
A Hybrid Sharing Control Model for Context
Sharing and Privacy in Collaborative Systems

Ahmad Kamran Malik, Schahram Dustdar

Distributed Systems Group, Vienna University of Technology, Austria

{kamran, dustdar}@infosys.tuwien.ac.at

Abstract – Complex Web-based information systems
involving multiple entities and their dynamic mobile-based
collaborations require efficient techniques for context in-
formation sharing. Sharing control is a requirement for
preserving the privacy of personal context and shared
context. Our sharing control mechanism is hybrid, based
on sharing control rules defined by enterprise as well
as by individuals users. Our complex scenario involves
multiple entities which require prioritization and conflict
handling mechanism for entities and their policy rules.
This paper presents a sharing control model, Web services-
based architecture and its implementation with a running
example. The system is evaluated by comparing our hybrid
sharing control policy with enterprise-defined role -based
policy and shows effectiveness of our hybrid policy in
collaborative information sharing environments.

Keywords-Context Sharing, collaborative system, hybrid
sharing policy, access control, conflict handling.

I. INTRODUCTION

Creating sharing control policy for an information sharing

system with multiple entities involved with their conflicting

interests is a complex task [1] that requires management of

information at different granularity levels and complex rules

for information sharing and conflict handling strategies. In

current Web-based collaborative systems like [2], dynamic

involvement of enterprises, teams, and individual users is

increasing day by day. Dynamic teams are created by col-

laborating enterprises, distributed and mobile-based users are

involved in them; a user can join or leave a team at any

time and a user can be a part of more than one teams at

a time. Collaborative systems must be flexible enough to

handle sharing requirements of dynamic entities, but not at

the cost of privacy of users, their teams, and enterprises. Role-

based Access Control (RBAC) policies [3] cannot handle fine

grained access requirements at the level of individual user,

activity, team or enterprise with multiple dynamic entities.

We use a hybrid policy model including enterprise-defined

policy and user-defined policy and extend role-based policy

by adding context constraints and user-defined rules. Our user-

defined rule-based policy overrides enterprise-defined policy

for privacy of user’s personal services and shared services

related to her team activities. Conflicts among sharing control

policy rules and entity priorities needs to be handled for an

efficient policy evaluation [4].

In this paper we describe a sharing control model based

on users collaborations involving multiple entities in Collab-

orative Working Environment (CWE). From this model we

use entity priorities and collaborative relationships to define

sharing control rule, rule priorities for all involved entities,

and their conflict handling mechanism.

In our system we extend RBAC [3] using context constraints

as well as our rule-based user-defined policy. Our sharing

control mechanism is based on two types of policy rules

including enterprise-defined RBAC rules and user-defined

rules. This hybrid policy controls sharing of context at certain

level of detail using collaborative relationships and entity

priorities. An architecture of the system and Web services-

based implementation with a running example describing our

hybrid sharing control policy is provided which shows the

importance of its applications in the real world scenarios.

Evaluation of the system is described by comparing our user-

defined hybrid sharing control policy with the enterprise-

defined role-based policy. Results describe effectiveness of our

hybrid sharing control policy which provides increased number

of responses as well as level of responses among the entity

types which are close to each other. It is indicator of better

preserving user privacy and increased level of sharing among

collaborating users who are in close relationships, for example,

involved in same activity or team.

The remainder of the paper is organized as follows. Section

II describes background and related work. Section III explains

sharing control model for collaborative working environments.

Section IV describes our sharing control policy. Section V

discusses our sharing control architecture and evaluation.

Section VI concludes the paper and describes future work.

II. BACKGROUND AND RELATED WORK

Access policy for collaborative environments and their re-

quirements have been described in [5]. Role-Based Access

Control model [3] defines roles using permissions to access

objects. RBAC is an efficient model for management of rights

in large scale systems, it is rather static and lacks in fulfilling

requirements of collaborative systems to access objects at level

of individual user and other entities in a dynamic environment.

RBAC can be used in collaborative systems as explained in

[6] and in a survey by [5]. Context-based RBAC systems have

been an interesting area of research as can be seen in [7] and

[8]. Web-based systems also make use of RBAC model, for

example, system using Web services like [9] and [10]. Our

2011 Workshops of International Conference on Advanced Information Networking and Applications

978-0-7695-4338-3/11 $26.00 © 2011 IEEE

DOI 10.1109/WAINA.2011.134

879

system also makes use of Web services for sharing context

and information among collaborating users. An owner centric

access control based on owner created roles is presented in

[11]. Another system for sharing context and preserving user’s

privacy using owner-defined roles is presented in [12].

