
View-based and Model-driven Approach for
Reducing the Development Complexity in

Process-Driven SOA

Huy Tran and Uwe Zdun and Schahram Dustdar

Information System Institute
Vienna University of Technology, Austria

htran,zdun,dustdar@infosys.tuwien.ac.at

Abstract. In process-driven, service-oriented architectures (SOA), pro-
cess activities invoke services to perform the various tasks of the process.
As the number of elements involved in a business process architecture,
such as processes, process activities, and services, grows, the complex-
ity of process development also increases along with the number of the
elements’ relationships, interactions, and data exchanges – and quickly
becomes hardly manageable. In addition, process-driven SOA models
address different stakeholders, such as business experts and technical ex-
perts, who require different kinds of information for their work. Finally,
process-driven SOA models must deal with constant changes – both at
the business level (e.g. business concept changes) and the technical level
(e.g. technologies and platform changes). Separation of concerns is a
promising approach to manage such development complexity. In this pa-
per, we propose a view-based, model-driven approach with three major
contributions: firstly, it captures different perspectives of a business pro-
cess model in separate, (semi-)formalized views; secondly, it separates
different abstraction levels in a business process architecture; thirdly, an
extensible model-driven approach to integrate the different view models
and abstraction levels is presented. Our approach is beneficial not only
in reducing the process development complexity, but also in coping with
dynamic changes at all abstraction levels.

1 Introduction

Service-oriented computing is an emerging paradigm that made an important
shift from traditional tightly coupled, hard-to-adapt software development to
more platform neutral, loosely coupled software development. The interopera-
ble and platform independent nature of services supports a novel approach to
business process development by using processes, running in a process engine, to
invoke existing services from their process activities (aka process tasks, steps).
We call this kind of architecture process-driven, service-oriented architecture [6].
In this approach, a typical business process consists of many activities, the con-
trol flow, and process data. Each activity is correspondent to a communication
task (e.g., invoking other services, processes, or an interaction with a human),

or a data processing task. The control flow describes how these activities are
ordered and coordinated to achieve the business goals. Being well considered in
both research and industry, this approach has led to a number of standardization
efforts, such as BPEL4WS [7], XPDL [27], BPMN [14], and WS-CDL [26].

As the number of services or processes involved in a business process grows,
the complexity of developing and maintaining the business processes also in-
creases along with the number of invocations and data exchanges. It is error-
prone and time consuming for developers to work with large business processes
that implement numerous concerns. This problem occurs because business pro-
cess descriptions integrate various concerns of the process, such as the process
control flow, the data dependencies, the service invocations, etc. In addition, this
problem also occurs at different abstraction levels [6]. For instance, the business
process is relevant for different stakeholders, and business experts require a high-
level business-oriented understanding of the various process elements (e.g., rela-
tion of processes and activities to business goals and organization units), whereas
the technical experts require the technical details (e.g., deployment information
or communication protocol details for service invocations).

In addition to this complexity, business experts and technical experts alike
have to deal with a constant need for change. On the one hand, process-driven
SOA aims at supporting business agility. That is, the process models should
enable a quicker reaction on business changes in the IT by manipulating business
process models instead of code. On the other hand, the technical infrastructure
(technologies, platforms, etc.) constantly evolves.

One of the successful approaches to manage complexity is separation of con-
cerns [5]. Process-driven SOAs use a specific realization of this principle, mod-
ularization [5]: Services expose standard interfaces to processes and hide un-
necessary details for using or reusing. This helps in reducing the complexity
of process-driven SOA models, but from the modelers’ point of view this is
often not enough to cope with the complexity challenges explained above, be-
cause modularization only exhibits a single perspective of the system focusing
on its (de-)composition. Other – more problem-oriented – perspectives, such as
a business-oriented perspective or a technical perspective (used as an example
above), are not exhibited to the modeler. In the field of software architecture,
architectural views have been proposed as a solution to this problem. An architec-
tural view is a representation of a system from the perspective of a related set of
concerns [8]. The architectural view concept offers a separation of concerns that
has the potential to resolve the complexity challenges in process-driven SOAs,
because it offers more tailored perspectives on a system, but it has not yet been
exploited in process modeling languages or tools.

