
Towards Autonomic Processes and Services

Schahram Dustdar

Distributed Systems Group
Institute of Information Systems

Vienna University of Technology,
Vienna, Austria

{dustdar@infosys.tuwien.ac.at}

Abstract. More than ever, computing devices are becoming more powerful and
networked, organizational boundaries are dissolving, and underlying informa-
tion systems become more complex, thus requiring higher degrees of autonomic
behavior of the business processes and software services they support. In this
keynote talk the main challenges towards building the required novel
conceptual abstractions as well as needed technological implementations are
presented and discussed.

Keywords: Service-oriented Computing, Web services, Autonomic
Computing, Service Composition, Context-based services

1 Introduction

In the past several decades the industrial landscape changed dramatically. Novel
business models were increasingly introduced and successfully implemented. More
recently, the vision of Service-oriented Architecture (SOA) aims at providing a model
to allow realization of such novel, highly dynamic, adaptive, and composeable
information systems and services for such business models and processes. SOAs are,
in fact, mapping the real world unto the world of large-scale Internet-based
information systems. Today we find many businesses and industries being “service-
oriented”. For example, telecommunications, financial services, healthcare, logistics,
just to name a few. Those industries became “service-oriented” mainly through three
factors: specialization, standardization, and scalability. All those factors can be also
witnessed as being crucial in our educational systems. Standardization, in particular,
is an important factor in the world of SOAs and business processes. In fact, it seems
that – as we see in the real world in many examples (e.g., Starbucks) we increasingly
move to global standards of various products and services. In the Internet-world the
same principle is applied to SOAs: Standards are being agreed upon and introduced
(e.g., the Web services stack) and novel methods for building such global large-scale
systems are being promoted:

The SOA for the top-down enterprise-scale approach to business process design
and service composition (build once and use many times), and more recently, the

2 Schahram Dustdar

service mashup approach (build once and use once), for the bottom-up end-user
(consumer) driven approach to service composition. Service mashups have some
additional characteristics, such as more or less concurrent design and execution,
higher degree of user participation, and an overall agile approach to the development
process.

Why are those approaches to service composition and business process design and
management relevant at all? Why is it not enough to use workflow management
systems? Or is it enough? Well, in this paper, I argue that those traditional approaches
increasingly don’t work. The reasoning is as follows: Throughout the last decades we
have seen that organizational boundaries increasingly became fuzzy. Novel business
alliances, including mergers and acquisitions, are occurring. Such partnerships happen
more often and faster than previously. Furthermore, partnerships need to be highly
dynamic and flexible, often depending on special cases and on-demand policies. In
technical terms we can say that there is increasingly a need for information systems
integration, however, the assumptions as we knew them from the area of workflow
management systems (e.g., first you model, then you execute; after exceptions occur,
remodel your process and enact again) do not hold any longer due to the requirements
of highly dynamic, flexible and inter-connected organizations and people including
the products and services they offer, provide and produce. The distinction between
design (model or built) time and run time is starting to become obsolete. We need to
spend more energy on analyzing finer “granularities” of those “times”.

The remainder of the paper is organized as follows. Section 2 discusses our
assumptions with regard to current technology trends and summarizes lessons-learned
from four areas which are crucial to the topic of this paper, i.e., Infrastructure
Evolution, Software Evolution, Process Evolution, and Teamwork Evolution. Section
3 motivates the approaches chosen with an illustrative example. Section 4 discusses
the technical approaches we use in our research to solve those presented challenges.
Section 5 concludes the paper.

2 Assumptions

Before we propose technical approaches and argue why it makes sense to move
towards autonomic processes and services, we outline our assumptions on the relevant
technological landscape and context. The devices we use increasingly become
smaller, more powerful, cheaper, and always connected to networks. Basically, we
move towards a pervasive communications paradigm, where people are enabled to
communicate and coordinate their work activities anytime and from anywhere,
potentially with many devices. Such as pervasive underlying infrastructure model
implies the need for an efficient utilization model for hardware resources (e.g., Grid
computing) and software resources (e.g., Service-oriented Computing). The funda-
mental assumption in this domain is that we increasingly have complex, open and
dynamic infrastructures where business processes and services have to operate on. We
summarize our assumptions on four dimensions and subsequently discuss our
contributions and challenges in them.