Policy conflicts in complex systems can be handled by

defining priorities for different entities or groups and types of

rules, for example, positive and negative rules [4]. Authoriza-

tion policies, obligation policies, and their conflicts resolving

strategies are described in [13]. Examples and details of

conflict management strategies for organizational based access

control are described in [14]. Static and dynamic conflict are

described and their detection methods are provided in [15]. We

define priorities and conflict handling rules for these hybrid

policies and all entities involved in the system.

III. SHARING CONTROL MODEL FOR

COLLABORATIVE WORKING ENVIRONMENTS

In CWE, users need to share their context with collaborating

partners for accomplishing shared activities. Owners need to

control their data being shared with other users using owner-

defined rules while enterprises want to define role-based access

control rules for their employees. In this scenario, we use the

term sharing control for two purposes - firstly, it describes

control of owner on her data being shared, and secondly,

it describes sharing of control decisions between owner and

enterprise.

A. Entities, Entity Levels, and Priorities

Our system uses five entity types; enterprise, team, activity,

role, and user as shown in Figure 1 with enterprise being the

lowest priority level and user being the highest priority level.

Enterprise

Team

Activity

Role

Largest Entity (Lowest Priority Level)

Smallest Entity (Highest Priority Level)User

A
cc

es
sp

rio
rit

y
(S

m
al

le
st

to
la

rg
es

te
nt

ity
)

Fig. 1. Entities and their priority levels

Enterprise- It is the largest entity and has lowest priority

among entities in our system. Enterprise creates teams, sharing

policies, assigns activities and users to team, and roles to users.

Team- Team is the entity that can be created by one or more

enterprises. A team is headed by a team leader who assigns

users to activities. A user can be part of more than one team

at a time.

Activity- Activities can be defined by an enterprise or by team

itself. Team leader selects appropriate users for performing

activities.

Role- Roles are assigned to users based on their job, qualifi-

cation, and experience. One or more users can have same role

and many roles can be assigned to one user.

User- A user works for an enterprise in different teams and

activities. A user can share her context with other collaborating

users and can define her own sharing control rules.

B. Collaborative Relationships

Collaborative relationships are the backbone of our sys-

tem and are described as Member, Mutual, and Colleague
as depicted in Figure 2 which shows relationships between

users performing activities in overlapping teams belonging to

different enterprises.

Relationship between individuals

Team T1

Team T2

Enterprise E2Enterprise E1

Activity A1

Activity
A2

M
u,
N
M
e,
C
Mu,Me,NC

NM
u,N
Me
,NC

NMu,Me,NC

Mu:Mutual (Involved in same activity)
Me:Member (of the same team)
C: Colleague (working for same enterprise)
N: Not (in Nmu, Nme, NC)

U1

U2

U3

U4

Fig. 2. Types of collaborative relationship

Member relationship is described as Me while non-member
is described as NMe. Similarly Mu and C describe mutual and

colleague while non-mutual and non-colleague are described

as NMu and NC respectively.

Member(Me)- This relationship describes all those users who

are working for same team.

Mutual(Mu)- This relationship between two users describe that

both users are part of same activity. Mutual is the closest in all

relationships resulting in maximum number of collaborations

within and across teams and enterprises.

880

Colleague(C)- This relationship between two users describes

that both users are working for same enterprise. Colleagues

are not always part of same team and activities. There can

exist complex relationships between collaborating users. For

example there can exist a member relationship between two

users while not being mutual and colleague as shown in Figure

2 between users U1 and U3.

IV. SHARING CONTROL POLICY

Our collaboration scenario involves a number of collab-

orating entities in complex relationships which requires a

dynamic policy to handle these collaborations. We use a hybrid

approach including role-based and rule-based sharing control

policy. User defined rules are used to protect and share her

own information by overriding enterprise defined rules. We

still include role-based policies as a part of our system due to

fact that they provide better management of large number of

users in enterprise, and most of the enterprises are based on

them.

A. Hybrid Sharing Control Policy Model

Two types of sharing control policy rules are used in our

system; enterprise defined role-based policy and user defined

rule-based policy. Enterprise-defined policy is based on role

of user which we extend with context conditions. On the

other hand user-defined policy is rule-based which contains

rule conditions for all entity types and can define positive as

well as negative rules to allow and restrict access respectively

in certain conditions.

