
End-to-End Support for
QoS-Aware Service Selection,
Invocation and Mediation in
VRESCo
Under Review for Publication in IEEE
Transactions on Services Computing

Anton Michlmayr, Florian Rosenberg,
Philipp Leitner and Schahram Dustdar
lastname@infosys.tuwien.ac.at

TUV-1841-2009-03 May 26, 2009

Vienna University of Technology
Information Systems Institute
Distributed Systems Group

Service-oriented Computing has recently received a lot of attention from
both academia and industry. However, current service-oriented solutions
are often not as dynamic and adaptable as intended because the publish-
find-bind-execute cycle of the SOA triangle is not entirely realized. In this
paper, we highlight some issues of current Web service technologies, with a
special emphasis on service metadata, querying, invocation and mediation.
We present the Vienna Runtime Environment for Service-oriented Comput-
ing (VRESCo) that aims at solving a number of these issues. Among others,
VRESCO provides support for service metadata and querying, monitoring
of Quality of Service, dynamic binding and invocation including service
mediation, service notifications, and service compositions. Additionally,
we give an evaluation that proves the performance and usefulness of our
system.

Keywords: Service-oriented Computing, Service Runtimes, Web Services

c©2009, Distributed Systems Group, Vienna University of Technology

Argentinierstr. 8/184-1
A-1040 Vienna, Austria
phone: +43 1 58801-18402
fax: +43 1 58801-18491
URL: http://www.infosys.tuwien.ac.at/

1

End-to-End Support for QoS-Aware Service
Selection, Invocation and Mediation in VRESCo

Anton Michlmayr, Member, IEEE, Florian Rosenberg, Member, IEEE,
Philipp Leitner, Member, IEEE, and Schahram Dustdar, Member, IEEE

F

Abstract—Service-oriented Computing has recently received a lot of
attention from both academia and industry. However, current service-
oriented solutions are often not as dynamic and adaptable as intended
because the publish-find-bind-execute cycle of the SOA triangle is not
entirely realized. In this paper, we highlight some issues of current Web
service technologies, with a special emphasis on service metadata,
querying, invocation and mediation. We present the Vienna Runtime
Environment for Service-oriented Computing (VRESCo) that aims at
solving a number of these issues. Among others, VRESCO provides
support for service metadata and querying, monitoring of Quality of
Service, dynamic binding and invocation including service mediation,
service notifications, and service compositions. Additionally, we give an
evaluation that proves the performance and usefulness of our system.

1 INTRODUCTION

During the last few years, Service-oriented Architecture
(SOA) and Service-oriented Computing (SOC) [1] has
gained acceptance as a paradigm for mastering the
complexity of distributed applications by using loose
coupling, platform-independent interface descriptions
and well-established standards. In theory, the basic SOA
model consists of three participants that communicate as
shown in Figure 1a. Service providers implement services
and make them available in service registries. Service
consumers (also called service requesters) can query service
descriptions and location information from the registry,
bind to the corresponding service provider, and finally
execute the service. Due to the platform-independent
service descriptions, one can implement flexible applica-
tions with respect to manageability and adaptivity. For
instance, services can easily be exchanged at runtime,
and service consumers can switch to alternative services
seamlessly. This increases the organizational agility [2],
allows companies to soften the disruptive effects of
changes in the business or IT environment, and quickly
react to unexpected events (such as new competitors
entering the market). Web services [3] represent the
most common realization of SOA, building on the main
standards SOAP [4] for messaging-based communica-
tion, WSDL [5] for service interface descriptions, and
UDDI [6] for service registries.

All authors are with the Distributed Systems Group, Vienna University of
Technology, Vienna, Austria.
E-mail: {anton,florian,leitner,dustdar}@infosys.tuwien.ac.at

However, practice has shown that SOA solutions are
often not as flexible and adaptable as claimed. We argue
that there are some issues in current implementations
of the SOA model. First and foremost, service registries
such as UDDI and ebXML [7] did not succeed as in-
tended, which is partly because of their limited querying
support that only provides keyword-based matching of
registry content and does not consider the metadata
and non-functional properties of services. This is also
highlighted by the fact that Microsoft, SAP, and IBM
have finally shut down their public UDDI registries in
2005. As a result, service registries are often missing in
service-centric systems, leading to point-to-point solu-
tions where service endpoints are exchanged at design-
time (e.g., using E-Mail or phone) and service consumers
statically bind to these endpoints (see Figure 1b).

Service
Contract

Service
Registry

Service
Provider

Service
Requester Bind

RegisterFind

(a) SOA Model

Service
Contract

Service
Provider

Service
Requester Bind

(b) SOA Practice

Fig. 1: Basic SOA Model – Theory vs. Practice

Besides that, support for dynamic binding and invo-
cation of services is often restricted to services having
the same technical interface. In this regard, the lack of
service metadata makes it difficult for service consumers
to know if two services actually perform the same task.
Furthermore, support for Quality of Service (QoS) is
necessary to enable service selection based on functional
and non-functional quality attributes. Finally, event pro-
cessing can be used to get notified about changing
QoS attributes which may trigger dynamic re-binding
to services with better QoS.

The contribution of this paper is threefold: Firstly,
we discuss the issues we see in current SOC research
and practice by describing the problems that arise when
building SOC applications with current tools and frame-
works. Secondly, we introduce the VRESCO service
runtime that aims at solving some of these issues. We de-

2

scribe the details of VRESCO with a special emphasis on
service metadata, querying, invocation, and mediation.
Finally, we provide an extensive performance evaluation
that shows the applicability of our approach.

The remainder of this paper is organized as follows:
Section 2 presents an illustrative example and summa-
rizes some issues we see in SOC research and prac-
tice. Section 3 then introduces related approaches while
Section 4 describes the details of the VRESCO runtime
environment. Section 5 gives a thorough evaluation of
our work, and Section 6 finally concludes the paper.

2 MOTIVATION AND PROBLEM STATEMENT

This section first introduces a motivating example which
is used throughout the paper. Then, we derive the prob-
lems developers face when engineering service-centric
systems with current tools and frameworks.

2.1 Motivating Example

Figure 2 shows a typical enterprise application sce-
nario from the telecommunications domain that is used
throughout the paper to highlight current problems and
our proposed solution. The overview of this case study
is depicted in Figure 2a.

Shippers

Suppliers

Manufacturers

Banks

CPO1
Public Services

Order Service

Roaming/Rate
Information Service

Customer Services

Customer Service

Messaging Services

Inhouse Services

CRM Services

Mobile Operation
Services

Number Porting
Service

Billing Service

CPO3

Number Porting
Service

CPO2

Number Porting
Service

(a) Case Study Overview

Mail Service

Partner CPO ServicesProcessInternal Services

Check
Portability

Status

Activate
Number

Notify
Customer

Lookup
Customer

Lookup
Partner

Port Number

E-Mail Service

SMS Service

Customer Service

CPO Service

Number Porting
Service

Phone Number
Management

Service

Internal External

(b) Number Porting Process

Fig. 2: CPO Case Study

In this figure, cell phone operator CPO1 provides
different kinds of services: Firstly, public services (e.g., rate
information service) can be used by everyone. Secondly,
customer services (e.g., short messaging service) are used
by customers of CPO1. Thirdly, inhouse services (e.g.,
CRM services) represent internal services which should
only be accessed by the different departments of CPO1.
Besides that, CPO1 also consumes services from its part-
ners (e.g., cell phone manufacturers and suppliers) and
competitors (e.g., CPO2 and CPO3). As discussed later,
these scenario bears several challenges that are typical
in service-centric software engineering.

Figure 2b shows a simplified version of the number
porting process. In Europe, CPOs have to provide num-
ber porting by law, in order to enable consumers to keep
their mobile phone number when switching to another
CPO. This process is interesting because it contains both
internal and external services. After the customer has
been looked up in the customer service, the number
porting service of the old CPO has to be invoked. If
the porting was successful, the new number is activated
by the mobile operations service. Finally, a notification
is sent to the customer using the preferred notification
mechanism (e.g., SMS, E-Mail, etc.).