Inspired by the concept of architectural views, we suggest a view-based ap-
proach to modeling of process-driven SOAs. Namely, perspectives on business
process models and service interactions – as the most important concerns in
process-driven SOA – are used as central views in our approach. The approach
is extensible with all kinds of other views. In particular, our approach offers
separated views, in which each of them represents a certain part of the processes

and services such as control view, interaction view, information view, etc. These
views can be viewed separately to get a better understanding of a specific con-
cern, or they can be integrated to produce a richer view or a thorough view of
the processes and services.

Technically, our concepts are realized using the model-driven software devel-
opment (MDSD) paradigm [23]1. We have chosen this approach to integrate the
various view models into one model, and to automatically generate platform-
specific or executable code in WSDL, BPEL, or Java. MDSD is also used to
separate these platform-specific views from the platform-neutral views and the
integrated views, so that business experts do not have to deal with platform-
specific details. The code generation process is driven by model transformations
from view models or integrated models into executable code.

The paper is organized as follows. We first provide an overview of the pro-
posed modeling framework and some basic concepts in Section 2. Then, Section 3
gives deeper insight into the modeling framework, followed by a discussion of the
extension-, integration-, and transformation-mechanisms. In Section 4, a simple
case study, namely, a Shopping process, is used to illustrate the realization of
the modeling framework concepts. Our related work is discussed in Section 5.
Finally, we summarize the main points of the paper, and broaden the research
with some outlooks.

2 Overview of the modeling framework

In this section, we briefly introduce our view-based modeling framework. The
framework consists of modeling elements such as a meta-meta-model, meta-
models, and views (see Figure 1(a)). As mentioned in the previous section, a
view is a representation of a process from the perspective of related concerns. In
our framework, a view is specified using an adequate framework’s meta-model.
Each meta-model is a (semi-)formalized representation of a particular business
process concern. Therefore, the meta-model specifies entities and their relation-
ships that can appear in the correspondent view. The meta-models, in turn, are
defined on top of the meta-meta-model. The meta-meta-model can be simple or
more elaborate like MOF. Figure 2(a) shows the relevant excerpt of the meta-
meta-model of the Eclipse Modeling Framework [3] (i.e., Ecore meta-model) that
we used to define our meta-models.

In our approach we categorize distinct activities – in which the modeling
elements are manipulated (see Figure 1(b)):

– Design is used to define new architectural views.
– Extend is used to create a new meta-model by adding more features to an

existing meta-model, or by developing it from scratch (e.g., to add a new
formalization of a certain business process concern to the framework).

– Integrate is used to combine views to produce a richer view or a thorough
view of a business process.

1 Please note that the OMG’s MDA proposal is one specific MDSD approach.

Executable Code

Orchestration

meta-model

NewConcern

meta-model

Collaboration

meta-model

Information

meta-model

Meta-

meta-model

Extension

meta-model

Extension

View
View

Core

M1

M3

M0

M2

(a) Modeling elements

Framework
Meta-models

Architectural
Views

Executable
Code

Transform

Design

Extend

Integrate

(b) Framework overview

Fig. 1. View-based model-driven framework

– Transform is used to generate executable code from one or many architec-
tural views.

Before generating outputs, Transform and Integrate validate the input views
against relevant meta-models. Extend and Integrate are the most important ac-
tivities used to broaden our view-based model-driven framework toward various
dimensions. Existing meta-models can be enhanced using the extension mecha-
nisms provided in Section 3.5, or can be combined using the meta-model-level
integration mechanisms provided in Section 3.6.

3 View-based modeling framework

A business process often contains various concerns that require support of mod-
eling approaches. In this paper we firstly concentrate on modeling of the basic
concerns of a business process, namely, orchestration, information, and collab-
oration (see Figure 1(a)). However, our view-based modeling framework is not
only bound to the above-mentioned concerns but also open and extensible to
allow other concerns such as transactions, event handling, security, quality of
service, etc., to be plugged in using the same approach. In the next sections,
we present in detail (semi-)formalized representations of the process’s concerns
summarized above in terms of relevant meta-models along with the discussion
of extensibility mechanisms, namely, extension and integration.

