Softw Syst Model
DOI 10.1007/s10270-009-0137-0

THEME SECTION

VbTrace: using view-based and model-driven development
to support traceability in process-driven SOAs

Huy Tran . Uwe Zdun - Schahram Dustdar

Received: 15 January 2009 / Revised: 24 September 2009 / Accepted: 6 October 2009

© Springer-Verlag 2009

Abstract In process-driven, service-oriented architectures,
there are a number of important factors that hinder the trace-
ability between design and implementation artifacts. First of
all, there are no explicit links between process design and
implementation languages not only due to the differences of
syntax and semantics but also the differences of granular-
ity. The second factor is the complexity caused by tangled
process concerns that multiplies the difficulty of analyzing
and understanding the trace dependencies. Finally, there is
a lack of adequate tool support for establishing and main-
taining the trace dependencies between process designs and
implementations. We present in this article a view-based,
model-driven traceability approach that tackles these chal-
lenges. Our approach supports (semi-)automatically eliciting
and (semi-)formalizing trace dependencies among process
development artifacts at different levels of granularity and
abstraction. A proof-of-concept tool support has been real-
ized, and its functionality is illustrated via an industrial case
study.

Keywords Software traceability - View-based -
Model-driven - Process-driven SOA - Tool support

Communicated by Prof. Richard Paige.

H. Tran (<) - U. Zdun - S. Dustdar

Institute of Information Systems, Distributed Systems Group,
Vienna University of Technology, Argentinier Str. 8/184-1,
1040 Vienna, Austria

e-mail: htran@infosys.tuwien.ac.at

U. Zdun
e-mail: zdun@infosys.tuwien.ac.at

S. Dustdar
e-mail: dustdar@infosys.tuwien.ac.at

Published online: 02 November 2009

1 Introduction

In a process-driven, service-oriented architecture (SOA) the
notion of process is central [16]. A typical process consists of
a control flow and a number of tasks to accomplish a certain
business goal. Each task performs either a service invoca-
tion or a data processing task. Processes can be deployed
in a process engine for enactment and monitoring. Figure 1
illustrates a small-scale process-driven SOA [16]. Process
engines access service-based message brokers, e.g., offered
by Enterprise Service Buses, via service-based process inte-
gration adapters. Service-based business application adapt-
ers are used as bridges between the brokers and back-end
components, such as databases or legacy systems.

Business processes are often designed in highly abstract
and primarily notational modeling languages such as BPMN
[42], EPC [20], or UML Activity Diagrams [40]. Process
designs are suitable for business experts to represent domain-
and business-oriented concepts and functionality but mostly
non-executable because many technical details are missing.
Thus, IT experts necessarily need to be involved in the pro-
cess development to transform the process designs into exe-
cutable specifications. For example, IT experts can translate
abstract, high-level concepts of process designs into concrete,
fine-grained elements in executable process languages such
as BPEL [36] and specify the process interfaces in web ser-
vice description language (WSDL) [56]. Additional deploy-
ment configurations might also need to be defined in order to
successfully deploy and execute the implemented processes.

Understanding trace dependencies between process design
and implementation is vital for change impact analysis,
change propagation, documentation, and many other activ-
ities [49]. Unfortunately, artifacts created during the pro-
cess development life cycle likely end up being disconnected
from each other. This impairs the traceability of development

@ Springer

H. Tran et al.

Fig. 1 TIllustrative small-scale
process-driven SOA

Service 2
Service 3
Service 4

-
@
Lo
e
)
(2]

Business
Application —={ Business Application A
Adapter A

Process

Process Engine
—> Integratio
n Adapter

artifacts. We identify the following important factors that
complicate the establishing and maintenance of trace depen-
dencies:

e There are no explicit links between process design and
implementation languages. This lack of dependency links
is caused by not only syntactic and semantic differences
but also the difference of granularity as these languages
describe a process at various levels of abstraction.

e A substantial complexity is caused by tangled process
concerns. Either the process design or implementation
comprises numerous tangled concerns such as the control
flow, data processing, service invocations, transactions,
fault and event handling, etc. As the number of services
or processes involved in a business process grows, the
complexity of developing and maintaining the business
processes also increases along with the number of invo-
cations, data exchanges, and cross-concern references,
and therefore, multiplies the difficulty of analyzing and
understanding the trace dependencies.

e There is a lack of adequate tool support to create and
maintain trace dependencies between process designs and
implementations.

To illustrate the aforementioned factors we use the well-
known Travel Booking process [18]. Figure 2 shows the pro-
cess development scenario from design to implementation
and deployment. We summarize the statistics of the complex-
ity in terms of the number of elements as well as their depen-
dencies in Table 1. Even though the syntactic and semantic
differences are omitted in Fig. 2, the elements represented
in executable process languages (here: BPEL and WSDL)
are more concrete and of much finer granularity than the
design counterparts (here expressed in BPMN). Practically,
abstract, high-level model elements are often described or
implemented by one or many technology-specific elements.
For instance, a Data Object in BPMN is often represented
by the corresponding variable in BPEL and the message type

@ Springer

Business
Application —>{ Business Application B
Adapter B

Service 2
Service 3
Service 4

—
®
L
2
[}
(2]

Design (BPMN)

BPEL

Interaction

WSDL+XML Schema

Schema)~ gervice

Flow | Data Message \ Interface
Handling -

: Partner Y Service

Transaction LinkTypes | Binding

Implementation (WSBPEL)

C Process descriptors)[Service endpoints)

Deployment configuration

Fig. 2 The travel booking process development

from WSDL or the XML Schema type. In addition, some
artifacts which are necessary for describing specific fea-
tures in process implementation or for successfully deploying
the process have no corresponding elements in the process
design. For instance, there are no corresponding design con-
cepts or elements for the correlation of service invocations in
BPEL, service bindings and service endpoints in WSDL, to
name but a few. Existing process development approaches or
tools merely support the stakeholders in importing, parsing,
validating, and referencing elements between languages of
the same level of abstraction, for instance, between BPEL,
WSDL, and XML Schema, but have no support for cross
references between process designs and implementations.

VbTrace: Using view-based and model-driven development

Table 1 Complexity and

dependency statistics of the Design (BPMN) Implementation (BPEL) Deployment (PDD)
Travel Booking process Task 7 BPEL activity 13 Partner reference 5
Correlation 7 Endpoint reference
Control structure 3 Control flow 12 Service reference 5
Control edge 11
Data object 3 BPEL variable 10
Association 11 Message 11
XML data type 11
Data handling 30
Partner (pool) 6 PartnerLink 5
Partner link 9 PartnerLinkType 5
PortType 5
Role 5
Binding 4
Service 4
Total element: 19 Total element 85 Total element 14
Dependency 31 Dependency 104 Dependency 20
Cross-concern 20 Cross-concern 49 Cross-concern 20

The complexity caused by numerous tangled process con-
cerns such as the control flow, service and process inter-
actions, data handling, transactions, and so forth, hinders
the understanding and analyzing of trace dependencies.
Table 1 also shows the statistics of the cross-concern depen-
dencies of process design (20/31), process implementa-
tion (49/104), and deployment configuration (20/20). These
numbers mean: In order to thoroughly understand or analyze
a certain concept of either a process design or an implemen-
tation, the developer has to go across numerous dependencies
between various concerns, some of which are even not suit-
able for the developer’s expertise and skills.

We present a view-based, model-driven traceability
approach that supports stakeholders in (semi-)automati-
cally creating and maintaining traceability between process
designs and implementations and/or deployment configura-
tions. In the context of this article, BPMN [42], a standard
for business process modeling, is used as a representative
example of a process design language, whilst BPEL [36] and
WSDL [56], which are very popular process/service model-
ing descriptions used by numerous companies today, are used
as representative examples for languages for implementing
executable processes. Although establishing trace dependen-
cies alone is not sufficient for tasks like change impact analy-
sis or change propagation, it crucially lays the foundation for
any such tasks. In this sense, our approach presented in this
article is the initial effort that overcomes the aforementioned
challenges to support (semi-)automatically eliciting as well
as (semi-)formalizing trace dependencies among model arti-
facts in model-driven development (MDD) at different levels
of granularity and abstraction. The (semi-)formalization of

the trace dependencies is one of the features needed for the
interoperability of tools utilizing them.

In our approach, we exploit the notion of views and the
model-driven stack introduced in our previous work [52,54]
in order to separate process representations (e.g. process
designs or implementations) into different (semi-)formal-
ized view models. In this way, stakeholders can be provided
with tailored perspectives by view integration mechanisms
[52,54] according to their particular needs, knowledge and
experience. This is a significant step toward the support of
adapting process representations and trace relationships to
particular stakeholder interests. Additionally, view models
are also organized into appropriate levels of abstraction:
high-level, abstract views are suitable for business experts
whilst low-level, technology-specific views are mostly used
by IT experts. Given these levels of abstraction, process
designs are adequately aligned with the abstract view mod-
els, and the implementation counterparts are lined up with
the technology-specific view models. This can be done in a
(semi-)automatic manner using the view-based reverse engi-
neering approach described in [53]. Such mappings produce
trace dependencies between designs and the view models,
and between the view models and the source code that imple-
ments the processes. These dependencies are parts of the
traceability meta-model which is the key component of our
traceability approach. Moreover, the traceability meta-model
also supports stakeholders in capturing intrinsic dependen-
cies between view models and view elements.

This article is organized as follows. In Sect. 2 we briefly
introduce the View-based Modeling Framework (VbMF)
[52,54]. Next, Sect. 3 presents our view-based, model-driven

@ Springer

H. Tran et al.

Fig. 3 Overview of the
view-based modeling
framework ([17,52,54])

)

Abstract

A A
extends extends

A A
extends extends

|
|
Model :

Model

Technology-
specific Layer

vertical dimension
bridging abstraction levels

BpelFlowView

BpelCollaborationView
Model

BpelnformationView

Model Model

|
TransactionView| |
Model |

|

horizontal dimension
mastering the complexity of tangled process concerns

traceability approach along with the details of the traceabil-
ity meta-model. A CRM Fulfillment process from an indus-
trial case study is exemplified to illustrate our traceability
approach and the realization of the approach in Sect. 4. Then
Sect. 5 discusses related work. Finally, Sect. 6 summarizes
our main contributions.

2 View-based modeling framework for process-driven
SOAs

In this section, we briefly introduce the View-based Model-
ing Framework (VbMF) [52,54] that is the foundation of our
traceability approach described in the next section. VbMF
exploits the notion of views to separate the various process
concerns in order to reduce the complexity of process-driven
SOA development and enhance the flexibility and extensi-
bility of the framework. VbMF offers a number of model-
ing artifacts, such as view models and view instances (or
views for short) organized in two levels of abstraction (see
Fig. 3). Each view embodies a number of view elements and
their relationships that represent a business process from a
particular perspective. View elements and their relationships
are precisely specified by a view model. In other words, a
view model is a (semi)-formalization of a particular process
concern and the views conforming to that view model are
concrete instances of the process concern.

VbMF initially provides three foundational (semi-)for-
malizations for representing a business process which are the
Flow View, CollaborationView and InformationView models.
The FlowView model describes the orchestration of process
activities, the CollaborationView model specifies the inter-
actions with other processes or services, and the Informa-
tionView model elicits data representations and processing
within processes as well as messages exchanges. However,
VbMF is not merely bound to these view models but can

@ Springer

be extended to capture other concerns, for instance, human
interaction [17], data access and integration [31], transac-
tions, and fault and event handling [54]. VbMF view models
are derived from fundamental concepts and elements of the
Core model. Therefore, these concepts of the Core model
are the extension points of the view-based modeling frame-
work [52,54]. In our traceability approach, we exploit this
feature of the VbMF Core model to derive trace dependen-
cies between different views and between views and view
elements.

In addition, VbMF introduces a model-driven stack which
is arealization of the model-driven development (MDD) par-
adigm [12,51]. The model-driven stack separates the view
models into abstract and technology-specific layers. In this
way, business experts, who mostly work with the high level
view models, can better capture, manipulate, and analyze
domain- and business-oriented concepts and knowledge as
the technical details have been abstracted away. For specific
technologies, such as BPEL and WSDL, VbMF provides
extension view models which add details to the abstract view
models that are required to depict the specifics of these tech-
nologies [52,54]. These extension views belong to the tech-
nology-specific layer shown in Fig. 3.

The view models and view instances are manipulated via
anumber of components provided in VbMF (see Fig. 4). The
View/Instance Editors are derived from the VbMF view mod-
els. Using these editors, a new view model can be developed
from scratch by deriving from the Core model, or an existing
view model can be extended with some additional features to
form a new view model. Moreover, these editors also support
stakeholders in creating new view instances or editing exist-
inginstances. Last but notleast, the editors enables stakehold-
ers to integrate relevant view instances in order to produce a
richer view or a more thorough view of a certain business pro-
cess [52,54]. Code Generators use the technology-specific
view instances to generate executable code. Before gener-
ating outputs, the code generators validate the conformity

VbTrace: Using view-based and model-driven development

} >

‘ generates Views!