2.2 SOC Challenges and Contributions

Adaptive service-oriented systems bring along several
distinct requirements, leading to a number of challenges
that have to be addressed. In this section, we summarize
the current challenges we see most important. These
challenges also represent the core contributions of the
VRESCO approach.
• Service Metadata. Service interface description lan-

guages such as WSDL focus on the interface which
is needed to invoke the service. However, from this
interface it is often not clear what a service actually
does, and if it performs the same task as another
service. Service metadata [8] can give additional
information about the purpose of a service and
its interface (e.g., pre- and post-conditions). For
instance, in the CPO case study without service
metadata it is not clear if the number porting ser-
vices of CPO2 and CPO3 actually perform the same
task. We further distinguish between structured and
unstructured metadata: Structured metadata allows
to attach data according to the pre-defined service
metadata model, while unstructured metadata en-
able service providers to attach unstructured infor-
mation (e.g., tags) to services.

• Service Querying. Once services and associated meta-
data are defined, this information should be discov-
ered and queried by service consumers. This is the
focus of service registry standards such as UDDI [6]
and ebXML [7]. In practice, the service registry is
often missing since there are no public registries
and service providers often do not want to maintain
their own registry [9]. Besides service discovery,
another issue is how to select a service from a pool
of possible service candidates [10]. Service selection
using querying languages or APIs can be either
type-safe or not type-safe, depending on whether
the query service returns specific types from the
service metadata model.

• Quality of Service (QoS). In enterprise scenarios QoS
plays a crucial role [11]. This includes functional
attributes such as response time, availability or
throughput, and non-functional attributes such as
cost or security. The QoS model should ideally
be extensible to allow service providers to adapt

3

Challenge UDDI ebXML Mule WSO2 WebSphere VRESCO

Service Metadata Unstructured + + + + + ∼
Structured ∼ ∼ ∼ ∼ + +

Service Querying Query Language/API + + + ∼ + +
Type-safe Query – – – – ∼ +

Quality of Service Explicit QoS Support – – – ∼ ∼ +
QoS Monitoring – – – – – +

Dynamic Service Invocation Binding & Invocation – – + – ∼ +
Service Mediation – – + + + +

Service Versioning Metadata Versioning – + + ∼ ∼ –
End-to-End Support – – – – – +

Event Processing Basic Notifications + + + ∼ + +
Complex Event Processing – – – – ∼ +

TABLE 1: Related Enterprise Registry Approaches

it for their needs. Furthermore, the QoS must be
monitored accordingly so that users can be notified
when the measured values do not adhere to Service
Level Agreements (SLA).

• Dynamic Binding and Invocation. One of the main ad-
vantages of service-centric systems has always been
the claim that service consumers can dynamically
bind and invoke services from a pool of candidate
services (e.g., depending on the current QoS at-
tributes). However, in practice this is currently only
possible if the service interfaces are identical, which
is often not the case, especially when switching
from one service provider to another. This raises the
need for service mediation approaches that mediate
between alternative services depending on the ser-
vice metadata and mappings stored in the registry.
Considering the CPO case study, the interfaces of
CPO2’s and CPO3’s number porting service might
differ, but the number porting process of CPO1
should still be able to seamlessly switch between
them at runtime.

• Service Versioning. Like any piece of software, ser-
vices are subject to permanent change regarding
their interfaces and implementation. Current reg-
istry standards provide limited support for version-
ing of registry data but cannot handle the differ-
ences between various service revisions, for instance
as shown in [12]. We thereby distinguish between
metadata versioning (i.e., maintain versions of meta-
data), and end-to-end versioning support (i.e., en-
able service consumers to switch between different
service revisions transparently).

• Event Notifications. Service-centric systems are said
to be flexible and dynamic. To support this flexi-
bility, event processing mechanisms can be used to
record which events occur within the system. This
includes both basic “service events” (e.g., service is
created) and complex events regarding QoS (e.g.,
average response time of service X has changed)
and invocations (e.g., service X has been invoked),
supporting complex event processing [13]. Users
can subscribe to various events of interest, and get
notified per E-Mail or Web service notifications (e.g.,
WS-Eventing [14]). Such notifications may trigger
adaptive behavior (e.g., rebinding to other services).

3 RELATED WORK

In this section, we review related work and state of the
art concerning service repositories and service metadata,
as well as service selection, invocation, and mediation.

Currently, several approaches and standards for ser-
vice registries/repositories exist. We have compared
some existing solutions with the VRESCO runtime, try-
ing to cover the full range of established standards, ma-
ture open-source frameworks and commercial tools. We
consider the standards UDDI [6] and ebXML [7] (with
special emphasis on the registry part), the Mule ESB and
Galaxy [15] as service repository, the WSO2 ESB and
registry [16], and the closed-source IBM WebSphere [17]
solution (including ESB, service registry and repository).

Our findings are shown in Table 1, and are structured
according to the challenges introduced in Section 2. Gen-
erally, all systems allow to store metadata about services.
Mostly, this is done in an unstructured way (e.g., using
tModels in UDDI). There is only limited support for
structured metadata in most approaches, while Web-
Sphere provides an extensive structured metadata model
(e.g., supporting OWL). To access data and metadata
within the registry a query language or API is needed,
which is provided by all approaches (WSO2 supports
querying only based on Atom [18] resources). In contrast
to VRESCO, type-safe queries are not supported by most
approaches since querying is usually done on the un-
structured service metadata model using languages such
as SQL. Only WebSphere provides partial support by
using XPath expressions for querying. Currently, explicit
support for QoS attributes is not widely available – it
is to some extent possible in WSO2 and WebSphere,
and fully supported by VRESCO. WSO2 supports only
QoS in terms of WS-Security and WS-ReliableMessaging.
However, none of these frameworks except VRESCO
integrates QoS monitoring facilities. Integration of dy-
namic binding, invocation and mediation of services is
for obvious reasons not supported by pure registries
such as UDDI or the ebXML registry. The other systems
provide support in this respect due to their integrated
ESBs. All systems except UDDI and VRESCO allow to
maintain multiple versions of metadata in the registry.
However, only VRESCO has what we consider an end-
to-end support for service versioning that allows to eas-
ily switch between service versions at runtime. Finally,

4

all approaches provide support for basic notifications
(e.g., if services are published) using E-Mail, WS noti-
fications or Atom. Only WebSphere and VRESCO allow
clients to subscribe to more complex events and event
patterns using a rich subscription language.

Besides UDDI and ebXML, there are other standards
for describing service metadata [8]. Some of them are
used by semantic Web service approaches [19] (such as
OWL-S [20], WSML [21] and SAWSDL [22]). It should
be noted, however, that the VRESCO service metadata
model introduced in Section 4.2 is not intended to
compete with these approaches. We aim at enterprise
development where metadata is an important business
asset which should not be accessible for everyone, as
opposed to the semantic Web service community where
domain ontologies should be public to facilitate integra-
tion among different providers and consumers.

In general, several standards and research approaches
have emerged that address the complexities of managing
and deploying Web services [23]. In these approaches,
service querying and selection play a crucial role, espe-
cially regarding service composition (e.g., [11], [24], [25]).
However, the query models of current registries and Web
service search engines [26] mainly focus on keyword-
based matching of service properties which often do not
cover the rich semantics of service metadata.

Yu and Bouguettaya [27] introduce a Web service
query algebra and optimization framework. This frame-
work is based on a formal model using service and oper-
ation graphs that define a high-level abstraction of Web
services, and also includes a QoS model. Service queries
are specified as algebraic operators on functionality,
quality and composition of services, and finally result
in service execution plans. Optimization techniques are
then applied to select the best service execution plan
according to user-defined QoS properties. This work
is complementary to ours: while the authors focus on
their formal service model and introduce a query alge-
bra for this model, we present a service runtime that
provides end-to-end support for service management
and querying functionality. Furthermore, we address
dynamic binding and service mediation since service
interfaces of different service providers are not always
identical in practice.

Dynamic binding of services has been addressed
by other approaches (e.g., [28], [29]). Pautasso and
Alonso [28] discuss various binding models for services,
together with different points in time when bindings are
evaluated. They present a flexible binding model in the
JOpera system where binding is done using reflection
and does not require a specific language construct. Di
Penta et. al. [29] present the WS-Binder framework for
enabling dynamic binding within WS-BPEL processes.
Their approach uses proxies to separate abstract services
from concrete services instances. Both approaches have
in common that they rather focus on dynamic bind-
ing with respect to composition environments whereas
VRESCO addresses binding at the core SOA level.

4 SYSTEM DESCRIPTION
This section describes in detail the VRESCO runtime
which was first sketched in [9]. Besides an architectural
overview, this includes service metadata and querying,
as well as dynamic binding and invocation mechanisms
together with our service mediation approach.