Towards Autonomic Processes and Services 3

(1) Infrastructure Evolution. Complex, open and dynamic infrastructures
require all of their constituents to operate, to communicate, and to coordinate
constantly, in order to keep the overall system in a healthy mode. We can say
that this operational principle has some similarity with the human body, the
autonomous nervous system, respectively. Therefore, some research
communities refer to this research domain as “Autonomic Computing”.
However, currently the scientific community working in this domain mainly
focuses on lower layers of the software (e.g., operating systems) and hardware
stacks (e.g., networking) and intends to add autonomic features to the
underlying infrastructure including what is referred to as the self-* properties
(e.g., self-healing, self-configuring, self-adapting, self-organizing, self-
optimizing, etc.). We should note that not only the underlying infrastructure is
supposed to act autonomically; also higher levels of the software stack need to
be composed accordingly. To understand what the requirements for such a
higher level autonomic composition of processes and services are, we discuss
three main lessons learned from the most important parts of autonomic
processes and services:

(2) Software Evolution. Software requirements cannot be fully gathered upfront
or be frozen. Requirements are intrinsically decentralized and a complete
control and pre-plan are illusory. When software is changed, it impacts the
whole product, process, and service. Software Evolution is intrinsic to
software it is not a “post-delivery” nuisance. We basically have two strategies
to deal with mastering the complexity of software evolution: a “top-down
approach by (a) using process-driven and model-driven approaches to master
complexity and enterprise-scale change. This means that we build a (process
and service composition) model once and use it many times; or a “bottom-up
approach” (b) by using end user-driven composition or service mashups for
small-scale processes and service compositions (i.e., build once and use once).

(3) Process Evolution. When we analyze business processes today we see that
they typically go across multiple departments, potentially over multiple
organizations and countries and run on multiple systems. Unlike databases,
where one can query and ask for all customer order info, it is very difficult or
impossible to query such “process” related questions. The reason is that
business processes are instantiated not on one system only (e.g., a DBMS) but
rather leave traces in a plethora of information systems, including workflow
systems, databases, mail servers, document management systems, web servers,
and mail servers, just to name a few prominent examples. If we require
mechanisms to (semi) automatically adjust processes and service compositions
to new circumstances – and this is what the underlying assumption here is –
we require better abstractions and systems to allow us to do so. It is simply not
sufficient to make changes in, e.g., a workflow system since a process touches
multiple systems and affects them as well. Making those changes manually
does not scale.

4 Schahram Dustdar

(4) Teamwork Evolution. Over the past decades teamwork has evolved, both in
style and in form. “Classic” teamwork often involved solely intra-
departmental work with stable team configurations (i.e., team members did not
change frequently) and with long-lived time span (i.e., team members worked
together over many years). With the advent of the Internet, and the Web as a
communications and collaboration platform in particular, teamwork evolved
into what is known as “virtual teamwork”. This essentially means that a more
or less stable team usually from different organizations works together for a
limited amount of time (e.g., project-based). More recently, we find more team
forms, including nomadic teams (i.e., teams on the move) and nimble teams
(e.g., a team consisting of specialists to solve a particular problem). Both of
the latter team forms have in common that the team configuration may change
rapidly and often (e.g., due to network issues in MANETs or due to specialists
joining or leaving the team after they accomplished their mission).

Those categories of evolution (Infrastructure, Software, Process, Teamwork) require
novel strategies to deal with the design and enactment of supporting infrastructures
and information systems. Those novel strategies include self-* capabilities of the
underlying infrastructure on the one hand but also autonomic mechanisms on higher
levels of abstractions, including the business process levels and service composition
levels.

3 Illustrating example

In order to motivate the need for autonomic processes and services consider the
following example system: credit management system. Such a system typically
provides answers to questions such as: which credit is the right one for me? Credit
management is part of a larger system since it depends on issues such as various
insurance mechanisms, various repay models, legal and business regulations and
many models and regulations more. To summarize: The overall system for managing
such credit management features is inherently open, complex, and distributed because
interest rates, the status (context) of the credit taker (e.g., illness, insolvency etc.) all
have impact on the credit model and rates. The question is how should such an
information system be modeled? We argue that we require novel abstractions and
mechanisms to solve the problems in such open, complex and distributed scenarios.

