
Performance Metrics and
Ontology for Describing
Performance Data of Grid
Workflows

Hong-Linh Truong, Thomas Fahringer,
Francesco Nerieri and
Schahram Dustdar
truong@par.univie.ac.at
Thomas.Fahringer@uibk.ac.at
Francesco.Nerieri@uibk.ac.at
dustdar@infosys.tuwien.ac.at

TUV-1841-2004-28 December 20, 2004

Technical University of Vienna
Information Systems Institute
Distributed Systems Group

To understand the performance of Grid workflows, performance analysis
tools have to select, measure and analyze various performance metrics of
the workflows. However, there is a lack of a comprehensive study of perfor-
mance metrics which can be used to evaluate the performance of a workflow
executed in the Grid. This paper presents performance metrics that perfor-
mance monitoring and analysis tools should provide during the evaluation
of the performance of Grid workflows. Performance metrics are associated
with many levels of abstraction. We introduce an ontology for describing
performance data of Grid workflows. We describe how the ontology can be
utilized for monitoring and analyzing the performance of Grid workflows.

Keywords: workflow preformance metrics, grid computing

c©2004, Distributed Systems Group, Technical University of Vienna

Argentinierstr. 8/184-1
A-1040 Vienna, Austria
phone: +43 1 58801-18402
fax: +43 1 58801-18491
URL: http://www.infosys.tuwien.ac.at/



Performance Metrics and Ontology for Describing Performance Data of Grid
Workflows �

Hong-Linh Truong
Institute for Software Science,

University of Vienna
Nordbergstr. 15/C/3, A-1090 Vienna, Austria

truong@par.univie.ac.at

Thomas Fahringer, Francesco Nerieri
Institute for Computer Science,

University of Innsbruck
Technikerstr. 13, A-6020 Innsbruck, Austria

�tf,nero�@dps.uibk.ac.at
Schahram Dustdar

Information Systems Institute, Vienna University of Technology
Argentinierstrasse 8/184-1, A-1040 Wien, Austria

dustdar@infosys.tuwien.ac.at

Abstract

To understand the performance of Grid workflows, perfor-
mance analysis tools have to select, measure and analyze
various performance metrics of the workflows. However,
there is a lack of a comprehensive study of performance
metrics which can be used to evaluate the performance of a
workflow executed in the Grid. This paper presents perfor-
mance metrics that performance monitoring and analysis
tools should provide during the evaluation of the perfor-
mance of Grid workflows. Performance metrics are associ-
ated with many levels of abstraction. We introduce an on-
tology for describing performance data of Grid workflows.
We describe how the ontology can be utilized for monitor-
ing and analyzing the performance of Grid workflows.

1. Introduction

Recently, increased interest can be witnessed in exploit-
ing the potential of the Grid for workflows, especially for
scientific workflows, e.g. [15, 3, 9]. As the Grid is di-
verse, dynamic and inter-organizational, the execution of
Grid workflows is very flexible and in an ad-hoc manner.
That requires performance monitoring and analysis tools to
collect, measure and analyze metrics that characterize the
performance and dependability of workflows at many lev-
els of detail in order to detect components that contribute
to performance problems, and correlations between them.

To understand the performance and dependability of
Grid workflows, performance metrics of the workflows

�The work described in this paper is supported in part by the Austrian
Science Fund as part of the Aurora Project under contract SFBF1104 and
by the European Union through the IST-2002-511385 project K-WfGrid.

have to be studied and defined. However, there is a lack
of a comprehensive study of useful performance metrics
which can be used to evaluate the performance of work-
flows executed in the Grid. Only few metrics are supported
in most existing tools, and most of them being limited lim-
ited at activity (task) level. Moreover, performance data of
workflows needs to be shared because various other tools,
such as workflow composition tools, schedulers and op-
timization tools, require the performance data, and to be
used for reasoning performance problems. Therefore, an
ontology describing performance data of workflows is im-
portant because the ontology, like a treaty [1], will facilitate
the performance data sharing and can be used to explicitly
describe concepts associated with workflow executions.

Previously, we have developed an ontology to described
performance data of Grid applications [18]. This paper ex-
tends our previous work to study performance metrics of
Grid workflows and to describe performance data of the
Grid workflows. We propose an extended set of perfor-
mance metrics associated with multiple levels of abstrac-
tion; these metrics characterize the performance of Grid
workflows. Proposed performance metrics are described
in a metric ontology. We then introduce an ontology which
can be used to describe performance data of Grid work-
flows. The ontology establishes a common understanding
about performance of Grid workflows thus it can be shared
by various tools and services.

