
Crowdsourcing Mobile Workflows
with Tweetflows
Under Review for Publication

Martin Treiber1, Daniel Schall1,
Schahram Dustdar1, Christian
Scherling2

lastname@infosys.tuwien.ac.at1,
office@ikangai.com2

TUV-1841-2011-02 March 31, 2011

Vienna University of Technology
Information Systems Institute
Distributed Systems Group

The use of mobile devices and applications (Apps) offer users ubiquitous
access to arbitrary Services. In this paper, we study the applicability of
established SOA concepts in mobile computing scenarios. In particular,
we investigate the application of existing SOA infrastructure principles like
Service registries on App stores and investigate the concept of App as a Ser-
vice. Based on our findings, we introduce a light-weight flow language that
is tailored to mobile Apps with regard to SOA principles. These efforts are
complemented with a discussion on crowd sourcing aspects, which drive
our proposed approach. We present a prototype architecture and show how
our approach can be used in a real world application scenario.

Keywords: service-oriented architectures, mobility, apps, crowdsourcing,
tweetflows

c©2011, Distributed Systems Group, Vienna University of Technology

Argentinierstr. 8/184-1
A-1040 Vienna, Austria
phone: +43 1 58801-18402
fax: +43 1 58801-18491
URL: http://www.infosys.tuwien.ac.at/

Noname manuscript No.
(will be inserted by the editor)

Crowdsourcing Mobile Workflows with Tweetflows

Martin Treiber · Daniel Schall · Schahram Dustdar · Christian Scherling

Received: date / Accepted: date

Abstract The use of mobile devices and applications
(Apps) offer users ubiquitous access to arbitrary Ser-
vices. In this paper, we study the applicability of es-
tablished SOA concepts in mobile computing scenarios.
In particular, we investigate the application of existing
SOA infrastructure principles like Service registries on
App stores and investigate the concept of App as a
Service. Based on our findings, we introduce a light-
weight flow language that is tailored to mobile Apps
with regard to SOA principles. These efforts are com-
plemented with a discussion on crowd sourcing aspects,
which drive our proposed approach. We present a pro-
totype architecture and show how our approach can be
used in a real world application scenario.

Keywords service-oriented architectures, mobility,
apps, crowdsourcing

1 Introduction

Mobile phones have become increasingly powerful in
terms of available memory and CPU resources. Hand-
sets like the Samsung Galaxy S or the Apple iPhone
provide a Gigahertz CPU, 512 MB of RAM and offer
up to 32 GB of storage capacity to the user. This kind of
hardware makes it attractive for users to install a broad
range of software on their devices. On average, users in-
stall approximately between 14 and 40 Apps on their

M. Treiber, D. Schall, S. Dustdar
Distributed Systems Group, TU Vienna
E-mail: {lastname}@infosys.tuwien.ac.at

C. Scherling
ikangai solutions
E-mail: office@ikangai.com

devices1. These Apps offer different functionalities; so-
cial networking, weather, sports, location information,
dictionaries and games are among the most common
classes of Apps being downloaded. A major advantage
of modern mobile phones and wireless communication
infrastructures is the ubiquitous Internet access. With
good 3G network coverage, users can access remote Web
services from practically everywhere. Tailored imple-
mentations of the SOA stack for mobile devices allow
users to consume remote Web services. While as an im-
plementation technology for mobile SOA, adopting the
already broadly supported Web services (WS) is jus-
tified, we approach the subject of mobile SOA from a
different perspective. The reason is that Web service
technology has not been successful for mobile devices
and did not receive the required support. Instead, ven-
dors have chosen App markets as primary means for
distribution of software (Apps). We argue that in order
to bring SOA to mobile devices, we need to study their
applicability of existing infrastructures like App Stores
and mobile Apps in a SOA context.

In this context, we tackle the challenges found in
mobility-enhanced service-orientation from three per-
spectives:

– First, we analyze existing SOA infrastructure con-
cepts (e.g., Service registries, Service brokers, Ser-
vice providers) with regard to their counterparts in
the mobile domain (e.g., App stores, Apps). We es-
tablish a conceptual mapping between these two in-
frastructures to provide the foundation for a light-
weight composition and communication approach.

1 http://blog.nielsen.com/nielsenwire/online_mobile/

the-state-of-mobile-apps/

2 Martin Treiber et al.

– Second, we introduce a lightweight programming
language called Tweetflows2 that provides the com-
munication mechanisms to invoke Apps remotely
and consequently the means to compose Apps. In
this regard, we study the application of Twitter and
short text messages as communication means using
mobile services in a social context.

– Finally, as a cross cutting concern, we investigate
the Human-Provided Services [38] ideas for the pro-
visioning of human expertise in the context of our
proposed framework. In particular, we investigate
crowdsourcing aspects for the discovery and provi-
sion of mobile services in social networks of mobile
users.

The three conceptual pillars provide us with the foun-
dation for an infrastructure concept that will allow us
to exploit social aspects (follower or friend networks of
users) for mobile SOA.

Paper structure. Section 2 introduces a small ap-
plication scenario and highlights the challenges for mo-
bile, App-based service provision. We introduce key de-
sign principles in Section 3. In Section 4, we discuss
the application of SOA concepts in the context of mo-
bile App-based Service provision. After establishing the
conceptual foundation of our approach, we show in Sec-
tion 5 how to use Tweets and short text messaging - so
called Tweetflows - for mobile App-based Service pro-
vision. Based on the conceptual framework and Tweet-
flow communication primitives, we present the archi-
tecture of our prototype in Section 6 and illustrate the
use of our prototype in Section 7. We conclude the pa-
per with related work in Section 8 and an outlook for
future work in Section 9.

2 Motivating Scenario

A mobile application is typically used in combination
with a Service hosted by an application server. So an
App requests its data usually from Services that are
available on the Internet. An App is thus not seen as a
Service that can be offered but rather as a user front-
end to interact with ‘technical Services’. We propose
to take a different perspective on mobile applications
by emphasizing the social context in which Apps are
used which shows clearly the service aspect of mobile
Applications. The inclusion of the social context (albeit
for search purposes) was introduced in [18] as the vil-

lage paradigm. I. In villages, knowledge dissemination
is achieved socially: information is passed from one per-
son to another person, and eventually the right person

2 http://www.ikangai.com/blog/tag/tweetflows

is found who is able to answer a particular question.
We follow the same paradigm, but focus on mobility
aspects. In order to show how the village paradigm is
applied in the context of mobile Apps, we discuss two
versions of the same scenario. In the scenario, a person
(A) needs information about good restaurants located
nearby and asks some other person (B). A typical con-
versation would look like this:

– Person A: Do you know good restaurants nearby?
– Person B: Well, let me think . . . I’ve an App on

my mobile that lists all restaurants in the vicinity.
(Starts App, looks at the App)

– Person B: Here, look! I just found this. It’s on...

