
Business Rules Integration in
BPEL – A Service-Oriented
Approach

Florian Rosenberg and
Schahram Dustdar
rosenberg@infosys.tuwien.ac.at
dustdar@infosys.tuwien.ac.at

TUV-1841-2005-30 February 10, 2005

Technical University of Vienna
Information Systems Institute
Distributed Systems Group

Business rules change quite often. These changes cannot be handled effi-
ciently by representing business rules embedded in the source code of the
business logic. Efficient handling of rules that govern ones business is one
factor for success. That is where business rules engines play an impor-
tant role. The service-oriented computing paradigm is becoming more and
more popular. Services offered by different providers, are composed to new
services by using Web service composition languages such as BPEL. Such
process-based composition languages lack the ability to use business rules
managed by different business rules engines in the composition process. In
this paper, we propose an approach on how to use and integrate business
rules in a service-oriented way into BPEL.

Keywords: Business Rules, BPEL, Service-oriented Approach

c©2005, Distributed Systems Group, Technical University of Vienna

Argentinierstr. 8/184-1
A-1040 Vienna, Austria
phone: +43 1 58801-18402
fax: +43 1 58801-18491
URL: http://www.infosys.tuwien.ac.at/

Business Rules Integration in BPEL – A Service-Oriented Approach

Florian Rosenberg and Schahram Dustdar
Vienna University of Technology

Distributed Systems Group, Information Systems Institute
1040 Vienna, Argentinierstrasse 8/184-1, Austria

{rosenberg, dustdar}@infosys.tuwien.ac.at

Abstract

Business rules change quite often. These changes
cannot be handled efficiently by representing business
rules embedded in the source code of the business logic.
Efficient handling of rules that govern ones business
is one factor for success. That is where business rules
engines play an important role. The service-oriented
computing paradigm is becoming more and more pop-
ular. Services offered by different providers, are com-
posed to new services by using Web service composi-
tion languages such as BPEL. Such process-based com-
position languages lack the ability to use business rules
managed by different business rules engines in the com-
position process. In this paper, we propose an approach
on how to use and integrate business rules in a service-
oriented way into BPEL.

Keywords: Business Rules, BPEL, Service-oriented
Approach

1 Introduction

Business process management is one of the core tech-
niques to manage daily business. We are currently
moving from object-orientation to service-oriented
computing (SOC), considering services as fundamental
elements for application development. Services are self
describing, platform-agnostic computational elements
that support low-cost composition of distributed ap-
plications [22].

Over the last years, different Web service compo-
sition languages have emerged such as the Business
Process Execution Language for Web Services (WS-
BPEL or BPEL for short) [5] or BPML [2]. BPEL is
currently the preferred standard for performing Web
service composition [1] and implemented by many ven-
dors.

When building software architectures following the
object-oriented paradigm, a common practice is the
separation of concerns. Layering software into different
tiers, achieved for example through the classical three-
tier architecture (presentation layer, business logic and
data access layer), greatly implements this aforemen-
tioned separation of concerns. In large enterprise appli-
cations (not only legacy systems), it is a common prac-
tice that business rules are mixed with the main busi-
ness logic. Changing and managing such imbed rules
[23] is hard and time-consuming and cannot be done
by a business analyst, who typically does not have pro-
gramming experience. Business rule knowledge should
therefore be managed by a rule-based system, which is
then used by the business logic to evaluate the business
rules.

When applying the service-oriented paradigm to en-
terprise computing, the functionality is encapsulated
as a service, either as a simple or a composite one
[22]. Describing a composite service can be done by us-
ing BPEL, but there is no way to integrate rule-based
knowledge into the composition process. In Section 2
we depict a simple example where business rules are
needed during the composition process.

In this paper, we propose an approach on how to in-
tegrate rule-based knowledge, accessible through busi-
ness rule engines (BRE), in a service-oriented style
in BPEL or even other Web service composition lan-
guages. We present the design of such a system using
an enterprise service bus (ESB) as middleware, where
we plug in all the participating components needed for
our approach.