3.1 The Core meta-model

To enhance the extensibility, we devise a basic meta-model, namely, the Core
meta-model as a foundation for the other meta-models (see Figure 2(b)). Each of

EStructuralFeature

ENamedElement

-name : String

EModelElement

ETypeElement

EObject

EClassifier

EReference

EClass

EDataType

EAttribute

eReferencedType 1 eReferences

0..*

eType

0..1

eAttributes

0..*

eOpposite 0..1

eAttributeType

1

eSuperTypes

0..*

(a) Meta-meta-model excerpt

NamedElement

-name : String

ElementView

ProcessService

process
1

consumer

*

required

*

provider

*

provided

*

element

*owner

service *

element*

process*

(b) The core meta-model

Fig. 2. Meta-meta-model and the Core meta-model

the other meta-models is defined by extending the Core meta-model. Therefore,
the meta-models are independent of each other. The Core meta-model is the
place where the relationships among the meta-models are maintained. Accord-
ingly, the relationships in the Core meta-model are needed for both view- and
meta-model-level integrations as described in Section 3.6.

The Core meta-model consists of a number of abstract meta-classes such
as View, Process, Service, and Element. These entities are cornerstones of our
modeling framework. Each of them can be extended further. At the heart of
the Core meta-model is the View meta-class that captures the central view
concept. Each specific view (i.e. each instance of the View meta-class) represents
a perspective on one Process. It consists of a number of Services representing
the external functions the business process provides or requires, and a number
of Elements representing the objects that appear inside the process. Because the
meta-models represent concerns of a business process, they are mostly derived
from the core meta-model, and the Service and Element meta-classes are the
most important extension points. Moreover, the hierarchical structures in which
those meta-classes are roots can be used to define the integration points used to
combine meta-models (see Section 3.6).

3.2 Orchestration view meta-model

Orchestration is one of the most important concerns of a SOA process. An orches-
tration view comprises many activities and control structures. The activities are
process tasks such as service invocations, or data handling, while control struc-
tures describe the execution order of the activities to achieve a certain goal. Each
orchestration view is specified based on the orchestration view meta-model.

Activity

StructuredActivity

Case

-condition : String

SimpleActivity

SequenceFlow

Switch

Element

(core)

activity
1

case

elements
1..*

owner

cases

1..*

switch

otherwise
0..1

owner

Fig. 3. Orchestration view meta-model

There are several approaches to modeling process’s orchestration such as
state-charts, block structures [7], activity diagrams [13], Petri-nets [20], and so
on. Despite of this diversity in control flow modeling, it is well accepted that
existing modeling languages share five basic patterns: sequence, parallel split,
synchronization, exclusive choice, and simple merge [21,22,28]. Thus, we adopted
these patterns as the building blocks of our orchestration meta-model. Other,
more advanced patterns can be added later by using extension mechanisms given
in Section 3.5 to augment the orchestration model.

The control structures of BPEL [7], such as sequence, flow, and switch, are
more or less equivalent to the aforementioned patterns. The issue here is that
the semantics of BPEL’s structures is not as clear and precise as the semantics of
the patterns. Therefore, instead of re-inventing a new orchestration meta-model
we built our meta-model on the basic BPEL control structures, and define their
semantics more strictly (see Table 1).

The primary entity of the orchestration meta-model is the Activity meta-class
(see Figure 3) which is the base class for other meta-classes such as Sequence,
Flow, and Switch. Another important entity in the orchestration meta-model is
the SimpleActivity meta-class that represents a concrete action such as a service
invocation, a data processing task, etc. The actual description of each Simple-
Activity is modeled in another specific view. For instance, a service invocation is
described in a collaboration view, while a data processing action is specified in an
information view. Each SimpleActivity is a placeholder or a reference to another
activity, i.e., an interaction, or a data processing task. Therefore, every Simple-
Activity becomes an integration point to combine an orchestration view with an
information view, or with a collaboration view (see integration mechanisms in
Section 3.6).

Structure Description

Sequence An activity is only enabled after the completion of another activity
in the same sequence structure. The sequence structure is therefore
equivalent to the semantics of the Sequence pattern.

Flow All activities of a flow structure are executed in parallel. The sub-
sequent activity of the flow structure is only enabled after the
completion of all activities in the flow structure. The semantics of
the flow structure is equivalent to a control block starting with the
Parallel Split pattern and ending by the Synchronization pattern.

Switch Only one of many alternative paths of control inside a switch struc-
ture is enabled according to a condition value. After the active
path finished, the process continues with the subsequent activity
of the switch structure. The semantics of the switch structure is
equivalent to a control block starting with the Exclusive Choice
pattern and ending by the Simple Merge pattern.