If we abstract from the scenario, we can observe
the following roles. Person A acts as Service requestor.
The Service request is to find a good restaurant and the
corresponding information Service is offered by Person
B, or B’s App, respectively. The observed conversation
pattern is peer to peer: Person A asks Person B. The
actual access to the Service (the App on B’s mobile
device) is mediated by Person B, thus Person B also
acts as Service Broker.

In a variant of the scenario above, the question is
posed to several persons at once. These persons are not
in direct physical reach, thus a communication means
to distribute a Service request to a (potentially mobile)
group of persons is required. This leads to the following
situation:

– Person A: Writes a text message to several persons
(B, C, D and E) Do you know a good restaurant
nearby? I’m in Museumsquartier.

– Person B - Calling A: Yes, I’m just sitting in a
nice place. It’s on Gasser street in 1st district. Take
U2 to Karlsplatz (exit Musikverein), then the first
on the right.

– Person C - Texting A: I know this place on
Kirchengasse. It’s called the Blue Banana.

– Person D - Texting A: The Blue Banana. I’ve
heard that’s really good.

– Person E - Calling A: I’ve just called Person F
and asked him. He told me that there is this new
Italian restaurant called Fratelli.

Abstracting from this version of the scenario, we can
find similar roles like in the first version. Again, Per-
son A acts as Service requestor, requesting Information
(good restaurant) from several Service providers (Per-
son B, C, D and E). We can also identify Services that
are present both versions. Person C, Person D play the
role of recommendation Services and Person B provides
a routing Service, while Person E forwards the initial
Service request to another Service (Person F) which

Crowdsourcing Mobile Workflows with Tweetflows 3

provides the desired information. In both scenarios, the
social context in which the Services are provided plays a
key role: Person A knows Person B, C, D and E. In ad-
dition, Person E forwards the request to another Person
F, extending the range of the initial request. The pre-
sented versions of the scenario highlight several aspects
of mobile Service provision in a social environment. We
will discuss these aspects in the following section where
we will introduce the main concepts of our approach.

3 Key Design Principles

The idea of using crowds of people for dedicated pur-
poses (e.g., estimation of weight of physical items) has
been discussed by Surowiecki [41]. The term crowd-
sourcing has been employed later by Howe [19]. In mo-
bile environments, there are approaches like [30] that
investigate mobility in a crowdsourcing setting. We di-
vide the concerns of mobile service provisioning in a
crowdsourced environment into four (conceptual) lay-
ers, as depicted in Figure 1.

Fig. 1 Crowdsourcing layers.

– Service Layer. The bottom layer of our conceptual
architecture consists of mobile Services which can
be provided either by humans or software. Software-
based Services are embodied as Apps which are hosted
on mobile devices. Both human-provided [38] and
software services, comprise the functional underpin-
ning for our proposed mobile crowdsourcing infras-
tructure. By treating humans and Services alike, we
lay the foundations for the creation of complex, mo-
bile SOAs which encompass social aspects..

– Communication Layer. Set on top of the Service
layer, we position the communication layer. As the
name implies, the communication layer handles all
communication between human- and software-based
Services. Taking mobility into account, this layer ab-
stracts from the actual communication means, while

providing the necessary features to cope with ob-
stacles that derive from mobility: loss of connectiv-
ity, decoupling of messages and different commu-
nication means. To provide a loosely coupled com-
munication system, we use a (logically) centralized
communication bus which handles the communica-
tion between Services and humans in a transpar-
ent, technology-agnostic manner. We provide for a
lightweight abstraction for service interactions that
is both human- and machine-readable. This com-
munication approach enables the transparent access
from various (mobile) platforms, without the need
for installing complex tools. For a structured com-
munication we foresee a set of communication prim-
itives that structure messages and provide meta in-
formation like addressing or classification.

– Monitoring Layer. The monitoring layer extracts
all interactions between Services and humans which
are created during the execution of various tasks.
The main task of the monitoring layer is to filter,
weight and organize Service interactions. For exam-
ple, as illustrated in working example, the Service
requestor needs to filter multiple responses to a ser-
vice request, in order to select the appropriate Ser-
vice.

– Discovery Layer. The discovery of Services is based
on a combination of centralized and localized reposi-
tories. The latter emerge from social network struc-
tures around Service requestors, in which Service
discovery is supported by a context-sensitive query
that is based on contextual information such as topic
tags is performed to discover human and software
Services (the detailed mechanism can be found in
[37]). Simultaneously, by forwarding messages to other
network members we achieve a distribution of dis-
covery requests.

4 Applying SOA on Mobile Apps

The central paradigm of SOA is the triangle relation
between Service registry, Service provider and Service
requestor. The underlying principle can be summarized
as publish-find-bind-execute cycle which offers flexible
solutions with respect to manageability and adaptivity.

Mobility requires a modified view on the traditional
SOA triangle. Figure 2 shows the entities which consti-
tute our proposed mobile SOA in crowd sourcing set-
tings and shows the interactions between these entities.
We can see still find the Service requester, that interacts
with the provider (crowd), and binds to a Service (App)
in the crowd. The discovery is sup- ported by the App
store (registry) which also serves as distribution chan-
nel. However, additional considerations are necessary

4 Martin Treiber et al.

when implementing this principle on mobile devices in
a crowd sourcing context. First of all, we need to find a
mapping between existing SOA artifacts like Services,
Service registries and Service bindings to the available
mobile infrastructures. We discuss this in sections 4.1
and 4.2 where we show how Apps can play the role of
(mobile) Services regarded and explain the role of App
stores as registries.

Second of all, we will investigate crowds with regard
to the application SOA principles. In this respect, we
consider a network of mobile App users as App provider
Network. We will discuss this in section 4.3 where we ex-
plain the binding process of mobile Apps in the provider
network.

4.1 The App as a Service

In the Service world, Service are considered as self- con-
tained, independent entities, which offer a certain func-
tionality and do not depend on the context or state
of other Services [4]. These principles are the founda-
tion for the creation of complex Service-based software
systems. We argue that by applying SOA principles on
mobile Apps, we can provide a powerful abstraction
which allows the creation of complex, mobile Service-
oriented software systems. In particular, we regard mo-
bile Apps as Services because they offer well-defined
functionality, are self-contained and do not depend on
the state of other Apps. Similar to Services, Apps can
be discovered in App repositories (App Stores) and can
be accessed through well-defined (graphical) interfaces.
Table 1 gives an overview of the characteristics of Ser-
vices and Apps as a Service.

There are several aspects of mobile Apps that need
additional considerations. First of all, Apps can serve as
access points to remote (centralized) Services, providing

Fig. 2 SOA with mobile Apps.