! _ iew/Instance
} View Model < Editor

! creates,

I

I

I

I

Reverse engineering
tool-chain

Forward engineering
tool-chain

\

\

\

\

\

\

\

A extends I

) \

based uses | integrates I

| ____basedon, = ______ v v |

e \ \

\ I \

} View produces|| | View }

I Interpreter » } I Instance }
\ [

\ I \

| |based on interprets 1 A]

T\ 4 v X uses |

\ I \

} Process Descriptions } } Code }

} (BPEL, WSDL, XML } } Generator }

| Schema, etc.) I \

\ I \

} defined in |l generates !

i I v |
\ [

} Process Description } } Schematic }

I Y— Language Syntax & [y Executable }

: Semantics 1 Code |

I \

| I |

\ I \

\ I \

\ I \

\ I \

1

Fig. 4 VbMF forward and reverse engineering tool-chains

of the input views against the corresponding view models.
View Interpreters are leveraged to extract views from legacy
process descriptions. These components of VbMF shape the
forward engineering and reverse engineering tool-chains for
process-driven SOA development.

In the VbMF forward engineering tool-chain abstract
views are designed first. Then, by using View/Instance Edi-
tors, these instances are manipulated or refined down to
their lower level counterparts, the technology-specific view
instances. The Code Generators uses the technology-spe-
cific view instances to produce schematic process code and/or
necessary configuration code. In our traceability approach,
View/Instance Editors and Code Generators need to be
extended such that they can automatically establish trace
dependencies between view models, between view models
and view elements, and between different view elements. The
generated schematic code might need some manually written
code (so-called individual code) to fulfill a certain business
logic [51]. Our approach supports developers in establish-
ing and maintaining those relationships via the traceability
meta-model.

In the reverse engineering tool-chain, the View Interpret-
ers take as input legacy process descriptions and extract more
appropriate representations, i.e. process views, out of the
legacy code. These process views can be used in the for-
ward engineering tool-chain for re-generating certain parts
of the process code. During the reverse engineering process,
high-level, abstract views and low-level, technology-specific
views can be recovered from the existing code. This way,

the reverse engineering approach helps stakeholders to get
involved in process re-development and maintenance at dif-
ferent abstraction levels [53]. The View Interpreters play
a central role in the reverse engineering tool-chain. In the
scope of this article we extend the View Interpreters from
[53] for transforming process implementations in terms of
BPEL and WSDL code, or process deployment descriptors
in XML, onto VbMF technology-specific views. Other View
Interpreters are developed to map process designs in terms of
BPMN diagrams onto VbMF abstract views. Relevant trace
dependencies generated by these mappings are tracked and
recorded in the traceability meta-model, the (semi-)formal-
ized representation of trace dependencies in our approach.

To summarize, the view-based modeling approach real-
ized in VbMF is the foundation for dealing with the complex-
ity of various tangled concerns in business processes, i.e., the
second challenge we mentioned above in Sect. 1. Moreover,
the model-driven stack in VbMF is the basis to organize view
models into adequate levels of abstraction, and therefore, to
deal with the differences of granularity at these abstraction
levels. In the next section, we present our key contributions,
the view-based, model-driven traceability approach, along
with the traceability meta-model and the supporting mech-
anisms and tools for establishing and maintaining the trace
dependencies.

The concepts and mechanisms mentioned above have been
realized as a view-based modeling framework [52-54]. In
this modeling framework, view models are based on Eclipse
Ecore, a MOF-compliant meta-model [9]. The code gener-
ation templates have been developed using openArchitec-
tureWare’s XPand and Xtend languages [43]. The VbMF
tooling also provides a number of tree-based view editors
for manipulating view instances. These tree-based view edi-
tors are extended for producing corresponding relationships
between views and view elements and used for illustration
purposes in this article.

3 View-based, model-driven traceability framework

3.1 Fundamentals of the view-based, model-driven
traceability framework

In the previous section we introduce the view-based model-
ing framework (VbMF) which supports stakeholders in mod-
eling and developing processes using various perspectives
which are tailored for their particular needs, knowledge, and
skills at different levels of abstraction. We propose in this
section our view-based, model-driven traceability approach
(VbTrace) in terms of a traceability framework which is an
additional dimension to the model-driven stack of VbMF (see
Fig. 5).

@ Springer

H. Tran et al.

Fig. 5 View-based,
model-driven traceability Process DA
approach as an additional designs
dimension of VbMF
|
) VbMF | §x
L — > 0
V1 abstract V2gpstract = E3
7T == 2o
. T -7 | o E
P | 28
Vilow €S- _ | = 'S
PG TS - >
S T e T E
~ | - | T == Q=
= = 8 B
V1 technology- V2 technology- V3 technology- Q §
specific specific specific % ©
AN L
T~/ ~
CA1 CA2 CA3 CA4 CAs
Process implementation and deployment
Legend

DA: Design artifact
Intrinsic trace dependencies

VbTrace supports stakeholders in establishing and main-
taining trace dependencies between the process designs and
implementations (i.e., process code artifacts) via VbMFE. The
trace dependencies between process design and abstract,
high-level views and those between low-level, technology-
specific views and code artifacts can be automatically derived
during the mappings of process designs and implementations
into VbMF views using an extended version of the view-
based reverse engineering approach presented in [53]. These
trace dependencies are represented by the solid arrows in
Fig. 5. The relationships between a view and its elements
are intrinsic whilst the relationships between different views
are established by using the name-based matching mecha-
nism for integrating views [52,54]. These relationships are
indicated in Fig. 5 by dashed lines because they are merely
derived from the view models and mechanisms provided by
VbMF [52,54]. Therefore, in this article we will concen-
trate more on the former kind of trace dependencies, i.e.,
the trace dependencies between process designs and imple-
mentations and view models. Nonetheless, the case study in
Sect. 4 will illustrate a complete consolidation of the afore-
mentioned kinds of trace dependencies as a whole. In the
subsequent sections, we present the view-based traceability
meta-model that is a (semi-)formalization of trace depen-
dencies between process development artifacts. Based on
the traceability meta-model, we extend and use the com-
ponents and mechanisms provided by VbMF to shape a
view-based, model-driven traceability framework that sup-
ports stakeholders in (semi-)automatically establishing and
maintaining the corresponding trace dependencies.

@ Springer

V: View models CA:Code artifact

Generated trace dependencies

3.2 View-based traceability meta-model

At the heart of VbTrace, we devise a traceability meta-
model that provides concepts for precisely eliciting trace
dependencies between process development artifacts. This
traceability meta-model is designed to be rich enough for
representing trace relations from process design to imple-
mentation and be extensible for further customizations and
specializations. Figure 6a shows the conceptual overview of
the meta-model that defines a TraceabilityModel containing
a number of TraceLinks. There are two kinds of TraceLinks
representing the dependencies at different levels of granu-
larity: ArtifactTraces describing the relationships between
artifacts such as BPMN diagrams, view models, BPEL and
WSDL files, and so on; ElementTraces describing the rela-
tionships between elements of the same or different artifacts
such as BPMN notations, view elements, BPEL activities,
WSDL messages, XML Schema elements, and so forth. The
source and target of an ArtifactTrace are ArtifactReferenc-
es each of which consisting of either the location path, the
namespace URI, or the UUID! of the corresponding artifact.
An artifact may contain a number of elements described by
the ElementReference meta-class. Every ElementReference
holds either an XPath expression [55] or a UUID which is a
universal reference of the underlying actual element.

Each ElementTrace might adhere to some TraceRatio-
nales that comprehend the existence, semantics, causal
relations, or additional functionality of the link. The

1 UUID: Universally unique identifier.

VbTrace: Using view-based and model-driven development

(a) Conceptual traceability meta-model

Traceability
Model

link
A

ElementTrace
annotated with

*

ArtifactTrace <

elementTrace
<t

v
* source |1.* 1.*|[target

@
o

urce ? 1 1 ?target

ArtifactReference

TraceRationale

ElementReference

location: String

Satisfy ’ Depend l ’ Conflict

FragmentPosition

path: String
lineStart: Integer
lineEnd: Integer

position

. . xpath: String nsURI: String
description: String uuid: String uuid: String
Q N N
|
—' DesignViewPair DesignToView l_
’ Rote l ’ RelationType —' ViewElementPair ViewToView l—
| | Zﬁ | —' ViewCodePair ViewToCode
CodeFragmentPair CodeToCode
Extend Generate Formalize Use

DesignElement om
element
ViewElement <
element
<

ViewModel

contains

SchematicCode

(b) View-based traceability meta-model

Fig. 6 VbTrace meta-models: (a) the conceptual traceability meta-model, and (b) the view-based, model-driven traceability meta-model

TraceRationale is open for extension and must be spe-
cialized later depending on specific usage purposes, for
instance, for reasoning on trace dependencies concerning the
traceability types: dependency, require, transform, extend,
generalize/refine, implement, generate, use, etc., [40,49] or
setting up dependency priorities or development roles associ-
ated with the trace link. Figure 6b depicts the extensibility of
TraceRationales by a number of concrete realizations such as
Role standing for stakeholders roles and RelationType which
is further specialized by several types of commonly used
trace dependencies [40,49].

The traceability meta-model explained so far provides
abstract and generic concepts shaping the basis for a typical
traceability approach. In the context of our traceability
approach, these abstract concepts are refined to represent
trace dependencies of the various view models at different
levels of granularity (see Fig. 6b). We devise four concrete
types of TraceLinks: DesignToViews represent traceability
between process designs and VbMF, ViewToViews describe
internal relationships of VbMEF, i.e., relationships between
view models and view elements, ViewToCodes elicit the
traceability from VbMF to process implementations, and
finally, CodeToCodes describe the relationships between the
generated schematic code and the associated individual code.

Languages used for designing processes typically com-
prise highly abstract, notational elements that business
experts are familiar with. A process design artifact presented
in the traceability meta-model by the Design meta-class.
Each Design includes several DesignElements standing for
process design notational elements. The mapping from pro-
cess designs onto the VbMF abstract layer produces trace
links of the DesignToView type. Moreover, each Design-
ToView maintains one or many DesignViewPairs which are
responsible for tracing the mapping relationships at the level
of elements, i.e., mapping from design elements to view
model elements.

One of the important modeling artifacts provided by
VbMF is the ViewModel that embodies a number of ViewEle-
ments. Because there is probably a dependency between two
view models, we use ViewElementPairs to capture the rela-
tionships between view elements of those view models in a
fine-grained manner. In particular, a ViewToView inherits the
two associations from its parent ArtifactTrace and holds a
number of ViewElementPairs standing for the finer granular-
ity of the traceability among view model elements.

In VbMEF, the technology-specific view models are rarely
developed from scratch but might be gradually refined
from existing abstract view models (see [52,54]). As such,

@ Springer

H. Tran et al.

extracting of trace links is straightforward because VbMF
provides the necessary information concerning model refine-
ments. The technology-specific view models can also be
extracted from process implementations using the reverse
engineering approach from [53,54]. In contrast, process
implementations (i.e., code artifacts) can be automatically
produced from technology-specific view models by VbMF
code generators. By extending the reverse engineering inter-
preters and the code generators, we obtain the relevant trace
links in terms of ViewToCodes, and even finer grained rela-
tionships at the level of code fragments by using ViewCode-
Fairs that keep references from ViewElements to generated
CodeFragments. A CodeArtifact is composed of one or many
CodeFragments each of which might contain other code frag-
ments. For instance, a WSDL [56] file is a CodeArtifact that
has a number of fragments such as XML schema definition,
message types, service interfaces, service bindings, and ser-
vice implementations.

Code artifacts generated from the model-driven stack of
VbMF are mostly schematic recurring code that needs to be
augmented by manually written code, for instance, using the
patterns suggested in [51]. Therefore, the traceability meta-
model provides another concept for code association, the
CodeToCode meta-class. Each CodeToCode should hold a
reference between a certain SchematicCode and one of its
required manually written Code instances.

Last but not least, the abstract TraceRationale concept is
realized and extended by, but not limited to, a number of
popular trace relationships such as Extend, Generate, Imple-
ment and Use that can be employed to augment the semantics
of the trace dependencies explained above. Additional ratio-
nales or semantics can be derived in the same manner for any
further requirements.

-- artifact-to-artifact traces

context DesignToView inv:

source.isKindOf (Design) and target.isKindOf (
ViewModel)

context ViewToView

inv: source.isKindOf (ViewModel)
1sKindOf (ViewModel)

context ViewToCode

inv: source.isKindOf (ViewModel)
1sKindOf (Code)

context CodeToCode

inv: source.isKindOf (SchematicCode)
.1sKindOf (Code)

-- element-to-element traces

context DesignViewPair

-- each source must be an element of container
'S sources

inv: source->forAll (container.source.element
->includes (source))

-- each target must be an element of container
’s targets

inv: target->forAll (container.target.element
->includes (target))

and target.
and target.

and target

@ Springer

context ViewElementPair

-- similar to those for DesignViewPair

inv: source->forAll (container.source.element
->includes (source))

inv: target->forAll (container.target.element
->includes (target))

context ViewCodePair

-- each source must be an element of container

’s sources

source->forAll (container.source.element

->includes (source))

-- each fragment must belong to the set of
container’s fragments

inv: fragment->forAll (container.fragment
->includes (fragment) or container.fragment
->collect (subFragment) ->includes (fragment))

context CodeFragmentPair

-- each fragment must belong to the set of
container’s fragments

inv: fragment->forAll (container.fragment
->includes (fragment) or container.fragment
->collect (subFragment) ->includes (fragment))

inv: fragment->forAll (container.fragment
->includes (fragment) or container.fragment
->collect (subFragment) ->includes (fragment))

inv:

Listing 1 OCL constraints for the traceability meta-model

Note that the relationships between Design and Desig-
nElement, between View and ViewElement, and between
Code and CodeFragment in the traceability meta-model are
merely presented for clarification purpose because those
relationships can be straightforwardly derived from process
design artifacts, VbMF modeling artifacts, and code artifacts,
respectively. Toward more strictly modeling of aforemen-
tioned traceability links, Listing 1 presents OCL constraints
[41] for the meta-classes of the traceability meta-model that
are required for specifying more precise semantics as well as
for the verification of traceability model instances built upon
the meta-model.