4.1 Overview
The architectural overview of VRESCO is shown in
Figure 3. The VRESCO core services are provided as Web
services that can be accessed either directly using SOAP
or by using the client library that provides a simple API.
Furthermore, the DAIOS framework [30] has been inte-
grated into the client library, and provides dynamic and
asynchronous invocations of Web services. The access
control layer guarantees that only authorized clients can
access the core services, which is handled using claim-
based access control and certificates [31]. Services and
associated metadata [32] are stored in the service registry
which is accessed using an Object-Relational Mapping
(ORM) layer. Finally, the QoS monitor [33] is responsible
for regularly measuring the QoS values of services. The
overall runtime environment is implemented in C# using
the Windows Communication Foundation [34]. Due to
the platform-independent architecture, the client library
is currently provided for C# and Java.

Service
Client

SOAP

Services

measure

QoS
Monitor

VRESCo Client Library

Daios Client
Factory

invoke

SOAP

VRESCo Runtime Environment

Registry
Database

Notification
Engine

Query
Engine

Composition
Engine

Query
Interface

Publishing
Interface

Metadata
Interface

Notification
Interface

Management
Interface

Composition
Interface

Publishing/
Metadata
Service

Management
Service

O
R

M

La
ye

r

Ac
ce

ss

C
on

tro
l

Certificate
Store

Event
Database

Fig. 3: VRESCo Overview Architecture

There are several VRESCO core services. The Publish-
ing/Metadata Service is used to publish services and
metadata into the registry database. Furthermore, the
Management Service is responsible for managing user
information (e.g., name, password, etc.) whereas the
Query Engine is used to query all information stored
in the database. The task of the Notification Engine [35]
is to inform users when certain events of interest occur
inside the runtime, while the Composition Engine [36]
finally provides mechanisms to compose services by
considering QoS attributes. In this paper, we focus on
the main requirements for our client-side mediation
approach which are the Metadata Service (including the
models used for metadata, services and QoS), the Query
Engine, as well as dynamic binding and invocation
mechanisms.

5

4.2 Service Metadata and Mapping

The VRESCO runtime provides a rich service metadata
model capable of storing additional information about
services in the registry. This is needed to capture the
purpose of services to enable querying and mediating
between services that perform the same task.

4.2.1 Service Metadata Model
The VRESCo metadata model introduced in [32] is de-
picted in Figure 4. The main building blocks of this
model are concepts, which represent the definition of an
entity in the domain model. We distinguish between
three different types of concepts:
• Features represent concrete actions in one domain

that perform the same task (e.g., Check_Status
and Port_Number). Features are associated with
categories which express the purpose of a service
(e.g., PhoneNumberPorting).

• Data concepts represent concrete entities in the do-
main (e.g., customer or invoice) which are de-
fined using other data concepts and atomic elements
such as strings or numbers.

• Predicates represent domain-specific statements
that either return true or false. Each
predicate can have a number of arguments
(e.g., for feature Port_Number a predicate
Portability_Status_Ok(Number) may express
the portability status of a given phone number).

Category

Feature

Concept

Precondition

Postcondition

Predicate

Argument

Data Concept

State
Predicate

Flow
Predicate

isSubCategory

1..*

1

1
1

11 *0..1

1

1

*

0..1

derivedFrom

consistsOf

0..1

*

Fig. 4: Service Metadata Model

Furthermore, features can have pre- and postconditions
expressing logical statements that have to hold before
and after its execution. Both types of conditions are
composed of multiple predicates, each having a number
of optional arguments that refer to a concept in the domain
model. There are two different types of predicates:
• Flow predicates describe the data flow required

or produced by features. For instance, the feature
Check_Status from our CPO case study could

have the flow predicate requires(Customer)
as pre- and produces(PortabilityStatus) as
postcondition.

• State predicates express some global behavior that is
valid either before or after invoking a feature. For
instance, the state predicate notified(Customer)
can be added as postcondition to the feature
Notify_Customer.

4.2.2 Service Model

The VRESCO service model constitutes the basic in-
formation of concrete services that are managed by
VRESCO and can be invoked using the DAIOS dynamic
invocation framework. The service model depicted on
the lower half of Figure 5 basically follows the Web
service notation as introduced by WSDL with extensions
to enable service versioning [37], represent QoS and
enable eventing on a service runtime level.

Service Operation

Category Feature

Parameter

*

1

*1

Data Concept

*

1

**

1..*
Mapping Function

*

Service Model

Service Metadata Model

Revision

1

1..*

1

*

QoS

QoS

1

1

*

*

Fig. 5: Service Model to Metadata Model Mapping

A concrete service (Service) defines the basic informa-
tion of a service (e.g., name, description, owner, etc.) and
consists of a least one service revision. A service revision
(Revision) contains all technical information that is neces-
sary to invoke it (e.g., a reference to the WSDL file) and
represents a collection of operations (Operation). Every
operation may have a number of input parameters, and
may return one or more output parameters (Parameter).
Revisions can have parent and child revisions that rep-
resent a complete versioning graph of a concrete service
(for details see [37]). Both, revisions and operations can
have a number of QoS attributes (QoS) representing all
service-level attributes as described below. The distinc-
tion in revision- and operation-specific QoS is necessary,
because attributes such as response time depend on the
execution duration of an operation, whereas availability
is typically given for the revision itself (if a service is not
available, all operations are generally also unavailable).
In addition, services, revisions, operations and metadata
can have a number of associated events (not shown in
Figure 5 for brevity). These events are raised whenever
an action is performed, e.g., invoking a service, publish-
ing a new service or creating a new category [35].

6

4.2.3 Mapping Metadata to Concrete Services
In order to associate metadata to concrete services in the
service model we have to establish a mapping between
metadata and services. The mapping is shown in Fig-
ure 5, where the dashed line represents the connection
between elements in the metadata model and elements
in the service model.

The elements of this service model are mapped to our
service metadata model as follows: services are grouped
into categories, where every service may belong to sev-
eral categories at the same time. Services within the same
category provide at least one feature of this category.
Service operations are mapped to features. Currently we
assume a 1:1 mapping between features and operations;
every feature is implemented in exactly one service
operation, and every operation implements exactly one
feature of a category. However, we plan to provide
support for more complex mappings using the VRESCO
composition engine [25] (i.e., features will be represented
as compositions of several service operations).

The input and output parameters of the service oper-
ations map to data concepts. Every parameter is repre-
sented by one or more concepts in the domain model.
This means that all data that a service accepts as input or
passes as output is well-defined using data concepts and
annotated with the flow predicates requires (for input)
and produces (for output). The concrete mapping of
service parameters to concepts is described using Map-
ping Rules. In general, rules for both the mapping from
the parameter to the concept and vice versa have to be
specified. If an operation requires a certain state prior to
its execution then this requirement can be modeled as
a state predicate. The same is true for state changes as
result of the execution of an operation.

<<Postcondition>>
produces

<<Postcondition>>
leads_to

<<Precondition>>
requires

<<Feature>> Check_Status

<<Category>>
Porting_Status

<<Feature>> Port_Number

<<Category>>
Number_Portingis_subcategory

<<Data>> phoneNr : string
<<Data>> status : PortingState

<<Data>>
Porting_Status

<<Postcondition>>
produces

<<Precondition>>
requires <<Data>> phoneNr : string

<<State>>
Is_Ported

<<Data>> name : Name
<<Data>> address: Address
<<Data>> phoneNr : string

<<Data>>
Porting_Info

Metadata Level
Service Level

<<Operation>> portNumber(...)

<<Service>>
PortingService

<<Operation>> isPortable(...)
<<Operation>> portPhoneNumber(...)

<<Service>>
NumberPortingService

CPO 2CPO 1

<<Operation>> checkStatus(...)

<<Service>>
PortabilityCheckService

<<Data>> state : ported, onHold, notPorted

<<Data>>
PortingState

Fig. 6: Mapping Example

Figure 6 gives a mapping example from our CPO case
study in UML class diagram notation. In this exam-
ple, we use two features that are mapped to concrete
services by two cell phone operators CPO1 and CPO2:
Check_Status and Port_Number. These features have
several pre- and postconditions that refer to flow predi-
cates (e.g., feature Check_Status requires data concept

Porting_Info and produces Porting_Status) and
state predicates (e.g., feature Number_Porting leads to
state Is_Ported).

The mapping from metadata to service level is
now done between features and operations. For
instance, the operation isPortable of CPO2’s
NumberPortingService is mapped to the feature
Check_Status of category Porting_Status. Clearly,
the input and output of different implementations of
one feature might differ. In that case, various mapping
operators (e.g., ==, concat, stringToInt, etc.) can be used
to mediate between different service interfaces. Service
mediation is discussed in more detail in Section 4.4.2.