Our rule-based sharing control policy contain two types of

rules, unconditional and conditional. Unconditional rules are

used in some specific situations, for example, when granting

or restricting one or more services unconditionally to an entity

like user, team etc.

Authorization Rules

User-defined sharing control policy includes authorization

rules that are used to grant access to requesting users. There

are two types of Authorization rules which are RuleType
and Action. RuleType consists of two values regular and

exceptional whereas Action consists of values allow and deny
which are represented by + and - sign respectively.

The basic form of user-defined authorization rule is defined

as:

< Subject, Object, Condition, AccessLevel >,

where

• subject is one of the entity types defined in Figure 1.

It means authorization rule can allow access to different

granularity levels, for example, a single user as well as

to a group of users in a team, activity, role, or enterprise.

• object is a service that provides information related to a

user’s personal or shared context.

• condition consists of union of clauses where each clause

is an intersection of one or more statements. Each state-

ment is described as (context attribute operation value).

• access level describes context in three levels of hierarchy

L1, L2, and L3 which are used to grant relevant details

of context to a requester.

Conditions described in authorization rules must be fulfilled

for sharing required services. Conditions are specified in this

system as follows.

condition := clause ∪ clause... ∪ clause

clause := stemenet ∩ statement... ∩ statement

statement :=< context >< OP > {< value >|< context >}

B. Priority and Conflict Handling Policy

Conflicts among rules often occur in rule-based sharing

control systems. In presence of many entities and their priority

conflicts, a policy is required that can define priorities for enti-

ties and their rule conflicts. Group-based and positive/negative

rule-based priorities have been used in literature [4].

• Group-based Priorities: are used where large number

of entities or groups are involved in sharing control

similar to our collaborative sharing scenario. Each entity

is assigned a priority level which decides sharing conflicts

within entities.

• Positive/Negative Authorization: Positive rules are used

to allow access to a service, while negative rules are used

to deny access to service. In some systems where both

positive and negative rules are used, positive or negative

rules are given priority over the other to handle conflict

between rules.

Still there can be some requirements that cannot be handled

by group-based and rule-based priorities, these special cases

can be handled by defining exceptional priority rules for

emergency context [14]. Priority and conflict handling methods

are shown in Algorithm 1.

Algorithm 1 Priority and Conflict Handling Algorithm

1: [Find Rules for Policy Evaluation]

2: if found a rule without conflict then
3: Apply negative rule

4: else if found conflicting rules then
5: [Find and Compare Entities in Rules]

6: if found exceptional rule then
7: Apply this rule

8: else if found smaller entity in rule then
9: Apply this rule

10: else if found same level entity rules then
11: Apply negative rule

12: Reply ”Service Unavailable”

13: end if
14: else if no authorization found then
15: Apply default closed policy

16: end if

881

In addition to priority rules there are situations when no

authorization rule is defined for a service, in this case default

open or closed rules can be used.

• Default Open Policy: Access to service is allowed in

case there exist no negative authorization rule.

• Default Closed Policy: Access to service is denied in

case there exist no positive authorization rule.

Entity-based Priority

These are priority rule that define priority of one entity over

another in case of conflict between them. In our system, there

exist entities namely user, role, activity, team, and enterprise.

Conflicting rules may exist in system depending on a user’s

involvement in these entities. For example a user U is part of

team T and is involved in activity A. Sharing activity service
of user U is allowed to users involved in activity A but is not

allowed to other members of team T. In this case rule will be

evaluated based on entity (activity and team) that has higher

priority. Thus if activity A has higher priority than team T,

user will be allowed to access required service.

Entities involved in our collaborative scenario can be hi-

erarchically arranged as shown in Figure 1.Smaller entities

get higher priority than larger ones because close relationship

between users exist in smaller entities. If there is a conflict

between positive and negative rules, firstly it is handled using

entity priority. When both rules belong to same entity, negative

rule is given priority over positive rule and sharing is not

allowed.

Exceptional Priority

In situations where entity-based priority rules are not suffi-

cient, exceptional priority rules are only way to fulfill user’s

sharing requirements [14]. For example, a user wants to restrict

whole team T to share services S belonging to her. Some users

of team T working in different activities already have access

to service S. According to given policy smaller entities get

higher priority, so the restriction on whole team cannot be

fully implemented in presence of small entity priority rules.