In summary, the traceability meta-model provides essen-
tial concepts for eliciting trace dependencies at different
abstraction levels ranging from process design artifacts to
abstraction levels of VbMF view models down to code arti-
facts of process implementations. Each trace link between
two levels of abstraction can also support elicitation of
the differences of granularity, such as pairing design ele-
ments and view elements, or view elements and code frag-
ments. Furthermore, the traceability meta-model is open for
extension to finer granularity by deriving new subclasses of
pairings such as DesignViewPair, ViewElementPair, and
ViewCodePair, or for adding new higher or lower abstrac-
tion levels by deriving new sub-types of the TraceLink, Arti-
factTrace, or ElementTrace meta-classes. In the subsequent
sections, we present the view-based traceability architec-
ture along with the components and mechanisms that sup-
ports stakeholders in (semi-)automatically establishing and

VbTrace: Using view-based and model-driven development

Model
Repository

Abstract
view
|nsta|nces Technology
specific
| view instances

VbTrace
model

Extended
View-based
interpreters

VbTrace

! |
Process |

|
View models, |
instances '

. Code

| generation
templates
[

View models,
instances

View/Instance
Editors

Extended Code
Generator

ViewToCode

’— — -Schematic Recurring Code~”

_______ *________________

Process
implementations
(BPEL, WSDL)

Process deployment
descriptions

designs - ___
i Legacy
process
: descriptions™ — — — Code
| (manually
\ Process design written code)
—{ supporting tools
(BPMN Designers)
Legend: — — —p» VbMF specific flows

Fig. 7 View-based, model-driven traceability framework architecture

maintaining the trace dependencies based on the concepts of
the aforementioned meta-model.

3.3 View-based, model-driven traceability framework
architecture

The view-based, model-driven traceability framework archi-
tecture shown in Fig. 7 extends the components of VbMF
(see Fig. 4) in order to acquire traceability relationships. For
instance, the extended View/Instance Editors produces trace
links between view models, between view models and ele-
ments, as well as between elements of different view mod-
els. These relationships, as mentioned above, are intrinsic
parts of VbDMF views, and therefore, are straightforwardly
extracted. In addition, the extended View Interpreters can be
utilized for collecting trace dependencies between process
designs and view models, and between view models extracted
from process implementations and the corresponding imple-
mentations. Last but not least, the extended Code Generator
can establish trace links from view models used for gener-
ating executable process code to the resulting source code
artifacts. These extended components retrieve the aforemen-
tioned trace dependencies and deliver them to the VbTrace
as instances of the traceability meta-model. The traceabil-
ity meta-model and its instances are models themselves,
and therefore, can be persisted in the model repository of
VbMF for later use and maintenance. The model repository
is one of our ongoing works, but beyond the scope of this
article.

Process implementations and deployments

——Pp» VbTrace flows

3.4 View-based modeling and traceability tool-chain

The traceability meta-model and components mentioned
above are essential parts forming the view-based model-
ing and traceability tool-chain shown in Fig. 8. In this
tool-chain, process design are mapped into VbMF abstract
views whilst process implementations are aligned with
VbMF technology-specific views by extending the view-
based reverse engineering approach presented in [53,54].
During these mappings, the extended view-based interpret-
ers are able to establish the relevant trace dependencies
DesignToViews and ViewToCodes, respectively, as well as the
fine-grain relationships that are DesignViewPairs and View-
CodeFairs.

Nonetheless, the ViewToCodes and ViewCodePairs can
also be derived in the course of the generation of process
implementations (e.g., BPEL and WSDL code) and deploy-
ment configurations (e.g., process descriptors for deploying
and executing processes in the ActiveBPEL, an open source
BPEL engine [1]), from VbMF technology-specific views.
The transformation templates specify the rules for genera-
tion code from VbMF models. We extend these templates to
generate the relevant trace dependencies between the view
models, view elements, and the generated code artifacts and
code fragments.

In the following sections, we elaborate on extending the
view-based interpreters and code generation templates using
some scenarios in which trace dependencies are established
by using our extended code generators and extended view-
based interpreters.

@ Springer

H. Tran et al.

Process design Abstract views

i 0 1 =
Technology-specific views

Transformation templates

@ Deployment configuration
Code @

Generator

Process implementation

Fig. 8 View-based modeling and traceability tool-chain

3.4.1 Establishing trace dependencies using extended
view-based interpreters

The view-based reverse engineering approach [53] can be uti-
lized for extracting VbMF views from existing process imple-
mentations in BPEL and WSDL. We extend this approach
such that the relevant trace dependencies are also established
during the course of the reverse engineering process. Fig-
ure 11la presents an excerpt of the FlowView interpreter in
Java code that can extract AtomaticTasks of the FlowView
from BPEL code. In addition, we instrument additional Java
code for creating trace dependencies between the BPEL code
fragment and the resulting AfomicTasks. The generated trace
dependencies are parts of the Traceability model shown in
Fig. 9b. This approach can also be applied for the other
view-based interpreters such as the CollaborationView, In-
formationView, BpelCollaborationView, and Bpellnforma-
tionView interpreters [53] in order to automatically establish
the relevant trace dependencies between BPEL and WSDL
descriptions and VbMF views. For better supporting stake-
holders in reasoning and analyzing the resulting trace depen-
dencies, for instance, change impact analysis, Generate and
Formalize are automatically annotated to each trace depen-
dency.

Although the view-based reverse engineering approach
presented in [53] is exemplified using process implementa-
tion languages such as BPEL and WSDL, it is extensible and
applicable for mapping the concepts of a process design into
VbMF abstract views. Let us recall that VbMF view models
at the abstract layer are intentionally designed for business
experts. As a result, the concepts embodied in these view
models have a close relationship to the elements of languages
used for designing processes, such as BPMN, UML Activ-
ity Diagram, EPCs, and so on. A minor difference of these
high-level view interpreters to the view interpreters men-
tioned above is that we realize the view-based reverse

@ Springer

engineering approach using openArchitectureWare Xpand
and Xtend languages [43] due to their sufficient transforma-
tion mechanisms. Figure 10a shows an excerpt of the tem-
plate-based transformation rules written in XPand language
that maps a BPMN Data Object into a Business Object ele-
ment of the InformationView. In addition, the transformation
rules also generate relevant trace dependencies between the
design and view elements. We illustrate in Fig. 10b a part of
the traceability model comprising two DesignToView trace
links between the design and the Flow View of the CRM Ful-
fillment process from the case study presented in Sect. 4.
These trace dependencies are augmented with the Formalize
of type TraceRationale.

3.4.2 Establishing trace dependencies using extended code
generators

Code generation (or so-called model-to-code transforma-
tion) is an important step of any realization of the MDD
paradigm to gain productivity and ensure better software
quality [51]. The results of code generation process are
often the schematic, recurring code that shapes the skel-
eton of the software or systems. Some manually written
code (aka individual code) might augment the generated
schematic code in order to realize the individual parts of
the business logic [51]. VBMF provides a template-based
code generation approach that is able to generate schematic
implementations of processes in terms of BPEL and WSDL
descriptions. This approach has been realized in VbMF
using the openArchitectureWare Xpand and Xtend languages
[43]. We extend the template-based code generation rules in
VbMF such that the trace dependencies between the involved
views, view elements, and generated code fragments are
automatically established. Figure 1la presents an excerpt
of the VbMF code generation rules for generating BPEL
<invoke> elements from VbMF technology-specific views

VbTrace: Using view-based and model-driven development

Fig. 9 Illustration of extracting
VbMF views from BPEL code
and establishing the relevant
trace dependencies

Fig. 10 Illustration of mapping
BPMN designs to VbMF
abstract views and establishing
relevant trace dependencies

protected AtomicTask bp_reply(Element element, OXPath qxp) throws Exception {

/+ create viev element from the code «/
AtomicTask task = FlowFactory.eINSTANCE.createAtomicTask();
task,setMame(XHLUtil.getNameYalue{element));

/# establish the corresponding trace dependency »/
| viewElement source = TraceUtil.createViewElement(task); |
| CodefFragment target = TraceUtil.createCodeFragment(element); I
ViewCodePair pair = TraceUtil.createViewCodePair(source, target);
| viewZcode.getElementTrace().add(pair);

return task;

(a) Extended FlowView interpreter for extracting FlowView from BPEL code
and establishing corresponding trace links

= |8 eTraceabiityModels
@ [«DesignToViews
w15 «viewToCode»
= ' «viewToCode»
[Z) eviewModel> CRMFlow'iew [view/crm. flow]
B «Code» [implfcrm.bpel]

IF o e¥iewCodePair» |
«ViewElement» SendConfirmation [UUID={f2f0711-318a-333f-b914-7268617cfefc}] |uggmd
«& | «CodeFragment> [/descendant-or-self ::bp:reply{1]] |

(b) Trace dependencies produced from the extended FlowView
interpreter

Create BusinessObject from BPMN data objects
«DEFINE MapData(List viewList,
trace::DesignToView ds2iv)
R i JFOR bosp::patatbiects oo =
«LET createBusinessObject(this) AS objects
| «ET createDesignElenent(this) AS source» |
| <LET createViewElement(object) AS target» |
<LET createDesignViewPair(source, target) AS pair» l_
I «ds2iv.elementTrace,add(pair)»
| eviewList.getInformationView().getBusinessObject().add(object)»|

«ENDDEF INE »

(a) Extended template rules for mapping a DataObject (BPMN) to a
BusinessObject (InformationView) and establishing corresponding
trace links

= |8 «TraceabiityModel»
= [2" «DesignToView»
g3 «Desigr» BpmnCRM [design/TravelBooking.bpmn]

|5 o2 <DesignviewPair> I
I 171 «DesignElement» CustomerOrder [UUID={_grOXoFtREdbFLGKYbCIIQ}] g —

L _ [«viewElement> orderlnput [UUID={e68bab3f-893-3075-aF16-e1a2e3c3d93} |

L 5o Doy ~v-or == o S e e e B R e |
| 15 <DesignElement> CustomerOrder [UUID={_grOXoFtREJ6bFLGKVYBCIIQH -
L — (D) sviewElement> verifylngut [LUID={bE4f5915-Scke-3265-a9%-82501908291a1)

(b) Trace dependencies produced from the mapping of BPMN elements
onto VbMF views

along with our instrumented rules for generating trace depen-
dencies. The resulting trace dependencies are illustrated in
Fig. 11b containing a ViewToCode trace link between the
VbMF BpelCollaborationView and BPEL <invoke> frag-
ment extracted from the case study (see Sect. 4). Although

these trace dependencies are generated in the opposite
direction to those extracted from the reverse engineering
of process implementations, they share similar semantics
and rationales of the trace relations that are Generate and
Formalize.

@ Springer

H. Tran et al.

Fig. 11 Generating BPEL code
from VbMF technology-specific
views and establishing relevant
trace dependencies

Generate <{receive>
«DEFINE ATOMICTASK(bpelcollaboration::Receive task,
List viewList,
String base)
FOR trace::TraceabilityModel»
<bp:receive name="<task.name>»"
«IF (task.variable != null)>
variable="«task.variable.name>»"
<ENDIF >
«IF (task.createlnstance != null)>

createlnstance=«<IF task.createlnstance»"yes"<ELSE»"no"<ENDIF>»

«ENDIF>»
«IF (task.interface != null)»
portType="«getPrefix({task)»:«task.interface.nane»"
<ENDIF>»
partnerLink="<task.partner.names»"
operation="<task.operation.name»">
</bp:receive>
| «LeT (base + “/bp:receive["” + index + "]") AS path» |
«LET createViewElement(task.name) AS elementReference» |
«LET createCodeFragment(path) AS codeReferences
| «Ler createViewCodePair(eRef, cRef) AS ViewCodePair»
«cv2usdl.elementTrace, add(pair)->"">» |
«ENDLET »<ENDLET » <ENDLET » <ENDLET »

i i i Sl e R R |

«ENDDEF INE>

(a) Extended template rules for generating BPEL <receive> from
VbMF technology-specific views and establishing corresponding

trace links

[

=Y «ViewToCodes

(L] «ViewModel» CRMBpelCollabor ationView [view/crm.bpelcollaboration]
i E «Codes» [implfcrm.bpel]
= o efiewCodePairs __ __ o o o o v ol
| % <ViewElements ReceiveCustomerOrder [UUID={c3b61567-a723-3529-8934-dd17f41ec223}]
I «ViewElement» ReceiveCustomerOrder [UUID={e620e6aa-7ebd-4eee-90be-af 1fa9c9b7a1}]
|..#] <CodeFraoment> [jborreceivelt]l _ _ _ _ _ _ _ _ _ _ _ _ _ J

(b) Trace dependencies produced from code generation

4 Tool support and case study

In this section, we illustrate the realization of the aforemen-
tioned concepts in VbTrace via the CRM Fulfillment process
adapted from an industrial case study concerning customer
care, billing and provisioning systems of an Austrian Inter-
net Service Provider (cf. [11] for more details). The process
is designed using BPMN and implemented using process-
driven SOA technology: BPEL and WSDL. BPMN, BPEL,
and WSDL are used for exemplification because these are
likely the most popular process and service description lan-
guages, which are widely adopted in research and industry
today. Nevertheless, our approach is not limited to those but is
generally applicable for other process-driven SOA technol-
ogies. To illustrate the process deployment configurations,
we exemplify a specific BPEL engine, namely, ActiveBPEL,
and develop the necessary configurations for the deployment,
enactment and monitoring of the CRM Fulfillment process.