Table 1. Semantic of control structures

3.3 Collaboration view meta-model

A business process is often developed by composing the functionality provided by
various parties such as services or other processes. Other partners, in turn, might
use the process. All business functions required or provided by the process are
exposed in terms of standard interfaces (e.g., WSDL portTypes). We captured
these concepts in the Core meta-model by the relationships between the two
elements Process and Service. The collaboration view meta-model extends the
Core meta-model to represent the interactions between the business process and
its partners.

In the collaboration view meta-model, the Service meta-class from the Core
meta-model is extended by a tailored Service meta-class that exposes a number
of Interfaces. Each Interface provides some Operations. An Operation repre-
sents an action that might need some inputs and produces some outputs via
correspondent Channels. The details of each data element are not defined in the
collaboration view but in the information view. Therefore, a Channel holds a
reference to a Message entity. Each Message becomes an integration point, that
can be used to combine a specific collaboration view with an information view
(see Section 3.6).

The ability and the responsibility of an interaction partner are modeled by the
Role meta-class. Every partner – who provides the relevant interface associated
with a particular role – can play that role. An interaction between the process
and any partner is represented by the Interaction meta-class that associates with
a specific Role of that partner.

3.4 Information view meta-model

The third basic concern we considered in modeling a business process is infor-
mation. This concern is (semi-)formalized by the information view meta-model

Interaction

Interface

Operation

Service

(core)

Role

Service

Message

Element

(core)

Channel

Element

(core)

role
*

associatedInterface

1

message

1

channel *

in

*
out

*

operation1..* interaction *

role 1

service *

interface 1..*

Fig. 4. Collaboration view meta-model

(see Figure 5). This meta-model involves the representation of data object flows
inside the process, and message objects traveling back and forth between the
process and the external world.

In the information view meta-model, the BusinessObject meta-class, which
has the type ObjectType, is the abstraction of any piece of information, for in-
stance, a purchase order received from the customer, or a request sent to a
banking service to verify the customer’s credit card, etc. Each piece of informa-
tion might be a SimpleBusinessObject, or a ComplexBusinessObject that consists
of a number of BusinessObjects. We define the BusinessObjectPool meta-class
as a generic container for a number of BusinessObjects.

Messages exchanged between the process and its partners, or data flowing in-
side the process might go through some Transformations that convert or extract
existing data to form new pieces of data. The transformations are performed
inside a DataHandling object. The source or the target of a transformation is
an ObjectReference entity that holds a reference to a certain BusinessObject.

3.5 Extension mechanisms

The aforementioned meta-models are the cornerstones to create architectural
views like orchestration-, collaboration-, and information-views. Our framework
is not limited to these concerns but it allows other concerns to be plugged in via
extension points. An extension point is any entity that can add additional fea-
tures (e.g., attributes or relations) to construct a new entity. Using relationships,
such as generalization, extend, etc., we can gradually refine an existing meta-
model toward another meta-model at a lower abstraction level. For instance,
the orchestration view, collaboration view, and information view meta-models
are mostly extensions of the Core meta-model using the generalization relation.
We also demonstrate the extensibility of the collaboration view meta-model by

ComplexBusinessObjectSimpleBusinessObject

BusinessObjectPool

ObjectReference

ObjectType

BusinessObject

DataHandling

Transformation

Element

(core)

Types

object *

pool

object

1reference

* element

1..*

owner

target

1

source

1

types

*

transformation 1..*

owner type 1

Fig. 5. Information view meta-model

an enhanced meta-model, namely, the BPELCollaboration extension (see Fig-
ure 6). In the same way, more specific meta-models for other technologies can
be derived. In addition, any other business process concern, such as transac-
tions, event handling, and so on, can be (semi-)formalized by a new meta-model
derived from the common meta-meta-model using the same approach as used
above.

3.6 Integration mechanisms

In our approach, the orchestration view – as the most important concern in
process-driven SOA – is often used as the central view. Views can be integrated
via integration points to provide a richer view or a thorough view of the business
process (see Algorithm 1).

Definition 1. Let M1, M2 be two meta-models based on a common meta-meta-
model. If the entities m1 ∈ M1 and m2 ∈ M2 extend the same entity of the
meta-meta-model, m1 and m2 are conformable.

