
Towards Web Services Interaction Mining Architecture
for e-commerce applications analysis

ROBERT GOMBOTZ1, KARIM BAÏNA2, and SCHAHRAM DUSTDAR1

1 Distributed Systems Group, Vienna University of Technology, AUSTRIA

2 ENSIAS, Université Mohammed V - Souissi, B.P. 713 Agdal Rabat, MOROCCO
r.gombotz@infosys.tuwien.ac.at, baina@ensias.ma, dustdar@infosys.tuwien.ac.at

Abstract: - Nowadays, Web service technology plays an increasing role in internet applications, in
general, and e-commerce applications, in particular. In fact, service-oriented systems can be expected to
grow larger in complexity. Such large systems demand for tools that allow for analyzing and monitoring
of service-oriented systems in use. Our work attempts to draw the necessary architecture in order to
analyze interactions between Web service consumer and provider. WSIM modelling architecture is built
over three layers : Web service operations, interactions and workflows. The paper aim is to present WSIM
modelling architecture and how it could be implemented to support existing Web service applications (e.g.
e-commerce applications).

Key-words: e-Commerce Services, Web service interactions, Web service logging, Web service mining

1 Introduction
It becomes obvious that Web service (a.k.a.
WS) technology will be indispensable in
building and integrating internet applications
(e.g. CRM, SCM, e-commerce applications)
[1]. Those service-based applications are
expected to grow larger in complexity. In
order to make WS applications easier to use
and maintain for providers and customers,
interesting challenges are highlighted:
o Discovering complex patterns within

Web Services applications (e.g.
identifying reconfigurable web service
architectural patterns, runtime web
service behavioural patterns)

o Supervising and monitoring of Web
Services applications (e.g. by building
analysis and administration scoreboards
for web-service based applications)

Within this problematic, our work propose
modelling and implementation architectures
for Web Service interactions analysis.
Mining describes the process of discovering
knowledge in large amounts of data (in our
case Web Service applications data). Our
contribution is not specific to a mining
technique; it proposes generic architectural

bricks so using of specific mining technique
could be always possible.
The remainder of this paper is structured as
follows. Firstly, we present our WSIM
modelling and implementation architecture,
and finally we discuss related works before
concluding.

2 Web Services Interaction Mining
– Modelling Architecture
We develop our Web Services Interaction
Mining (a.k.a. WSIM) approach with regards
to three levels of abstraction that represent
three complementary Web services ”views”.
Figure 2 depicts a stack of views on Web
services. As one goes from the top to the
bottom, the level of abstraction falls and we
are looking at things in higher detail.

Fig. 2. Web Service Mining Levels
In the following subsections we will detail
each of the three WSIM architecture levels.

K
no

w
le

dg
e

D
is

co
ve

ry Web services Workflows

Web Services
Interactions

Web Services
Operations

For each level, we present a normative
format of log entries, or a log specification,
as well as simple examples of log records.
By normative we mean log formats the way
we would like them to be. The focus is not
yet on how to keep these logs or on who
should provide them. This issue will be
discussed in the next section thereafter.

2.1 Web service Operations Mining level
On the Web service Operation level, we
want to examine only one single Web
service and its internal behaviour (e.g.
interface, conversation protocol [2]). We
will not concern ourselves with a Web
service’s interactions with other Web
services or applications, but rather focus on
its functionality as if it were alone in the
world. Furthermore, the focus might even be
on just one operation of the Web service.
However, we also want to examine the Web
service as a whole. Relating this to mining, a
given log output of the Web service shall be
analyzed to gain information about its
behaviour. Figure 4 shows Web Service
Operation Log Model. Each OperationEvent
of this OperationLog is described by an
Activity (i.e. operation name), a Performer
(the Web Service client), a status (either
Start or Complete), and a TimeStamp (the
current datetime).