This paper is structured as follows: In the next sec-
tion, a motivating example is presented which is used
to explain different concepts used throughout this pa-
per. In Section 3 the basic elements of BPEL are
summarized. Section 4 introduces business rules, the
different classified types together with some examples.
In Section 5, we present our business rule integration

approach. We present the architecture of our system
as well as an integration methodology by considering
a simple example. Section 6 summarized the related
work done so far and in Section 7 we conclude this
work by summarizing the major points.

2 Motivating Example

The following motivating example of a travel agency
is used to explain the basic concepts of BPEL and the
way we try to enrich a BPEL description with busi-
ness rules. Our example uses the often presented travel
agency process. A typical use case could be the book-
ing of a trip with flight or train tickets together with
a hotel, a car for the whole stay and of course famous
sightseeing trips. Modeling this process is a complex
task; it requires many different steps to offer such a full
service to customers. We only use a very simple ex-
ample with annotations representing the business rules
for the different activities, as shown in Figure 1. These
annotations represent the rules executed on the data
at that time. Business rules with a before interceptor
are executed before the actual BPEL activies, after in-
terceptors after the BPEL activity respectively. The
concepts are explained in detail in Section 5. We refer
to the problems tackled by the use of business rules in
Section 4.

<receive>
bookingRequest

<invoke>
findFlights

<invoke>
findHotels

<invoke>
bookCar

<invoke>
findSightSeeingTours

<reply>
BookingSuggestion

after interceptor
R1: validateRequest(in BookingRequest)
R2: validateCustomer(in CustomerData)

before interceptor
R3: checkFlightsFound(in FlightResponse)

after interceptor
R4: checkHotelsFound(in HotelResponse)

before interceptor
R5: calculatePrice(in BookingSuggestion)

Figure 1. Travel Agency Process

The travel agency in our example is very simple,
it omits a lot of functionality required to be a fully-
fledged business process. Nevertheless, this simple
process raises enough possibilities to show, where ser-

vices which build upon business rules, can be added.
How we try to achieve the integration of rule services
with our approach is shown in Section 5.

3 Business Process Execution Lan-
guage

BPEL is currently a frequently used technology for
process-based Web service composition. BPEL is the
successor of XLANG from Microsoft [19] and WSFL
from IBM [13] by combining both worlds. BPEL pro-
vides a model to describe the behavior of a business
process based on Web service interactions between the
process and its partners [5]. Two different types of
processes can be implemented with BPEL, abstract
processes (also referred to as business protocols) or exe-
cutable processes. An executable process describes the
internal implementation of a service and an abstract
process specifies the external behavior of a service [1].
The main building blocks of BPELs component model
are activities. An activity is either a basic activity
(such as invoke, receive and reply, or a structured ac-
tivity (e.g. sequence, switch, flow, etc.). Furthermore,
BPEL supports exception handling by specifying one
or more fault handlers, compensation handlers, for se-
mantically undo the activities of a scope and correla-
tion sets, for identifying messages belonging to different
process instances. In Listing 1, we depict an example
process based on our example from the previous Sec-
tion 2.

<process name="TravelAgency" ...>
<!-- variable declaration -->
<flow>

<links>
<link name="order-to-flight"/>
<link name="accomodation-to-sightseeing"/>

</links>
<sequence>

<receive createInstance="yes"
name="receiveBookingRequest"
portType="bookingPT"
operation="sendBookingRequest"
variable="BookingRequest">
<source linkName="order-to-flight"/>

</receive>
<invoke operation="findFlights"

inputVariable="BookingRequest"
outputVariable="FlightData"
portType="airlinePT"
partner="airline">
<target linkName="order-to-flight"/>

</invoke>

<!-- invoke other services -->

<flow>
<invoke operation="bookCar" .../>
<invoke operation="findSightSeeingTours .../>

</flow>
<reply variable="BookingSuggestion"

portType="bookingPT"
operation="sendBookingSuggestion" />

</sequence>

</flow>
</process>

Listing 1. BPEL Travel Agency Process

4 Business Rules

According to the Business Rules Group [28], “a busi-
ness rule is a statement that defines and constraints
some business. It is intended to assert business struc-
ture or to control or influence the behavior of the busi-
ness. The business rules which concern the project are
atomic, that is, they cannot be broken down further.”