Definition 2. Given M1, M2 are two meta-models and V1, V2 are two views
conforming to M1 and M2, respectively. An integration point between V1

and V2 is a tuple I(v1, v2|v1 ∈ V1, v2 ∈ V2, v1 = instanceOf(m1), v2 =
instanceOf(m2)), and m1 and m2 are conformable, such that V1 can be merged
with V2 – at the position of v2 into that of v1.

The GetIntegrationPoint function receives as input an entity v1 ∈ V1 and a
view V2. It looks for v2 ∈ V2 such that (v1,v2) is an integration point between V1

and V2. This function can be implemented based on named-based matching, class
hierarchical structures, or ontology-based structures. The named-based matching
mechanism might be effectively used at the view level (or model level) because
from a modeler’s point of view, it makes sense and is reasonable to give the same

AbstractInteraction

Receive

-createInstance

Interaction

(collaboration)

Operation

(collaboration)

Invoke Reply

Variable

variable

0..1

operation1

interaction

*

variable

0..1

in
0..1

out 0..1

Fig. 6. An extension of the collaboration view

Algorithm 1: View integration algorithm
Input: View V1, view V2

begin
foreach Entity v1 ∈ V1 do

v2 = GetIntegrationPoint(v1, V2);
if (v2 != NULL) then

v1.add(v2.eAttributes);
v1.add(v2.eReferences);

end

end
end

name to the modeling entities which pose the same functionality and semantics.
To demonstrate the view integration idea, we present a simple implementation of
the name-based matching mechanism (Algorithm 2) for the GetIntegrationPoint
function.

To create an integrated view – as the result of view integration – a corre-
spondent meta-model of the view has to be defined first. That meta-model is
also used later to validate or transform the integrated view into code. Therefore,
an adequate integration at the meta-level is needed for any view integration
or integrated view transformation. We can use the same approach as used for
view integration. However, at the meta-model level, name-based matching is not
sufficient. The reason is that the relationships between meta-classes are mostly
hierarchical, and the meta-classes that have the same name might not be con-
formable. Therefore, class hierarchical structures are used at the meta-level to
define the integration points in our framework. We proposed the meta-level in-
tegration mechanism using the class hierarchical relationship to define the meta-
level integration points.

Algorithm 2: Named-matching algorithm
Input: Entity v1 ∈ V1, view V2

Output: Entity v2 ∈ V2 or NULL
begin

Found = FALSE;
while NOT Found do

v2 = getNextEntity(V2);
if v2.name == v1.name then Found = TRUE

end
if Found then return v2 else return NULL

end

Definition 3. Given M1, M2 are two meta-models based on a common meta-
meta-model. A tuple MI(m1, m2|m1 ∈ M1, m2 ∈ M2) is a meta-level integra-
tion point iff m1 and m2 are conformable and M1 can be integrated with M2

by merging the model structure at the position of m2 into that of m1.

3.7 Model transformations

There are two basic types of model transformations: model-to-model and model-
to-code. A model-to-model transformation maps a model conforming to a given
meta-model to another kind of model conforming to another meta-model. Model-
to-code, so-called code generation, produces executable code from a certain
model.

In our framework, the model transformations are mostly model-to-code that
take as input one or many views and generate codes in executable languages,
for instance, Java, BPEL, WSDL, etc. In the literature there are numerous code
generation techniques such as templates+filtering, template+meta-model, inline
generation, code weaving, etc. [23]. In our prototype, we used the template+meta-
model technique – which is realized in the openArchitectureWare framework
(oAW) [15] to implement the model transformations. But any of above-mentioned
techniques can be utilized in our framework with reasonable modifications.

4 Case study

To demonstrate the realization of the aforementioned concepts, we explain a
simple but realistic case study, namely, a Shopping process (see Figure 7). The
BPEL syntax is adopted to model the Shopping process, and the graphical no-
tations are borrowed from the Eclipse BPEL Designer environment [4].

In the next paragraphs, we present an illustrative case study by the following
steps. Firstly, architectural views of the Shopping process are designed based-
on our meta-models and the sample extension for BPEL constructs, given in
Figure 6. Secondly, some views are integrated to produce a richer perspective.
And finally, these views are used to generate executable code in BPEL4WS [7]
and WSDL [24] that can be deployed into any BPEL engine.