In the subsequent sections, we first quickly introduce the
tool support for our traceability approach. Next, we present
in detail the case study and important steps of establishing
and maintaining appropriate traceability meta-data between

@ Springer

process designs and VbMEF, among VbMF views, and
between VbMF views and process implementations. At the
end of this section, we introduce a sample of using trace-
ability path derived from the traceability model for better
understanding and analyzing the relationships of process
development artifacts.

4.1 View-based, model-driven integrated development
environment

A proof-of-concept of view-based, model-driven approach
has been implemented in [52—54] using the Eclipse Model-
ing Framework (EMF) [9] and openArchitectureWare MDD
Framework [43]. In this article we have realized the concepts
of our view-based, model-driven traceability approach pre-
sented based on the aforementioned VbMF implementation
and integrated them with VbMF in terms of an view-based,
model-driven integrated development environment. In order
to effectively reuse and extend VbMF concepts and mecha-
nisms, the traceability framework is derived from the EMF
Ecore meta-model. The biggest advantage of using Eclipse
Modeling Framework is that we gain better interoperability

VbTrace: Using view-based and model-driven development

8y <Designs BomnCRM [designy TravelBoaking bomn]

</bpel icopy

& Java - crm-trace/ design)/crmbpmn_diagram - Eclpse Platform
oty dogieen 55, L1} a5 T
233)| L Resource Set || L Pesource Set
[CRMFlovew all 5 L creepecolaborstonien =
P = I eSequences | @ aReceves Fecervelustom
| Q—E E'_‘__'_ ® RecoveCustomerOrder 5] wReghys CancelCustomerC.
. @ Datatagl] eRephy> SendConfrmation
@ UpdateCustomerProfie & clrvecies UpdateCustomes
® DataMap? & alrohes verfyBarkicoo
® Verfyankicoount & sk Checlon
= 2 Exchsives & crokes AssigrDN
e archs & clrivokes MiyateDN
= % esequences & alrckes AssignsIp
@ DataMap3 & irvoies CrasteMalbos
® ConcelCustomerth & clrwckes Initiskoe Ve
%, eDefuits & adrvches fsogpFax
= I esaquences & «irvvokes ShopCPE
I aParalels & sirvokes ChargeCustome:
@ Dataapl2 & dnvokes Sendinvoice
@ ChargeCustomenh -9
® DatsMaold
® Sendiveice
® DataMaold
@ SendCorfrmation | Iﬂ
~] Lal L2 4l "
i T 31| || stiecton|pare |t | Troe | Tabla [*, | selocton | Parent it | Tre [Ta | %
2 crm.trace 11 f3\ || A gmznbesl I3 5 i4\ o)
(7", Riosouren st o/ cpel:variable nawe=prof i le0utput Ny dlgeTypes"na?: UpdateCuntanerprof i lshea
o ogseikats = | ¢/bpel ivariabless
= B <Tracesvieytodets -]
S0 susignToiiews <bpel:sequences
8 Ces BN g o) g oot Ghlin” e
Lo o [<bpel :copy>
£ o Desgniienpan <bpel: from Jorder Inputc/bpel: from
1] & U= _grotio? 0t] “;gzi:lé;:;,lprvf:itlnautuh;el.tm
e orderinput (LT {aé8babs 1 </bpel : a93igm> ‘J
= o <Desgniendars <bpel:invoke names"UpdateCustomerProfile” partnerLinks"frof i lePartner™ oper
S5 cDesigrilements CustomerOrdr [ULID={_grONOPRESELALGVECIOH] <br§;°:1:iqn, validates"na” name="Dataflap2”>
B cviewilements verfyingut [UUID= (1415915 Scbe- 1265-43%- 82501905291} <bpe o LA Sorder Input</bpel : From
S esignTovews <bpel:tos $verifylnput</bpel :tod

by ¢/bpel :assignd
S sViewitodsts CRMPRowiisw [viswjorm flow] l <bpel: invoke names"VerifyBankiccount™ partnerlinks"AccountValidator™ operati
& o clesgrivendar cbpel 1 ifs
8] eWewToCodes <bpe | :conditions nat ($verifylnput .response/Status)</bpel :condition
T R <bpel :aequences
' o <bpeliasaign validates"no” name 1"
B «codes fmpljcrm.bosl] B cbpel:copy =
il D | ST -I'I |
| +]|| Seisction [Parert | List | Trae | Table | Tree with Colmes | Design | Sourcn |

Fig. 12 The development of CRM Fulfillment process in view-based, model-driven integrated environment: (1) The process design in BPMN
Modeler (2) VOMF views, (3) Traceability view, and (4) Generated process implementation

with the Eclipse BPMN Modeler [19] which is developed
based on EMF Ecore.

For the sake of demonstration, we use the BPMN dia-
grams designed in the Eclipse BPMN Modeler to represent
the process design, and extend the tree-based editor gener-
ated by EMF for presenting and manipulating Traceability
models from now on. The components of our traceability
framework, such as Extended Code Generators and Extended
View-based Interpreters (see Fig. 7), are derived from corre-
sponding VbMF components (see Fig. 4) using the mecha-
nisms described in Sect. 3.4.

4.2 CRM Fulfillment process

The CRM Fulfillment process is a part of the customer rela-
tionship management (CRM), billing, and provisioning sys-
tems of an Austrian Internet Service Provider [11]. The main
business functionality of the CRM Fulfillment process is to
handle a customer order of the company’s bundle of Inter-
net and telecom services including a network subscriber
line (e.g., xDSL), email addresses, Web-based administra-
tion (VMX), directory number, fax number, and SIP URL
for VoIP communications. The process uses a wide vari-
ety of in-house services and services provided by various

partners. The company has developed and deployed in-house
services for customer relationship information management,
assigning fax numbers, SIP URLs, and mail boxes, initializ-
ing VMX, and sending postal invoices to customers.

The process uses a credit bureau service provided by a
third party business partner of the financial institution that
acquires, stores, and protects credit information of individ-
ual and companies. The credit bureau service can verify a
customer’s payment account for accuracy and validity and
charge the payment according to the customer’s purchase
order. Customer premise equipment (CPE) partners supply
services for ordering and shipping home modems or routers.
Telecom partners offer services for checking, assigning, and
migrating customer directory numbers (DN). These services
expose their functionalities in terms of WSDL interfaces that
can be orchestrated using BPEL processes.

Figure 12 shows the design of the CRM Fulfillment pro-
cess in terms of a BPMN diagram in Eclipse BPMN Mod-
eler. The process is initiated as a customer places a purchase
order. Then, the customer relationship management service
is invoked to update the customer’s profile. Next, the process
invokes a bank service to validate the customer’s account
validity. In case a negative confirmation is issued from the
bank service, e.g., because the account number is invalid or

@ Springer

H. Tran et al.

Receite

Customer Order

CustomerProfile B «Designe BomnEM [design/o

[«ViewModdels CRMFlwViEw [+

{ FResource Set
A5 cvrownew
@ RecetveCustomertrder|

/J‘F __________

v penn]
sform flowr]

Verify
BankAccount

Cancd

CustomerOrder | Check
DN

| cDesigrElements Gatews:

X P rabed [LLBD={_LxWINMTESG-2Wabeslgh] | | B, x
0] AP p rt i § <Sequences
*] 5 | B % «Sequences
Z[&) Vwwlements Pas shel [{0050 268 0
o o DesyenPar | B E <Sequences
o Desgiiendsr §-5 « >
I it Sl TS R ot Al | H B 4 Ssnsnms

Customer Accaunt “ViewElment= DatsMap|

I

3 {ULID {1 DoeerPSF - e - Davkes - 45H I | e T 1 [y i?\i AGIE T~ ~
ot Sendinrice (D= 4CTESE IR 1202 8005 0000 E7462151) \ e
g o i e pelustames
I T3 GesirElemerts Rephordei Confimation [LUID=]_LATIFNEGSG TWaMGgH] ® DataMaply |

[LgD=4]

ria

Reply
Order Confirmation

invoice

k1]

DataMap| 4 (LU= 1085-3d%-a31 1
_____ RnghyOrderConfvmation [LLID= fa 7719052 M-Z&QI‘_-!E'MEQ"?\s

_'seurm'm: Uit | Tree | Table | Tree with Cokumes:

| Seloction Parent | st | Tree | Table | Tree with Cokems

(@) cRM Fulfilment process design

(b) CRM Traceability model

(€) The CRM Fulfilment FlowView

Fig. 13 Illustration of mapping CRM Fulfillment process design (/eft) onto VbMF Flow View (right), and establishing trace dependencies (middle)

the owner and account do not match, the order will be can-
celed. Otherwise, the positive confirmation will trigger the
second branch in which the process continues with a number
of concurrent activities to fulfill customer order’s requests
and deliver networking equipments, e.g., home modems or
routers, to the customer’s shipping address. For the sake
of simplicity, we assume that those activities finish without
errors. After all of these activities finished, the customer’s
payment account is charged and a postal invoice will be sent
to customer’s billing address.

4.3 CRM Fulfillment process development and traceability

Figure 12 depicts one of development perspective of the CRM
Fulfillment process using our view-based, model-driven inte-
grated environment, which is an Eclipse-based workbench.
The stakeholders can create and manipulate process views in
the various VbMF view editors or extract views from process
designs and implementations using the built-in view-based
reverse engineering. Given these process views, stakeholders
can generate process implementations such as process code in
BPEL, service interfaces of processes in WSDL and process
deployment configurations by using the predefined template-
based code generation rules. Moreover, the code generation
templates can also be customized according to further needs
by using the the XPand language editor [43]. In addition, the
trace dependencies established during the course of process
development are presented to the stakeholders in the Trace-
ability view.

The subsequent sections present the various scenarios
to demonstrate how relevant trace dependencies between
process designs and VbMF views, between VbMF views,

@ Springer

and between VbMF views and process implementations are
established during the course of modeling and developing
the CRM Fulfillment process.

4.3.1 Scenario 1: Traceability between process design and
VbMF views

The CRM Fulfillment process design is a BPMN diagram
that comprises a number of notational elements such as a
pool, tasks, data objects, and sequential flow connectors (see
Fig. 12). For the sake of readability and demonstration, we
adapt the design of CRM Fulfillment process and omit the
Data Objects which are irrelevant in this scenario.

In the context of process-driven SOAs, VbMF leverages
the FlowView model as the central notation because this
model represents the orchestration of the process activities
[52,54]. We demonstrate the mapping of the BPMN design
onto the FlowView of the CRM Fulfillment process along
with the trace dependencies established during the mapping
(see Fig. 13) by using the approach mentioned in Sect. 3.4.
The trace dependencies includes trace links at coarse-grained
levels, i.e., between the BPMN diagram and the FlowView
model, or at finer granularities, e.g., between a BPMN task
and a FlowView’s Atomic Task, between a BPMN Gate-
wayDataBasedExclusive and a conditional switch, namely,
Exclusive of the FlowView, and so on. Taking the same
approach of mapping the CRM Fulfillment process design
onto the FlowView, we have developed more view-based
interpreters for extracting abstract view models from the pro-
cess design and establishing tracing relationships.

Note that VbMF is a realization of the separation of
concerns principle [52,54]. In VbMF, the Flow View model

VbTrace: Using view-based and model-driven development

& orm.collsboration 3 || 1 CRiMvisw2view trace 1
Resource Set | 1) Resource Set
| & [camqollsborationtiien 2l 51 <rraceabitymodels

L= iewToViews

B =0

[viewi form. bpelcollabor stion]

r
&
& clnteractions UpdateCustomenProfie
& «interactions VerfyBankAccount
& cinteractions Chedon i
& cInkeractions AssignDN
& crteractions MgrateON
& clnteractions AssignSIP I
& drkeractions CreateMalbox
& cInneractions Indiskee VM
& «dnkeractions AssignFax
& eirteractions ShpCPE
& «inkeractions ChargeCustomerfccount ||
& cintesactions Sendirvoice

= % «Services CRM

o iewlementPars

= CRMC [iewe/s
= s CRMBPELCol :
e et _ _

q" NewblementPars _ _ _ _ __ _ _ _
aViewEloment> CancelCustomerCrder [LIJTD-{ZdJI.O?% 2b20-4801-3019- MMI“?Q}]

“ViewElemants process [ULID={1646eF84-fF40-4675-846 7 -2 T8l G2 ana}] |
«ViewElements process [UUID={d4d2S0cf-c2a8-4079-830d- 1ed0Tda4c3b0}]_|

& <Eimphys RephyOrder Confimation
& slrvokes UpdateCustomerProfie
& anvokes VerifyBankaccount
& arvokes ChedDN
& ddrvokes AssigrDh
alrvokes MigrateON
& ervokes Resgrstp
& drvokes CresteMaiborx
& clnvokes IndiskeViK
& dnvokes AssigrFax
& elrvvokes ShpPE
& arvvokes ChargeCustomerActount
& dnvokes Sendinvorce
= '-_g «Services CAM
- 0r3 «lnierfsces CAM

L - <ommamern e |

= {8 <Operatiors process |
4 «Channeb |
|

. -
@ n \ = 0 dntatecen Brifotlips ___
- % eservices Fax 5o e IS G} «Operatione verfyAccount |
i
4 5 Services Mal \‘ 4 eChannsb !
-39 «Services Sp tE 7:*}_19‘2'3'_1_—:_—:::‘
4 5 «Sarvices Profle \‘[T cOperations chargeAccount |
5 9 cSarvices v |4 <Channel
| |

| # "4 «Seryice Telecom =il
1} I =il

(@) cRM Fuiiliment CollaborationView

(b) CRM Traceability model

(€) The CRM Fulillment
BpelCollaborationView

Fig. 14 Illustration of establishing traceability (middle) of model refinements from the CRM CollaborationView (left) to the BpelCollaborationView

(right)

merely represents the control structures, i.e., the orchestra-
tion concern of business processes that describe the execution
order of process activities in order to accomplish a certain
business goal. However, the FlowView does not contain any
details of these tasks. Other views, according to their specific
syntaxes and semantics, provide the concrete definitions of
each of FlowView’s tasks. For instance, a service invocation
task of the FlowView is realized in a CollaborationView or
an extension of the CollaborationView whilst a data process-
ing task is defined in an InformationView or an extension
of the InformationView. In this way, the FlowView model
aims at supporting stakeholders, especially business experts,
to quickly design the business functionality by orchestrating
named activities rather than being stuck with other details
such as performing remote invocations, activity compensa-
tion, and so on. These details are accordingly defined in
abstract view models and/or refined down to technology-
specific view models by the relevant IT experts. As a con-
sequence, these views, regardless whether they are abstract
or technology-specific, can be integrated with the Flow View
using the view integration mechanism [52,54] in order to pro-
duce richer views or a thorough view of the whole process
with respect to the particular needs, knowledge, and skills of
stakeholders.