Characteristic App Service

Execution Local Remote
Crowd Replica-
tion

Yes No

Meta Data Human readable
descriptions,
Pre defined App
Categories

Interface descrip-
tions, Ontologies

Well Known Ad-
dress

Yes Yes

Dynamic Binding Yes Yes
Interface De-
scriptions

None Yes, different
standards

Human readable
information

Yes Yes, available

Automated Dis-
covery

Yes, Web Por-
tals

Yes, supported

Distribution Yes No
GUI Yes No

Table 1 Comparison of Apps and Services.

the interface or the access point to the actual Service.
Consider the example of a weather forecast App: the
App connects to a central server that hosts a Restful
Web service providing weather information. In such a
case, the creation of an additional App instance does
not lead to a replication of the Service, which remains
in the backend. Simply put: the Service provider, al-
beit hidden by the App interface, stays the same and
only the Service access point is replicated. If the App
does not access a remote Service, replicating the App
by downloading it to another mobile device has a differ-
ent effect. Take for example a mobile information App
with a local database containing touristic information.
If this App is downloaded to another mobile device, the
Service provider is also replicated.

We refer to Service replication as shallow replica-
tion or endpoint replication when the replicated App
acts as an access point to a remote Service. Deep repli-
cation replicates the Service provider as well, providing
additional service capacities and adding fault tolerance
and availability in crowds. Viewed from a user’s per-
spective, there is no notable difference between these
two replication approaches. Both cases lead to addi-
tional endpoints of the Service (App) in the crowd. In
both cases, the consequence of the replication is that
more users in the crowd are able to provide the Ser-
vice and the likelihood of discovering a Service (App)
increases.

Another aspect is the possibility for providers to
dynamically extend available Services. In contrast to
SOA Service providers, mobile Apps can be installed
on demand. Thus Service (App) providers are able to
dynamically modify their Service offerings: if an incom-
ing request requires a certain functionality that cannot

Crowdsourcing Mobile Workflows with Tweetflows 5

Fig. 3 Conceptual Architecture of Apps as a Service.

be provided, the corresponding App can be discovered
in the App store and installed to fulfill the request.

Since Apps do not offer standardized interface de-
scriptions similar to (Web) Services, we hide the in-
terface of Apps behind a proxy architecture that for-
wards the requests to the App and returns the result
to the requestor (see Figure 3). Note that in princi-
ple, all components - except the App itself - (Message
Parser, App Broker, Message Builder, App Proxy) can
be either implemented by a human, i.e., the user of the
mobile device, or by software. However, mobile phones
are personal devices and require the interaction with
the owner of the device. It is the owner who effectively
decides if a Service request leads to an invocation of
an App. As illustrated in the motivating scenario, it
is the user who receives a request, executes the App
and returns the result to the Service requestor, e.g.,
by using his voice. This is a very flexible way of inter-
action, because humans are capable of mediating be-
tween different message formats or different languages
(e.g., English, Japanese). The tradeoff of this approach
is the active involvement of the user. Obviously, users
are a potential bottleneck for the messaging system, be-
cause of the limitation in terms of message processing.
However, at the same time, users are capable to make
informed decisions and to react in an intelligent man-
ner to Service requests. For example, as stated above,
if a service request requires an App which is not avail-
able on the mobile device, the user can actively search
for an App, install it and provide the required service
functionality.

4.2 App Store as a Registry

Until not too long ago, Web service registries [10] like
UDDI [9] served as a universal and centralized repos-
itory for Service related information (e.g., endpoints,
descriptions). However, after IBM, Microsoft and SAP

abandoned their public UDDI registries in 2006 [28],
there are virtually no public registries available that
offer a considerable set of Service information to cus-
tomers. The only exceptions are registries like Seekda3,
or academic prototypes (e.g., AWSR [42] or [27]), though
the latter are not available for broader public use. The
success of App Stores like the Android Store and the
iTunes App Store suggests that centralized repositories
work, albeit in a slightly different manner than Service
registries. In contrast to Service registries, access to the
App Store is realized by dedicated App Store Apps on
mobile devices, making the Service consumer implicitly
aware of the location of the App Store. Furthermore,
App Stores typically provide a pre-defined set of cate-
gories that classify the Apps in a broad sense. Unlike
Service registries, App Stores do not provide mecha-
nisms to include rich semantic meta information like
ontologies to discover Apps automatically; the selec-
tion process relies on human judgement. For example,
the iTunes App Store offers 20 Categories (e.g., Pro-
ductivity, Entertainment, News) and does not offer sub-
categories for a hierarchical drill-down refinement dur-
ing the discovery process. Like Service registries, the
search process is supported by keywords which classify
the App.

App stores also provide a recommendation system
- like the one of the iTunes Store (e.g., new and note-
worthy, staff picks, top selling, top grossing) - and the
ability to sort the presented Apps according their popu-
larity or creation date. Complementary to Apps stores,
Web portals exist that access the App store data, and
these portals offer links to the Apps in the App store4.
These portals offer additional information like commu-
nity ratings, App rankings of reviewers or App reviews
to browse trough, being conceptually close to Web ser-
vice registries.

3 http://webservices.seekda.com/
4 http://www.androidpit.com/

6 Martin Treiber et al.

Characteristic App store Service registry

Discovery mecha-
nisms

Keywords, Clas-
sifications

Keywords, Soft-
ware Assisted
Reasoning

Meta Data Human readable
descriptions,
Pre defined App
Categories

Interface descrip-
tions, Ontologies

Well Known Ad-
dress

Yes Yes

Dynamic Binding Yes Yes
Interface De-
scriptions

None Yes, different
standards

Human readable
information

Yes Yes, available

Automated Dis-
covery

Yes, Web Por-
tals

Yes, supported

Distribution Yes No

Table 2 App stores versus Service registries

These portals also provide additional information
like community ratings, App rankings of reviewers or
App reviews to browse trough, being conceptually close
to Service registries. A key difference between Service
registries and App stores is the fact that App stores
actually provide the App itself. Customers can down-
load and install the App directly from the App store.
In contrast, Service registries provide links to Services
and do not provide direct access to the Services itself.
Thus, App stores play an active role in the distribution
of Apps, whereas Service registries offer information for
accessing a Service and provide no means for the actual
distribution of Services. We have summarized the dis-
cussion in Table 2 where provide an overview of Reg-
istry and App store characteristics.