Fig. 7. The shopping case study

4.1 The Shopping process

The Shopping process is initiated when the process’s customer issues a purchase
order. The purchase order is retrieved via the ReceiveOrder activity. The process
then invokes the Banking service to validate the credit card information through
the VerifyCreditCard activity. The Banking service only needs some necessary
information such as the owner’s name, owner’s address, card number, and expiry
date. The process performs a preparation step PrepareVerify that extracts these
information from the purchase order. The preparation step is executed before
an interaction on the process takes place in order to arrange the needed input
data for the interaction. The control after validating the customer’s credit card is
divided into two branches according to the validation results. In case a negative
confirmation is issued from the Bank service, e.g., because the credit card is
invalid, the customer will receive an order cancellation response along with an
explaining message. Otherwise, the positive confirmation will trigger the second
control branch in which the process continues with two concurrent activities,

Fig. 8. Shopping process orchestration view

DoShipping and DoCharging. DoShipping gets shipping information from the
purchase order and delivers ordered products to the customer, while DoCharging
sends a request to the Banking service for the credit card’s payment. Finally,
the purchase invoice is prepared and sent back to the customer during the last
step, SendInvoice. After that, the Shopping process successfully finishes.

4.2 View development

Figure 8 shows the orchestration model of the Shopping Process. There are no
details of data exchanges or service communication in this view. Hence, this
view can be used at the business level to capture the business expert knowledge.
Because the orchestration view meta-model is based on the BPEL control model
excerpt, the structure of the Shopping’s orchestration view is quite similar to
that in Figure 7.

Moreover, using the extension meta-models (e.g., see Figure 6) we can develop
much richer views for a particular concern. In Figure 9, there are two models
side by side in which one is the abstract information model (see Figure 9(a))
and another one is a view based on the BPELCollaboration meta-model (see
Figure 9(b)).

(a) Shopping collaboration view (b) Extension view using BPELCollabora-
tion

Fig. 9. View and extension view of Shopping process

4.3 View integration

The views also can be integrated to produce new richer views of the Shopping
process. In Figure 10, the collaboration view of the Shopping process (see Fig-

Fig. 10. Integration of orchestration and collaboration views

ure 9(a)) is integrated with the orchestration view (see Figure 8). The most
important integration points are defined by SimpleActivity in the orchestration
view with relevant Interaction entities in the collaboration view. The output
view consists of the control structures based on the orchestration view with
other collaboration-related entities such as Role, InteractiveServices, etc.

4.4 Code generation

After modeling the Shopping process, we developed illustrative template-based
transformations to generate executable code for the process in BPEL, and a
service description in WSDL that represents the provided functions in terms
of service interfaces. The modeling framework’s models and Shopping process’s
models are Ecore models. We used the oAW’s Xpand language [15] to define
our model transformations. Figure 11 shows a transformation snippet in oAW’s

Fig. 11. Code generation for SimpleActivity entities

Xpand language [15] that generates BPEL activities such as Invoke, Receive, etc.
using the extension view in Figure 9(b). The resulting executable code in BPEL
and WSDL are successfully deployed on the ActiveBPEL engine [1] as a running
illustrative example for the realization of our concepts.

5 Related work

Our work is closely related to existing process modeling languages. There are sev-
eral standardization efforts for process modeling languages, such as BPEL4WS
[7], BPMN [14], XPDL [27], WSCI [25], WS-CDL [26], and so on. They can be
categorized into different dimensions, for instance, textual and graphical lan-
guages, or abstract and executable languages, and so on. The abstract modeling
languages (e.g., abstract BPEL, or WSCI/WS-CDL) are working at the same
abstraction level as our abstract models (i.e., orchestration, information, or col-
laboration models) while the executable language are more or less similar to our
refined models. The aforementioned modeling languages consider the business
process model as a whole. They do not support the separation of the process
model’s concerns. Moreover, there is no explicit relationship between an abstract
and an executable modeling language. So it requires additional effort to maintain

the integrity and consistency of the models, or to validate models [11, 16]. All
these modeling languages can be integrated into our approach using extension
models.

To the best of our knowledge, there is only a few view-based approaches to
business process modeling. The most related work in this area is the approach
by Mendling et al. [12] inspired by the idea of schema integration in database
design. Process models based on Event-driven Process Chains (EPCs) are in-
vestigated, and the pre-defined semantic relationships between model elements
such as equivalent, sequence, and merge operations are performed to integrate
two distinct views. Semantics-based merging is a promising approach to model
integration, but it is difficult to apply to integrate two different types of models,
for instance, to merge a control model with a data model. Thus, the authors
mainly focus on integrating process models without any data element or any
collaboration.