Modeling business rules as separate entities offers
great flexibility in the development process of applica-
tions. Especially in the e-commerce domain, this can
be a valuable advantage, since the business analyst,
who ideally authors the business rules, does not need
to have programming knowledge to change the rules.
Typically, changing the business rules happens much
more often than changing the large e-commerce appli-
cations. Moreover, extracting the business rules from
the business logic leads to a better decoupling of the
system, which as a consequence increases maintainabil-
ity.

In [12], different business rules from the e-commerce
domain are depicted to be very valuable when describ-
ing,

• terms and conditions (e.g. price calculation rules),

• service provisions (e.g. rules for refunds),

• and surrounding business processes (e.g. rules for
lead time to place an order).

One of the most important facts about business rules
is that they are declarative statements, they specify
what has to be done and not how [27].

4.1 Advantages of a Business Rule Approach

The following, not exhaustive, list considers some
advantages when separating business rules from the
business logic:

• Business rule reuse across other business processes
and applications.

• A better understanding of application logic
through externalized business rules.

• Documentation of business decisions through
rules.

• Lower application maintenance costs.

• Ease of changing rules by using visual tools.

4.2 Rule Types

In [30], a classification of business rules into four
different types is presented, whereas the fourth type
(deontic assignments) is only partially identified. We
will mainly focus on the first three types:

Integrity Rule (or “integrity constraints”) specifies
an assertion that must be satisfied in all stages of a
system. This type can be further differentiated into
state or process constraints. State constraints, such as
“a customer has to be at least 18 years old”, must be
valid at any time in the system. Process constraints
express the dynamic integrity of a system, thus speci-
fying the valid state transitions in the system, such as
“the valid state transitions of a BookingRequest are
reiceived → processed → acknowledged”

Referring to our case study in Figure 1, the rules R1
and R2 represent such integrity rules. Rule R1 and R2
check whether the received request data is correct and
consists of all the data needed for further processing.
If not, these rules throw an exception which is handled
by BPEL.

Derivation Rule (also called “deduction rules” or
“Horn clauses”) is a statement of knowledge derived
from other knowledge by using an inference or a math-
ematical calculation. Consider the following rules: a
customer is a gold customer if she is booking regularly.
Such a rule can only be evaluated with logic-based rea-
soning. It can be resolved by using the conditions of
other rules, e.g. R1: if a customer made 3 bookings
in the last 12 months, she is a regular booker. R2: if
a regular customer made 3 recommendations she is a
VIP customer. R3: if a VIP customer spends more
than 10000 EUR she is a gold customer.

In Figure 1, the price calculation rule R5 is a typical
derivation rule. How the price is actually calculated is
up to the business analyst who creates the rules (indeed
it will depend on a lot of different factors, e.g., the
customer status as seen in the sample rules above).

Reaction Rules (also called “stimulus response
rules”, “action rules” or “ECA – event-condition-action
rules) specify the invocation of actions in response to
an event. The action is only performed when a cer-
tain condition applies. Such rules typically consist of
an event condition, a state condition (or precondition),
an action term, and a state effect (or post-condition).
These types of rules are referred to as Event-Condition-
Action-Effect (ECAE) rules. Special cases are the com-
monly known ECA rule and the condition-action (or

production) rule. An example could be, “if a cus-
tomer confirms the booking of a flight, the hotel booking
service starts searching for appropriate rooms for this
trip.”

In our example from Section 2, the rules R3 and R4
can be seen as reaction rules in the sense of enabling
an action or not. Considering R1, it checks if flights
where found otherwise it skips the execution of the ho-
tel search. The same semantic applies to rule R4.