4.3 App Binding

In SOA, the discovery and binding of Services is typi-
cally supported by a (centralized) repository which pro-
vides information about the Service and the used pro-
tocol. Critical is the access to interface and binding in-
formation which is required to generate stubs for the
invocation of remote Services. This kind of informa-
tion is often presented as WSDL [8] which is a well
adopted standard designed to represent Service inter-
face and binding information. However, in recent years,
alternative Service descriptions or extensions to WSDL
were proposed. For example, Services that follow the
REST paradigm were described with WADL [17], se-
mantic enriched descriptions (among them descriptions
such as WSDL-S [2], WSML [13], SAWSDL [12]) were
proposed to add meta information to make Services au-
tomatically discoverable and to provide the means for
automatic Service selection during the Service binding

process. A common challenge for all previously men-
tioned approaches is that the Service provider is not
known in advance. Thus, the choice of Service to bind
to must be done at runtime. This requires the use of
a Service broker that is able to map Service requests
to concrete service endpoints. Basically, the algorithm
works in three steps: (i) Select candidate Services, (ii)
rank the candidates in a particular order, and (iii) select
the most appropriate Service to bind to. After the bind-
ing process is completed, the invocation of the Service
takes place.

In mobile crowdsourcing environments, complex de-
scriptions of Services (i.e., Service meta data) or Ser-
vice invocation mechanisms (e.g., SOAP Service calls)
are not available. Thus, the process of Service binding
needs to consider the role users in the App provider
network. Generally speaking, the binding of Apps as
Services is user-centered and requires the expertise of
the App provider network user for the binding of Apps
to Service requests. As discussed in the motivating sce-
nario, when a user is asked to provide information about
a restaurant, the user determines if an App is available
(candidate selection and ranking) that can be used to
fulfill this kind of inquiry (Service selection and bind-
ing). If not, the user can decide to forward the request
to others. In this case, the binding process is extended
with an additional crowd-sourced - discovery step: the
request is forwarded into the App provider network in
which the actual App (Service)binding takes place. Al-
ternatively, the user can either (1) recommend an App
to the service requester to install or (2) install an App
himself to provide the required Service. The former can
be considered as Service brokerage - the user recom-
mends an App and the Service requester can install the
App to access the Service. The latter is related to dy-
namic Service provision; the Service provider is able to
ad hoc add Apps (Services) to extend the variety of
provided Services.

5 Mobile Communication

After establishing a mapping of existing mobile infras-
tructures (App, App stores) to SOA infrastructure con-
cepts (Services, Service registries) in the previous sec-
tions, we now need to address the communication issues
of mobile App (Service) provision. One of the benefits of
SOA is the ability to compose new Services from exist-
ing Services with the help of composition languages like
BPEL [1], YAWL [43]. However, we do not strive to pro-
vide a complex, full-fledged composition language, since
the applicability of complex messaging on mobile de-
vices is limited. Instead, we focus on a lightweight lan-
guage that supports the communication between mobile

Crowdsourcing Mobile Workflows with Tweetflows 7

App (Service) requesters and App (Service) providers.
By exploiting social aspects on an architectural level
of (see Section 4.1) we require the language to have
as little as possible message overhead and to retain a
certain degree of human readability. The latter is im-
portant, since we explicitly exploit social aspects of the
App (Service) requestors.

With regard to our conceptual crowdsourcing lay-
ers as introduced in Figure 1 we address the aforemen-
tioned requirements with a new light-weight flow lan-
guage called Tweetflows. The goal of Tweetflows is to
support concepts found in each layer: (i) Service layer
by letting people provide Services in (mobile) crowd-
sourcing environments, (ii) communication layer using
structures and profiles in social networks (e.g., Twitter
follower graph to retweet requests), (iii) monitoring of
interactions through a message bus, and (iv) discovery
layer to find appropriate crowd members (offering Ser-
vices) that can, for example, answer specific questions.

From a technical point of view, Services communi-
cate primarily over protocols such as HTTP, exchanging
for example messages via HTTP GET/POST requests.
Generally speaking, Service-centric architectures do not
dictate any kind of communication infrastructure; its
possible to exchange Service messages over other proto-
cols, like SMTP, as well. In principle, mobile devices are
capable of providing HTTP communication required for
Services.

In our approach, we focus on text based communica-
tion using HTTP messaging and text messages for the
exchange of Service messages. Our intent is to create
a simple, human readable language that addresses the
aforementioned requirements. Furthermore, in order to
address the social aspect of users, we use the Twitter
follower structure of users. We use Twitter communi-
cation (Tweets) as medium for Service messaging.

Conceptually, the communication and message ex-
change in Twitter follows a publish/subscribe pattern
[11]. By following other Twitter users, the follower sub-
scribes to the Tweets of the user that is being followed.
Given that Tweets are publicly visible to followers, con-
versations can be tracked by other users and messages
can be retweeted, i.e., forwarded to other Twitter fol-
lowers. This schema supports an efficient spreading of
news [29]. When using such communication means, the
limited length of Tweets and text messages demands
for a specification of a compact syntax to enable com-
munications and control of mobile Services (embodied
by mobile Apps). We address this challenge with the in-
troduction of a set of Twitter communication primitives
that enable a seamless fabric of human and App (Ser-
vice) interactions. This not only allows users to request
a particular App, but also facilitates the discovery of

Services in crowdsourcing environments. Table 3 shows
the most essential Tweetflow primitives that have been
devised for Tweeflows. In our further discussions we
will establish the correspondence of Tweetflow prim-
itives and concepts that we have adopted from SOA
and applied to mobile Apps:

– By using Twitter as communication means for crowd-
sourcing, we impose a set of limitations concerning
the length and complexity of messages that are ex-
changed during Service discovery or Service invo-
cation. Twitter, being a microblogging service, lim-
its the amount of data published to 140 characters
per Tweet. Since we want to keep a simple one to
one mapping between a Tweet and a Service-related
message, we need to limit the amount of data (and
meta data) in a Tweet information to an absolute
minimum. In order to minimize to the space needed
by meta information, we draw upon Twitter’s hash-
tag mechanism to mark keywords that represent
meta information in Tweets [20].

– The messaging mechanism of Twitter follows a broad-
cast paradigm which we use to publish Service re-
quests and Service announcements. This is in con-
trast to having a centralized Service registry that
collects all Service information queried for a Ser-
vice. Consequently, we observe that Twitter pushes
Service announcements instead of letting Service re-
questors pull for Service-related information.

– The addressing of Services utilizes Twitter’s built-in
addressing mechanisms using the @ symbol to send
messages directly to followers. Followers represent
Service providers and are able to forward Service-
related requests to other followers.

– We provide for basic Services compositions that are
described by unix pipe inspired syntax. Service com-
positions, Service choreographies respectively, are
directly embedded into Tweets. In such a setting
the responsibility of handling the execution flow of
a Service composition is on Service providers side.

Abbreviation Description

SR Service Request
RE Service Response
RT Retweet Service Request
DS Delegate Service Request
TF Tweetflow Compositions
RJ Reject Service Request
ST Service State Request
SE Service State Reply
SP Service Announcement

Table 3 Tweetflow primitives.