The Amfibia [2,10] approach focuses on formalizing different aspects of busi-
ness process modeling, and/or develop an open framework to integrate various
modeling formalisms through the interface concept. Akin to our approach, Am-
fibia has the main idea of providing a modeling framework that does not depend
on a particular existing formalism or methodology. The major contribution in
Amfibia is to exploit dynamic interaction of those aspects. Like our approach,
Amfibia’s framework also has a core model with a small number of important
elements, which are referred to, or refined in other models. The distinct point
to our framework is that in Amfibia the interaction of different ’aspects’ is only
performed by event synchronization at run-time when the workflow management
system executes the process. Using extension and integration mechanisms in our
framework, the integrity and consistency between models can be verified earlier
at the model level.

Also, similar to the Amfibia approach, there is a standardized reference
model, namely, ISO Reference Model for Open Distributed Processing or RM-
ODP [9]. RM-ODP defines a set of different view points such as enterprise,
information, computational, engineering, and technology viewpoints. Each view-
points has its own language and semantics. The consistency among viewpoints
is ensured by the common architecture and the common object model. These
concepts, likewise those in Amfibia and our approach, are defined based on the
principle of separation of concerns to help stake-holders thinking from differ-
ent perspectives in order to manage complexity of distributed applications. The
advantage of our approach compare to these approaches is that our view-based
model-driven framework does not only separate concerns but also separate levels
of abstraction, for instance, business level, and technical level.

Our work also shares some concepts with the approach described in [19]. van
der Aalst et al. develop a conceptual SOA-based architecture framework around
the idea of modularization. The key concept in [19] is the component that is
more or less equivalent to our process concept, and the relationships between
components. The authors emphasized on the separation of activities from data

elements, but do not mention the capability of extending or integrating other
concerns that could appear on a business process.

Skogan et al. [18] offer another approach for process-based modeling in UML.
A tool-chain is devised to extract and formalize WSDL descriptions using UML
models. Service compositions are captured by UML activity diagrams with spe-
cial stereotypes. Finally, code in executable languages is generated from a com-
position model. The authors neither consider separation of concerns in service
composition nor integration of other concerns except service interfaces and the
control flow.

Schmidt et al. [17] proposes an interesting approach to web service trans-
action modeling. Even though the approach is only considering one concern of
a business process model, the paper also mentions the separation of views into
layers and maintaining references between various layers. Our work has not yet
focused on other concerns, such as transactions, security, etc., but our model-
driven framework in general can be extended into these dimension using the
approach presented in this paper. Consequently, the transaction model in [17]
can be seen as a complement to our work to develop the meta-model for the
transaction concerns of the business process.

6 Summary and outlook

Existing modeling approaches lack sufficient support to manage the complexity
of developing large business processes with many different concerns because most
of them consider the process model as a whole. In this paper, we introduced
a view-based framework that (semi-)formally defines various concerns of the
process model and uses those (semi-)formalized models to capture a particular
perspective of the business process. It not only helps to manage the development
complexity by the separation of the processes’ concerns, but also to cope with
both business and technical changes using the separation of abstraction levels.

This study also raises a number of research questions which are only answered
by further work. The modeling framework should be extended with other con-
cerns of the business process such as transactions, security, event handling, etc.
In addition, the view integration algorithms can be enhanced by the validation
of possible constraints conflicts between various integration points. Finally, an
ontology-based structure might be richer and be better suited to improve the
integration at the meta-level than the class hierarchical structure.

References

1. Active Endpoints. ActiveBPEL Open Source Engine 2.x. http://www.active-
endpoints.com/, 2006.

2. B. Axenath, E. Kindler, and V. Rubin. An open and formalism independent meta-
model for business processes. In Proceedings of the Workshop on Business Process
Reference Models, pages 45–59, 2005.

3. Eclipse. Eclipse Modeling Framework. http://www.eclipse.org/emf/, 2006.

4. Eclipse. WS-BPEL Project 0.2.0. http://www.eclipse.org/bpel/, 2006.
5. C. Ghezzi, M. Jazayeri, and D. Mandrioli. Fundamentals of Software Engineering.