Deontic Assignments of powers, rights and duties
to (types of) internal agents define the deontic struc-
ture of an organization, guiding and constraining the
actions of internal agents. This type mainly considers
authorizations as business rules (e.g. Only the man-
ager of the travel agency is allowed to grant discounts
higher than 5%.)

4.3 Rule-Based Systems

In [9], a good introduction to rule-based systems is
presented. We will briefly summarize the most impor-
tant facts about rule-based systems. For a detailed
discussion on rule-based systems and knowledge repre-
sentation we can refer to [25].
Typically, knowledge is represented by rules. There-
fore, a rule-based system is used to control the selection
and activation of rules by using an inference or rule en-
gine. The inference engine is responsible for activating
the rules when the incoming data matches activation
pattern of the condition or the conclusion. Further-
more the engine is responsible for chaining the rules.
Let us consider the following example of two rules: a
customer gets 3% discount if she is a frequent one and
has a good credit rating. The rule engine chains these
rules together, either in forward or backward chaining
mode (cf. [9]).

4.4 Rules Engines

Basically two different formalisms of expressing rules
exist, production rules, used in production systems, and
first-order predicate logic used in logic-based systems
[9]. The term business rules engine (BRE) unifies both
terms under a common name.

Production systems consist of three parts, the pro-
duction rules, the working memory and the rule engine.
Production rules are a special form of reaction rules,
consisting of a condition and a conclusion. The work-
ing memory holds the data and rules. The data is used
by the rule engine to match the conditions. Further-
more the rule engine uses different conflict resolution
strategies if more than one rule matches the condition.

A famous algorithm for matching the rule conditions is
called RETE [11].

Logic-based systems typically use logic program-
ming for problem solving by using inference. A well-
known logic programming language is Prolog. Logic
programming is out of the scope of this paper so we do
not cover details here.

5 Integration Approaches

Integrating rule-based systems in a service-oriented
environment is a complex task, due to the fact that
both worlds have their own paradigms, as discussed
in previous sections. Rule-based systems have a high
significance, not only for representing business rules,
therefore it is reasonable to integrate them into the en-
terprise architecture. The importance of integrating
a rule engine with an orchestration engine is also de-
picted in [18], where the author presents a couple of
orchestration patterns, also addressing the problem of
integrating rule languages with orchestration engines.

We will now focus on the integration aspects be-
tween an orchestration engine, in our case BPEL, and
different rule-based systems. As presented in Section
6, a vast number of business rule engines exist, rang-
ing from logic-based systems to production systems.
Therefore, we mainly differentiate between two integra-
tion approaches: (1) a tightly-coupled approach and
(2) a loosely-coupled approach. Concerning (1), the
idea is that the orchestration engine communicates di-
rectly with the rule engine through their proprietary
API. Due to the fact the BPEL specification omitted
the standardization of an API to access a BPEL en-
gine, most vendors have proprietary or no interfaces
communicate with a BPEL engine. These problems
make it hard to tightly-couple different rule engines
with a BPEL engine. Another important drawback of
this approach is the lack of service-orientation. It is
reasonable to offer the business rules as services, in or-
der to allow that these services can be reused in every
other inter-enterprise (or even inter-organizational) ap-
plication thus ease the development of new application
and the integration of other applications. Based on
these drawbacks of the tightly coupled approach, we
pursue (2). The concepts and the design issues con-
cerning our architectural approach are depicted in the
next section.

5.1 Architecture

Our integration approach considers an enterprise
service bus (ESB), a service middleware well-suited
for the service-oriented architecture, as an integration

platform. All services use the ESB as a communica-
tion platform as depicted in Figure 2. In this section
we will explain the concepts of every service and discuss
important design aspects. A detailed discussion of de-
sign and implementational aspects is not the intended
scope of this paper.