Fig. 4. Class diagram of operation log Model

The following example gives a Web Service
OperationLog sample according to Web

Service Operation Log Model shown in
Figure 4 :
Start - acceptOffer - customer05 - 2003:01:02:15:45
Complete - acceptOffer - customer05 - 2003:01:02:15:46
Start - executeCooperation - customer05 - 2003:01:28:06:00

Complete - evaluateOffer - customer09 - 2003:01:07:10:23
Start - rejectOffer - customer09 - 2003:01:07:14:03
Complete - executeCooperation - customer05 - 2003:07:27:18:00

2.2 Web Service Interactions Mining level
On the Web service Interaction level, we
again focus our attention to one Web service,
but also want to take into account its “direct
neighbours”. The term “direct neighbours”
refers to other Web services that the
examined WS interacts with. Such
interactions may be explicit, i.e. defined in a
composition language (e.g. BPEL), or
implicit, i.e. calls to other WS from within
the Web service’s implementation. Explicit
interactions are also said to be declarative,
implicit interactions are also called
programmatic. On this level we want to
mine log data for further information about
the Web service’s interactions with others.
This information could reveal interesting
facts about a Web service’s interaction
partners, such as critical dependencies. In
order to be able to mine for programmatic
interactions between WS we need those
interactions to be logged. The four basic
types of interactions between Web services
are one-way, request-response, solicit-
response and notification. Figure 7 shows
Web Service Interaction Log Model. Each
InteractionEvent of this InteractionLog is
described by an identifier marking it as an
interaction entry, an identifier of whether the
interaction is one-way (asynchronous) or
two-way (synchronous), an identifier of
where within the interaction we are, an
identifier concerning the interaction partner,
an identifier of the activity that is being
performed, and a timestamp. The identifier
marking the type of log entry could be
simply “int”, which is short for interaction.
The following identifier can be “sync”,
stating that the interaction is two-way, or

synchronous. The next identifier should
mark the “state” of the interaction and can be
one of the following : “sendRequest”
indicates that the interaction was just
initiated; “receiveRequest” (logged by the
second entity involved) states that the
request was received. That second entity
would then declare it has replied by logging
“sendResponse”. Finally, the initiator of the
interaction would log “receiveResponse”.

Fig. 7. Class diagram of interaction log

Model
Figure 8 depicts an interaction graph for
Web service A, i.e., the result of mining on
the Web services Interactions level with the
focus on Web service A. It contains one
example of each of the four basic types of
interactions between WS. One-way
interaction is depicted as a unidirectional,
lined arrow pointing from the initiator to the
called WS. Two-way interaction is depicted
as a bidirectional lined arrow.

Fig. 8. interaction graph for Web service A

Interaction (1) between A and LogService is
one-way. Interaction (2) between A and B, is

of type solicit-response. Interaction (3)
between A and C is of type request-response,
and is initiated by C. Interaction (4) between
A and D in a notification, where D sends an
unanswered message to WS A. In the
following we give the four Web Service
InteractionLogs according to Web Service
Interaction Log Model shown in Figure 7.

A InteractionLog
async - oneWay - log - LogService - 2003:01:02:7:03

sync - sendRequest - query - B -2003:01:02: 8:01
sync - receiveResponse - query - B - 2003:01:02:8:04

async - receiveRequest - returnStatus - C - 2003:01:02:9:02
async - sendResponse - returnStatus - C - 2003:01:02:9:03

async - notification - update - D - 2003:01:02:10:02

LogService InteractionLog
async - notification - loggingRecord - A - 2003:01:02:7:04

B InteractionLog
sync - receiveRequest - inform - A - 2003:01:02:8:02
sync - sendResponse - inform - A - 2003:01:02:8:03

C Interaction Log
async - sendRequest - requestStatus - A - 2003:01:02:9:01
async - receiveResponse - requestStatus - A - 2003:01:02:9:04

