identity of source, entity, and timestamp will be used
to find duplicate and conflicting context objects. Figure 3
shows the XML representation of a context object of type

<Infrastructure sourceID = "UIAX00065"
entityID = "Square000X38"
timestamp = "1219668617937"
name = "MainSquare"
Usability = "70%">
<QoCParameters uptodatedness="0.83311665"

trustworthiness="0.6333333"
completeness="0.94446003"
significance="1.0" />

</Infrastructure>

Figure 3. XML representation of a context object of type
Infrastructure

infrastructure, named MainSquare, that has the value of
sourceID, entityID, timestamp and the context information
about the usability of that infrastructure. This information
is sensed by a user interface sensor on a rescue worker’s
device performing task in response to a flood in the city.
Context object can also be a simple value gathered from a
low level sensor or it can consist of other context objects. For
example in a disaster response, context object representing
the context information about a site of disaster will consist
of the context object representing workers, buildings, and
victims. So that context object O can also be represented
as the collections of constituent context objects such as
O = {O1∪O2∪O3∪∪On}. Context information
services in the environment will be providing context objects
according to this model to the context aggregation system
to combine these newly arrived context objects with existing
information.

4.3. QoC Evaluator

QoC Evaluator evaluates the QoC parameters for the
context information that is contained by a context object
and annotates that context object with those evaluated
QoC parameters. We have described the mechanism of
the evaluation of QoC parameters from QoC sources in
our previous work [4]. Context object is passed to this
component for the evaluation of QoC parameters. This
component also gathers the necessary information about the
source of information and entity about which that context
information is gathered from the system configuration file.
This system configuration file is provided by the user of the

infrastructure.reslovingPolicy=combinedQuality
infrastructure.threshold=.8
rescueWorker.reslovingPolicy=trustworthiness
rescueWorker.threshold=1.0
team.reslovingPolicy=trustworthiness
team.threshold=1.0
resource.reslovingPolicy=uptodatedness
resource.threshold=.9
victims.reslovingPolicy=significance
victims.threshold=.7

Figure 4. Conflict resolving policies file sample

268

system along with the context information model file. QoC
sources such as SourceLocation, InformationEntitLocation,
MeasurementTime, SourceState are used to evaluate the QoC
parameters: up-to-datedness, trust-worthiness, completeness,
and significance of context object. These QoC parameters
have values in the range [0..1] and play an important role
in resolving the conflict in context objects. Figure 3 shows
the context object of type infrastructure annotated with QoC
parameters. Configuration file in Figure 2 is also showing the
information about life time, critical value, total number of
attributes, and source of context object of type infrastructure
that is used to evaluate these QoC parameters.

4.4. Resolving Policies

Our system uses the conflict resolving policies that are
defined on the basis of QoC parameters. These policies
can depend on a single QoC parameter such as up-to-
datedness, trust-worthiness, completeness, and significance
or a combination of them such as combinedQuality. If the
resolving policy for a specific type of context object is
specified as trust-worthiness, it will mean that if we have
to resolve the conflict between the two context objects of
this type, we will discard the context object with lower
value of trust-worthiness and store the context object with
higher value. Similarly if the resolving policy for a type of
context object is defined as combinedQuality, it will mean
that we will take the average of all QoC parameters to
resolve the conflict between conflicting objects of that type.
Sometimes for very critical information it is useful to keep
the conflicting information in the system and let the user
decide about it. In that case a threshold value can also be
set, so that, all the context objects having the quality higher
than that threshold value are kept in the context store. In case
of numerical data, e.g., room temperature, conflict resolving
policies like addition, minimum, maximum, or average can
also be mentioned.

Policies related to all the concepts in the context infor-
mation model are mentioned in conflict resolving policies
file and passed to the system. Figure 4 shows a sample of
conflict resolving policies file that have been provided to the
system to resolve the conflicts in the context objects in the
case of disaster response activities. When the system detects
a conflict in a pair of context objects, first of all system
checks the type of context information that is presented by
that context information. Secondly, it looks into the conflict
resolving policies file to find the policy that is defined in
that file to resolve the conflicts for that type of context
objects. After that system gets the values of QoC parameters
that have been used to enforce that policy. For example,
in Figure 4 combinedQuality with the threshold value of
.8 has been specified as the conflict resolving policy for
context objects presenting the context information of type
infrastructure. When the system detects a pair of conflicting

Algorithm 1 Algorithm to detect duplicate and conflicting
context objects
INPUT: New arrived context object CO

1: get the entityID of CO
2: if There exists a context object with same entityID then
3: if sourceID of both context objects match then
4: if timestamp of both context objects match then
5: Discard context object
6: else
7: call function ResolveConflict by passing

both context objects
8: end if
9: else

10: call function ResolveConflict by passing
both context objects

11: end if
12: else
13: Add the context object to contextstore
14: end if

context objects of type infrastructure, it will get the value
of combinedQuality, i.e., the average of all QoC parameters,
for that context object. Context objects having the value
of combinedQuality more than .8 are only kept in the
context store. All other context objects are discarded from
the context store.