Business Rule Broker

WSDL Interface (generated)

BPEL Process

BPEL Engine

Enterprise Service Bus

Transformation
RulesTransformation

Engine

<<deployed to>>

Rule Service
Generator

Semantic Rule
Description

<<uses>>

<<generates>>

Web Service
Gateway

Rule
Interceptor

Service

Figure 2. Service-Oriented Approach

The BPEL engine is connected to the ESB with an
adapter. It uses the ESB as a messaging layer and
communicates directly with the Web Service Gateway
to call external Web services via <invoke> or <reply>,
or waiting for response by using <receive>.

5.1.1 Business Rule Broker

Due to the aforementioned heterogeneity of the differ-
ent rule APIs, we introduce a Business Rule Broker
service, providing a unified access to different BREs,
through a Web service interface. The architecture of
the broker service is depicted in Figure 3.

Business Rule Broker

WSDL Interface

Business Rule
Provider

BR Adapter 1

BR Adapter 2

BR Adapter n

Drools Engine

Jess Engine

Prolog Engine

Figure 3. Business Rule Broker

The broker architecture abstracts from the specific
rule engine implementations. It therefore uses a flexible
architecture with following distinctive features:

• Allows to connect different rule-based engines, ir-
respective if they are logic-based systems or pro-
duction based systems by using an adapter, specif-
ically for each engine. Each connected rule engine

manages its own knowledge base with its specific
format.

• It offers a WSDL interface for accessing different
rules or a collection of rules (referred to as rule
set) in a service-oriented manner.

• The attached engines managed by the broker can
be dynamically changed at runtime. Furthermore
more than one rule-engine can be used at the same
time using the unified WSDL interface.

At the moment, we consider only Java-based rule
engines, because we use the Java Rule API [17], a re-
cently finished Java Community Process, which offers
access to different rules engines. Every other rule en-
gine, can be plugged in by implementing an adapter.

Another distinctive feature of our approach is the
generation of the WSDL interface of the Business Rules
Broker based on a semantic description of the different
rules. Please consider that this generation is not a dy-
namic runtime feature, it is done at design time. Per-
forming such a generation needs a semantic description
of a knowledge base. A knowledge base is typically or-
ganized as a collection of rules grouped into different
rule sets. A semantic description of a rule or a rule set
can be seen as a triple R = (S, I,O) where R is the
name of the rule or the rule set, I is a set of input pa-
rameter I = < name, type > and O is a set of output
O = < name, type >. Both input and output parame-
ters are specified with a name and a valid data type (in
XML Schema). This semantic description is specified
in XML. Providing such a semantic description of the
whole rule base can be a very time consuming task and
maybe the biggest disadvantage of our approach. But
it is necessary because there is currently no standard
language (such as RuleML, see Section 6) in describing
rules which is supported by most rule engine vendors.

5.1.2 Rule Interceptor Service

The Rule Interceptor Service is the bridge between the
business rules and the executable BPEL process. Our
approach is to intercept each incoming and outgoing
BPEL Web service call to automatically apply business
rules, accessible by the Business Rule Broker service.
The mapping of BPEL activities to concrete business
rules is done by a mapping document which has to be
created by the BPEL designer. We present an example,
how such a mapping file is specified, later in Section
5.1.3 when explaining the Transformation Engine.

The interceptor concept offers two different intercep-
tion times, a before interceptor, or an after interceptor,
expressing that the interceptor is either executed be-

fore or after the BPEL activity. The control flow of
such an execution is shown in Figure 4.

BPEL
Engine

Rule Interceptor Service

Before
Interceptor

invoke
activity

BPEL Invoke
Message

After
Interceptor

Business Rule
Broker

Web Service
Gateway

call business rules call business rules

Figure 4. Rule Interceptor Concept

The BPEL engine execution processes each activity
(in this example the invoke activity), so it calls the
Web services identified by a specific partner link type
in BPEL (Please note, that the binding of the partner
links types is not specified directly in BPEL, is spec-
ified at deployment). Each call is intercepted by the
Rule Interceptor Service, where the before interceptor
is called. The mapping of activities to rules is done by
an activity to rule mapping. If some rules are mapped
to be executed in the before interceptor, then the Busi-
ness Rule Broker is called to execute the appropriate
rules. After the before interceptor the BPEL activity
is executed or in case of a business rule violation an ex-
ception is thrown an propagated to the BPEL engine.
After successfully executing the BPEL activity, the af-
ter interceptor is executed following the same concept
as the before interceptor. After all interceptors are
called, the control flow returns to the BPEL engine to
further process its activities.