8 Martin Treiber et al.

5.1 Tweetflow Primitives

In this section, we detail communication principles us-
ing Tweetflow primitives and provide simple examples.

Passing Data to and from Services. The limita-
tion of Twitter messages requires special considerations
concerning the access of input and output data for Ser-
vices. We consider two possible ways of passing data to
Services with Twitter. We use standard URL-encoding
to pass data inline, i.e., the Tweet contains all data that
is passed to the Service. Note that inline data is limited
to 140 characters, due the size limitation of Tweets. To
overcome the size limitation, we use external resources
that represent the input and output of Service invoca-
tions. Resources are accessed with a simple HTTP get
operation and the corresponding link is stored directly
in the Tweet. This allows for great flexibility because we
are able to pass arbitrary information to Services. The
same applies to the result of Service invocations which
are represented by Tweets. Listing 1 shows how a (hu-
man provided) English to Japanese translation service
is called with a blog entry being the input data.

SR doTrans late . Japanese http : // b i t . l y /9qFRGL
#Engl i sh #Japanese #Trans lat ion

Listing 1 Passing data to a translation Service.

Announcing Services with Tweetflows. The pub-
lication of Services with Twitter consists of posting a
Tweet with the Service name and meta information
about the Service. Since the available space is limited,
we use optional links to external taxonomies to provide
meta information about the Service being published as
well as Twitter hashtags (see Listing 2). We consider
hashtags to play a similar role like tags in folksonomies
[47]; a distributed, bottom up classification schema for
Services which are made available over Twitter. In ad-
dition, the retweet mechanism allows to spread Service
announcements over the Twitter network [24] providing
for a social network based Service publication.

SP <operat ion >.<servicename> <ur l>
<hashtags>

Listing 2 Announcing services with Tweetflows.

Discovering Services with Tweetflows. The dis-
covery of services in Twitter does not follow the pull ap-
proach as with existing SOAs where a Service requester
searches for candidate Services in Service registries. In-
stead, Tweets are posted that describe the required Ser-
vice and provide the capabilities to bind and execute
Services (see Listing 3).

– Publication of a Service Request: With Twitter as
communication platform, Service discovery follows

a push approach where the user Tweets a partic-
ular Service request. The request, i.e., the Tweet
contains meta information about the Service. This
includes optional information about the operation
that is required, hashtags describing the Service with
keywords or a link to Service input data.

– Direct Service Request: The Service request can also
be directed toward Twitter followers. In this case,
the Tweet addresses the user directly and binds the
Service to the Service provider.

– Delegation of Service Request: If Twitter followers
are not able to handle the Service request, but hap-
pen to know someone able to provide the Service,
the Service request can be delegated to another fol-
lower.

– Retweet Service Request: Also, a user can retweet
the Service request to his followers and spread the
Service request to other users that are not followers
of the Service requestor. The retweeting or delegat-
ing of Service requests leads to a dissemination of
requests in the Twitter network. As in the case of
Service announcements, we implicitly use Twitter’s
social structures during the discovery process.

// Pub l i c a t i on o f a Se rv i c e
SR <operat ion >.<servicename>

(<ur l >|<data >) <hashtags>

// Direc t S e rv i c e r e que s t
SR @<user><operat ion >.<servicename>

(<ur l >|<data >) <hashtags>

// De legat ion o f a Se rv i c e r e que s t
DS @<user><operat ion >.<servicename>

(<ur l >|<data >) <hashtags>

// Spreading a Se rv i c e r eque s t
RT @<user><operat ion >.<servicename>

(<ur l >|<data >) <hashtags>

Listing 3 Syntax elements related to discovery.

Binding and Addressing Services. If a Twit-
ter follower is able to provide the required Service, the
binding of a Service request to the Service instance hap-
pens if the follower directly answers to a Service request
Tweet. As the Tweet appears in the Tweetflow, the
binding is complete and the Service is invoked. The ac-
tual addressing of the Services uses the built-in Twitter
addressing mechanisms which sends Tweets directly to
followers.

SP@<user> <operat ion >.<servicename> <ur l>
<hashtags>

Listing 4 Claiming a Service with Tweetflows.

It is worth noting that claiming of a Service uses a
syntax that close the syntax for the publication of Ser-
vices. The reasoning behind this is that we consider
the Service claim as directed Service publication. More
specifically, we bind directly to an operation.

Crowdsourcing Mobile Workflows with Tweetflows 9

Execution of Services and Monitoring. The ex-
ecution of requests is associated with a state that can be
requested. The detailed state model is not the focus of
this work as such models have received sufficient atten-
tion in collaborative systems. Basically, states covered
by our systems include pending, inprogress, aborted, fin-

ished, to name a few.

– Service Response: After the Service has been com-
pleted, the Service provider sends a message con-
taining the Service name and a link to the result of
the Service invocation.

– Status Request:During the execution of a Service,
the Service requestor can check the current state of
the Service execution.

– Status Reply: State requests are replied by the user.
– Reject Service Request: It’s also possible to reject a

Service request from another user.

// Se rv i c e Response on Twitter
RE @<user> <operat ion >.<servicename>

(<ur l >|<data>)

// Se rv i c e State Request on Twitter
ST @<user> <operat ion >.<servicename>

// Se rv i c e State Reply on Twitter
SE @<user> <operat ion >.<servicename>

<state >

// Se rv i c e Request Re jec t on Twitter
RJ @<user> <operat ion >.<servicename>

Listing 5 Syntax elements related to execution.

Bootstrapping and Composing Tweetflows. The
process of creating or bootstrapping a Tweetflow con-
sists of tweeting a set of Service requests to find ade-
quate Service providers. As discussed in previous sec-
tions, the originator, i.e. the coordinator, of the Tweet-
flow posts one or more Tweets that contains set of ac-
tions which need to be executed by different users. This
Tweet marks the beginning of the execution of a Tweet-
flow.

Tweetflows do support several means to structure
the execution of Tweets. The current version of the
Tweetflow syntax provides for two basic means to co-
ordinate and structure the execution of Tweetflows.

Similar to unix shells, Tweetflows can be structured
with pipes, leading to a sequence of Service (App) in-
vocations which pass the output from one invocation
to the other. Listing 6 shows the syntax of Tweetflow
Service pipes.

TF <name>[@<user> <operat ion >.<servicename>

(<ur l >|<data>) | @<user> <operat ion >.<servicename>

(<ur l >|<data >)]

Listing 6 Service pipes on Twitter.

Related Service pipes, are so called open sequences.
Open sequences are consecutive Tweets that are part

of one Tweetflow which do not impose a particular or-
dering of the execution of the Services (Apps). Listing
7 shows the syntax of open sequences.

TF <name> @<user> <operat ion >.<servicename>

(<ur l >|<data >)
TF <name> @<user> <operat ion >.<servicename>

(<ur l >|<data >)
. . .