4.2.4 QoS Model
Besides the functional attributes described in the service
metadata model, a set of QoS attributes is associated
with each service revision and operation. These QoS
attributes can be either specified manually using the
VRESCO Management Service, or measured automati-
cally, e.g., using the QoS monitor introduced in [33]. This
monitor has been integrated into VRESCO and follows
a client-side approach using aspect-orientation and low-
level TCP analysis. As a result, monitoring can be done
without access to the actual service implementation.
For each service revision, a monitoring schedule can be
defined that specifies when the monitor should trigger
the measurement. Each individual QoS measurement is
thereby published as QoS event into the runtime. The
average QoS values can then be aggregated based on
the information stored in the QoS events.

Attribute Formula Unit

Price n/a per invocation

Reliable Messaging n/a {true, false}

Security n/a {None,
X.509,. . .}

Latency qla(n) = 1
n

n∑
i=0

qlai
ms

Response Time qrt(n) = 1
n

n∑
i=0

qrti ms

Availability qav(t0, t1, td) = 1− td
t1−t0

percent

Accuracy qac(rf , rt) = 1− rf

rt
percent

Throughput qtp(t0, t1, r) = 1− r
t1−t0

invocations/s

TABLE 2: QoS Attributes

Table 2 is adapted from [36] and briefly summa-
rizes the QoS attributes that are currently considered in
VRESCO. For each attribute we list the distinct name,
the formula how the attribute is calculated (or “n/a” if
it is deterministic, such as price, reliable messaging and
security) and the unit. The latency qla(n) represents the
time a request needs on the wire. It is calculated as the
average value of n individual measuring points qlai

. The
response time qrt(n) consists of the latency for request

7

and response plus the execution time of the service.
The availability qav(t0, t1, td) represents the probability a
service is up and running (t0, t1 are timestamps, td is the
total time the service was down). The accuracy qac(rf , rt)
is the probability of a service to produce correct results
where rf denotes the number of failed requests and
rt denotes the total number of requests. Finally, the
throughput qtp(t0, t1, r) represents the maximum num-
ber of requests a service can process within a certain
period of time (denoted as t1 − t0) where r is the total
number of requests during that time. In addition to this
pre-defined QoS attributes, users can define additional
QoS properties for service revisions or operations.

4.3 Querying Language
The VRESCO Query Language (VQL) provides a means
to query all information stored in the registry (i.e.,
services and service metadata including QoS). In this
section, we discuss the requirements for VQL, followed
by the VQL architecture and the query specification.

4.3.1 Requirements
The design of VQL was driven by a few core aspects and
requirements that are briefly summarized below:
• View-based querying. The VRESCO architecture im-

plements the data access via a data access layer
(DAL) using dedicated data access objects (DAO).
However, these DAOs contain database-specific at-
tributes such as IDs (that map to the primary
keys of database records) or versioning information
for optimistic locking. Therefore, these DAOs are
only used internally and referred to as core objects.
For transmission over the network these entities
are transformed into so-called user objects that ba-
sically contain the same information but without
any database-specific fields (and fields that are not
intended for the clients). The querying capabilities
must be able to deal with both views (depending on
whether the query is issued client- or server-side).

• Type-safety and Security. Each VQL query should
be type-safe in the sense that the result of a
query can be parameterizable with specific data
types from the service or metadata model (e.g.,
ServiceRevision or Feature). Additionally, all
query attributes should be subject to runtime ex-
istence checks to rule out parameters that do not
match a property in the corresponding core or user
object. Finally, queries should be fail-safe against
well-know security issues such as SQL injection.

• Object-oriented interface and expression library. In or-
der to generate VQL queries at runtime, an object-
oriented API for specifying these queries should be
available (similar to the Hibernate Criteria API [38]).
VQL does not provide a declarative language for
specifying a query (such as SQL), which makes is
simpler in terms of the implementation because no
query parser is necessary. Therefore, a rich library of

expressions is required that can be used to formulate
the queries in an object-oriented manner.

• Mandatory and optional criteria. When querying spe-
cific information about a service or certain aspects
of the metadata model, it is often desired to dif-
ferentiate between mandatory and optional expres-
sions in a query. For example, one may issue a
query to find all services implementing the feature
Send_SMS which is active and optionally having
the QoS attribute response time set to less than 1500
ms. In order to achieve these requirements, different
querying strategies have to be provided.

4.3.2 Architecture
These requirements have been addressed by implement-
ing querying capabilities as part of VRESCO. The basic
architecture is depicted in Figure 7.

VRESCo Runtime
Querying ServiceVRESCo

Client VQL
Query

Query Strategies

Exact
Querying

Priority
Querying

Relaxed
Querying

Preprocessor

SQLQuery
Builder

ResultBuilder

Registry
Database

NHibernate
2.

1.

3.

4.

5.

Fig. 7: VRESCO Query Processing Architecture

On the client-side the user specifies a query using
an object-oriented interface which is provided by the
client library. After specifying the query (using a VQuery
object) it is sent to the QueryingService for execution.
Depending on the client’s querying strategy, VQL selects
the corresponding querying strategy based on the strat-
egy design pattern [39] and generates the query ac-
cordingly (step 1). VQL leverages the existing and well-
established query language SQL as its query execution
language, therefore, a VQuery instance – representing an
in-memory object graph of a query – that was received
from the client is preprocessed using the Preprocessor
component (step 2). This preprocessing includes inspec-
tion of the query expressions, the criteria and whether
the client queries core or user objects. If the client queries
user objects, the query expressions are first transformed
to address the properties of the core objects. This is done
according to pre-defined mapping annotations that map
core and user objects. Additionally, the preprocessing
checks if all expressions correspond to attributes in the
service- and metadata model. The result of the prepro-
cessing is a generated SQL query that corresponds to
the initial VQuery (SQLQueryBuilder component). When
the query is fully generated, a NHibernate session is
created to execute the query (step 3). After successful
execution, the ResultBuilder component takes the result
from the NHibernate session (step 4) and transforms it
back into the resulting object that was specified as a
template parameter in the VQuery object (step 5).

8

4.3.3 Query Specification
In general, VQL queries consist of a set of criteria where
each criterion has a number of expressions. Both criteria
and expressions are specified using the querying API
provided by the VQL library. Therefore, in contrast to
other query languages such as SQL, VQL does not
provide a declarative querying language which makes
it easier to use. Query criteria can either be Add and
Match. These criteria have different execution semantics
depending on the querying strategy (discussed below).
However, the main motivation is to allow the specifica-
tion of mandatory (Add) and optional (Match) criteria.
Besides that, VQL provides a set of expressions that can
be used to express common query constraints such as
comparison (e.g., smaller, greater, equal, etc.) and logical
operators (e.g., AND, OR, NOT, etc.). These expressions
are summarized in Table 3.

Expression Description
And Conjunction of two expressions
Or Disjunction of two expressions
Not Negation of an expression
Eq Equal operator
Le Less or equal operator
Lt Less than operator
Gt Greater than operator
Ge Greater or equal operator
Like Similarity operator
IsNull Property is null

IsNotNull Property is not null
In Property is in a given collection

Between Property is between two given values

TABLE 3: VQL Expressions

Listing 1 shows an example query to find services that
implement the Notify_Customer feature. In general,
VQL queries are parameterized using an expected return
type. In this case the type ServiceRevision (line 2)
expresses that the result of the query is a list of revisions.
In our example, two Add criteria (lines 5–7) are used to
state that a service has to be active and that each service
has to implement the Notify_Customer feature from
the CPO case study. Additionally, three Match criteria
are added (lines 8–15). The first criterion expresses that
a resulting service should be in a category starting with
”Porting”. The second and third criterion define the
optional QoS attributes (response time and availability).
All three Match criteria use the priority value as third
parameter to define the relative importance of a criterion.

The query execution is finally triggered by instan-
tiating an IVRESCoQuerier object and invoking the
FindByQuery method using the specific querying strat-
egy, e.g., QueryMode.Priority in our example (lines
18–19). Furthermore, the query can be limited to a given
number of results (e.g., 100 in our example).

4.3.4 Querying Strategies
The querying strategy influences how queries are exe-
cuted, thus, it defines the behavior of the SQL genera-
tion. In a nutshell, Add criteria are transformed to simple
predicates within the SQL WHERE clause whereas Match
are handled as SQL sub-selects.