D Interaction Log
async - oneWay - sendUpdate - A - 2003:01:02:10:01

2.3 Web Service Workflows Mining level
The highest level of abstraction is the Web
service Workflow level. As the name
suggests, the focus is on large-scale
interactions and collaborations of Web
services which together form an entire
workflow. The interaction graphs built
through WSIM on the Interaction level do
not contain any information on workflows.
They display all interactions of a WS, no
matter what workflow they belong to. On
this level, we want to examine the execution
of the entire process. Here we will be able to
benefit from the results and findings of
researchers in the field of process mining.
Even though our current focus is on mining,
it must be stressed that once a mining effort
is completed (with respect to its primary
goals of building a model of a process), it

should be continued and serve the purpose of
monitoring. Therefore, future log data
should constantly be analyzed and compared
to the model established in the initial mining
process. One might find exceptions in future
behaviour of the examined system, or - in an
even more undesirable case - find that the
initial model was built on false assumptions,
possibly because of insufficient log data.
On the workflow level, we want to apply
process mining to a service-oriented system.
To do that, our log specifications need to be
extended. In order for workflow mining to
be possible, log entries need to include
workflow information. Figure 4 shows Web
Service Workflow Log Model. Each
WorkflowEvent of this WorkflowLog
extends a InteractionEvent by referring a
processID, and an instanceID. The
processID specifies the workflow, or
business process that is currently being
executed.

Fig 9. Class diagram of workflow log Model

In the following we give A Web Service
WorkflowLog according to Web Service
Workflow Log Model shown in Figure 9.

A WorkflowLog (for processID = 101 and
instanceID = 13)
101 - 13 - async - oneWay - log - LogService - 2003:01:02:7:03

101 - 13 - sync - sendRequest - query - B -2003:01:02: 8:01
101 - 13 - sync - receiveResponse - query - B - 2003:01:02:8:04

101-13-async-receiveRequest-returnStatus - C - 2003:01:02:9:02
101-13-async-sendResponse-returnStatus - C - 2003:01:02:9:03

101 - 13 - async - notification - update - D - 2003:01:02:10:02

Reconsider now our four Web Srevices A-D,
each performing a single, independent task.

The sum of these tasks might be a business
process. Every entity involved in the process
provides event-based data, which is logged.
An event occurs, when an activity is started
and when it is completed. In a simple case,
the data provided should consist of the
identifier of the activity that is being
performed, the event type, which can be
”started” or ”completed”, and a time stamp.
After a sufficient amount of log data has
been collected one can mine this logging
information for patterns and thereby find that
e.g. an activity A is always performed before
activity B. Activity B in turn is always
performed before activity C, and sometimes,
but not always before D. Activities B and D
are also always completed before the
execution of C starts. From this information
one could derive the simple workflow model
shown in Figure 10.

Fig. 10. Simple workflow model

3 Web Services Interaction Mining
– Implementation Architecture
In this section we focus on discussing
implementation aspects. Figure 12 details
WSIM components and their coordination as
follows:
1. Event Sensors: Starting from Web
services executions and interactions, events
are intercepted by different log sensors and
gathered into logs. Figure 11 gives a more
detailed look on an interaction layers
between two WS. It also contains the
involved entities, i.e., the Web services, the
WS containers that manage the WS, the
hosts the WS containers are running on, and
the SOAP message that is being exchanged
between the Web services. One of our core
assumptions is therefore that the WS we

want to mine use SOAP (over HTTP) to
communicate, or interact. Within this

context, event sensors may be from three
different levels:

Fig. 11. Web Service Interaction layers between two Web Servces

(a) Web server (host) level: Web service

interaction messages are intercepted at
HTTP-listener level. This approach
allows to monitor all incoming requests
to the Web server engine and their
corresponding responses (e.g. with
tools like TCP Tunnel/Monitor tool as
part of the Apache SOAP package31).
An advantage of this approach is that it
is 100% platform/vendor independent.
WSs (using SOAP over HTTP)
deployed in any engine could be
monitored. The disadvantage is that, at
this general level, other web resources
might be deployed on the Web server
engine, and we need to select only
SOAP messages and neglect other
HTTP messages that we do not care
about;