4.3.2 Scenario 2: Traceability between VbMF views

View models at the abstract layer of VbMF are intention-
ally designed for business experts alike who are not familiar
or able to work with the technical details. As such, these
models supplement the FlowView with adequate concepts

and perspectives. In other words, the abstract views can
be considered platform-independent models (PIMs) [12,51]
that have close relationships with process designs rather than
the implementation counterparts. In the model-driven stack
of VbMEF, an abstract view can be gradually refined down to
its corresponding technology-specific view. For instance, the
BpelCollaborationView is a stepwise refinement of the more
abstract CollaborationView (cf. [52,54]). Thus, refinement
relationships are important for tracing from process design to
implementations. We track these relationships by using trace
links of the type ViewToView for supporting the traceability
between two view models, and a number of ViewElement-
Fairs each of which holds references to the corresponding
view elements.

Figure 14 shows an illustration of establishing the trace
dependencies out of the refinement of the CRM Collabo-
rationView (Fig. 14a) down to the CRM BpelCollabora-
tionView (Fig. 14c) described by the ViewToView and its
constituent ViewElementPairs. For the sake of readability, we
only present a number of selected trace dependencies and use
the arrows to depict the links described by each dependency.
Each trace dependency is augmented with the Refine of type
TraceRationale.

Additionally, VbMF views can be integrated to produce
richer views. For instance, a certain stakeholder might need
to see the orchestration of the CRM Fulfillment process
activities along with the interactions between the process
and other processes or services. The combination of the
FlowView model and either the CollaborationView or the
BpelCollaborationView based on the name-based matching
approach described in [52,54] can offer such a perspective.

@ Springer

H. Tran et al.

2 eExchusives

@ om.fow 2 || & omotrace 52 <4 crm.bpeicolaboration (1 =0
| L) Resource Set 1) Resource Set [Resource Set
[& & coiontien Al | 8 <TracesbieyMode Al = £ comereLCotaborationtew_ ___ _ 5|
(Seexe ______ 8 G D1 heceives RecerveCystomerOrder |
[@ ReconeCustomecader : ¥ eRephys CancolCustomernOrder
Q_Dgtaf\pL ______ ¥ - - .nwkm-de-fomm
[@ DodatecustomerProfie 2
@ Dot : |] « y
[9 verbyparkacoout \

" «franche

« @ _CharosCustomerfceount |

(B viewElements RecerveCustomerOrder [ULID={c3b61567-a72a-3540-894-dd1 41 ec223}H] /f

\\ﬁ “VsuElmncts RecaiCustoparQrdst [WID= (e 45 1972 6-40c D307 SR ST /
o ViewElementPars

b FE £ Updated e [ULIID={3cdBed02-1247-3067-9167-35843dbc 3818}]
“ViewElements UpdateCustomerProfile [WND={32445300- 89074973252 4ecch 1 b0dedq}] !
,_,p

ViewElament? airs
e -l 324 Sed1]

fw

& crvokes MigrsteON
& ddnvokes AssgrstP
& cinvokes CresteMatbox

B awdeSpE_______

L& cinwokes CharosCustomerhccount

@ DataMapld ’ s¥iewElements VerifyBankAccount [UUID={F271b5c3-Fad | -4 36-af54-beé 2edalS637}] ! & «lnvokes Sendinvoice

@ Sendlnvoice = eé‘ B M S S S S S A # 4 «Services CRM

@ DataMapld £ Charged: [UUID= 70616554 1 de- Zeds-9196- 3064327 40c06) 3 99 «Services BankService
| @ RephyOrderCorfrmation v : Charped [ULID={a6chenT3-{5a8-4dae-E023-6345 a1 492ef}] +-94 <Services Fax v
L« L[] e e

(@) crm Fuliiment Flowview

Fig. 15

Figure 15 shows an illustration of establishing the trace rela-
tionships out of such combinations. The main purpose of
view integration is to enhance the flexibility of VbMF for
providing various adapted and tailored perspectives of the
process model. Because those perspectives might be used
by the stakeholders for analyzing and manipulating the pro-
cess model, we track down the relationships caused by the
above-mentioned combination in the traceability according
to specific stakeholders’ actions and augment them with the
Dependency type.

4.3.3 Scenario 3: Traceability between VbMF views
and process implementations

In the previous sections, we illustrate the methods for estab-
lishing the traceability path connecting the CRM Fulfill-
ment process design to VbMF view models at the abstract
layer down to the technology-specific layer. The relation-
ships between view models and process implementations,
however, can be achieved in two different ways. On the
one hand, schematic code of process implementations or
process deployment descriptors can be generated from the
technology-specific views (such as the BpelCollaboration-
View, BpellnformationView, etc.) at the final step of VbMF
forward engineering tool-chain [52,54]. On the other hand,
the reverse engineering can also automatically extract view
models from existing (legacy) process implementations [53].
Regardless of using any of these methods, the trace depen-
dencies need to be recorded to maintain appropriate relation-
ships between view models and process implementations to
fully accomplish the traceability path from process designs
to the implementation counterparts (see Fig. 16).2

2 For the sake of readability, we omitted irrelevant elements and name-
space bindings in the BPEL and WSDL code and process deployment
configurations.

@ Springer

(b) CRM Traceability model

(c) The CRM Fulfillment BpelCollaborationView

Ilustration of establishing trace dependencies (middle) of an integration of CRM FlowView (left) and BpelCollaborationView (right)

Furthermore, a number of process engine specific descrip-
tors are necessary for successfully deploying and executing
the CRM Fulfillment process. In this article, ActiveBPEL
is exemplified as the reference process engine to deploy and
execute the CRM Fulfillment process in this article. Utilizing
the extended code generators mentioned in Sect. 3.4, VbMF
can generate the process deployment descriptors and estab-
lish the trace links. Figure 17 depicts the trace dependencies
created during the course of generating process deployment
descriptor required by the ActiveBPEL engine from VbMF
views.

4.4 Leveraging VbTrace—a sample traceability path

Establishing trace dependencies alone is not sufficient for
tasks like change impact analysis, change propagation, arti-
fact understanding, and so on, it is the important factor
for supporting any such tasks [49]. In this section, we
examine a sample traceability path based on the traceabil-
ity model created in the previous sections to illustrate how
our traceability approach can support these tasks. Figure 18
depicts a simple traceability path from the CRM Fulfillment
process design through the VbMF framework to the pro-
cess implementations. The traceability path comprises the
trace dependencies between the process design and VbMF
views mentioned in Sect. 4.3.1 followed by the relation-
ships among VbMF views retrieved in Sect. 4.3.2. The
process implementation is reached at the end of the trace-
ability path by using the trace dependencies between VbMF
technology-specific views and process code described in
Sect. 4.3.3.

Let us assume that there is a business expert working on
the BPMN Modeler in order to analyze the CRM Fulfill-
ment process functionality and change the process design.
These changes must be accordingly reflected in the process
implementations in BPEL and WSDL and even in process

VbTrace: Using view-based and model-driven development

X] erm20,bpel £3 Uz i
<bpel:process name="CRH">
<bpel:partnerLink name="Client”
partnerLinkTypes"CRH"
syRoles"CRNProvider™ />
<bpel:partnerLink name="AccountValidator®
partnerLinkType="AccountValidatorPLT"
partnerRoles"AccountValidator™/>
¢/bpel :partnerLinks>
<bpel:variables»
<bpel:variable names"orderInput”™ messageTypes"CRHRequest” />
<bpel:variable name="orderQutput™ messageTypes"CRMResponse” |
</bpel:variables>

tbgil_:sgugc»_ e

I pelireceive na-e-"?teceweﬁa&onerordﬁ‘_i
partnerLinks"Client”

- .| portTypes="tna:CAN" |

| operations"process” |
varisbles"orderInput™

LI:_ = _createlnstances"yes” /> |

<bpel assign valTdates na name=Talarapi™

<bpel : copy>
<bpel:from>$orderInput</bpel:from

hoal:tostarnfilelnnuts fhonl:bay d

| <ViewElements ReceiveCustomerOrder [UUID={c3b6 1567-a72a-3529-6934-dd1 7F41ec223}
| <ViewElement> ReceiveCustomerOrder [m{mmmdlrmm}l
I

©)

iz -/ =3 m)
<pdd:process names"bpelns:CAN" locations="crm2.bpel™s Alu
<pdd:partnerLinks>
<pdd:partnerLink name="Client”™>
<pdd:myRole binding="HIG" service="CRH" /»
</pdd:partnerLinks
FmF————— e e e e e —— —
|&pdd:partnurL!nk name="AccountValidator®> |
<pdd :partrechole_endpointBeforance="static™s _ .y
<vsa! jpointReference xmins:s="http: ank.at”™ »
I EndpointRef 1 h //bank . at” |
-t <wsa:Addressohttp://bank.atc/vsa:Addressy |
<wsa:ServiceNane PurlHaae-'BankPort')a:BankSnrvi:u(!v:u:Snr\dcaN?J
| | Le/wsa:EndpointBeferancsd . — — — — — — — — — — — — —— — |
— — - </pdd:partnerRole»
< /pdd: partnerLink> |
| <pdd:partnerLink name="AccountCharger®>
| <pdd:partnerfole endpointReferences"static™»
<wsa:EndpointReference xmlns:ss"http://bank.at” >
<vsa:Addressshttp: ank . at<fvas: A e8>
1 ddress>http://bank. at</vsa: Addr
| {waa:ServiceNane PortMames="BankPort®»s:BankService</vwsa:ServiceNant
iy ¢/wsa:EndpointReference>
</pdd:partnerRole> >
4 | »
Design | Source |
[-
v
ViewElement> AccountVadstl [ULID={fod0d6d4-bede467c-ab6e-o5f Bafdasie}] |
“ViewElements AccountVahdatgr [wm{nm&rwmale?m}}l

tre anem=Accourevaldator) _ _ _ _ _ _| !
FHAPLEE M @ =aosmem ﬂ

'd-7935-40dc-ae0c-44fBcET8a18a}

I @ £l " 0
| ViewElements BankPort Type (ULIID={8bfbcbbb-436b-4263-a%7-Bec091d063ed})

L& sCodeFraoments (/iwsaEndooctieferencel1]l .

Fig. 17 lIllustration of establishing traceability (3) between VOMF views (1) and process deployment descriptors (2)

deployment configuration. Without our traceability approach,
the IT experts have to look into the BPMN diagram and
manipulate BPEL, WSDL code and process descriptors man-
ually. This is time consuming, error-prone and complex
because there is no explicit links between these languages.
In addition, the stakeholders have to go across numerous
dependencies between various tangled concerns, some of
which might be not relevant to the stakeholders expertise
(cf. the statistics in Fig. 2). Using our approach, the business

experts can analyze and manipulate business processes by
using either the process designer or the VbMF abstract views
such as the Flow View, CollaborationView, InformationView,
and so on, depending on their needs and knowledge. The
IT experts, who mostly work on either technology-specific
views or process code, can better analyze and assess coarse-
grained or fine-grained implications of these changes based
on the traceability path connecting the process design and
implementation at different levels of granularity.

@ Springer

H. Tran et al.

Fulfillment
Diagram

CRM
FlowView

«AtomicTask»
ReceiveCustomerOrder

Receive
Customer Order

Legend |
P I
|
Artifact traces | «Code»
“— — > : crm.bpel
Element traces |
|

CRM «Interaction»
CollaborationView ReceiveCustomerOrder

f1

«receive»
ReceiveCustomerOrder

<bpel :sequencer
<bpel:receive name="ReceiveCustomerOrder”
partnerLink

portTypes"t

operations"

variable=
createlnstance="

Fig. 18 Illustration of a traceability path from the CRM Fulfillment process design (1) through VbMF views (2) to process implementations (3)

5 Related work

Being extensively studied in literature and industry, depen-
dency relationships between designs and implementations
are often used for tracing through development artifacts,
supporting change impact analysis, artifacts understand-
ing, and other tasks [49]. Spanoudakis and Zisman [49]
presented a summary of the state-of-the-art traceability
approaches that focus on the tracing between stakehold-
ers and requirements [14], between requirements [4,14,
21,23,45,47,60], between requirements and designs [8, 10,
22,23,46,47], between designs presented in [10,21,47,59],
between requirements and code [6,10,29,47], and between
code artifacts [47]. There are only a few approaches for
supporting traceability between designs (e.g., UML Class
diagrams) and code [8,10,23,29,47]. Each of the afore-
mentioned design-to-code traceability approaches, however,
merely focus on specific types of dependencies, for instance,
overlap relations [10], evolution relations [8,29,47], and
generalization/refinement relations [23]. These approaches
do not mention the extensibility to other types of dependen-
cies or the ability to cover different levels of granularity of
trace dependencies.