Listing 7 Open sequences on Twitter.

It is worth noting that the control over the execu-
tion is distributed [6]: upon completion of a Service in
the service pipe, the Service provider is directly respon-
sible for tweeting the invocation of the next Service by
posting a Service request Tweet. Given the ad hoc char-
acter of Tweetflows, it is possible to make modifications
to the Tweetflow during the execution. For example, a
Service request can be delegated to another Twitter
follower upon receiving a request, allowing for Service
replacements on the fly. In order to track the execu-
tion of Tweetflows, we require each Tweetflow Tweet
to contain a hashtag with the name of the Tweetflow
as shown in Listing 6 and Listing 7.

5.2 Mapping between Tweetflows and SOA

Using Tweetflow principles, we are able to fully support
the SOA-lifecycle consisting of Service publication, Ser-

vice discovery, and Service binding (interactions). How-
ever, in human-centric systems, it becomes important
to support additional coordination mechanisms (i.e.,
routing through Service pipes). Similar (simple) mecha-
nisms are already found in traditional message-oriented
systems such as Email. Our approach brings the ben-
efit of seamless communication and coordination in a
Service- oriented manner. The analogy of these primi-
tives to SOA concepts is summarized in Table 4.

Tweetflow Primitives SOA Concept

SR, RT, DS, RJ Service Discovery
SP Service Binding
RE Service Response

TF, [], — Service Composition
ST, SE Service Monitoring

SP Service Publication
@ Service Addressing

Table 4 Mapping SOA principles to Twitter.

6 Architecture

On a conceptual level, our proposed architecture (the
architecture overview is shown in Figure 4) follows prin-

10 Martin Treiber et al.

Fig. 4 Tweetflow architecture for collaborative crowds.

ciples that can be found in ESBs (Enterprise Service
Buses), e.g., see open source projects such as ServiceMix5.
Like ESBs, which provide an abstraction layer on top
of an implementation of an enterprise messaging sys-
tem, our architecture introduces an abstraction layer
over existing messaging systems. Having one common
communication channel, we are able to plug Services,
Apps respectively into a common communication in-
frastructure. By taking social aspects into account, we
also provide for a lightweight directed multicast com-
munication system.

As shown in the overview, our architecture consists
of several components which are arranged around a
bus-like infrastructure providing the central communi-
cation means. Users interact with the Tweet Bus us-
ing different clients from different platforms (e.g., third
party Twitter clients from mobile devices [15] or the
Twitter Web page). The Tweet Bus itself contains sev-
eral Tweetflows simultaneously, thus Tweetflows are in-
tertwined and the respective Tweets are arranged ac-
cording to their timestamp. Consequently, we require
the client to filter Tweets, which our prototype imple-

5 http://servicemix.apache.org/home.html

mentation does with the help of regular expressions.
The filtered Tweets are sorted into respective Tweet-
flow queues in the Tweetflow manager component. Each
queue works according to the FIFO principle; our cur-
rent implementation does not provide for priority order-
ing of Tweets. The access of the mobile App is handled
by the App invoker component which executes the App.

Currently, we do not support fully automated App
binding and require the user to manually bind a App.
Note that the binding of an App can be temporary: App
bindings can be assigned to different Tweetflows which
are identified by their names or hashtags. It is possible
to change the binding of an App during the execution of
a Tweetflow, thus providing for dynamic App bindings.
Figure 5 shows screenshots of the Tweetflow prototype
App that is able to handle Tweetflow requests.

Optional data which can be passed to the App is
stored by an external Service that provides the means
to create, read, delete and update simple (text) re-
sources6. These resources are referenced from Tweets
and comprise (optional or the only) input for Apps

6 http://www.infosys.tuwien.ac.at/staff/treiber/

wwwdemo/textwriter.html

Crowdsourcing Mobile Workflows with Tweetflows 11

(a) Tweetflow App screen. (b) Registering an App. (c) Execution of an App.

Fig. 5 Screenshots of Tweetflow Prototype App.

that are invoked by Tweets. As shown in the archi-
tecture overview, Tweetflows are per se not bound to
a particular software infrastructure on mobile devices.
Tweetflows can also be accessed from third party clients
(e.g., mobile Twitter clients) or even from Web pages
that are accessed from the mobile device.

7 Application Scenario

In this section, we illustrate the application of our pro-
posed approach in a real world scenario derived from
our motivation example. Consider a person who want
to go out for dinner after work with two friends. This
person does not have specific requirements concerning
the type of restaurant, but owns a car and thus need
a parking place. The corresponding open Tweeflow se-

quence for requesting car parking information, restau-
rant information and the availability for dinner is shown
in Listing 8.

TF didBegin . Tweetflow r e s e rv a t i o n
#dinner #re s tau ran t #carpark
TF r e s e r v a t i on SR @jumpne recommend. r e s t au ran t ?
l o c a t i o n=Vienna ,1040& date=today&time=20:00
TF r e s e r v a t i on SR @wokung recommend. r e s t au ran t ?
l o c a t i o n=Vienna ,1040& date=today&time=20:00
TF r e s e r v a t i on SR @ikangai ge t . Park ingIn fo ?
l o c a t i o n=Vienna ,1040& date=today&time=20:00
TF r e s e r v a t i on SR @johannes2112 get . Av a i l a b i l i t y ?
l o c a t i o n=Vienna ,1040& date=today&time=20:00
TF r e s e r v a t i on SR @reda l i75 ge t . A va i l a b i l i t y ?
l o c a t i o n=Vienna ,1040& date=today&time=20:00
TF d idF in i sh . Tweetflow r e s e r v a t i o n

Listing 8 Requesting a restaurant recommendation

After a while, several Twitter followers answer to
the request. Some of the followers have an App installed
containing a database of restaurant recommendations7.
After receiving the request, the user opens the App

7 Wien wie es isst.

(which has been registered for this purpose) looks for a
restaurant and tweets the result (see Figure 6).

It is worth noting that the actual answer tweet did
not conform to the exact syntax we have been dis-
cussing in this paper. The reason was that the users did
not have the prototype Twitter client installed which
provides a graphical user interface and supports the
creation of Tweetflow-compliant Tweets. Furthermore,
the address in the request contained a typo; the correct
street name is Argentinierstrasse and not as mistakenly
written in the Service request Tweet Argentierstrasse.
However, the flexibility of human proxies can handle
this kind of syntactic ambiguities easily and provide a
correct answer nevertheless.

Another issue concerns the aggregation of multi-
ple answers. This is a typical crowdsourcing problem,
since a service requester can expect several answers for
crowdsourced requests. In our current prototype imple-
mentation, the service requester receives a list of results
from which the requester can choose manually. A future
extension of the approach could be to establish algo-
rithms that automatically select the best response (for
example, by considering the reputation of the users that
provided the response). The integration of reputation
mechanism has been briefly discussed in our concep-
tual stack (see Figure 1). At this stage, we have started
to integrate various techniques based on social network
analysis methods.