4 Technical Approaches for Autonomic Processes and Services

As we have seen, to master complexity in information systems one requires strong
links between the parts of the systems (similar to the human autonomous nervous
system). Those relationships provide a fundamental framework for the processes and
service compositions to be “glued” together in a flexible and adaptive manner.

Towards Autonomic Processes and Services 5

In our research group, we contribute to the field of autonomic processes and
services with the following approaches, methods, and tools we develop: (1) Model-
driven compliance framework and approach, (2) Active service registries, (3) Service
search and clustering engines, and (4) Context-based and relevance-based service
composition and enactment.

4.1 Model-driven compliance framework

In this research [1] we contribute with a view-based and model-driven development
(MDD) approach to reduce the development complexity of the overall autonomic
systems. The framework consists of modeling elements such as a meta-meta-model,
meta-models, and views. As mentioned in the previous section, a view is a
representation of a process from the perspective of related concerns. In our
framework, a view is specified using an adequate framework's meta-model. Each
meta-model is a (semi-)formalized representation of a particular business process
concern. Therefore, the meta-model specifies entities and their relationships that can
appear in the correspondent view. The meta-models, in turn, are defined on top of the
meta-meta-model. The meta-meta-model can be simple or more elaborate like MOF.

4.2 Active Service Registries

In our research in active service registries [2] we address one fundamental
shortcoming of today’s SOA implementations, namely, dynamic binding and
invocation. We illustrate the set of today’s challenges by utilizing an example based
on which those shortcomings are analyzed henceforth. SOAs had foreseen the
publish-find/bind cycle (SOA triangle), whereas as today, most SOA implementations
use (for practical reasons) only the interaction between service requestor and service
provider with service contracts. This, of course, limits the envisaged potential of SOA
implementations considerably. In our research project VReSCO we provide a client-
side API to allow for dynamic binding and invocation of services to solve many of
today’s problem related to dynamic binding and invocation and its relationship to
registries. In this paper we discuss those implemented parts of our infrastructure
which can be of help when building large-scale SOAs requiring dynamic binding and
invocation.

4.3 Service search and clustering engines

In our research on service search engines and clustering [8] we presented a novel
distributed Web service search engine based on the Vector Space Model for
information retrieval. We have shown that our prototype implementation works even
for large WSDL repositories. Unlike other search engines, no template document
collection exists to evaluate the final precision/recall rating. To formally evaluate and
optimize the search engine’s performance parameters, a test-collection with
predefined results has to be established. Furthermore, the vector matrix is currently

6 Schahram Dustdar

uncompressed. By erasing zero entries in the matrix and therefore compressing the
vector space, we think the performance can be increased significantly. We think that it
is very hard to automatically generate working applications out of Web services
without human judgment. Creating ontologies may help to a limited degree. For the
future, we plan to extend the indexing procedure from purely syntactical data to a
semantic level. For this purpose we will utilize a domain-specific ontology to describe
the functionality of a service endpoint and integrate the result in a BPEL-process. The
major problem here is, to find a fitting indexing method for the ontology itself.
Furthermore, by using a domain-specific resource, the application domain is limited
equally, which is quite the opposite of what we want to achieve. A possible tradeoff
could be achieved by combining syntactical analysis and ontology-supported weight
adjustment. It remains to be seen how beneficial the application of ontologies is to
leverage the search mechanism to a semantic level.

4.4 Context- and relevance-based service composition and enactment

The inContext EU FP6 research project [3] aims at supporting highly dynamic forms
of human collaboration such as Nimble (short-lived collaboration to solve emerging
problems), Virtual (spanning different geographical places and involving diverse
professionals) and Mobile (collaboration with mobility capabilities) teams. These
teams require different mechanisms for coordination, and in many cases also different
software services (e.g., document sharing, project management, and instant
messaging), and infrastructures (e.g., large-scale and Internet-based mobile devices,
and mobile ad-hoc/P2P networks). SOA-based solutions thus offer greater advantages
for inContext over other solutions, such as those that are portal-based. For purposes of
autonomic services and processes we developed methods to react and to anticipate to
changes. This is of paramount importance in autonomic environments. The service
adaptation can be based on context information (e.g., degradation of QoS values) [4,
5], based on human activity mining [6] and on service interaction mining [7].