The rest of this paper is organized as follows: Section
2 discusses the workflow and workflow execution model.
Section 3 presents performance metrics for workflows. We
introduce an ontology for describing performance data of
workflows in Section 4. We discuss the use of the ontology
for performance analysis of Grid workflows in Section 5.
Related work is outlined in Section 6. We summarize the



paper and give an outlook to the future work in Section 7.

2. Workflow Model

2.1. Hierarchical Structure View of a Workflow

Figure 1 presents the hierarchical view of a workflow
(WF). A WF consists of WF constructs. Each WF construct
consists of a set of activities. Two activities can depend on
each other. The dependency between two activities can be
data dependency or control dependency. Each activity is
associated with a set of invoked applications. Each invoked
application contains a set of code regions.

WF constructs can be fork-join, sequence, do loop, etc.
More details of existing WF constructs can be referred to
[2]. Each activity is associated with one or multiple in-
voked application(s). An invoked application can be an ex-
ecutable program or a service operation (e.g., of Web Ser-
vice). Invoked applications can be executed in sequential
or parallel manner. An invoked application is considered
as a set of code regions; a code region ranges from a single
statement to an entire program unit. A code region can be
a function call, a remote service call, a do loop, an if-then-
else statement, etc.

2.2. Workflow Execution

A Grid environment is viewed as a set of Grid sites. A
Grid site is comprised of a set of grid services within a
single organization. A Grid site consists of a number of
computational nodes (or hosts) that share a common se-
curity domain, and exchange data internally through a lo-
cal network. A computational node can be any comput-
ing platform, from a single-processor workstation to an
SMP (Symmetric Multi-Processor) node to an MPP (Mas-
sively Parallel Processing) system. Each computational
node may have single or multiple processor(s). On each
computational node, there would be multiple application
processes executed, each process may have multiple com-
puting threads.

Figure 2 presents the execution sequence of a WF. The
user submits a WF to the workflow management system
(WfMS). The WfMS instantiates activities. When execut-
ing an activity instance, the WfMS locates a Grid site and
submits the invoked application of the activity instance to
the scheduler of the Grid site. The Grid site scheduler lo-
cates computational nodes and executes processes of the
invoked application on corresponding nodes.

2.3. Activities Execution Model

The execution of an activity a is represented by the dis-
crete process model [14]. Let P�a� be a discrete process

modeling the execution of activity a (hence, we call P�a�
the execution status graph of an activity). A P�a� is a di-
rected, acyclic, bipartite graph �S�E�A�, in which S is a set
of nodes called states, E is a set of nodes called events, and
A is a set of ordered pairs of nodes called arcs. Simply
put, an agent (e.g. workflow invocation and control, activ-
ity instance) causes an event (e.g. submit) that changes the
activity state (e.g. from queuing to processing), which in
turn influences the occurrence and outcome of the future
events (e.g. active, failed). Figure 3 presents an example of
a discrete process modeling the execution of an activity.

Each state s of an activity a is determined by two events:
leading event ei, and ending event e j such that ei�e j �E, s�
S, and �ei�s���s�e j� � A of P�a�. To denote an event name
of P�a� we use ename�a�; table 1 presents a few event names
which can be used to describe activity events. We use t�e�
to refer to the timestamp of an event e and tnow to denote
the timestamp at which the analysis is conducted. Because
the monitoring and analysis is conducted at runtime, it is
possible that an activity a is on a state s but there is no such
�s�e�� A of P�a�. When analyzing such state s, we use tnow

as a timestamp to determine the time spent on state s. The
happened before relation between events is denoted by�.

3. Performance Metrics of Grid Workflows

The task of performance monitoring and analysis of
Grid WFs is to collect and analyze performance metrics re-
lated to the WFs. Interesting performance metrics of WFs
are associated with many levels of abstraction. We classify
performance metrics according to five levels of abstraction,
from lower to higher level, including code region, invoked
application, activity, workflow construct and workflow.