One solution is to revoke all rights from smaller entities of

that team. Obviously, it is very difficult and time consuming

to search all grants and revoke them one by one. Additionally,

these smaller entity rules may be required after some time

whose reassignment will take some time again. Exceptional

priority rules solve this problem by defining a rule at any

entity level, with or without conditions.

V. SHARING CONTROL ARCHITECTURE AND

EVALUATION

In this section, we describe architecture and Java Web

services based implementation of our system. We evaluate our

sharing control policy with an example explaining different

types of sharing control rules, priority conflicts and, a user

request evaluation.

A. Sharing Control Architecture and Implementation

Our Sharing Control architecture is shown in Figure 3. It is

a peer to peer and Web services-based architecture which uses

Users ...Role Activity ...Context...

Request Handler
Web servicesEntity &

Relationship

Personal
context

Shared
context

Collaboration
context

History
context

Enterprise
policy

User
policyPriority evaluator

Conflict Handler

Owner interaction

Policy adaptation

Owner
context

U
se

rP
ee

r
In

te
ra

ct
in

g
Pe

er
s

Context Manager

Sharing Control Policy Manager

Enterprise Peer Team Peer User Peer

Users Service

Policy Evaluator

Hierarchy Management

Context collection

Fig. 3. Sharing Control Architecture

Web services to share context information among collaborating

users on the Web. In this system, sharing control policy
manager contains policy databases and entity relationships.

Conflict handler components handles conflict in policy rules

detected by policy and priority evaluators. Requested Web

services are provided if policy evaluator allows by evaluating

all context conditions in relevant rules. User peer gets its

role, team, and, activity related data from connecting team

and enterprise peers. An individual can query or subscribe for

certain type of context with other member of her activity, team,

or enterprise.

Implementation of sharing control architecture uses Java

Web services and peer to peer technologies. A sharing control

messenger application is used to share context among collab-

orating users. Details of sharing control messenger is out of

scope of this paper and is described in DySCon [10].

B. An Example of Sharing Control Policy

Here we describe working of our hybrid sharing control

policy with an example. Sharing control rules are explained

with example containing regular and exceptional rules as well

as positive and negative rules. Context sharing request from a

user and its evaluation is also described. User-defined policy is

described with examples. This example uses our collaboration

scenario shown in Figure 2. Listing 1 contains descriptions for

regular rules while Listing 2 describes exceptional rules.

Positive rules allow required service access are shown using

symbol ”+” whereas negative rules restrict service access are

shown using a symbol ”-”. A regular rule defined by user U1
of Figure 2 in this example allows members of team T1 to

access activity service of activity A1 as long as the activity

is not finished. Activity service can be accessed at level L1
and L2 being mutual Mu and non-mutual NMu respectively.

Level L1 describes highest granularity level (maximum detail)

of context and L3 being the lowest granularity level.

It can be seen from Figure 2 that user U3 can also access

the activity service at level L2 being member of team T1 and

NMu. Using the above described rule users who are not part

of activity A1 and are not colleagues of user U1 can also

access activity A1 service, for example, user U3. Observing

882

<UserRules>
<RuleType="regular">

<Action="+">
<Subject>
<Predicate>

<Op>eq</Op>
<EntityName> team </EntityName>
<EntityFunc> name </EntityFunc>
<EntityValue>T1</EntityValue>

</Predicate>
</Subject>
<Object> activity A1 service </Object>
<Condition>
<Predicate>

<Op>eq</Op>
<EntityName> activity </EntityName>
<EntityFunc> name </EntityFunc>
<EntityValue>A1</EntityValue>

</Predicate>
<Exp>AND</Exp>
<Predicate>

<Op>neq</Op>
<EntityName> activity </EntityName>
<EntityFunc> status </EntityFunc>
<EntityValue> finished </EntityValue>

</Predicate>
</Condition>
<AccessLevel>

<Predicate>
<Op>eq<Op>
<EntityName> Relationship </EntityName>
<EntityValue> Mu </EntityValue>

</Predicate>
<Level> L1 </Level>
<Predicate>

<Op>eq<Op>
<EntityName> Relationship </EntityName>
<EntityValue> NMu </EntityValue>

</Predicate>
<Level> L2 </Level>

</AccessLevel>
</Action>

</RuleType>
</UserRules>

Listing 1. An example of user-defined Rule-based policy by user U1 in Fig.
2

this problem, user U1 now wants to restrict all those members

of Enterprise E2 from accessing activity A1 service who are

non mutual NMu other than team leaders.