The difference of abstraction and granularity and the
diversity of language syntaxes and semantics hinder the
automation of establishing and maintaining the traceability
between high-level artifacts, such as requirements or design
specifications, and very low-level artifacts, such as execut-
able code. There are few promising efforts on supporting
automatic generation of trace dependencies that use infor-
mation retrieval techniques [5,6,15,25,26,30] or rule-based
traceability [28,46,50]. To the best of our knowledge, the

@ Springer

traceability retrieved from the aforementioned approaches
does not cover the difference of granularity at multiple lev-
els of abstraction, which is the first challenge we described
in Sect. 1. In addition, [24,47] suggested that a traceability
approach only supports the representation of different trace
dependencies between artifacts, but the interpretation, analy-
sis, and understanding of the relationships extremely depend
on the stakeholders. According to his specific needs, knowl-
edge, and experience, a stakeholder might be interested in
different types of dependencies of different levels of abstrac-
tion. Most of traceability approaches described above, except
[14], have not provided adequate support for different stake-
holder interests.

Recently, model-driven development (MDD) [12,51],
which gradually gains widespread adoption in both
industry and research, provides an efficient paradigm to
potentially reconcile the difference of granularity at various
levels of abstraction by introducing a number of interme-
diate (semi)-formal modeling layers, such as the platform-
independent models (PIMs) and platform-specific models
(PSMs) [12,38]. Each modeling layers can provide different
abstractions of systems and software which are tailored to
specific stakeholders’ knowledge and experience. Moreover,
model transformations provide better facilities for the auto-
mation of creating and maintaining traceability relationships
[2,13]. A number of research approaches have exploited
these advantages for establishing and maintaining trace-
ability between development artifacts [3,7,27,35,37,57], to
name but a few, in order to support reducing the gap between
design and implementation.

The lightweight traceability approach TRACES proposed
in [3] can support tracing requirements across different

VbTrace: Using view-based and model-driven development

models and levels of abstraction. Based on the assumption
that each artifact has a unique identifier, and code is fully gen-
erated from the models (which is hard to achieve in reality
[51]) TRACES offers mechanisms for eliciting traceability
links from requirements to models, i.e., PIM and PSM, and
from the models to code. Mider et al. [27] analyze and clas-
sify Unified Process (UP) artifacts to establish a traceability
link model that helps in (semi)-automatically establishing
and verifying traceability links in Unified Process develop-
ment projects along with a set of rules for management of
the links. Leveraging model transformations, Naslavsky et al.
[35] propose an approach for creating fine-grained traceabil-
ity among model-based testing artifacts in order to support
result evaluation, coverage analysis, and regression testing.
Oldevik and Neple [37] present an approach for handling
text-based traceability links in model-to-code transforma-
tions (aka code generations) which is a key contribution to
OMG MOF Model to Text Transformation standardization
effort [39]. This approach provides a meta-model includ-
ing a set of concepts for traceability between model ele-
ments and locations in code artifacts. The corresponding
part of our traceability meta-model, i.e., the trace dependen-
cies between views and code artifacts, is inspired by [37].
Walderhaug et al. [57] present a generic approach for trace-
ability in MDD aiming to enhance sharing and integrating of
traceability information from different development tools.
The authors propose a high-level representation of the trace-
ability process in the course of software development that
provides general concepts for representing different kinds
of stakeholders and artifacts used for traceability, such as
trace model, trace repository, and the interactions between
the stakeholders and these artifacts. Bondé et al. [7] propose
an approach that offers a traceability meta-model for repre-
senting the relations between artifacts and the transformation
operations associated with these relations. Once the trace-
ability is accomplished, it then can be used to enforce the
interoperability of models at different levels of abstraction,
for instance, between a PIM and PSM.

Our work has the commonalities with the MDD-based
traceability approaches in using traceability meta-models for
(semi-)formalizing trace dependencies in order to enhance
the interoperability of tools. In contrast to the related work,
we introduce the combination of the separation of concerns
principles realized by the notion of views and the separa-
tion of abstraction levels realized by the MDD paradigm
as a better solution for supporting traceability in process-
driven SOAs. We exploit the notion of views to efficiently
represent different process concerns such that stakeholders
are provided with tailored perspectives by view integration
mechanisms according to their specific needs, knowledge,
and experience. This is a significant step toward the support
of adapting process representations and trace dependencies

to particular stakeholder interests. In addition, the separation
of abstraction levels offers appropriate intermediate layers to
gradually bring the business experts working at high levels
of abstraction close to the IT experts working at lower lev-
els of abstraction. Using the separation of process concerns
in terms of (semi-)formalized views and the view integration
mechanism, the refinement between two adjacent abstraction
levels can be alleviated in a better and more flexible manner.
Obviously, the relationships between our modeling artifacts
such as views and view elements are intrinsic and can be
retrieved straightforwardly from the view models.

Leveraging these modeling concepts and mechanisms,
we perform the mapping of process designs (here: BPMN)
onto high-level, abstract views and process implementa-
tions (here: BPEL and WSDL) onto low-level, technology-
specific views and devise a traceability meta-model that is
rich enough to represent the trace dependencies from design
to implementation through different abstraction levels and
different granularity. Furthermore, our framework is quite
open for extensibility, such as adding more traceability rela-
tionships at finer granularity with adequate specializations
of the ArtifactTrace and the ElementTrace, adding more
intermediate view model layer, or adding more appropriate
specializations of the TraceRationale meta-class to support
enhancing traceability reasoning or change impact analysis.

In the area of process-driven development, there are a
number of approaches that define transformations between
different languages [32-34,44,48,58]. These approaches
partially provide the link between process design and imple-
mentation. However, most of these approaches focus on only
one process concern, namely, the orchestration concern, and
ignore other significant ones, such as collaborations, data
processing, fault handling, and so on. As a consequence, each
of these approaches is applicable for transforming of control
structures of two specific kinds of languages, for instance,
BPMN and BPEL [44,48], EPC and BPEL [33,58], and so
forth. As a consequence, these approaches offer neither the
extensibility to support the various process concerns, except
the control flow, nor the traceability of these concerns of pro-
cesses. Nonetheless, our traceability approach benefits from
different algorithms described originally in those approaches
for mapping the control flow of process design onto our Flow-
View model (cf. Scenario 1).

Table 2 presents qualitative comparisons of our view-
based, model-driven traceability approach, VbTrace, and a
number of selected related approaches which are most closely
related to VbTrace, such as the MDD-based traceability
approaches that utilize model-driven paradigm with mod-
eling layers ranging from high-level into low-level and/or
exploit model transformations for traceability between design
and implementation [3,27,37,57]. The comparison criteria
are adapted from [49].

@ Springer

H. Tran et al.

(T°€ 1998

*J0) sarouapuadop

Qoe1 jo Surreys

pue Aypiqeradorojut

Sunzoddns je Surwre

[opow-elow AJ[Iqeaden

J[qQISUAX? ‘YOI &

JO swId) ur uonejudsardar
pazi[ewIo)(-1Wags)

(€1 1098

‘J0) A[premIopy3rens

PIAJLIIOI AIE SJUSWI[D

MITA PUEB SMITA UIIMIQq

‘A[reonewo)ne(-1was)

paystdwoooe

9Ie 9pOd pue

SMOTA U93M]IAq ‘SMIIA pue

u31sop ssooo01d usamioq
sorouapuadap 90BI],

(T°€ 1998 J0)
so[euoneyadel], ayenbope
Jo uonejouue oy} £q sodA)

uone[a1 ofdnnur uoddng

*SUONOBIANUL
SIopIoyaye)Is
Y} Se [[om
se *019 ‘adA) 2oen ‘adA)
10BJ1IIE ‘[OpOUl Q0BI)
se yons ‘A)[Iqeaden
Jo s1doouoo [erouad
juasardar 0} paugep
dIe S[opou-elou

[2A9] YSIY JO JoquIinu

[Led

se yons saroudpuadop
Qoe1) JUTAAIYOR
10§ seyoeoidde
K)1[1qeaoe) 191310

0] S19Ja1 A[a1ou [/ 6]
‘spoou Je[nonred
03 sfopowr K1031sodax
pue Ajjiqeaden
ay) idepe pue
azierdads o0 paxnbai
QI® $110JJ0 JYINy
‘Sny I, "paIopISu0d
A1e sarouapuadap aoen
9)a10U00 OU ‘A 10J
A)I[Iqeader) 0) uonNn[os
OLIOUA3 puE [9AJ]

Y3y e syuesaxd [/ G] Sy

'sjoejnIe
9POd UI SUOIEI0]
PUE SJUSWS[S [opoul
uoaM)aq ANfIqeader)
107 $3doouod Jo jos ©
Surpraoid [opowr-ejowr
© souyap [L€]

*SUOIBULIOJSULI)
9p0o-0)-[opoult
WOoIj pajeIauad
A[reonewoine

are sorouapuadop a0eI],

‘SUOTR[AI 9JRIIUIN)
9T ‘S[opow Y} WOLy
PojeIauUas 1X9) pue
‘SNSd “9'T ‘S[opowt
U99M19q SUONB[AI
Qo®RI) AY) UO SASNI0J [/ €]

‘[opow
21007 ue se pIjsisrad
SI pue UoTjeuLIOjsues)

[epow [eo1dA) e ur
paaaryoe sdrysuonerar
oY) SoqLIOSOP

[opowr AJIqeadeT) ay],

‘Tenuew ApuarINnd
SI [opowr AJI[Iqeaden)

JUBAQ[QI PUE SASED
159 Jo uoneIauas oy,

*S10RJIIR 1S9)
pue S[opOW UIIMIq
SUONE[AI dden)

Q) SABIUDUOD [GE]

'SUOTJBJOUUE SEB 9POD
90IN0S AY) UI PAIOIS
are sarouapuadop
doel], ‘sarouapuadap
Qoer) Sunuasaxdar
10J pasn aIe
SJUQWIDLQ [BUOTIRIOU
TINN Sunstxg

‘dN Jo sIopjoyayess jo
SUOTIUQAISIUT dJenbope
LA paysIIqeISS

are sarouspuadop a0e1],

Uy
PUR ‘AJLIOA ‘9ZI[ey
‘AU :Suole[aI ddrvN)

INOJ U0 sasnooy [£7]

‘sorouepuadop ooe1 Jo
uonezifewo g juasaid
Aprordxa jou saop [¢]

‘uoNLIoUAS 9pOd WOIJ
PaAdLIAI A[[eoTjRWIOINE
9q os[e ued syuI|
A)[1qeaoel], “19[epou
) Jo Anqiqisuodsar
A} SI S[opow pue
sjuowraInbar usamiaq
syuI| A)[Iqeasen
Jo11dx9 Jo uonear)

"SUONR[I 9A0QE
WOIJ PALIQJUI 9 UBD
SUONB[AI ZI[BAY "9pOd
pUB S[OpPOW UdIM]dq
SUOB[AI JBISUAD)
9y} pue S[opowr pue
sjuowaIbar usamiaq
SUOTIB[AI ZI[BAY JO

QOURIRJIY AY) SIdJJ0 [¢]

uoyvyuasatdos

uoyv]Y

suone[al

90BI) JO UONEBIdUAD)

SUONB[AI douT)

ordnnur 103 1r0oddng

QOBITQA

“Te 10 Sneyroprepy
Kq Kypiqesoen
AdN dHRUD

Te 32 J1A9P[O £q LTIN

‘Te 30 AYSAR[SEN
£q Surs9) paseq-TopoN

‘Te 19 JOpBIA
£q Lypiqeacen dn

‘Te 30 A9y £q SHOVIL

SIom pajefar Jo uostedwod Ay, 7 IqeL

pringer

Qs

VbTrace: Using view-based and model-driven development

(T°¢ 1998

'J0) sarouapuadap aoen

Jo Ajre[nueld Jo S[oA9]

Kuew jo uonjejuasardax

Suntoddns

10 J[QISUANXD

pue Yol SI [opow-ejou
Aniqeaoen ayJ,

"UONOBISqE JO S[AA]
JUQIQIJIP Je SIoKe]
Surjopour 9)eIpauULIIUL
JUSISJJIP OJUL
SMaIA Jo uoneredos
A} SI9JJO JIOMIWET)

Surfopour paseq-maIp
*SIOpOYYEIS
Temnoned o3 joadsar
s yred Kiqesoen
pue sarouapuadop
Qoe1) Jo uruosear
pue uoneidepe 11oddns
191199 0] SyuI| doen
dy} 0] pAjeIoUUR 9q
ued ‘2]pUONDYYIIDA]
Jo uonezieroads
B ‘SSR[0-RIOW 2]0Y AU}
‘IOAOQIOJA] "SISaIaIUl
IOP[OYBIS SNOLIBA
03 sarouapuadap doen
pue suonejuasardar
ssaoo1d jo
uoneydepe oy J10ddns
premo) doys jueoyrugis
© ST S[OAQ] uonoensqe
Jo uoneredas pue
SuIOOU09 Jo uoneredas