In principle, from performance metrics of a lower-
level, similar metrics can be constructed for the immediate
higher-level by using various aggregate operators such as
sum, average. For example, the communication spent in
one application may be defined as the sum of communica-
tion spent on its code regions. Exact aggregate methods are
dependent on specific metrics and their associated levels.
In the following sections we present performance metrics
with their associated levels. For a higher-level, we will not
show metrics that can be aggregated from that of the lower-
level. Instead, we just discuss new metrics which appear at
the higher level or an existing metric but it requires a dif-
ferent computing method at different levels of abstraction.

3.1. Metrics at Code Region Level

Table 2 presents performance metrics of code regions.
Performance metrics are categorized into: execution time,
counter, data movement, synchronization, ratio and tempo-
ral overhead.



Workflow

Workflow Struct n

Activity m

Invoked Application k

Code Region 1 ... Code Region q

Figure 1. Hierarchical structure
view of a workflow.

User WfMS Grid site
Scheduler

Computational Node
Scheduler

Execute a workflow
Submit invoked application

Execute an application process

Execution of the application
process completed

Execution of the invoked
application completed

Execution of the workflow
completed

Execution of an
application process

Invoked application started

Execution of an
activity instance

Execution of an
invoked application

Execution of a
workflow

Figure 2. Execution model of a workflow.

initializing submitted queuing active processing completed

Figure 3. Discrete process model for the execution of an activity. represents a state, � represents an event.

Execution time metrics include total elapsed time (wall-
clock time, response time)1, user CPU time, system CPU
time, CPU time. Counter metrics include hardware coun-
ters (e.g. L2 cache misses, number of floating point instruc-
tions) and other counters such as number of calls. Data
movement metrics characterize the data movement such as
communication time, exchanged message size. Synchro-
nization metrics describe time spent on the synchronization
of executions, such as critical section, condition synchro-
nization, etc. Various ratio metrics can be defined based on
execution time and counter metrics.

If the invoked application is a parallel application (e.g.,
MPI applications), we can compute temporal overhead
metrics for code regions. Overhead metrics are based on
a classification of temporal overhead for parallel programs
[17]. Examples of overhead metrics are control of paral-
lelism, loss of parallelism, etc.

3.2. Metrics at Invoked Application Level

Most performance metrics at code region level can be
provided at invoked application level by using aggregate
operators. Table 3 presents extra performance metrics as-
sociated with invoked applications.

Let A be an invoked application. Let ElapsedTimei�A�
and ElapsedTime j�A� be elapsed times of A in executions
i and j, respectively. The speedup factor of execution i over
execution j is defined by

1Elapsed time, wall-clock time, and response time indicate the latency
to complete a task (including IO, waiting time, computation, ...) These
terms are used interchangeably. In this paper, the term ElapsedTime refers
to elapsed time or response time or wall-clock time.

SpeedupFactor�
ElapsedTimei�A�
ElapsedTime j�A�

(1)

3.3. Metrics at Activity Level

Table 4 presents metrics measured at activity level. Per-
formance metrics can be associated with activities and ac-
tivity instances.

Execution time includes end to end response time, pro-
cessing time, queuing and suspending time. The process-
ing time of an activity instance a, ProcessingTime�a�, is
defined by

ProcessingTime�a� � t�ecompleted�a��� t�eactive�a�� (2)

if ecompleted�a� has not occurred, it means the execution
of a has not completed, processing time is defined by

ProcessingTime�a� � tnow� t�eactive�a�� (3)

Synchronization metrics for an activity involves with the
execution of other activities it depends. Let pred�a� be the
set of activities that must be finished before a; there is a
data dependency or control dependency between a and any
ai � pred�a�. �ai � pred�a�; i � 1� � � � �n; synchronization
delay and execution delay from ai to a, SynDelay�ai�a� and
ExecDelay�ai�a�, respectively, are defined by:

SynDelay�ai�a� � t�esubmitted�a��� t�ecompleted�ai�� (4)

ExecDelay�ai�a� � t�eactive�a��� t�ecompleted�ai�� (5)



Event Name Description
active indicate the activity instance has been started to process its work.

completed indicate the execution of the activity instance has completed.
suspended indicate the execution of the activity instance is quiescent.

failed indicate the execution of the activity instance has been stopped before its normal completion.
submitted indicate the activity has been submitted to the scheduling system.

Table 1. Example of event names.

Category Metric Name Description
Execution time ElapsedTime The elapsed time of the code region.