4.5. Duplicate and Conflict Detector

Newly arrived context object is passed to Algorithm 1
to check if it is the duplicate of or in conflict with any
existing context object. First we get the identifier of the
entity represented by this newly arrived context object and
check if there is any context object in the existing data
representing the same entity. If we do not find any context
object representing the same entity, it means that we do not
have any duplicate or conflicting context object and newly
arrived context object is added to existing context store. If
there is some context object representing the same entity,
then we check the sources of context objects. If they have
different sources then they are identified as the conflicting
context objects and are passed to Algorithm 2, to resolve
the conflict. If these two context objects are from the same
source then we check the time when these context objects
are generated. If they have the same timestamp then it means
that they are the exact duplicate of each other and anyone
of them can be discarded and the other one is kept in
the context store. If they have the different timestamps it
means that these are the conflicting context objects that are
generated at different instance of time. This type of pair is
also passed to the Algorithm 2.

269

4.6. Conflict Resolver and Integrator

Algorithm 2 receives the pair of conflicting context ob-
jects and is responsible for resolving the conflict among
those conflict context objects and add them to the context
store. Pairs of conflicting context objects are passed to this
algorithm in two cases. First, when the conflicting objects
are generated from the same source and second, when the
context objects are generated from different sources. Conflict
resolving policies, discussed in Section 4.4, for each type
of context object are specified in the configuration file.
For example, Figure 2 shows the sample configuration file
in which conflict resolving policy for the concept of type
infrastructure is specified as combinedQuality. Finally, after
discarding duplicate and conflicting context objects, context
objects are added in context store by the context integrator.
This context information is provided to the applications or
systems that have subscribed for that information.

Algorithm 2 Algorithm to resolve conflicts
INPUT: Conflicting context objects

1: if sourceID matches then
2: get conflict resolving policy for that type
3: apply conflict resolving policy
4: add the context object that satify the policy to

context store
5: else
6: call QoCEvaluator to get QoCParameters
7: get conflict resolving policy for that type
8: apply conflict resolving policy
9: add the context object that satify the policy to

context store
10: end if

5. Implementation and Evaluation

We have used Java2 ME (CDC 1.1 profile) for the de-
velopment of our quality aware context aggregation system
prototype that has extended our Escape framework [12] as
described in Section 3. We have also used RESCUE [13]
as the underlying system to provide the support for the
development of Web services middleware on mobile devices.
System configuration and conflict resolving policies files are
implemented as key-value pair as shown in Figure 2 and
Figure 4. Context information model, designed to manage
the context information in disaster response, provided to
the system as XML schema. Context information was also
stored as XML elements. Figure 3 shows a context object,
annotated with QoC parameters, describing the usability of
a square in the city. In the remaining section we will discuss
the detail of our experiment and evaluation of our system.

We had simulated an environment that represented a
team, consisting of five workers. That team was performing

the rescue activities in a city that was affected by flood.
Workers were also collecting the context information about
the usability of an infrastructure named MainSquare as
represented by the context object shown in Figure 3 and
providing this information to the middleware as context
information services. Team leader had subscribed to get this
information and was receiving continuous updates from all
the workers. Context aggregation system at the team leader
received this information to effectively combine the recently
received context objects with the existing context. The team
leader had specified the conflict resolving policy as the
combinedQuality. In this policy, quality is represented by the
average value of all the QoC parameters. QoC parameters
were normalized to have the value in the range [0..1] and
average of all QoC parameters also lied in the same range.
Team leader also set the threshold value for conbinedQuality.
This threshold value was considered as the minimum value
of conbinedQuality for a context object to add into the
context store. All the context objects having value less than
threshold value were discarded.

0

2

4

6

8

10

12

14

16

18

20

1 8 15 22 29 36 43 50 57

Time(minutes)

N
u

m
b

er
 o

f
co

n
te

xt
 o

b
je

ct
s

Threshold=.75
Threshold=.80
Threshold=.85
Threshold=.90

Figure 5. Number of context objects contained in con-
text data store

Figure 5 shows the number of context objects stored in
context store along with time line. Team leader had set
the different threshold values of combinedQuality in four
different cases as show in Figure 5. Number of context
objects saved in context store were different with different
values of threshold. It shows that the less number of context
objects are kept in the context store when high value of
quality threshold is specified. The users can select the value
of quality threshold and he can receive the context objects
according to the his requirements. Less number of context
objects with higher quality decrease the burden on the team
leader to make analysis of context information and take
decision to adopt according to the current situation.