5 Conclusion

In this paper we discussed conceptual challenges as well as technical issues regarding
advancements towards autonomic processes and services. We have motivated the
need for systems capable of autonomic behavior by looking at the business demands
and technological advances, which have changed significantly over the last decades.
We outlined four research areas where we summarized our assumptions in more
detail: Infrastructure, Software, Processes, and Teamwork. Finally, we presented a
summary of our approaches which enable building a coherent framework for
autonomic processes and services. We observe that service mashups have an impact
in the software evolution domain, which helps to address the dynamics of
infrastructures, team forms, and process evolutions, while traditional service
composition (e.g., Model-driven development, or MDD for short) will help to address
the complexity (e.g., interoperability, multiple platforms, etc). Eventually, in the

Towards Autonomic Processes and Services 7

future service mashup approaches require a “lightweight/on-demand MDD” support
to help addressing the dynamics, while still ensures solving the “complexity” issues.

6 References

[1] Tran, H., Zdun, U., Dustdar, S. (2007). View-based and Model-driven Approach
for Reducing the Development Complexity in Process-Driven SOA,
International Conference on Business Processes and Services Computing, 25-26
September, Leipzig, Germany

[2] Michlmayr, A. Rosenberg, F., Platzer, C., Treiber, M., Dustdar, S. (2007).
Towards Recovering the Broken SOA Triangle - A Software Engineering
Perspective", In Proceedings of the 2nd International Workshop on Service-
oriented Software Engineering (IW-SOSWE'07), Dubrovnik, Croatia, September
2007, ACM Press.

[3] http://www.in-context.eu
[4] Rosenberg, F., Platzer, C., Dustdar, S., (2006). Bootstrapping Performance and

Dependability Attributes of Web Services. IEEE International Conference on
Web Services (ICWS'06), 18. - 22. September 2006, Chicago, USA.

[5] Rosenberg, F., Platzer, C., Dustdar, S., (2007). QUATSCH – A QoS Evaluation
and Monitoring Tool for Web Services. Journal on Web services Research,
forthcoming

[6] Dustdar, S., Hoffmann, T. (2007). Interaction pattern detection in process
oriented information systems, Data and Knowledge Engineering, Elsevier, 62
(2007), pp. 138–155

[7] Dustdar, S., Gombotz, R. (2007). Discovering Web service workflows using
Web services Interaction Mining. International Journal of Business Process
Integration and Management (IJBPIM), pp. 256-266.

[8] Platzer, C., Dustdar, S. (2005). A Vector Space Search Engine for Web Services,
IEEE European Conference on Web services (ECOWS), 14-16 November 2005,
IEEE Computer Society Press.

http://www.in-context.eu/
http://www.infosys.tuwien.ac.at/Staff/sd/papers/icws2006.pdf
http://www.infosys.tuwien.ac.at/Staff/sd/papers/icws2006.pdf
http://www.infosys.tuwien.ac.at/Staff/sd/papers/icws2006.pdf
http://conferences.computer.org/icws/2006/
http://conferences.computer.org/icws/2006/
http://www.infosys.tuwien.ac.at/Staff/sd/papers/InteractionPatternDetectionInProcessOrientedInformationSystems.pdf
http://www.infosys.tuwien.ac.at/Staff/sd/papers/InteractionPatternDetectionInProcessOrientedInformationSystems.pdf
http://www.infosys.tuwien.ac.at/Staff/sd/papers/DustdarGombotz_DiscoveringWebServiceWorkflowsUsingWebServicesInteractionMining.pdf
http://www.infosys.tuwien.ac.at/Staff/sd/papers/DustdarGombotz_DiscoveringWebServiceWorkflowsUsingWebServicesInteractionMining.pdf
http://www.infosys.tuwien.ac.at/Staff/sd/papers/A%20Vector%20Space%20Search%20Engine%20for%20Web%20Services.pdf