5.1.3 Transformation Engine

In order to make the aforementioned Rule Interceptor
Service and the business rules it calls handle all the dif-
ferent message types (e.g. BPEL variables), we need a
Transformation Engine to transform XML messages to
other formats which can be understood by the business
rules. The transformation is performed in the before or
after interceptors based on the data types of the BPEL
activity. We clarify such a transformation based on a
simple example in the next section.

5.1.4 Travel Agency Example Revisited

The Travel Agency process, depicted in Figure 1,
is created by the BPEL engine when receiving the

BookingRequest message at the beginning of the
process as depicted in Listing 1. Typically, this mes-
sage is generated by some other application or work-
flow system, so we have to ensure some data con-
straints on that requests. Such constraints should ide-
ally be expressed as business rules, e.g., a valid name,
flight date, a destination, and some constraints on the
data are needed. We can ensure these constraints
by using two business rules and an after interceptor.
Rule R1, validateRequest(in BookingRequest) is
called by simply invoking this service from the Busi-
ness Rules Broker. What happens if we want to call
the rule R2 with the signature validateCustomer(in
CustomerData) in the after interceptor? The rule
R2 only accepts a message of type CustomerData,
but all the customer data is encapsulated in the
BookingRequest message. That where the Transfor-
mation Engine is used. It transforms the necessary
data, from the BookingRequest to the CustomerData
based on defined transformation rules by using XSLT
[29]. The activity to rule mapping is shown in Listing
2. It is the input configuration for the Rule Interceptor
Service.

<activity name="findHotels" type="invoke">
<interceptors>

<before>

<!-- no business rules needed here -->

</before>

<after>
<rule name="validateRequest">

<parameter name="BookingRequest" />
</rule>
<rule name="validateCustomer">

<parameter name="CustomerData"
<transform rule="bookingReq-to-customerData" />

</parameter>
</rule>

</after>
</interceptors>

</activity>

Listing 2. BPEL Activity to Rule Mapping

6 Related Work

In this section we discuss mainly three different
types of related work. First of all, we describe alter-
natives for Web service composition such as BPEL. A
good overview of different Web service composition ap-
proaches is presented in [26].

In the second part we present rule-based approaches
and formats which can be used to implement business
rules. In the last part, we discuss existing integration
approaches done so far.

6.1 Web Service Composition

BPEL is currently the standard technology for spec-
ifying Web service composition. BPEL-J [3], a joint
work by BEA and IBM, provides an interesting alter-
native to the common BPEL. Its distinctive feature is
the integration of the Java programming language into
BPEL. It adds an activity called Java Snippet for spec-
ifying conditions, join conditions, variables with Java
data types and more features available because of the
Java integration.

In [21], a business rule driven composition approach
is presented. The authors propose a technique how
to dynamically compose business processes based on
business rules.

6.2 Business Rule-Based Approaches

The Java Community Process started to work on an
API for Java-based rule engine in November 2000 (JSR
94). In August 2004, the final version of the rule engine
API was released [17]. This Java Rule API is already
supported (at least partially) by a couple of rule engine
(cf. Drools [10] or JESS [16]).

The OMGs (Object Management Group) [20] Busi-
ness Rules Team (BRT) recently announced to release
a proposal dealing with the Semantics of Business Vo-
cabulary and Rules (SBVR). It aims to define common
vocabularies to express business rules in SBVR Struc-
tured English.

Also many commercial business rule products are
available, with ILOG [15] as one well-known represen-
tative. ILOG offers several rule engine technologies for
different platforms, e.g., JRules for the Java platform.