JO uoneuIquIod AYJ,

‘[opow A[Iqedoen ay)

az1eroads 03 110339
I9yyang saxmbar [£6]

‘[epowr AJ[Iqeade) oy}

aziferoads 03 31030
JyIng spadu [£G]

*$)SQIQ)UI SIOP[OYaYBIS
SnoLIeA 9y} 0}
sorouapuadop a0en jo
uonejdepe oy J10ddns
0) SwISTURYOAUI
ap1aouid jou soop Inq
wtpered QAN oy Ut
aA[oAur oym ‘rariddns
[00} pue ‘1o3euew
ApIqeaoen) Iesn aoen)
‘rodofoAap se yons
¢S9[01 SIOpOYAY LIS
pauryep-axd

JO Iaquunu ® SI9JJ0 [/G]

*$)[00[q 9pOd

puE SJUSWI[S [opoul

U09M12q SUOTIE[I
sajeIouad ATuo [/¢]

‘sarouapuadap
Qo®I) paureI3-ouly uo
S91BIIUOUO0D AJoI1ow [G¢]

'sjoejnIe Sunsa) pue
sweIgeIp aouanbas
TINN U29m1aq SI9Ae]
QJRIPOWLIdIUL AY) SB
[opow-gjowr AYoIeIary
uoneIdudg Js9) pue
sydei3 mopj [0nu0d

‘19K payroddns J0N paseq-[opow asn [G¢]

"JoA paytoddns JoN

39K patoddns JoN

"S[OAQ] UONORISqR J)

JO s1oejnIe TN dlseq

uoaMmIaq AJI[Iqeader)
9 y1oddns 0 swre [£7]

‘s[opout
uonejuawe[dur
pue ‘u3Isop ‘sisA[eue
9uowrarbar :qn jo
S[OAQ] uonoRISqe IN0J
uaaMm)aq A)I[Iqeade)
uo sasnooj [£z]

39K patoddns JoN

"JaK payroddns joN

‘(uonoensqe
juoreamba
ue 9ABY A[o1owW 9pod
pue [opow “'9'1) s1oke|
Surfopow 2JeIPAULI)UT
10§ 1oddns
Aue uonuaW JOu S0P
InQ 9pOd PUE SJUSUWIA[D
[opOW U2IMI2q pue
SIUQWID[[dpowl pue
juowrarbar ueamjoq
Anqiqeaoen spoddns [¢]

"JoK pautoddns joN

SAULDINUDAT

apdypnu 10f 110ddng

s.124p] Surjapout

p1pautiagul 1oddng

$1S242]U1 A2P]OYIYDIS

Jo uoyvidopn ji0ddng

ABILJA

‘Te 19 3neyIoprep
Aq Aypqesden
AN LU

Te 32 YI1A9P[O Aq LTIV

‘Te 30 ASAR[SEN

Aq 3unsa) paseq-[opoIN

‘Te 39 IopBN

£q Lipiqeaden 4n

‘1819 AYs9ly Aq SHOV UL

penunuod g dqer,

pringer

As

H. Tran et al.

's100) Juerdwoo-JOIN
Jjo Aynqiqeradoroyur
pue Surreys LIIqeaden
yoddns o199
‘AQa1ay) pue ‘oud)stsiad
[opow I0J Paziin
st[¢] prepuers (TINX)
J3ueyOIAIU] BIBPRISIA
TAX (1'% 1098
'J9) 1uwdo[eAdp YOS
udALIp-ssod01d 10} QAN
QTBA\ QIMIOANIYDIYUdO
pue 21004
douerdwod-JON ANA
Uo paseq JUSWUOIIAUD
pojeadojur peseq-asdijog

reord£10101d v
[¥S 1€]999 ‘suonoeiayur
uewny ‘gurpuey
JUIAQ ‘suorjorsuLI}
S Jons SuIdou0d
JI9U10 0) 9[qQISUIXD
stIng ‘Surppuey
BJEp pUB ‘UONJBIOQR[[0D
ssa001d ‘mop [onuod
qy) se yons J[onIe
sy ut payrjduoxa
suI00u09 ssad01d o)
0} punoq 10U SI ABITGA
IOAOAIOIN *(T°€ 1998
"JO) 2JUODY VL]
Surziperoads
£q suonefar ooe1
AU} JO SONULBWS AY)
JO pUE ‘20D JU2d]5 10
20D IODJI1LY “YUITIIDL]
Y1 Suruyar Aq s1oke|
Surjopour 9JeIpauLI)UL
pue s[oA9[Ajure[nueld
Jo ANIqISud)X

AU} SI9JJO RITGA

‘pauonuw
are syroddns [0oy
9J210U0D ON 'S[00) JO
uoneI3aul pue uLeys
Suntoddns je Surwre
yoeroidde Aiqeooen
[9A9] Y31y ‘O110ua3

® SIOJJO A[o1owl [/ 6]

'$)I01J9

[euonippe sainbax

‘1oAamoy ‘renjuajod st
[LS] Jo Aniqisuanxa oy,

7oK paytoddns JoN

39K pautoddns joN

7oK paytoddns JoN

19K pautoddns joN

“SIBULIO) JINX 10 TINX
IoUII0 UI PAIO]S I
S[OPOIN “A)[IqeadRn)
pue JuowdoraAap

J10J JoWeagopo)

pue asdrjog

Y)Im pojeI3aur oq ued
UOIYM JUSWUOIIAUD
juowdo[orap

12K paytoddns JoN reordKy0101d v

"TANN/N

0] punoq A[o1ow st [/ 7] 39K pautoddns joN

Jioddns jooy

suondo K11q1suaixy

BIT A

‘Te 19 Sneyroprepy
Aq Anpqesden
AdIN d1PUY

Te 30 YI1A9P[0 Aq LTI

‘Te 32 ASAB[SEN
£q 3unsa) paseq-[opoIA

‘¢ 39 I9pEIN
£q Ayiqeaden 40 (1e 30 AoV £q SHOVHL

pringer

penunuod g dqer,

Qs

VbTrace: Using view-based and model-driven development

6 Conclusion

Traceability support in process-driven SOAs development
suffers from the challenging gap due to the fact that there is
no explicit links between process design and implementation
languages because of the differences of syntaxes and seman-
tics and the difference of granularity and abstraction levels.
In addition, the substantial complexity caused by various tan-
gled process concerns and the lack of adequate tool support
have multiplied the difficulty of bridging this gap. The view-
based, model-driven traceability approach presented in this
article is our effort to overcome the issues mentioned above
and support stakholders in (semi-)automatically eliciting
and (semi-)formalizing trace dependencies between devel-
opment artifacts in process-driven SOAs at different levels
of granularity and abstraction. A proof-of-concept Eclipse-
based tool support has been developed and illustrated via the
CRM Fulfillment process extracted from an industrial case
study.

The view-based, model-driven traceability framework
presented so far lays a solid foundation for change impact
analysis, artifact understanding, change management and
propagation, and other activities. Our ongoing work is to
complement this framework with a model repository that
alleviates collaborative model-driven development and trace-
ability sharing with different stakeholders as well as tool
integrations.

This work was supported by the European Union FP7
project COMPAS, grantno. 215175. We are grateful to anon-
ymous reviewers for their constructive and truly helpful com-
ments.

References

1. ActiveEndpoints (2008) ActiveBPEL Engine. http://www.
activevos.com/community-open-source.php. Accessed 3 Febu-
rary 2008

2. Aizenbud-Reshef, N., Nolan, B.T., Rubin, J., Shaham-Gafni, Y.:
Model traceability. IBM Syst. J. Model-Driven Softw Dev 45(3),
(2006). doi:10.1147/sj.453.0515

3. Aleksy, M., Hildenbrand, T., Obergfell, C., Schwind, M.: A prag-
matic approach to traceability in model-driven development. In:
PRIMIUM (2008)

4. Alexander, I.: Semiautomatic tracing of requirement versions to
use cases—experience and challenges. In: TEFSE’03: 2nd Inter-
national Workshop on Traceability in Emerging Forms of Software
Engineering, (2003)

5. Antoniol, G., Canfora, G., de Lucia, A., Casazza, G.: Informa-
tion retrieval models for recovering traceability links between code
and documentation. In: ICSM ’00: Proceedings of the International
Conference on Software Maintenance (ICSM’00), IEEE Computer
Society, Washington, DC, USA, p. 40 (2000)

6. Antoniol, G., Canfora, G., Casazza, G., Lucia, A.D., Merlo, E.:
Recovering traceability links between code and documentation.
IEEE Trans Softw Eng 28(10), 970-983 (2002). doi:10.1109/TSE.
2002.1041053

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

. Bondé, L., Boulet, P, Dekeyser, J.L.: Traceability and Inter-

operability at Different Levels of Abstraction in Model-Driven
Engineering, Springer, Netherlands, pp. 263—-273. Applications of
specification and design languages for SoCs (2006)

. Constantopoulos, P., Jarke, M., Mylopoulos, J., Vassiliou, Y.: The

software information base: a server for reuse. The VLDB J. 4(1),
1-43 (1995). doi:10.1007/BF01232471

. Eclipse (2006) Eclipse modeling framework. http://www.eclipse.

org/emf. Accessed 3 January 2008

Egyed, A.: A scenario-driven approach to trace dependency analy-
sis. IEEE. Trans. Softw. Eng. 29(2), 116-132 (2003). doi:10.1109/
TSE.2003.1178051

Evenson, M., Schreder, B.: SemBiz deliverable: D4.1 use case def-
inition and functional requirements analysis, (2007). http://sembiz.
org/attach/D4.1.pdf

Frankel, D.: Model Driven Architecture: Applying MDA to Enter-
prise Computing. Wiley, New York (2002)

Galvao, I., Goknil, A.: Survey of traceability approaches in model-
driven engineering. In: EDOC, pp. 313-326 (2007)

Gotel, O., Finkelstein, A.: Contribution structures [requirements
artifacts]. In: Proceedings of 1995 IEEE International Sympo-
sium on Requirements Engineering (RE’95), pp. 100-107, (1995).
doi:10.1109/ISRE.1995.512550

Hayes, J.H., Dekhtyar, A., Osborne, J.: Improving requirements
tracing via information retrieval. In: Requirements Engineering
Conference. Proceedings 11th IEEE International, pp. 138-147
(2003)

Hentrich, C., Zdun, U.: Patterns for process-Oriented integration
in service-oriented architectures. In: Proceedings of the 11th Euro-
pean Conference on Pattern Languages of Programs (EuroPLoP
20006), Irsee, Germany, pp. 1-45 (2006)

Holmes, T., Tran, H., Zdun, U., Dustdar, S. (2008) Modeling
human aspects of business processes—a view-based, model-driven
approach. In: Schieferdecker, 1., Hartman, A., (eds) 4th Euro-
pean Conference on Model Driven Architecture Foundations and
Applications (ECMDA-FA) 2008. Springer, LNCS, vol. 5095,
pp. 246-261

IBM (2006) Travel booking process. http://publib.boulder.ibm.
com/bpcsamp/scenarios/travelBooking.html. Accessed 17 April
2008)

Intalio, Inc (2006) Eclipse STP BPMN Modeler. http://www.
eclipse.org/bpmn. Accessed 9 May 2008

Kindler, E.: On the semantics of EPCs: a framework for resolving
the vicious circle. In: Business Process Management, pp. 8§2-97
(2004)

von Knethen, A., Paech, B., Kiedaisch, F., Houdek, F.: System-
atic requirements recycling through abstraction and traceability. In:
Requirements Engineering, 2002. Proceedings. IEEE Joint Inter-
national Conference on, pp. 273-281, (2002). doi:10.1109/ICRE.
2002.1048538

Kozlenkov, A., Zisman, A.: Are their design specifications consis-
tent with our requirements? In: RE ’02: Proceedings of the 10th
Anniversary IEEE Joint International Conference on Requirements
Engineering, IEEE Computer Society, Washington, DC, USA,
pp. 145-156 (2002)

Letelier, P.: A framework for requirements traceability in UML-
based projects. In: Proceedings of the 1st International Workshop
on Traceability in Emerging Forms of Software Engineering—17th
IEEE International Conference on Automated Software Engineer-
ing, pp. 32-41 (2002)

Lindvall, M., Sandahl, K.: Practical implications of traceability.
Softw Pract Exp 26(10), 1161-1180 (1996). doi:10.1002/
(SICI)1097-024X(199610)26:10<1161::AID-SPE58>3.3.CO;
2-0

Lucia, A.D., Fasano, F., Oliveto, R., Tortora, G.: Recovering
traceability links in software artifact management systems using

@ Springer

http://www.activevos.com/community-open-source.php
http://www.activevos.com/community-open-source.php
http://dx.doi.org/10.1147/sj.453.0515
http://dx.doi.org/10.1109/TSE.2002.1041053
http://dx.doi.org/10.1109/TSE.2002.1041053
http://dx.doi.org/10.1007/BF01232471
http://www.eclipse.org/emf
http://www.eclipse.org/emf
http://dx.doi.org/10.1109/TSE.2003.1178051
http://dx.doi.org/10.1109/TSE.2003.1178051
http://sembiz.org/attach/D4.1.pdf
http://sembiz.org/attach/D4.1.pdf
http://dx.doi.org/10.1109/ISRE.1995.512550
http://publib.boulder.ibm.com/bpcsamp/scenarios/travelBooking.html
http://publib.boulder.ibm.com/bpcsamp/scenarios/travelBooking.html
http://www.eclipse.org/bpmn
http://www.eclipse.org/bpmn
http://dx.doi.org/10.1109/ICRE.2002.1048538
http://dx.doi.org/10.1109/ICRE.2002.1048538
http://dx.doi.org/10.1002/(SICI)1097-024X(199610)26:10<1161::AID-SPE58>3.3.CO;2-O
http://dx.doi.org/10.1002/(SICI)1097-024X(199610)26:10<1161::AID-SPE58>3.3.CO;2-O
http://dx.doi.org/10.1002/(SICI)1097-024X(199610)26:10<1161::AID-SPE58>3.3.CO;2-O