8 Related Work

In Service-oriented environments, standards have been
established to model human-based process activities and
tasks (WS-HumanTask [14]). However, these standards
require the precise definition of interaction models be-
tween humans and Services. In our approach, we com-

12 Martin Treiber et al.

(a) Tweetflow screen. (b) Nearby restaurants. (c) Recommendation.

Fig. 6 Screenshots of mobile Tweetflow App.

bine SOA concepts and social principles. We consider
open Service-oriented environments wherein Services can
be added at any point in time. Following the open
world assumption, humans actively shape the availabil-
ity of Services. The concept of Human-Provided Ser-
vices (HPS) [38] supports flexible Service-oriented col-
laborations across multiple organizations and domains.
Similarly, emergent collectives as defined by [36] are
networks of interlinked valued nodes (Services).

Open Service-oriented systems are specifically rele-
vant for future crowdsourcing applications. For exam-
ple, a hybrid human-computer document translation
system has been discussed by [39], but without focusing
on the realization as a Service-based systems. While ex-
isting platforms (e.g., MTurk [5]) only support simple
interaction models (tasks are assigned to individuals),
social network principles support more advanced tech-
niques such as formation and adaptive coordination.

Social game-based human computation has been in-
troduced by [46] in the context of image labeling that is
performed by humans.in the context of image labeling
performed by humans. From the technical point of view,
TurKit [25] is a crowd-computing framework based on
MTurk. The availability of rich and plentiful data on
human interaction in social networks has closed an im-
portant loop [23], allowing to model social phenomena
and use these models in the design of new computing
applications.

Semantic Web service communities as introduced
by [26] foster the creation of structured communities
with predefined community interfaces and functional-
ity. However, ontology structures are not well suited
for crowds, because crowd structures emerge bottom
up and are difficult to capture with regard to function-
ality and interactions between crowd members. Also,
value networks [3] are of interest when business aspects

are investigated in crowd settings, i.e., the value that
can be generated by such networks based on crowds.

On an architectural level, we follow the blackboard
architectural pattern [16] with a shared space for the ex-
change of information. In our architecture, the Tweet
Bus plays the role of the blackboard which holds state
information, i.e., Tweets of the Tweetflows. Enterprise
Service Bus Architectures [7] have a strong similarity to
our proposed architecture. Like in ESBs, our approach
also uses a centralized communication channel to trans-
port messages. Clients plug into this channel and listen
to messages which are transported in a standard for-
mat. However, the public visibility of Tweets, the 140
character limit for messages and the ability to forward
(retweet) messages arbitrarily to other users that do
not listen to the communication bus, i.e., to push mes-
sages into an unstructured community of followers are
the main differences.

Principles of SOA are well studied in literature [35].
However, the move of SOA into the mobile domain fo-
cuses mainly on implementation details and address
limitations of mobile devices. Juszczyk et al present
[22] present a middleware for Service-oriented commu-
nication which run on mobile devices. Mobile Web ser-
vices Architectures [32] aim at providing alternative
representations other than XML-based SOAP and fast
communication transport options for mobile Web ser-
vices [33] [21]. Other approaches use aspect-oriented
programming to facilitate the access to Services from
mobile devices [34]. The work presented in [45] describes
an infrastructure and middleware design which is based
on the Jini Surrogate Architecture Specification. Web
services for Devices8 aim at porting as much of the SOA
stack as possible to embedded and mobile devices and
make use of gSOAP implementation [44]. The authors

8 http://www.ws4d.org/

Crowdsourcing Mobile Workflows with Tweetflows 13

of [31] present a lightweight mobile SOA-based architec-
ture based on J2ME and aim at minimizing the traffic
to and from mobile devices. [40] investigates the use of
short messages as communication mean between mobile
devices to invoke Services asynchronously.

9 Summary and Outlook

We have presented an approach for the application of
SOA principles on mobile Apps. Specifically, we have in-
vestigated the mapping of existing infrastructure (Apps,
App Store) to SOA concepts like Service, Service reg-
istry and Service consumer. After establishing the map-
ping, we have introduced a lightweight communication
schema (Tweetflows) that uses social network struc-
tures and provides for the integration of human-provided
services.

Our next steps will be the extension of the commu-
nication schema to support more complex processes and
the investigation of the distributed execution of Tweet-
flows in crowd scenarios. In particular, we are going to
define Loops and conditional expressions within Tweet-
flows. Another area of future work is the implementa-
tion of intelligent message forwarding mechanisms for
the crowd. If we want to move our approach beyond
the personal character of mobile Service, we need to
consider the crowd as a whole as a Service provider
network. If a message is sent to the crowd, the mes-
sage needs to be automatically forwarded to other users,
without any need for user intervention. To increase the
probability of reaching the intended service, we require
a directed message forwarding, based on heuristics with
Twitter user profile data.

We will investigate the use of private microblogging
servers within LANs, addressing some of the privacy
issues of Tweetflows. We will look at mechanisms that
restrict the access to Tweets on an architectural level by
installing local microblogging severs and restricting the
access to these servers. In addition, private messages
and realms of trust will also be investigated.

Finally, we are going to extend our prototype with
a graphical interface to support the creation of complex
Tweetflows (Service pipes, closed sequences, conditional
expressions) directly on mobile devices.

Acknowledgments

The research leading to these results has received fund-
ing from the European Community Seventh Framework
Programme FP7/2007-2013 under grant agreement 215483
(S-Cube) and 216256 (COIN).

References

1. Business Process Execution Language for Web Services
(BPEL), 2003.

2. R. Akkiraju, J. Farrell, J. Miller, M. Nagarajan, M.-T.
Schmidt, A. Sheth, and K. Verma. Web Services Seman-
tics – WSDL-S, 2005.

3. V. Allee. Reconfiguring the value network. Journal of
Business Strategy, 21(4), August 2000.

4. G. Alonso, F. Casati, H. Kuno, and V. Machiraju.
Web Services - Concepts, Architectures and Applications.
Springer, October 2003.

5. Amazon.com. Amazon mechanical turk, last access: 2010.
available online: http://www.mturk.com.

6. J. Balasooriya, J. Joshi, S. Prasad, and S. Navathe. Dis-
tributed coordination of workflows over web services and
their Handheld-Based execution. In Distributed Comput-
ing and Networking, volume 4904 of Lecture Notes in Com-
puter Science, pages 39–53. Springer Berlin / Heidelberg,
2008.