Another initiative, focusing on a standard represen-
tation of business rules, is RuleML [24]. It started in
August 2000 and is currently the most promising ini-
tiative for representing rule markup for the Semantic
Web. The RuleML approach encompassed all the dif-
ferent rule types described in Section 4.2. It main ap-
proach is to become the standard rule markup with
translators in and out along with further tools [4].

The Business Rules for Electronic Commerce
project carried by IBM Research, developed a frame-
work for presenting business rules [14]. One of the re-
sults of this project was a Java library called Common-
Rules using declarative logic as knowledge representa-
tion language.

6.3 Integration Approaches

To the best of our knowledge, there is no existing
approach which focuses on a service-oriented integra-

tion of rule-based languages with process-based Web
services composition such as BPEL.

In [6, 7], the authors present a hybrid approach for
realizing the integration of business rules (modeled as
aspects) with a BPEL orchestration engine by using
aspect-oriented programming techniques. Their ap-
proach, called AO4BPEL, is an extension to BPEL by
aspect-oriented concepts which allow to model busi-
ness rules as aspects and weaving them into the BPEL
code by using an aspect-aware orchestration engine.
The authors also note that they do not know any
approaches which integrate rule-based languages with
process-based Web service composition approaches.

An interesting approach on how to integrate rule-
based knowledge into object-object oriented languages
is presented in [9]. Moreover, the author evaluated
several interesting rule-based systems and presented
an approach for integrating rule-based languages with
object-oriented ones by using aspect-oriented program-
ming.

7 Conclusions

Integrating business rules in process-oriented Web
service composition can greatly improve the quality
and ease development by using business rules authored
by domain experts. But integration cannot be done if
the business rules are not accessible in a unified way.
This is getting increasingly important when consider-
ing the emerging paradigm of service-oriented comput-
ing.

In this paper we proposed an approach on how
to integrate business rules–managed by different rules
engines–into process-oriented Web service composition
languages; we use BPEL as our composition language.
Our approach consists of multiple parts: A Business
Rules Broker allowing to hide the heterogeneity of dif-
ferent rule engines and providing a service-oriented in-
terface (based on WSDL) to access and evaluate the
different rules from the knowledge base. The Rule Ser-
vice Interceptor uses a special rule to activity mapping
to intercept outgoing BPEL calls and automatically
applied the business rules specified by the designer.
The Transformation Engine is used by the intercep-
tors to transform XML to other schemas acceptable by
the specific rules to call. Furthermore, we presented
a way to dynamically generate the WSDL interface of
the Business Rules Broker by using a semantic rule
description.

Our research work concerning business rules is in
very early stage. Currently we are building a proto-
type system and some examples scenarios. We plan to
extend the system by adding more advanced services,

such as a contracting authority as proposed in [8].

References

[1] G. Alsonso, F. Casati, H. Kuno, and V. Machiraju.
Web Services – Concepts, Architectures and Applica-
tions. Springer Verlag, 2004.

[2] A. Arkin. Business Process Modeling Language.
http://www.bpmi.org/, November 2002.

[3] BEA Systems Inc. and IBM Corp. BPELJ: BPEL
for Java. ftp://www6.software.ibm.com/software/

developer/library/ws-bpelj.pdf, March 2004.

[4] H. Boley, S. Tabet, and G. Wagner. Design Rationale
of RuleML: A Markup Language for Semantic Web
Rules. In Proceedings of the 1st Semantic Web Work-
ing Symposium, July/August 2001.

[5] Business Process Execution Lan-
guage for Web Services Version 1.1.
http://www.ibm.com/developerworks/library/ws-
bpel/, May 2003.

[6] A. Charfi and M. Mezini. Aspect-Oriented Web service
Composition with AO4BPEL. In L. J. Zhang, editor,
Proc. ECOWS 2004, volume 3250 of LNCS. Springer,
2004.