H. Tran et al.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

information retrieval methods. ACM Trans Softw Eng Methodol
16(4), 13 (2007). doi:10.1145/1276933.1276934

Lucia, A.D., Oliveto, R., Tortora, G.: Adams re-trace: traceability
link recovery via latent semantic indexing. In: ICSE ’08: Proceed-
ings of the 30th International Conference on Software Engineering,
ACM, New York, NY, USA, pp. 839-842. doi:10.1145/1368088.
1368216 (2008)

Mider, P., Philippow, I., Riebisch, M.: A traceability link model
for the unified process. In: SNPD (3), pp. 700-705 (2007)

Mader, P., Gotel, O., Philippow, I.: Rule-based maintenance of post-
requirements traceability relations. In: International Requirements
Engineering, 2008. RE ’08. 16th IEEE, pp. 23-32. doi:10.1109/
RE.2008.24 (2008)

Maletic, J.I., Munson, E.V., Marcus, A., Nguyen, T.N.: Using a
hypertext model for traceability link conformance analysis. In:
TEFSE’03: 2nd International Workshop on Traceability in Emerg-
ing Forms of Software Engineering (2003)

Marcus, A., Maletic, J.I.: Recovering documentation-to-source-
code traceability links using latent semantic indexing. In: ICSE
’03: Proceedings of the 25th International Conference on Software
Engineering, pp. 125-135, IEEE Computer Society, Washington,
DC, USA (2003)

Mayr, C., Zdun, U., Dustdar, S.: Model-driven integration and man-
agement of data access objects in process-driven SOAs. In: Service-
Wave, pp. 62-73 (2008)

Mendling, J., Hafner, M.: From inter-organizational workflows to
process execution: generating BPEL from WS-CDL. In: OTM
Workshops, pp. 506-515, (2005). doi:10.1007/11575863_70.
http://www.springerlink.com/content/dkmc5vy9l4j7j4j/
Mendling, J., Ziemann, J.: Transformation of BPEL Processes to
EPCs. In: Proceedings of the 4th GI Workshop on Event-Driven
Process Chains (EPK 2005), vol. 167, pp. 41-53, (2005). http://wi.
wu-wien.ac.at’/home/mendling/publications/05-EPK.pdf
Mendling, J., Lassen, K.B., Zdun, U.: Transformation strategies
between block-Oriented and graph-oriented process modelling lan-
guages. Technical Report JIM-200510 -10, WU Vienna (2005)
Naslavsky, L., Ziv, H., Richardson, D.J.: Towards traceability of
model-based testing artifacts. In: A-MOST ’07: 3rd International
Workshop on Advances in Model-based Testing, pp. 105-114,
ACM, New York, NY, USA (2007). doi:10.1145/1291535.1291546
OASIS: Business process execution language (WSBPEL)
2.0. http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.
pdf (2007)

Oldevik, J., Neple, T.: Traceability in model to text transforma-
tions. In: 2nd ECMDA Traceability Workshop (ECMDA-TW),
pp. 17-26 (2006)

OMG (2003) Model-driven architecture (MDA) Guide V1.0.1.
http://www.omg.org/cgi-bin/doc?omg/03-06-01.pdf. Accessed 2
September 2007

OMG: second revised submission to the MOF Model to text trans-
formation RFP. 2005, Object Management Group. http://www.
omg.org/cgi-bin/apps/doc?ad/05-11-03.pdf (2005a)

OMG: unified modelling language (UML) 2.0. http://www.omg.
org/spec/UML/2.0 (2005b)

OMG: object constraint language(OCL) 2.0. http://www.omg.org/
spec/OCL/2.0 (2006)

OMG: business process modeling notation (BPMN) 1.1. http:/
www.omg.org/spec/BPMN/1.1 (2008)

openArchitectureWareorg ~ (2002) openArchitectureWare—
a modular MDA/MDD generator framework. http://www.
openarchitectureware.org. Accessed 23 October 2007

Ouyang, C., Dumas, M., ter Hofstede A.H.M., van der Aalst
W.M.P.: From BPMN process models to BPEL web services. In:
IEEE International Conference on Web Services, pp. 285-292
(2006)

@ Springer

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.
57.

58.

59.

60.

Pohl, K.: PRO-ART: enabling requirements pre-traceability. In:
ICRE, pp. 76-85 (1996)

Ramesh, B., Dhar, V.: Supporting systems development by captur-
ing deliberations during requirements engineering. IEEE. Trans.
Softw. Eng. 18(6), 498-510 (1992). doi:10.1109/32.142872
Ramesh, B., Jarke, M.: Toward reference models for requirements
traceability. IEEE. Trans. Softw. Eng 27(1), 58-93 (2001). doi:10.
1109/32.895989

Recker, J., Mendling, J.: On the translation between BPMN and
BPEL: conceptual mismatch between process modeling languages.
In: Eleventh International Workshop on Exploring Modeling Meth-
ods in Systems Analysis and Design (EMMSAD’06), pp. 521-532
(2006)

Spanoudakis, G., Zisman, A.: Software traceability: a roadmap,
vol. 3, Handbook of Software Engineering and Knowledge
Engineering: Recent Advances edn, World Scientific Publish-
ing, pp. 395-428. http://www.ecsi-association.org/ecsi/main.asp?
11=library&fn=def&id=514 (2005)

Spanoudakis, G., Zisman, A., Pérez-Mifana,
P: Rule-based generation of requirements traceabil-
ity relations. J. Syst. Softw. 72(2), 105-127 (2004).
doi:10.1016/S0164-1212(03)00242-5. http://www.
sciencedirect.com/science/article/B6VON-4B5BH76-1D/2/
ee36et777944b21af3c03a604ec521£7

Stahl, T., Volter, M.: Model-Driven Software Development: Tech-
nology, Engineering, Management. Wiley, New York (2006)
Tran, H., Zdun, U., Dustdar, S.: View-based and Model-driven
approach for reducing the development complexity in process-
driven SOA. In: Intlernational Conference on Business Process
and Services Computing (BPSC), GI, LNI, vol. 116, pp. 105-124
(2007)

Tran, H., Zdun, U., Dustdar, S (2008) View-Based reverse
engineering approach for enhancing model interoperability
and reusability in process-driven SOAs. In: Mei H (ed.), 10th
International Conference on Software Reuse, ICSR 2008,
Springer, LNCS, vol. 5030, pp. 233-244. doi:10.1007/
978-3-540-68073-4_23

Tran, H., Holmes, T., Zdun, U., Dustdar, S. (2009) Modeling pro-
cess-driven SOAs—a view-based approach, handbook of research
on business process modeling edn, Information Science Ref-
erence, chap 2. http://www.igi-global.com/reference/details.asp?
ID=33287

W3C (1999) XML Path Language (XPath) 1.0. http:/www.w3.
org/TR/xpath. Accessed 8 July 2008

W3C (2001) Web Services Description Language 1.1
Walderhaug, S., Stav, E., Johansen, U., Olsen, G.K.: Traceabil-
ity model-driven software development, information science refer-
ence, pp. 133-160. Designing software-intensive systems—meth-
ods and principles (2008)

Ziemann, J., Mendling, J.: EPC-Based modelling of BPEL Pro-
cesses: a pragmatic transformation approach. In: Proceedings of
the 7th International Conference “modern information technol-
ogy in the innovation processes of the industrial enterprises”
(MITIP 2005), (2005). http://wi.wu-wien.ac.at/home/mendling/
publications/05-MITIP.pdf

Zisman, A., Kozlenkov, A.: Managing inconsistencies in UML
specifications. In: Proceedings of the ACIS Fourth International
Conference on Software Engineering, Artificial Intelligence, Net-
working and Parallel/Distributed Computing (SNPD’03), October
16-18, 2003, Liibeck, Germany, ACIS, pp. 128-138 (2003)
Zisman, A., Spanoudakis, G., Pérez-Mifana, E., Krause, P.: Trac-
ing software requirements artifacts. In: Proceedings of the Interna-
tional Conference on Software Engineering Research and Practice,
SERP ’03, June 23-26, 2003, Las Vegas, Nevada, USA, CSREA
Press, pp. 448-455 (2003)

E., Krause,

http://dx.doi.org/10.1145/1276933.1276934
http://dx.doi.org/10.1145/1368088.1368216
http://dx.doi.org/10.1145/1368088.1368216
http://dx.doi.org/10.1109/RE.2008.24
http://dx.doi.org/10.1109/RE.2008.24
http://dx.doi.org/10.1007/11575863_70
http://www.springerlink.com/content/dkmc5vy9fl4j7j4j/
http://wi.wu-wien.ac.at/home/mendling/publications/05-EPK.pdf
http://wi.wu-wien.ac.at/home/mendling/publications/05-EPK.pdf
http://dx.doi.org/10.1145/1291535.1291546
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.pdf
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.pdf
http://www.omg.org/cgi-bin/doc?omg/03-06-01.pdf
http://www.omg.org/cgi-bin/apps/doc?ad/05-11-03.pdf
http://www.omg.org/cgi-bin/apps/doc?ad/05-11-03.pdf
http://www.omg.org/spec/UML/2.0
http://www.omg.org/spec/UML/2.0
http://www.omg.org/spec/OCL/2.0
http://www.omg.org/spec/OCL/2.0
http://www.omg.org/spec/BPMN/1.1
http://www.omg.org/spec/BPMN/1.1
http://www.openarchitectureware.org
http://www.openarchitectureware.org
http://dx.doi.org/10.1109/32.142872
http://dx.doi.org/10.1109/32.895989
http://dx.doi.org/10.1109/32.895989
http://www.ecsi-association.org/ecsi/main.asp?l1=library&fn=def&id=514
http://www.ecsi-association.org/ecsi/main.asp?l1=library&fn=def&id=514
http://dx.doi.org/10.1016/S0164-1212(03)00242-5
http://www.sciencedirect.com/science/article/B6V0N-4B5BH76-1D/2/ee36ef777944b21af3c03a604ec521f7
http://www.sciencedirect.com/science/article/B6V0N-4B5BH76-1D/2/ee36ef777944b21af3c03a604ec521f7
http://www.sciencedirect.com/science/article/B6V0N-4B5BH76-1D/2/ee36ef777944b21af3c03a604ec521f7
http://dx.doi.org/10.1007/978-3-540-68073-4_23
http://dx.doi.org/10.1007/978-3-540-68073-4_23
http://www.igi-global.com/reference/details.asp?ID=33287
http://www.igi-global.com/reference/details.asp?ID=33287
http://www.w3.org/TR/xpath
http://www.w3.org/TR/xpath
http://wi.wu-wien.ac.at/home/mendling/publications/05-MITIP.pdf
http://wi.wu-wien.ac.at/home/mendling/publications/05-MITIP.pdf

VbTrace: Using view-based and model-driven development

Author Biographies

Huy Tran is a PhD student at
the Distributed Systems Group,
Institute of Information Systems,
Vienna University of Technol-
ogy, Austria. Huy received his
Bachelor (2002) at Ho Chi Minh
City University of Technology
in Computer Science and Engi-
neering. His research interests
include domain-specific model-
ing, model-driven engineering,
SOA and process-driven SOAs,
and business process modeling.

Uwe Zdun is an assistant
professor at the Distributed
Systems Group, Institute of
Information Systems, Vienna
University of Technology, Aus-
tria. Prior to that, Uwe has
worked as an assistant professor
in the Department of Informa-
tion Systems at the Vienna Uni-
versity of Economics and BA,
Austria. His research interests
include software patterns, soft-
ware architecture, SOA, distrib-
uted systems, language engineer-
ing, and object orientation. He
received his doctoral degree in

computer science from the University of Essen in 2002, and his habilita-
tion degree (venia docendi) from Vienna University of Economics and
BA in 2006. He is coauthor of the books Remoting Patterns (John Wiley
& Sons, 2004) and Software-Architektur (Elsevier/Spektrum, 2005).

Schahram Dustdar is a Full
Professor for Internet Technol-
ogies and director of the Dis-
tributed Systems Group, Institute
of Information Systems, Vienna
University of Technology (TU
Wien). He is also Honorary Pro-
fessor of Information Systems
at the Department of Comput-
ing Science at the University
of Groningen (RuG), The Neth-
erlands. He received his M.Sc.
(1990) and PhD. degrees (1992)
in Business Informatics from the
University of Linz, Austria. In
April 2003 he received his habil-
itation degree (venia docendi) in
Computer science.

@ Springer

	VbTrace: using view-based and model-driven developmentto support traceability in process-driven SOAs
	Abstract
	1 Introduction
	2 View-based modeling framework for process-driven SOAs
	3 View-based, model-driven traceability framework
	3.1 Fundamentals of the view-based, model-driven traceability framework
	3.2 View-based traceability meta-model
	3.3 View-based, model-driven traceability framework architecture
	3.4 View-based modeling and traceability tool-chain

	4 Tool support and case study
	4.1 View-based, model-driven integrated development environment
	4.2 CRM Fulfillment process
	4.3 CRM Fulfillment process development and traceability
	4.4 Leveraging VbTrace---a sample traceability path

	5 Related work
	6 Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