(b) Web service container level: Web
service interaction messages are
intercepted at the SOAP-listener level
before they are passed to the web
service (e.g. with tools like Mindreef’s
SOAPscope 3.042. An advantage of
this approach is that all (and only)
SOAP messages are intercepted. A
clear disadvantage is that this approach
is 100% platform/vendor dependent.
Actually, the event sensor will depend
on the SOAP-listener and its hosting
environment with the Application
server (e.g. the specific servlet SOAP-

1 The Apache Software Foundation, ws.apache.org/soap
2 Mindreef SOAPscope,
www.mindreef.com/products/overview.html

listener and the Java Virtual Machine
within Tomcat53);

(c) Web service level: Web service
interaction messages are logged by the
Web service itself. Actually, the WS
passes the SOAP message to the event
sensor directely through its API. An
advantage of this approach is that the
WS logs additional information that
will make Web service Mining easy
(e.g. adding the Web service related
workflow ”processID” and
”instanceID” necessary in Workflow
mining level within the logged SOAP-
message header). Another advantage is
that, since Web service logs itself
SOAP-messages in its known event
sensor, the Web service will provide
plain-text instead of eventual encrypted
SOAP-messages that will be hardly
used by the Web service Logger and
Miner. A clear disadvantage is that this
approach is 100% Web service
dependent, and needs additional
implementation efforts. Moreover,
interactions of WSs developed prior to
WSIM could not be intercepted by this
kind of event sensors.

3 The Apache Software Foundation,
jakarta.apache.org/tomcat

Fig. 12. WSIM Components Overview

2. Event Adapters: To keep the intercepted
events homogeneous, and usable by to our
web Service log model, and adaption step is
necessary. Actually, event adapters translate
those non-structured web service events into
our web Service log model compliant XML
structures;
3. Web Service Logger: In this step, XML
formatted events are filtered according to
their abstraction level into three different
logs implementing operations, interactions,
and workflow log models;
4. Web Service Miner: Till this step, we
possess XML structured logs that can be
analysed by any mining tool and particularly
our Web Service Miner that is an extension
of WorkflowMiner [8, 3, 4]. Our Web
Service Miner has two components
XML2PrologWrapper and a LogAnalyser
that specify WorkflowMiner context with
Web service interaction graph context:

(a) XML2Prolog Wrapper: To enable
events log to be easily minable in our
Web Service Miner, these logs are
wrapped into a common 1st order
logic format, compliant with UML
class diagrams shown in figures 4
and 7;

(b) Log Analyser: Mining rules are
applied on resulted 1st order log
events to discover Web service
interaction patterns that are
synthesised into a Web service
interaction graph. We use a Prolog-
based presentation for log events,

and mining rules using the XProlog
system64;

5. Since a Web service interaction graph is
discovered, the Web service designer will
have a look on the developed web service to
restructure or redesign his Web service
interactions.

4 Related works
Valuable research results have been
achieved in data mining, process mining, and
web mining. However, the idea of Web
service Interaction mining as proposed in
this paper, is yet a new hot research topic. In
this section, we discuss process mining
works that are the most relevant to our area.
Process mining is the major issue in WSIM
on the Workflow level. [5] provides an
overview of the ideas behind process
mining, or workflow mining. They describe
process mining as ”a method of distilling a
structured process description from a set of
real executions”.
Also, the major challenges in process mining
are discussed in detail, which gives the
reader a very good idea of the problems one
might be faced with. These challenges are
e.g., mining hidden tasks, mining non-free-
choice constructs or loops, dealing with
noise and incompleteness or gathering data
from heterogeneous sources. Furthermore,
an overview over different mining
algorithms is given as well as a brief