[7] A. Charfi and M. Mezini. Hybrid Web Service Com-
position: Business Processes Meet Business Rules. In
Proceedings of the 2nd International Conference on
Service Oriented Computing, November 2004.

[8] I. Chebbi, S. Tata, and S. Dustdar. The view-based ap-
proach to dynamic inter-organizational workflow coop-
eration. Technical Report TUV-1841-2004-23, Vienna
University of Technology, 2004.

[9] M. D’Hondt. Hybrid Aspects for Integrating Rule-
Based Knowledge and Object-Oriented Functionality.
PhD thesis, Vrije Universiteit Brussel, May 2004.

[10] Drools – Java Rule Engine. http://www.drools.org.

[11] C. Forgy. RETE: a fast algorithm for the many pat-
tern/many object pattern match problem. Artificial
Intelligence, 19(1):17–37, 1982.

[12] B. N. Grosof, Y. Labrou, and H. Y. Chan. A declara-
tive approach to business rules in contracts: courteous
logic programs in XML. In ACM Conference on Elec-
tronic Commerce, pages 68–77, 1999.

[13] IBM Software Group. WSFL – Web Service Flow
Language Specification. http://www-306.ibm.com/

software/solutions/webservices/pdf/WSFL.pdf,
May 2001.

[14] IBM T.J. Watson Research. Business Rules for Elec-
tronic Commerce Project. http://www.research.

ibm.com/rules/home.html, 1999.

[15] ILOG Website. http://www.ilog.com.

[16] JESS - Java Rule Engine. http://herzberg.ca.

sandia.gov/jess.

[17] JSR 94 - Java Rule Engine API. http:

//jcp.org/aboutJava/communityprocess/final/

jsr094/index.html, August 2004.

[18] D. A. Manolescu. Orchestration Patterns
in Service Oriented Architectures. URL:
http://www.orchestrationpatterns.com/

OrchestrationPatterns.html, January 2005.
[19] Microsoft Corporation. XLANG Specification.

http://www.gotdotnet.com/team/xml wsspecs/

xlang-c/default.htm, 2001.
[20] OMG - Object Management Group. http://www.omg.

com.
[21] B. Orriëns, J. Yang, and M. P. Papazoglou. A Frame-

work for Business Rule Driven Service Composition. In
Proceedings of the Fourth International Workshop on
Conceptual Modeling Approaches for e-Business Deal-
ing with Business Volatility, 2003.

[22] M. P. Papazoglou. Service-oriented computing: con-
cepts, characteristics and directions. In Proceedings
of the Fourth International Conference on Web Infor-
mation Systems Engineering, pages 3–12, Dezember
2003.

[23] I. Rouvellou, L. Degenaro, K. Rasmus, D. Ehneb-
uske, and B. McKee. Extending business objects with
business rules. In Proceedings of the 33rd Interna-
tional Conference on Technology of Object-Oriented
Languages, pages 238–249, 2000.

[24] RuleML Initiative Website. http://www.ruleml.org.
[25] S. Russell and P. Norvig. Artificial Intelligence – A

Modern Approach. Prentice Hall, second edition, 2003.
[26] W. Schreiner and S. Dustdar. A Survey on Web ser-

vices Composition. International Journal of Web and
Grid Services, 1, 2005.

[27] K. Taveter and G. Wagner. Agent-Oriented Enterprise
Modeling Based on Business Rules? In Proceedings
of 20th Int. Conf. on Conceptual Modeling (ER2001),
LNCS, Yokohama, Japan, November 2001. Springer-
Verlag.

[28] The Business Rules Group. Defining Business
Rules – What Are They Really? http://www.

businessrulesgroup.org/first paper/br01c0.htm,
July 2000.

[29] W3C. XSL Transformations (XSLT) - Version 1.0.
http://www.w3.org/TR/xslt, November 1999.

[30] G. Wagner. How to design a general rule markup lan-
guage? In Workshop XML Technologien fuer das Se-
mantic Web (XSW), Berlin, June 2002.