� �
1 // create a query object
2 var query = new VQuery(typeof(ServiceRevision));
3
4 // add query expressions
5 query.Add(Expression.Eq("IsActive", true));
6 query.Add(Expression.Eq("Operations.Feature.Name",
7 "NotifyCustomer"));
8 query.Match(Expression.Like("Service.Category.Name",
9 "Porting", LikeMatchMode.Start), 5);

10 query.Match(Expression.Eq("QoS.Property.Name",
11 "ResponseTime") &
12 Expression.Lt("QoS.DoubleValue", 1500), 3);
13 query.Match(Expression.Eq("QoS.Property.Name",
14 "Availability") &
15 Expression.Gt("QoS.DoubleValue", 0.95), 1);
16
17 // execute the query
18 IVRESCoQuerier querier = VRESCoClientFactory.

CreateQuerier("username", "password");
19 var results = querier.FindByQuery(query, 100, QueryMode.

Priority) as IList<ServiceRevision>;� �
Listing 1: VQL Sample Query

The exact querying strategy forces all criteria to be
fulfilled, irrespective whether this is Add or Match.
As a consequence, it is not obvious why two different
criteria are used to specify a query when using the
exact querying strategy. However, there are scenarios
where Match has to be used in order to get the desired
results by influencing the SQL generation to enforce
sub-selects instead of WHERE predicates. In particular,
when mapping N:1 and N:M associations (i.e., collection
mappings in Hibernate terminology), a query cannot
have the same collection more than once in the WHERE
predicate. The use of sub-selects eliminates this effect in
VQL, otherwise such query would result in null since
the associated tables would have to be joined more than
once. As an example reconsider the query in Listing 1
and assume that we use the exact querying strategy. In
this case, the last two Match criteria are required because
the QoS represents a collection that is used in the query
twice. When having only one criterion with respect to
QoS, Add could also be used instead.

The priority querying strategy involves priority values
for single criteria in order to accomplish a weighted
matching. Therefore, each Match criterion allows to
append a weight to specify the priority of this criterion.
In Listing 1, the priority values are “5”, “3” and “1” (i.e.,
the constraint on response time is more important than
on availability). In contrast, Add criteria do not allow to
specify a weight because they are mandatory.

The relaxed querying strategy represents a special vari-
ant of priority querying, in the sense that each Match
criterion has the same priority. Thus, this strategy simply
distinguishes between optional and mandatory criteria
in this regard. It also allows to define fuzzy queries by
relaxing the query constraints which can be useful when
no exact match can be found for a given query.

4.4 Dynamic Binding, Invocation and Mediation

One of the motivations for the VRESCO project was
to support dynamic binding and invocation, as well as
service mediation, which is discussed in this section.

9

4.4.1 Dynamic Binding and Invocation
Dynamic binding is claimed to be one of the main
advantages of service-oriented architecture. In practice,
however, services are often bound using pre-generated
stubs that do not provide support for dynamic bind-
ing. Similar to querying strategies, we use the strategy
pattern to implement a number of different rebinding
strategies.

Strategy Proxy reconsiders binding. . .
Fixed never
Periodic periodically
OnDemand on client requests
OnInvocation prior to service invocations
OnEvent on event notifications

TABLE 4: Rebinding Strategies

All rebinding strategies from Table 4 have their ad-
vantages and disadvantages. Fixed proxies are used in
scenarios where rebinding is not needed (e.g., because
of existing contractual obligations). Periodic rebinding
causes constant overhead since the proxies verify their
binding periodically. Clearly, this is inefficient if invoca-
tions happen infrequently. OnDemand rebinding results
in low overhead but has the drawback that the binding
is not always up-to-date. In contrast to this, OnInvocation
rebinding guarantees accurate bindings but seriously
degrades the service invocation time. Finally, OnEvent
rebinding uses the VRESCO event notification engine
to combine the advantages of all strategies by allowing
users to precisely define in which situations rebinding
should be performed.

The event notification engine introduced in [35] is
based on the open source event processing engine Es-
per [40]. Therefore, subscriptions are defined using the
Esper Event Processing Language (EPL) which is similar
to SQL and provides various complex event processing
mechanisms such as event patterns, sliding event win-
dows and statistical functions on event streams. As a re-
sult, in contrast to existing service repository approaches,
we provide support for complex event processing. In
VRESCO, events are published when certain situations
occur (e.g., new service is published, metadata is added,
QoS changes, etc.) while notifications are sent per E-Mail
or Web service notifications (e.g., WS-Eventing [14]).
More details on VRESCO eventing, event access control,
and how this can be leveraged to support service prove-
nance can be found in our previous work ([35], [31]).
which has been omitted due to space restrictions.

Besides dynamic binding, dynamic invocation of ser-
vices represents another important goal of service-centric
systems. In this regard, we aim at stubless, protocol-
independent, and message-driven invocation of services
using the DAIOS framework [30]. To give an example,
Listing 2 continues Listing 1 and shows a service in-
vocation from our CPO case study. The query from
Listing 1 is used to create a proxy using the periodic
strategy in line 21 (i.e., the proxy reconsiders its binding
every minute). In lines 23–26, the input message for

� �
20 // continued from Listing 1...
21 var proxy = querier.CreateRebindingMappingProxy(

query, QueryMode.Exact, 100,
new PeriodicRebindingStrategy(60000));

22
23 DaiosMessage request = new DaiosMessage();
24 request.SetString("ReceiverNr", "0043-12345678");
25 request.SetString("SenderNr", "0043-98765432");
26 request.SetString("Message", "Number has been ported!");
27
28 DaiosMessage result = proxy.RequestResponse(request);� �

Listing 2: VRESCo Service Invocation

the Notify_Customer feature is built, and the cor-
responding service is finally executed in line 28 using
the request-response pattern. In addition, DAIOS also
supports asynchronous and one-way communication.

4.4.2 Service Mediation
The VRESCO Mapping Framework (VMF) defines the
necessary concepts and mechanisms to handle the map-
ping from abstract features to concrete service operations
from the metadata model as described in Section 4.2. The
mediation approach follows the notation of the “feature-
driven” metadata model. Therefore, a client that wants
to invoke a service in VRESCO does not provide the
input of the concrete service directly but already in
the conceptual high-level representation, i.e., the feature
input in VRESCO terminology. The runtime takes care
of lowering and lifting the feature input and output, re-
spectively. Lowering represents the transformation from
high-level concepts into a low-level format (i.e., feature
input to SOAP input) whereas lifting is the inverse
operation (i.e., SOAP output to feature output).

Metadata Service

Registry
Database

VRESCo Runtime

VMF
Mapping
Mediator

M
apping Tim

e
Execution Tim

e

VRESCo Client Mapping Library

Mapper

Web
Service

Input

Output

Fig. 8: VMF Architecture

Figure 8 shows an overview of the VMF architecture.
Generally, VMF comprises two main components. Firstly,
at mapping time, the Mapper component is used to create
lifting and lowering information (i.e., Mapping Rules) for
each service. This information is stored in the VRESCO
registry database using the Metadata Service. Secondly,
at execution time, VMF injects a Mediator component,
which is responsible for the mediation process itself
(the concrete implementation follows the ideas presented
in [41]). This mediator retrieves the lifting and lowering
information from the VRESCO Metadata Service at run-
time, and executes the corresponding mapping.

10

Functions Description
Constants Define simple data type constants
Conversion Convert simple data types to other simple data types
Array Create arrays and access array items
String String manipulation operations (e.g., substring,

concat, etc.)
Math Basic mathematical operations (e.g., addition,

round, etc.)
Logical Basic logical operations (e.g., Conjunction, Equal,

IfThenElse, etc.)
Assign Link one parameter to another (source and destina-

tion must have the same data type)
CSScript Define custom C# mapping scripts executed by the

engine

TABLE 5: VMF Mapping Functions

The actual mappings make use of the VMF Mapping
Library, which includes a number of helpful predefined
data manipulation operations. These operations imple-
ment some often-used data conversion functionality,
such as data type conversion, string manipulation, math-
ematical functions or logical operators. Furthermore,
more complex mappings can be defined in the CS-
Script language [42]. We have summarized the provided
mapping functions in Table 5.� �

1 // query NotifyCustomer and SendSMS1 instances using VQL
2
3 // create mapper from feature and operation
4 Mapper mapper = metadataService.CreateMapper(

NotifyCustomer, SendSMS1);
5
6 // map feature message to operation message
7 Assign messageAssign = new Assign(
8 mapper.FeatInParams[0].GetChild("Message"),
9 mapper.OpInParams[0]);