4 XProlog, www.iro.umontreal.ca/~vaucher/XProlog/

description of the other papers which are
part of this special issue on process mining.
In [6], a detailed description of, what the
input data should look like in order to allow
for the mining of exact workflow models is
presented. Some of these specifications are
used in section 3 of this paper where we
present our suggestions of log specifications.
Furthermore, [6] elaborates in detail on a
step-by-step description of the workflow
mining process itself. This process includes
the pre-processing of workflow logs and the
building of sub-models.
The theoretical description of the process is
followed by an example, which improves the
reader’s understanding of process mining
significantly. Also, an implementation of the
algorithm is presented in the form of an
application named Process Miner. In order to
monitor business process quality, [8]
proposes a solution, based on data
warehousing and mining techniques for
analyzing, predicting, and preventing the
occurrence of exceptions. Other works in
process mining focus on discovering
workflow transactional behaviour among
workflow instance through execution log [7].

5 Conclusion and Perspectives
In this paper we have outlined our novel idea
of Web Service Interaction Mining (WSIM).
We have identified three levels of
abstraction with respect to WSIM: the
operation level, the interaction level and the
workflow level. The term mining implies
that available log data should be analyzed to
acquire additional knowledge about a
system. We believe that developing Web
services with consideration for WSIM can
significantly improve the manageability of a
WS or of an entire service-oriented system.
We especially discussed WSIM on the
operations and interactions level. The
information regarding all interaction partners
can be vital during e.g., an impact analysis
of changes made to a Web service. In the

near future we will therefore direct our
attention to developing an easy-to-use
framework that allows for the
implementation of WS which are ready for
WSIM. However, we also want to take into
consideration Web services that have already
been deployed. In our future work, we will
examine standard logging and mining tools
and test their integration usability within
WSIM. Especially on the Web services
interactions level we see some opportunities
of mining for Web service interactions,
which were discussed in this paper. WSIM
on the workflow level seems to pose the
greatest difficulties. As we have shown,
WSIM on the workflow level does require
additional development effort. A
workflowID and an instanceID are needed
and can only be available if provided by the
WS itself.

References
[1] G. Alonso, F. Casati, H. Kuno, and V. Machiraju. Web
Services Concepts, Architectures and Applications. Data-
Centric Systems and Applications, 2004. Springer Verlag.
[2] K. Baïna, B. Benatallah, F. Casati, and F. Toumani.
Model-Driven Web Service Development. The 16th
International Conference on Advanced Information Systems
Engineering (CAiSE’04), pp. 290-306, LNCS 3084, Riga,
Latvia, June 7-11, 2004, Springer Verlag.
[3] W. Gaaloul, S. Alaoui, H. Bakkali, K. Baïna, and C.
Godart. WorkflowMiner : An infrastructure for Mining
Workflow Patterns. 3mes Journes Nationales sur les
Systèmes Intelligents : Théories et Applications (SITA’04),
Rabat, Morocco, 6-7 Dec. 2004.
[4] W. Gaaloul, S. Alaoui, K. Baïna and C. Godart. Mining
Workflow Patterns through
Event-data Analysis. The IEEE/IPSJ International
Symposium on Applications and the Internet (SAINT’05).
Workshop 6 Teamware: supporting scalable virtual teams in
multi-organizational settings, Trento, Italy, 31 Jan. - 4 Feb.
2004, IEEE Computer Society Press.
[5] W. M. P. Van der Aalst, and A. J. M. M. Weijters.
Process mining: a research agenda. Computers in Industry
53, 2003, Elsevier B.V.
[6]. G. Schimm. Mining exact models of concurrent
workflows. Computers in Industry 53, 2003, Elsevier B.V.
[7] D. Grigori, F. Casati, U. Dayal, M-C Shan. Improving
Business Process Quality
through Exception Understanding, Prediction, and
Prevention. (VLDB’01), Roma, Italy.
[8] W. Gaaloul, S. Bhiri, and C. Godart. Discovering
Workflow Transactional Behavior From Event-Based Log.
(CoopIS’04), Agia Napa, Cyprus, 25-29 Oct. 2004,
Springer Verlag