7. D. Chappell. Enterprise Service Bus. O’Reilly Media, Inc.,
2004.

8. R. Chinnici, J.-J. Moreau, A. Ryman, and S. Weer-
awarana. Web Services Description Language (WSDL)
2.0, 2007.

9. L. Clement, A. Hately, , C. von Riegen, and T. Rogers.
UDDI Version 3.0.2, 2004.

10. S. Dustdar and M. Treiber. A view based analysis on
web service registries. Distributed and Parallel Databases,
18(2):147–171, 2005.

11. P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M.
Kermarrec. The many faces of publish/subscribe. ACM
Comput. Surv., 35(2):114–131, 2003.

12. J. Farrell and H. Lausen. Semantic Annotations for
WSDL and XML Schema, August 2007.

13. D. Fensel, H. Lausen, J. de Bruijn, M. Stollberg, D. Ro-
man, A. Polleres, and J. Domingue. Wsml a language
for wsmo. Enabling Semantic Web Services, pages 83–99,
2007.

14. M. Ford et al. Web Services Human Task (WS-
HumanTask), Version 1.0., 2007.

15. S. Gaonkar, J. Li, R. R. Choudhury, L. Cox, and
A. Schmidt. Micro-blog: sharing and querying content
through mobile phones and social participation. In Mo-
biSys ’08, pages 174–186. ACM, 2008.

16. D. Garlan and M. Shaw. An introduction to software ar-
chitecture. Technical report, Pittsburgh, PA, USA, 1994.

17. M. Hadley. Web Application Description Language, Au-
gust 2009.

18. D. Horowitz and S. D. Kamvar. The anatomy of a large-
scale social search engine. In Proceedings of the 19th inter-
national conference on World wide web, WWW ’10, pages
431–440, New York, NY, USA, 2010. ACM.

19. J. Howe. The rise of crowdsourcing, June 2006.
20. J. Huang, K. M. Thornton, and E. N. Efthimiadis. Con-

versational tagging in twitter. In HT ’10, pages 173–178.
ACM, 2010.

21. F. Jammes, A. Mensch, and H. Smit. Service-oriented
device communications using the devices profile for web
services. In MPAC ’05: Proceedings of the 3rd international
workshop on Middleware for pervasive and ad-hoc comput-
ing, pages 1–8, New York, NY, USA, 2005. ACM.

22. L. Juszczyk and S. Dustdar. A middleware for service-
oriented communication in mobile disaster response en-
vironments. In MPAC ’08, pages 37–42, New York, NY,
USA, 2008. ACM.

14 Martin Treiber et al.

23. J. Kleinberg. The convergence of social and technological
networks. Commun. ACM, 51(11):66–72, 2008.

24. H. Kwak, C. Lee, H. Park, and S. Moon. What is Twitter,
a social network or a news media? In WWW ’10, pages
591–600. ACM, 2010.

25. G. Little, L. B. Chilton, M. Goldman, and R. C. Miller.
Turkit: tools for iterative tasks on mechanical turk. In
HCOMP ’09, pages 29–30. ACM, 2009.

26. B. Medjahed and A. Bouguettaya. A Dynamic Foun-
dational Architecture for Semantic Web Services. Dis-
tributed and Parallel Databases, 17(179–206), 2005.

27. A. Michlmayr, F. Rosenberg, C. Platzer, M. Treiber, and
S. Dustdar. Towards recovering the broken soa triangle: a
software engineering perspective. In IW-SOSWE ’07: 2nd
international workshop on Service oriented software engi-
neering, pages 22–28, New York, NY, USA, 2007. ACM.

28. Microsoft. Uddi shutdown, 2006.
29. M. Motoyama, B. Meeder, K. Levchenko, G. M. Voelker,

and S. Savage. Measuring online service availability using
twitter. In WOSN’10, pages 13–13. USENIX Association,
2010.

30. D. G. Murray, E. Yoneki, J. Crowcroft, and S. Hand. The
case for crowd computing. In MobiHeld ’10, pages 39–44.
ACM, 2010.

31. Y. Natchetoi, V. Kaufman, and A. Shapiro. Service-
oriented architecture for mobile applications. In SAM
’08: Proceedings of the 1st international workshop on Soft-
ware architectures and mobility, pages 27–32, New York,
NY, USA, 2008. ACM.

32. S. Oh and G. C. Fox. Hhfr: A new architecture for mobile
web services: Principles and implementations. Technical
report, 2005.

33. S. Oh and G. C. Fox. Optimizing web service messaging
performance in mobile computing. Future Gener. Comput.
Syst., 23(4):623–632, 2007.

34. G. Ortiz and A. G. D. Prado. Improving device-aware
web services and their mobile clients through an aspect-
oriented, model-driven approach. Inf. Softw. Technol.,
52(10):1080–1093, 2010.

35. M. P. Papazoglou and W.-J. Heuvel. Service oriented ar-
chitectures: approaches, technologies and research issues.
The VLDB Journal, 16(3):389–415, 2007.

36. C. Petrie. Plenty of room outside the firm. IEEE Internet
Computing, 14, 2010.

37. D. Schall and F. Skopik. Mining and composition of
emergent collectives in mixed service-oriented systems.
In CEC ’10. IEEE, 2010.

38. D. Schall, H.-L. Truong, and S. Dustdar. Unifying Hu-
man and Software Services in Web-Scale Collaborations.
Internet Comp., 12(3):62–68, 2008.

39. D. Shahaf and E. Horvitz. Generalized task markets for
human and machine computation. In AAAI, 2010.

40. R. Singh, S. Mishra, and D. S. Kushwaha. An efficient
asynchronous mobile web service framework. SIGSOFT
Softw. Eng. Notes, 34(6):1–7, 2009.

41. J. Surowiecki. The Wisdom of Crowds. Anchor, 2005.
42. M. Treiber and S. Dustdar. Active web service registries.

IEEE Internet Computing, 11(5):66–71, 2007.
43. W. M. van der Aalst, L. Aldred, M. Dumas, and A. H.

ter Hofstede. Design and Implementation of the YAWL
System. In Lecture Notes in Computer Science, volume
3084, pages 142–159, 2004.

44. R. van Engelen. Code generation techniques for develop-
ing light-weight xml web services for embedded devices.
In SAC ’04: Proceedings of the 2004 ACM symposium on
Applied computing, pages 854–861, New York, NY, USA,
2004. ACM.

45. A. van Halteren and P. Pawar. Mobile service platform:
A middleware for nomadic mobile service provisioning. In
Wireless and Mobile Computing, Networking and Commu-
nications, 2006. (WiMob’2006). IEEE International Con-
ference on, pages 292 –299, 19-21 2006.

46. L. von Ahn and L. Dabbish. Designing games with a
purpose. Commun. ACM, 51(8):58–67, 2008.

47. J. Voss. Tagging, folksonomy & co - renaissance of man-
ual indexing? CoRR, abs/cs/0701072, 2007.