10 mapper.AddMappingFunction(messageAssign);
11
12 // get AreaCode, convert to int and map it to operation
13 Substring acSenderStr = new Substring(
14 mapper.FeatInParams[0].GetChild("SenderNr"), 0, 4);
15 acSenderStr = mapper.AddMappingFunction(acSenderStr);
16 ConvertToInt acSenderInt = new ConvertToInt(
17 acSenderStr.Result);
18 acSenderInt = mapper.AddMappingFunction(acSenderInt);
19 mapper.AddMappingFunction(new Assign(acSenderInt.Result,

mapper.OpInParams[1]));
20
21 // get SenderNr, convert to int and map it to operation
22 Substring senderNrStr = new Substring(
23 mapper.FeatInParams[0].GetChild("SenderNr"), 4, 8);
24 senderNrStr = mapper.AddMappingFunction(senderNrStr);
25 ConvertToInt senderNrInt = new ConvertToInt(
26 senderNrStr.Result);
27 senderNrInt = mapper.AddMappingFunction(senderNrInt);
28 mapper.AddMappingFunction(new Assign(
29 senderNrInt.Result, mapper.OpInParams[2]));
30
31 // the same steps have to be done for ReceiverNr� �

Listing 3: VMF Mapping Example

Listing 3 illustrates how a concrete mapping (either
lifting or lowering) is defined in VMF, using the scenario
from the CPO case study process shown in Figure 2b.
The feature Notify_Customer requires as input the
data concepts Message, SenderNr and ReceiverNr
(data type string). The SendSMS1 operation of SMS-
Service1 requires the parameter Message (data type
string), but sender and receiver number are splitted
into area code and number (data type integer). Phone
numbers contain an area code with four digits, followed
by a number with eight digits. Line 4 shows how the

mapper is created for feature Notify_Customer and
operation SendSMS1. Both objects have to be queried
using VQL before the mapper can be created (not shown
in Listing 3 for brevity). The Assign function used
in lines 7–10 acts as connector to link the Message
from the feature to the Message of the operation,
whereas mapper.AddMappingFunction() adds the
function to the mapping. Lines 13–19 get the area code
from the feature’s SenderNr as substring and con-
vert it with the ConvertToInt function to an integer
which is finally assigned to operation’s input parameter
AreaCodeSender. In lines 22– 29 the same is done to
map the sender number.

5 EVALUATION

In this section, we give an evaluation of the VRESCO
runtime focusing on the topics covered in this pa-
per. More precisely, we show the runtime performance
regarding service querying, rebinding, mediation, and
eventing. All tests have been executed on an Intel Xeon
Dual CPU X5450 with 3.0 GHz and 32GB RAM running
under Windows Server 2007 SP1. Furthermore, we use
.NET v3.5 and SQL Server 2008.

5.1 Querying Performance

First of all, we give the performance results of the
querying engine which have been measured by querying
for service revisions from a specific service owner that
belong to a given category and have a certain response
time. All measurements represent the average values
of 10 repetitive runs. Table 6 compares the querying
strategies provided by VQL. It shows that EXACT query-
ing is faster than RELAXED and PRIORITY which have
similar performance characteristics. However, the dif-
ference between EXACT and RELAXED/PRIORITY is
almost constant. Table 7 shows the comparison between
VQL, Hibernate Querying Language (HQL) and Struc-
tured Query Language (SQL) using the EXACT strategy.
For this experiment, we manually translated the query
to both HQL and SQL. The results show that VQL
queries are only slightly slower than native SQL queries,
whereas VQL and HQL perform equally well.

Revisions EXACT RELAXED PRIORITY
1000 67,8 81,9 81,2
2000 123,4 131,6 134,3
3000 215,7 238,7 242,1
4000 299,4 328,4 330,2
5000 403,1 419,9 415,4
6000 480,2 503,0 515,3
7000 553,2 606,3 597,7
8000 646,6 706,8 710,3
9000 756,0 793,2 802,4
10000 806,9 824,7 836,7

TABLE 6: VQL Querying Strategies (in ms)

The results in the previous tables represent the per-
formance characteristics of single and simple queries.
To give a more complex and real-life example, Figure 9

11

Revisions HQL VQL SQL VQL/SQL VQL/HQL
1000 66,8 67,8 61,7 +9,89 % +1,50 %
2000 118,6 123,4 116,6 +5,83 % +4,05 %
3000 215,3 215,7 219,2 -1,60 % +0,19 %
4000 301,2 299,4 294,9 +1,53 % -0,60 %
5000 391,9 403,1 379,3 +6,27 % +2,86 %
6000 464,6 480,2 463,9 +3,51 % +3,36 %
7000 549,0 553,2 559,3 -1,09 % +0,77 %
8000 645,6 646,6 642,0 +0,72 % +0,15 %
9000 750,4 756,0 725,5 +4,20 % +0,75 %

10000 822,6 806,9 771,2 +4,63 % -1,91 %

TABLE 7: Query Performance (in ms)

illustrates the runtime performance of feature resolu-
tion in VRESCO, as used internally by the VRESCO
composition engine. Feature resolution is the process of
finding all service candidates for a service composition
that implement a given feature, and additionally fulfill
other constraints such as QoS. The figure shows how
long this step takes depending on the number of features
in a composition and the number of service candidates
per feature. For instance, in a composition of 100 features
where each feature has 10 service candidates the feature
resolution needs 734 ms, while it grows to roughly 4500
ms for 100 candidates per feature.

 0

 1000

 2000

 3000

 4000

 5000

 10 20 30 40 50 60 70 80 90 100

E
xe

cu
tio

n
T

im
e

(in
 m

s)

Number of Features

10 candidates
25 candidates
50 candidates
75 candidates

100 candidates

Fig. 9: Feature Resolution Performance

5.2 Rebinding Performance
In the following subsection, we give an evaluation of the
different rebinding strategies introduced in Section 4.4.
The evaluation is done using the Web service testbed
GENESIS [43]. This testbed provides a mechanism to
automatically deploy JAX-WS Web services which can
be configured using plug-ins that simulate changing QoS
attributes (e.g., response time, availability, etc.).

For measuring the rebinding performance, we used
GENESIS to simulate 10 services that implement the same
feature. Then, we leveraged the QoS plug-in to contin-
uously modify the response time of all services using
a Gaussian distribution, and we additionally increased
the variance after each step in order to simulate an
environment where the QoS of services is subject to
significant change. Finally, we implemented one client
for each rebinding strategy and measured the average
response time when invoking the service. As a result, we

can see the impact of the different rebinding strategies
for each client.

The results of this experiment are depicted in Fig-
ure 10. It should be noted that the response time of the
best service is decreasing since we increase the variance.
All services start with a (server-side) execution time of
2000 ms. The (client-side) response time differs about 400
ms which is caused by the network latency and the time
needed for wrapping SOAP messages.

 0

 1000

 2000

 3000

 4000

 5000

 0 5 10 15 20 25 30 35

R
es

po
ns

e
T

im
e

(in
 m

s)
Execution Time Variation

Fixed Binding
Periodic Rebinding

On Invocation Rebinding
On Event Rebinding

Fig. 10: Rebinding Strategies Performance

Obviously, clients with fixed binding usually perceive
the worst response time because they are always bound
to the same service. Clients using periodic rebinding
mostly use services with good response time. However,
since rebinding is done in pre-defined intervals the
bindings are not always up-to-date (e.g., steps 17–18, 24–
25, and 27–28 represent such situations). In contrast to
that, clients with OnInvocation rebinding always invoke
the best service since the rebinding is re-considered just
before the service is invoked. However, this leads to
a constant overhead of about 400 ms which is needed
to check the binding and update if necessary. Finally,
clients with OnEvent rebinding always bind to the best
service without invocation overhead because the clients
are notified asynchronously when the QoS changes and
better services get available. However, the (optional)
VRESCO eventing support must be turned on and the
client needs a listener Web service. Thus, all rebinding
strategies have their strengths and weaknesses, and it
depends on the specific situation which strategy to use.

5.3 Mediation Performance
Besides rebinding, we have also evaluated the overhead
introduced by the VRESCO mediation facilities. We have
again used the GENESIS testbed for these tests.