It is not possible to restrict enterprise entity in presence of

team entity authorization rule because team entity has higher

priority than enterprise entity. In this case an exceptional rule

is defined here which shows the use of negative rules as well

as power of role tree as shown in Listing 2. Exceptional rules

solve most of the conflicts in regular rules. If two exceptional

rules or two regular rules have same priority level then negative

rules get precedence to keep owner’s privacy.

Context information retrieval

A user can send a request to access a context service of

other user. Context sharing request is described here which

contains subject, object and access level. Suppose that user

U3 sends a context sharing request described in Listing 3

to user U1 for accessing activity A1 service. On receiving

this request the requested Web service component in Figure

3 sends this request to policy evaluator component. Priority
evaluator component using entity & relationship database

finds that requester U3 belongs to Enterprise E2 and there is an

exceptional rule for employees of E2 in user policy database

who want to access activity A1 service.

Exceptional rule overrides all regular rules for this service,

<UserRules>
<RuleType="exceptional">
<Action="-">
<Subject>

</Predicate>
<Op>eq<Op>
<EntityName> Enterprise </EntityName>
<EntityFunc> name </EntityFunc>
<EntityValue> E2 </EntityValue>

</Predicate>
</Subject>
<Object> activity A1 service </Object>
<Condition>

<Predicate>
<Op>eq<Op>
<EntityName> RoleTree <EntityName>
<EntityFunc> rolename </EntityFunc>
<EntityValue> Leader </EntityValue>

</Predicate>
<Exp>AND</Exp>
<Predicate>
<Op>eq<Op>
<EntityName> RoleTree <EntityName>
<EntityFunc> hierarchy </EntityFunc>
<EntityValue> down </EntityValue>

</Predicate>
<Exp>AND</Exp>
</Predicate>

<Op>eq<Op>
<EntityName> Relationship </EntityName>
<EntityValue> NMu </EntityValue>

</Predicate>
</Condition>

</Action>
</RuleType>

</UserRules>

Listing 2. An example of user-defined Exceptional Priority Rule

<SharingRequest>
<Subject>
<EntityName> User </EntityName>
<EntityFunc> name </EntityFunc>
<EntityValue> U3 </EntityValue>

</Subject>
<Object> activity A1 service </Object>
<credentials>...</credentials>

</SharingRequest>

Listing 3. Context sharing request

so policy evaluator evaluates only this rule and finds from

entity & relationship database that user U3 does not have a

leader role and is non-mutual NMu of user U1 in activity

A1. As all the conditions in this negative rule are true so

the request is denied. If this rule were a regular rule instead

of exceptional then the request would be allowed by priority
evaluator using the fact that team entity rule has higher priority

than enterprise entity rule. Conflict handling component is

used only when two regular or two exceptional rules exist

whose subject contains same entity.

C. Evaluation

We evaluate our approach using scenario described in

Figure 2. Here users are sharing context with other users

based on their roles and relationships. We argue that our

hybrid sharing control policy containing both user-defined

rules and enterprise-defined RBAC rules is better than only

using enterprise-defined RBAC policy in providing better

sharing and privacy to user’s context information.

It can be better demonstrated by comparison of both poli-

cies. Two sets of policies are designed for experiment each

883

0
20
40
60
80

100

L1 L2 L3

N
o.

 o
f r

es
po

ns
es

Level of response according to relationship

Mutual

Member

Colleague

Fig. 4. Sharing requests evaluation with enterprise-defined RBAC policy

0

20

40

60

80

100

L1 L2 L3

N
o.

 o
f r

es
po

ns
es

Level of response according to relationship

Mutual

Member

Colleague

Fig. 5. Sharing requests evaluation with hybrid sharing control policy

based on one of the two policy types. The enterprise-defined

RBAC rules are rather static in nature based on used roles

only, are created by an administrator. User-defined rules are

based on knowledge and relationship of user with other entities

like user, activity, team, and enterprise. These rules contain

positive, negative as well as exceptional rules which shows

user’s personal liking or disliking for others. Queries are

defined for each user in our scenario where each query is

different from other based on role, relationship, or context

condition. Queries are evaluated based on two policy sets

separately and responses are collected. The level of response

for each relationship is calculated where L1 described the

highest level of granularity of the context being shared and

L3 being the lowest. Response from peers using enterprise-

defined RBAC policy is shown in Figure 4 while response

using our hybrid policy is shown in Figure 5.