Figure 6 shows the number of context objects that have
been deleted from the context store in a given period of
time because they did not meet the quality criteria that
have been set by the team leader. We had observed that

270

Figure 6. Number of context objects deleted

the number of deleted context objects, i.e., the context
objects with context information of low quality, increased
with increase in number of workers in a team for a given
quality criteria. So teams with larger number of workers
poses more difficulties for the team leader to decide about
the context object providing correct context information. Our
system improve the performance by deleting the context
objects of lower quality and presenting the team leader with
limited number of context objects of higher quality to make
decisions.

6. Conclusion and Future Work

In this paper we presented the context aggregation system
that uses QoC parameters to resolve the conflict among the
context objects representing the same context entity. We
have also presented an algorithm to detect duplicate and
conflicting context objects. Our context aggregation system
presents context objects which have the data quality more
than specified and saves the people from unnecessary burden
to decide about quality of data and they can concentrate on
decision making process. Our context aggregation system
makes an efficient use of scare resources by deleting the
duplicate and redundant context objects.

For future work, we plan to emphasize on defining and
evaluating more sophisticated QoC parameters and framing
the conflict resolving policies on the basis of those QoC
parameters. We will try to minimize the role of user profiled
values in the evaluation of QoC parameters and to enhance
the quality of context information by combining the context
information and QoC parameters from more than one context
object. Along with context aggregation, we also plan to use
QoC parameters in other tasks needed to perform for mon-
itoring and management of context information in mobile
and pervasive environments , e.g., context query routing and
decision making.

References

[1] K. Henricksen and J. Indulska, “Modelling and using imper-
fect context information,” in Proceedings of the Second IEEE

Annual Conference on Pervasive Computing and Communi-
cations Workshops(PERCOMW ’04), March 2004, pp. 33–37.

[2] M. Balazinska, A. Deshpande, M. Franklin, P. Gibbons,
J. Gray, S. Nath, M. Hansen, M. Liebhold, A. Szalay, and
V. Tao, “Data management in the worldwide sensor web,”
Pervasive Computing, IEEE, vol. 6, no. 2, pp. 30–40, April-
June 2007.

[3] T. Buchholz, A. Küpper, and M. Schiffers, “Quality of con-
text: What it is and why we need it,” in Proceedings of the
10th International Workshop of the HP OpenView University
Association(HPOVUA), vol. 2003. Hewlet-Packard Open-
View University Association, 2003.

[4] A. Manzoor, H. L. Truong, and S. Dustdar, “On the evaluation
of quality of context,” in EuroSSC, ser. Lecture Notes in
Computer Science, vol. 5279. Springer, 2008, pp. 140–153.

[5] K. Romer and F. Mattern, “The design space of wireless
sensor networks,” Wireless Communications, IEEE, vol. 11,
no. 6, pp. 54–61, Dec 2004.

[6] E. Fasolo, M. Rossi, J. Widmer, and M. Zorzi, “In-network
aggregation techniques for wireless sensor networks: a sur-
vey,” Wireless Communications, IEEE [see also IEEE Per-
sonal Communications], vol. 14, no. 2, pp. 70–87, April 2007.

[7] J. M. Serrano, J. Serrat, S. van der Meer, and M. O. Foghlu,
“Ontology-based management for context integration in per-
vasive services operations,” in Inter-Domain Management,
vol. 4543/2007. Springer Berlin / Heidelberg, 2007, pp.
35–48.

[8] Y. Bu, T. Gu, X. Tao, J. Li, S. Chen, and J. Lu, “Managing
quality of context in pervasive computing,” in QSIC ’06:
Proceedings of the Sixth International Conference on Quality
Software. IEEE Computer Society, 2006, pp. 193–200.

[9] C. Mascolo, L. Capra, S. Zachariadis, and W. Emmerich,
“Xmiddle: a data-sharing middleware for mobile comput-
ing,” Int. Journal on Personal and Wireless Communications,
vol. 21, pp. 77–103, 2002.

[10] F. Perich, A. Joshi, T. Finin, and Y. Yesha, “On data manage-
ment in pervasive computing environments,” Knowledge and
Data Engineering, IEEE Transactions on, vol. 16, no. 5, pp.
621–634, May 2004.

[11] A. Schmidt, “A layered model for user context manage-
ment with controlled aging and imperfection handling,” in
Modeling and Retrieval of Context. Proceedings of the 2nd
International Workshop on Modeling and Retrieval of Context
MRC 2005. Springer, 2005, pp. 86–100.

[12] H. L. Truong, L. Juszczyk, A. Manzoor, and S. Dustdar,
“Escape - an adaptive framework for managing and providing
context information in emergency situations,” in EuroSSC, ser.
Lecture Notes in Computer Science, vol. 4793. Springer,
2007, pp. 207–222.

[13] L. Juszczyk and S. Dustdar, “A middleware for service-
oriented communication in mobile disaster response environ-
ments,” in 6th International Workshop on Middleware for
Pervasive and Ad-Hoc Computing (MPAC). 9th Middleware
Conference. ACM/IFIP/USENIX, 2 December 2008.

271