Figure 11 depicts the response time of a single Web
service invocation depending on the size of the message
sent to the service. We have evaluated four different
mediation scenarios: no mediation, mediation using only
the VMF built-in functions, mediation using only CS-
Script and finally mediation using both built-in functions
and CS-Script. Unsurprisingly, unmediated invocations

12

 200

 250

 300

 350

 400

 450

 500

 0 500 1000 1500 2000

R
es

po
ns

e
T

im
e

(in
 m

s)

Payload Size (in KB)

Unmediated
Built-in Functions

CSScript
Mixed

Fig. 11: Mediation Performance (Message Size)

are generally faster than any type of mediation. All
types of mediation introduce a similar amount of over-
head, which depends solely on the size of the message.
For small messages the overhead is in the area of 25
ms, which seems acceptable. However, the overhead
increases significantly with the size of the data to move.
This is due to data manipulation operations taking
longer for bigger message sizes.

 240

 260

 280

 300

 320

 340

 0 2 4 6 8 10 12 14

R
es

po
ns

e
T

im
e

(in
 m

s)

Mediation Steps Necessary

Unmediated
Mediated

Fig. 12: Mediation Performance (Mediation Steps)

In Figure 12 we have evaluated how the overhead
introduced by mediation depends on the amount of
mediation necessary. As we can see, the overhead is
independent of the amount of mediation necessary, i.e., it
is not relevant for the mediation overhead if only simple
transformations or more complex ones are necessary.
This result differs from what we have reported earlier
in [41]. In this work, we have compared various DAIOS
mediators including one based on SAWSDL [22] which
is similar to the VMF approach from a conceptual point
of view. Contrary to the constant overhead of the VMF
mediator, the overhead of SAWSDL-based mediation
increases (slightly) with the number of mediation steps.

5.4 Eventing Performance

Finally, we have evaluated the performance of the event-
ing engine by measuring the throughput of the actual

matching between events and subscriptions using a sim-
ulation of QoS events. These events were continuously
published internally while we increased the number of
subscribers and the percentage of matching subscrip-
tions. We measured how many events can be processed
per second. For our tests, we ran the experiment for 10
seconds and took the average value of 10 repetitive runs.
It should be noted that we do not consider the time
needed to actually notify the interested subscribers here
(since this is done by a dedicated notification delivery
thread pool and varies significantly depending on the
notification mechanism, such as E-Mail or Web services).

 0

 500

 1000

 1500

 2000

 0 500 1000 1500 2000

E
ve

nt
s

pe
r

se
co

nd

Number of Subscribers

0%
25%
50%
75%

100%

Fig. 13: Eventing Throughput

The results are depicted in Figure 13. It can be seen
that the results clearly decrease with the number of
matching subscriptions. The throughput is around 2000
events per second without subscriptions and converges
to around 300 events per second for 2000 subscriptions.

5.5 Discussion

To conclude the evaluation, we elaborate the experience
gained during the implementation of the case study
introduced in Section 2 using VRESCO, and discuss the
performance results with respect to this case study.

In the first step, we have defined the six features
including their input and output data concepts of the
process shown in Figure 2b. Then we have implemented
the services and published them into the registry. Finally,
for features having multiple service candidates (e.g.,
Notify_Customer), we additionally defined the VMF
mapping as shown in Listing 3. Defining the metadata
has to be carried out as part of the process design which
certainly requires some effort, but this is necessary in
order to leverage adaptive behavior provided by the
dynamic binding and mediation capabilities. This means
that there is a tradeoff between the time needed for this
effort and the gained flexibility. For instance, if a partner
CPO provides a new number porting service, it can be
easily integrated into the process by mapping to the
existing feature. The process itself remains untouched
and there is no downtime involved when integrating this
new service.

13

In the second step, we have implemented the process
in C# for reasons of simplicity (due to the fact that
it is a simple sequence of activities). For finding ser-
vice candidates at runtime (e.g., number porting service
from partner CPOs), we can make use of the VQL
querying mechanism. The performance results of feature
resolution (see Figure 9) demonstrate the good query
performance in this setting (6 features with less than 10
candidates per feature are queried in less than 60 ms).
Once queried, the service candidates can be invoked in a
uniform manner due to the service mediation capabilities
that use the mapping defined before. As can be seen in
Figure 12, the mediation time is independent from the
number of mediation steps (i.e., even complex mappings
requiring various mediation functions). Additionally, ac-
cording to Figure 11 the overhead of mediation for the
number porting messages is around 50 ms for message
payloads up to 1500 KB.

While implementing the process we had to decide
which rebinding strategy to use. For the number porting
service fixed binding is not a reasonable choice because
even simple changes of the partner CPO’s services (e.g.,
a different endpoint) would break the process. Periodic
rebinding seems not adequate since we expect that the
services do not change frequently. Since number porting
is not time-critical, we opt for OnInvocation which has
a constant invocation overhead but always finds the
best available service, or even better OnEvent which also
eliminates this invocation overhead. Figure 13 demon-
strates that the event throughput is high enough to
deal with 2000 (or more) concurrent clients. For the
Notify_Customer feature, the query used for rebind-
ing should consider current QoS attributes of service
candidates (e.g., if multiple notification services are de-
ployed). In contrast to existing query languages, VQL
provides the required expressiveness to query optional
or prioritized attributes regarding QoS as shown in
Listing 1.

6 CONCLUSION
One of the main promises of Service-oriented Computing
was the provisioning of loosely-coupled applications
based on the publish-find-bind-execute cycle. In practice,
however, these promises could often not be kept due
to the lack of expressive service metadata and type-
safe querying facilities, explicit support for QoS, as well
as support for dynamic binding, invocation and medi-
ation. In this paper, we have proposed the QoS-aware
VRESCO runtime environment which has been designed
with these requirements in mind. VRESCO offers an
extensive structured metadata model and VQL as type-
safe query language. Furthermore, we provide dynamic
binding, invocation and mediation mechanisms that use
pre-defined service mappings. We have evaluated our
work regarding performance and discussed the results
together with the experience gained in the CPO case
study. The results show that the VRESCO runtime is ap-
plicable to large-scale adaptive service-centric systems.

As part of our ongoing and future work we want to
link the VRESCO eventing [35] and composition [25]
mechanisms. Furthermore, we envision to integrate SLA
enforcement capabilities on top of VRESCO. Finally, we
plan to build a Web-based runtime management tool.

ACKNOWLEDGEMENTS

We would like to thank Lukasz Juszczyk for provid-
ing the Web service testbed GENESIS, and our master
students Andreas Huber and Thomas Laner for their
contribution to VRESCO.

REFERENCES
[1] M. P. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann,

“Service-Oriented Computing: State of the Art and Research
Challenges,” IEEE Computer, vol. 40, no. 11, pp. 38–45, 2007.

[2] T. Erl, Service-Oriented Architecture: Concepts, Technology, and De-
sign. Upper Saddle River, NJ, USA: Prentice Hall PTR, 2005.

[3] S. Weerawarana, F. Curbera, F. Leymann, T. Storey, and D. F.
Ferguson, Web Services Platform Architecture : SOAP, WSDL, WS-
Policy, WS-Addressing, WS-BPEL, WS-Reliable Messaging, and More.
Prentice Hall PTR, 2005.

[4] SOAP Version 1.2, http://www.w3.org/TR/soap, World Wide
Web Consortium (W3C), 2003, uRL: http://www.w3.org/TR/
soap/.

[5] Web Services Description Language (WSDL) 1.1, http://www.w3.
org/TR/wsdl, World Wide Web Consortium (W3C), 2001, uRL:
http://www.w3.org/TR/wsdl.

[6] Universal Description, Discovery and Integration (UDDI), Organi-
zation for the Advancement of Structured Information Stan-
dards (OASIS), Feb. 2005, http://oasis-open.org/committees/
uddi-spec/.

[7] ebXML Registry Services and Protocols, Organization for the Ad-
vancement of Structured Information Standards (OASIS), Mar.
2005, http://oasis-open.org/committees/regrep.

[8] D. Bodoff, M. Ben-Menachem, and P. C. Hung, “Web metadata
standards: Observations and prescriptions,” IEEE Software, vol. 22,
no. 1, pp. 78–85, 2005.

[9] A. Michlmayr, F. Rosenberg, C. Platzer, M. Treiber, and S. Dustdar,
“Towards Recovering the Broken SOA Triangle – A Software
Engineering Perspective,” in Proceedings of the 2nd International
Workshop on Service Oriented Software Engineering (IW-SOSWE’07),
co-located with ESEC/FSE’07, 2007.

[10] T. Yu, Y. Zhang, and K.-J. Lin, “Efficient algorithms for web ser-
vices selection with end-to-end qos constraints,” ACM Transactions
on the Web, vol. 1, no. 6, p. 6, 2007.