It can be seen that results of enterprise-defined policy are

rather static in nature with less number of variations (for exam-

ple, in Figure 4 the values of almost all relationships gradually

increase from L1 to L3 except L3 for mutual) while the values

for each relationship in hybrid policy graphs vary considerably

(for example, in Figure 5 values of mutual decrease from L1 to

L3, while in other cases they vary considerably). It shows that

the user-based policy may vary with time depending on the

personal relationship of user with other entities. Also it shows

that for closer relationships like ”mutual” (which are based

on smaller entities), level of detail of response is higher than

other relationships (for example L1 and L2 in case of Mutual

in Figure 5). It is also worth mentioning that total number of

response is higher in case of hybrid policy which illustrates

the fact that user-defined hybrid policy tends to share more

context with others while preserving it privacy to certain level

of context with each entity.

VI. CONCLUSION AND FUTURE WORK

The paper describes hybrid sharing control model, its im-

plementation and evaluation using an example from dynamic

collaborative environment. Due to complexity of number of

involved entities in system, policy conflict can often occur

which are analyzed and a mechanism is defined for priorities

and conflict handling. Architecture and implementation of the

system are described with a running example and evaluation

of the system is described by comparing two types of policies

using number of responses and level of response for each type

of relationship which proves the effectiveness of our hybrid

policy. Future work includes the use of semantic technologies

to enhance the description of entities and policy rules.

ACKNOWLEDGEMENT

This work is partially supported by the European Union

through the FP7-216256 project COIN.

REFERENCES

[1] K. Smith, L. Seligman, and V. Swarup, “Everybody share: The challenge
of data-sharing systems,” IEEE Computer, vol. 41, no. 9, pp. 54–61,
2008.

[2] “European union project coin,” http://www.coin-ip.eu.
[3] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman, “Role-

based access control models,” IEEE Computer, vol. 29, no. 2, pp. 38–47,
1996.

[4] S. Jajodia, P. Samarati, V. S. Subrahmanian, and E. Bertino, “A unified
framework for enforcing multiple access control policies,” SIGMOD
Rec., vol. 26, no. 2, pp. 474–485, 1997.

[5] W. Tolone, G. J. Ahn, and T. pai, “Access control in collaborative
systems,” ACM Survey, 2005.

[6] G. Ahn, “Authorization management for role based collaboration,” IEEE
int. conf. on System, Man and Cybernetic, Washington, 2003.

[7] M. Convington, “Securing context aware applications using environment
roles,” ACM, VA, 2001.

[8] S.-H. Park, Y.-J. Han, and T.-M. Chung, “Context-role based access con-
trol for context-aware application,” HPCC 2006, pp. 572-580, Springer-
Verlag Berlin Heidelberg 2006.

[9] V. Kapsalis, L. Hadellis, D. Karelis, and S. Koubias, “A dynamic
context-aware access control architecture for e-services,” computers and
security 25(2006)507-521.

[10] A. K. Malik, H.-L. Truong, and S. Dustdar, “Dyscon: Dynamic sharing
control for distributed team collaboration in networked enterprises,” in
CEC ’09, 2009, pp. 279–284.

[11] C. Groba, S. Gross, and T. Springer, “Context dependent access control
for contextual information,” IEEE ARES, 2007.

[12] A. K. Malik and S. Dustdar, “Context-aware sharing control using hybrid
roles in inter-enterprise collaboration,” ICSOFT 2010, Athens, Greece,
22-24 July, 2010.

[13] E. Lupu and M. Sloman, “Conflicts in policy-based distributed systems
management,” IEEE Transactions on Software Engineering, vol. 25,
no. 6, pp. 852–869, 1999.

[14] F. Cuppens, N. Cuppens-Boulahia, and M. B. Ghorbel, “High level
conflict management strategies in advanced access control models,”
Electron. Notes Theor. Comput. Sci., vol. 186, pp. 3–26, 2007.

[15] N. Dunlop, J. Indulska, and K. Raymond, “Dynamic conflict detection
in policy-based management systems,” in EDOC ’02., 2002, pp. 15–26.

884