Prentice Hall, 1991.
6. C. Hentrich and U. Zdun. Patterns for Process-Oriented Integration in Service-

Oriented Architectures. In Proceedings of 11th European Conference on Pattern
Languages of Programs (EuroPLoP 2006), Irsee, Germany, July 2006.

7. IBM, BEA Systems, Microsoft, SAP AG, Siebel Systems. Busi-
ness Process Execution Language for Web Services (BPEL4WS).
ftp://www6.software.ibm.com/software/developer/library/ws-bpel.pdf, 05 2003.

8. IEEE. Recommended Practice for Architectural Description of Software Intensive
Systems. Technical Report IEEE-std-1471-2000, IEEE, 2000.

9. ISO. Open Distributed Processing Reference Model (IS 10746).
http://isotc.iso.org/livelink/livelink/fetch/2000/2489/Ittf Home/PubliclyAvailableStandards.htm,
1998.

10. E. Kindler, B. Axenath, and V. Rubin. AMFIBIA: A Meta-Model for the Integra-
tion of Business Process Modelling Aspects. In The Role of Business Processes in
Service Oriented Architectures, number 06291 in Dagstuhl Seminar Proceedings,
2006.

11. J. Mendling and M. Hafner. From Inter-organizational Workflows to Process Ex-
ecution: Generating BPEL from WS-CDL. In OTM Workshops, pages 506–515,
2005.

12. J. Mendling and C. Simon. Business Process Design by View Integration. In
Business Process Management Workshops, volume 4103 of LNCS, pages 55–64.
Springer, 2006.

13. OMG. Unified Modelling Language 2.0 (UML). http://www.uml.org, 2004.
14. OMG. Business Process Modeling Notation (BPMN).

http://www.bpmn.org/Documents/OMG-02-01.pdf, 02 2006.
15. openArchitectureWare.org. openArchitectureWare project.

http://www.openarchitectureware.org, 08 2002.
16. C. Ouyang, M. Dumas, A. H. M. ter Hofstede, and W. M. P. van der Aalst. From

BPMN Process Models to BPEL Web Services. In ICWS, pages 285–292, 2006.
17. B. A. Schmit and S. Dustdar. Model-driven Development of Web Service Trans-

actions. International Journal Enterprise Modelling and Information Systems Ar-
chitectures, 1(1):46–, 10 2005.

18. D. Skogan, R. Grønmo, and I. Solheim. Web Service Composition in UML. In
Enterprise Distributed Object Computing Conference, 2004, pages 47–57, 2004.

19. W. van der Aalst, M. Beisiegel, K. van Hee, D. König, and C. Stahl. A SOA-Based
Architecture Framework. In The Role of Business Processes in Service Oriented
Architectures, number 06291 in Dagstuhl Seminar Proceedings, 2006.

20. W. van der Aalst, J. Desel, and A. Oberweis, editors. Business Process Man-
agement: Models, Techniques, and Empirical Studies - Lecture Notes in Computer
Science, volume 1806. Springer-Verlag, 2000.

21. W. M. van der Aalst, M. Dumas, A. H. ter Hofstede, and P. Wohed. Pattern Based
Analysis of BPMN (and WSCI). Technical report, FIT-TR-2002-04, Queensland
University of Technology, Brisbane, 2002.

22. W. M. P. van der Aalst, A. H. M. ter Hofstede, B. Kiepuszewski, and A. P. Barros.
Workflow patterns. Distributed and Parallel Databases, 14(1):5–51, 2003.

23. M. Völter and T. Stahl. Model-Driven Software Development: Technology, Engi-
neering, Management. Wiley, 2006.

24. W3C. Web Services Description Language (WSDL) 1.1.
http://www.w3.org/TR/wsdl, 03 2001.

25. W3C. Web Service Choreography Interface (WSCI). http://www.w3.org/TR/wsci,
08 2002.

26. W3C. Web Services Choreography Description Language (WSCI).
http://www.w3.org/TR/ws-cdl-10, 11 2005.

27. WfMC. XML Process Definition Language (XPDL).
http://www.wfmc.org/standards/XPDL.htm, 10 2005.

28. P. Wohed, W. M. van der Aalst, M. Dumas, and A. H. ter Hofstede. Pattern Based
Analysis of BPEL4WS. Technical report, FIT-TR-2002-04, Queensland University
of Technology, Brisbane, 2002.