[11] L. Zeng, B. Benatallah, A. H. Ngu, M. Dumas, J. Kalagnanam,
and H. Chang, “Qos-aware middleware for web services compo-
sition,” IEEE Transactions on Software Engineering, vol. 30, no. 5,
pp. 311–327, May 2004.

[12] S. R. Ponnekanti and A. Fox, “Interoperability Among Inde-
pendently Evolving Web Services,” in Proceedings of the 5th
ACM/IFIP/USENIX International Conference on Middleware (Middle-
ware’04). New York, NY, USA: Springer-Verlag New York, Inc.,
2004, pp. 331–351.

[13] D. Luckham, The Power of Events. Addison-Wesley, 2002.
[14] Web Services Eventing (WS-Eventing), W3C, 2006, http://www.w3.

org/Submission/WS-Eventing/.
[15] Mule Galaxy, v1.5.1, MuleSource, Inc., Jan. 2009, http://www.

mulesource.com/products/galaxy.php.
[16] WSO2 Registry, v2.0, WSO2, Inc., Feb. 2009, http://wso2.org/

projects/registry.
[17] WebSphere Service Registry and Repository, v6.2, IBM, Inc., Jul. 2008,

http://www.ibm.com/software/integration/wsrr.
[18] R. Sayre, “Atom: The Standard in Syndication,” IEEE Internet

Computing, vol. 9, no. 4, pp. 71–78, 2005.
[19] S. A. McIlraith, T. C. Son, and H. Zeng, “Semantic web services,”

IEEE Intelligent Systems, vol. 16, no. 2, 2001.
[20] OWL-S: Semantic Markup for Web Services, World Wide Web Con-

sortium (W3C), 2004, http://www.w3.org/Submission/OWL-S/
(Last accesssed: July 28, 2008).

14

[21] Web Service Modeling Language (WSML), ESSI WSMO Working
Group, Aug. 2008, http://www.wsmo.org/wsml/wsml-syntax.

[22] Semantic Annotations for WSDL and XML Schema, http://www.
w3.org/TR/sawsdl/, World Wide Web Consortium (W3C), 2007,
http://www.w3.org/TR/sawsdl/.

[23] Q. Yu, X. Liu, A. Bouguettaya, and B. Medjahed, “Deploying and
managing web services: issues, solutions, and directions,” The
VLDB Journal, vol. 17, no. 3, pp. 537–572, 2008.

[24] J. Harney and P. Doshi, “Selective querying for adapting web
service compositions using the value of changed information,”
IEEE Transactions on Services Computing, vol. 1, no. 3, pp. 169–185,
2008.

[25] F. Rosenberg, “Qos-aware composition of adaptive service-
oriented systems,” Ph.D. dissertation, Vienna University of Tech-
nology, Jun. 2009.

[26] C. Platzer and S. Dustdar, “A Vector Space Search Engine for Web
Services,” in Proceedings of the 3rd European IEEE Conference on Web
Services (ECOWS’05), 2005.

[27] Q. Yu and A. Bouguettaya, “Framework for web service query
algebra and optimization,” ACM Transactions on the Web (TWEB),
vol. 2, no. 1, pp. 1–35, 2008.

[28] C. Pautasso and G. Alonso, “Flexible Binding for Reusable Com-
position of Web Services.” in Proceedings of the 4th International
Workshop on Software Composition (SC’2005), 2005, pp. 151–166.

[29] M. D. Penta, R. Esposito, M. L. Villani, R. Codato, M. Colombo,
and E. D. Nitto, “WS Binder: a Framework to enable Dynamic
Binding of Composite Web Services,” in Proceedings of the Interna-
tional Workshop on Service-oriented Software Engineering (SOSE’06).
New York, NY, USA: ACM Press, 2006, pp. 74–80.

[30] P. Leitner, F. Rosenberg, and S. Dustdar, “DAIOS – Efficient Dy-
namic Web Service Invocation,” IEEE Internet Computing, vol. 13,
no. 3, pp. 30–38, 2009.

[31] A. Michlmayr, F. Rosenberg, P. Leitner, and S. Dustdar, “Service
Provenance in QoS-Aware Web Service Runtimes,” in Proceedings
of the 7nd International Conference on Web Services (ICWS’09). IEEE
Computer Society, jul 2009.

[32] F. Rosenberg, P. Leitner, A. Michlmayr, and S. Dustdar, “Inte-
grated Metadata Support for Web Service Runtimes,” in Proceed-
ings of the Middleware for Web Services Workshop (MWS’08), co-
located with EDOC’08. IEEE Computer Society, Sep. 2008.

[33] F. Rosenberg, C. Platzer, and S. Dustdar, “Bootstrapping Perfor-
mance and Dependability Attributes of Web Services,” in Proceed-
ings of the IEEE International Conference on Web Services (ICWS’06),
Chicago, USA, Sep. 2006.

[34] J. Löwy, Programming WCF Services. O’Reilly, 2007.
[35] A. Michlmayr, F. Rosenberg, P. Leitner, and S. Dustdar, “Ad-

vanced Event Processing and Notifications in Service Runtime
Environments,” in Proceedings of the 2nd International Conference
on Distributed Event-Based Systems (DEBS’08). ACM, 2008.

[36] F. Rosenberg, P. Leitner, A. Michlmayr, P. Celikovic, and S. Dust-
dar, “Towards composition as a service - a quality of service
driven approach,” in Proceedings of the 1st IEEE Workshop on Infor-
mation and Software as Service (WISS’09), co-located with ICDE’09.
IEEE Computer Society, March 2009.

[37] P. Leitner, A. Michlmayr, F. Rosenberg, and S. Dustdar, “End-to-
End Versioning Support for Web Services,” in Proceedings of the
International Conference on Services Computing (SCC 2008). IEEE
Computer Society, Jul. 2008.

[38] Hibernate Reference Documentation v3.3.1, Red Hat, Inc., 2008, http:
//www.hibernate.org/.

[39] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley,
1995.

[40] Esper Reference Documentation, EsperTech, 2009, http://esper.
codehaus.org/.

[41] P. Leitner, A. Michlmayr, and S. Dustdar, “Towards flexible inter-
face mediation for dynamic service invocations,” in Proceedings of
the 3rd Workshop on Emerging Web Services Technology (WEWST’08),
co-located with ECOWS’08, 2008.

[42] “CS-Script – The C# Script Engine.” [Online]. Available:
http://www.csscript.net/

[43] L. Juszczyk, H.-L. Truong, and S. Dustdar, “Genesis - a framework
for automatic generation and steering of testbeds of complex web
services,” in Proceedings of the 13th IEEE International Conference
on Engineering of Complex Computer Systems (ICECCS’08). IEEE
Computer Society, 2008, pp. 131–140.

Anton Michlmayr received the MSc degree
in computer science from Vienna University
of Technology in 2005. He is currently a
PhD candidate and university assistant in the
Distributed Systems Group at Vienna Univer-
sity of Technology. His research interests in-
clude software architectures for distributed sys-
tems with an emphasis on distributed event-
based systems and service-oriented com-
puting. More information can be found at
http://www.infosys.tuwien.ac.at/Staff/michlmayr.

Florian Rosenberg is a PhD candidate and uni-
versity assistant in the Distributed System Group
at Vienna University of Technology graduating
in June 2009. His general research interests
include service-oriented computing and soft-
ware engineering. He is particularly interested
in all aspects related to QoS-aware service
composition. More information can be found at
http://www.infosys.tuwien.ac.at/Staff/rosenberg.

Philipp Leitner has a BSc and MSc in busi-
ness informatics from Vienna University of Tech-
nology. He is currently a PhD candidate and
university assistant at the Distributed Systems
Group at the same university. Philipp’s research
is focused on middleware for distributed sys-
tems, especially for SOAP-based and REST-
ful Web services. Additionally, he has done
work in the area of P2P computing, net-
work management and security of distributed
systems. More information can be found at

http://www.infosys.tuwien.ac.at/Staff/leitner.

Schahram Dustdar is Full Professor of Com-
puter Science with a focus on Internet Technolo-
gies heading the Distributed Systems Group, In-
stitute of Information Systems, Vienna University
of Technology (TU Wien) where he is director
of the Vita Lab. He is also Honorary Professor
of Information Systems at the Department of
Computing Science at the University of Gronin-
gen (RuG), The Netherlands. He is Chair of the
IFIP Working Group 6.4 on Internet Applications
Engineering and a founding member of the Sci-

entific Academy of Service Technology. More information can be found
at http://www.infosys.tuwien.ac.at/Staff/sd.