UserCPUTime CPU time spent on user mode
SystemCPUTime CPU time spent on system mode
CPUTime CPU consumption time
SerialTime Time spent on serialization and deserialization data.
EncodingTime Time spent on encoding and decoding data.

Counter L2 TCM, L2 TCA, etc. Hardware counters. There are more than 100 hardware counters.
The exact number of hardware counters is dependent on specific
platforms.

NCalls Number of executions of the code region.
NSubs Number of executions of sub regions of the code region.
SendMsgCount Number of messages sent by the code region.
RecvMsgCount Number of messages received by the code region.

Data movement TotalCommTime Communication time.
TotalTransSize Size of total data transfered (send and receive).

Synchronization ExclSynTime Single-address space exclusive synchronization.
CondSynTime Condition synchronization.

Ratio MeanElapsedTime Mean elapsed time per execution of the code region.
CommPerComp Communication per computation.
MeanTransRate Mean of transfer rate.
MeanTransSize Transfered data size per number of transfers.
CacheMissRatio,MLOPS, etc. Ratio metrics computed based on hardware counters.

Temporal overhead octrp,olopa, etc. This type of metrics is defined only for code regions of parallel
programs.

Table 2. Performance metrics at code region level.

If esubmitted�a� or eactive�a� has not occurred, synchro-
nization or execution delay will be computed based on t now.

Metrics associated with an activity are determined from
metrics of activity instances of the activity by using aggre-
gate operators. Aggregated metrics of an activity give sum-
marized information about the performance of the activity
that can be used to examine the overall performance of the
activity.

3.4. Metrics at Workflow Construct Level

Table 5 presents performance metrics at WF construct
level. The load imbalance is associated with fork-join WF
constructs. A fork-join WF construct is shown in Figure 4.

a1(1)

a2

a1(2)

a0

... a1(n)

Figure 4. A fork-join workflow construct.

Load imbalance is defined by

LoadIm�ai��ProcessingTime�ai��
∑n

k�1�ProcessingTime�ai��

n
(6)



Category Metric Name Description
Execution time ElapsedTime The elapsed time of the invoked application.

ExecDelay The latency that the Grid scheduler spends on instantiating application processes.
Counter NCalls Number of executions of the invoked application.

NCallFailed Number of executions failed.
Ratio FailedFreq Frequency of failure.
Scalability SpeedupFactor Speedup factor between executions of the same application.

Table 3. Performance metrics at invoked application level.

Category Metric Name Description
Execution time ElapsedTime End-to-end response time of an activity instance.

ProcessingTime The time the activity spends on the processing.
QueuingTime The time an activity instance is on queuing system.
SuspendingTime The time an activiy instance spends on suspended state.
SharedResTime The period of time on which the activity has to share the resource with other

activities.
Counter NCalls Number of invocations of an activity.

NSystemFailed Number of failed invocations due to the system failure.
NAppFailed Number of failed invocations due to the application failure.
NDDFailed Number of failed invocations due to the data dependency failure.
InTransSize Size of total data transfered to the activity per data dependency.
OutTransSize Size of total data transfered from the activity to another.

Ratio Throughput Number of successful activity instances over time.
MeanTimePerState Mean time an activity spent on a state.
TransRate Data transfer rate per data dependency.

Synchronization SynDelay Synchronization delay.
ExecDelay Execution delay.

Table 4. Performance metrics at activity level.

Slowdown factor for fork-join construct is defined by

SlowdownFactor �
maxn

i�1�ProcessingTimen�ai��

ProcessingTime1�ai�
(7)

where ProcessingTimen�ai� is the processing time of
activity ai in fork-join version with n activities and
ProcessingTime1�ai� is the execution time of activity ai in
the version of single activity. Load imbalance and slow-
down factor metrics can also computed for fork-join struc-
tures of structured block of activities. A structured block
can have only one entry point to the block and one exit
point from the block, and it cannot be interleaved. In this
case, ProcessingTimen�ai� will be the processing time of a
structured block of activities in a version with n blocks.

Let SG be a graph of WF construct C. Let Pi ��
ai1�ai2� � � � �ain � be a critical path from starting node
to the ending node of of SG. The elapsed time of
C, ElapsedTime�C�, and the processing time of C,
ProcessingTime�C�, are defined as

ElapsedTime�C� �
n

∑
k�1

ElapsedTime�aik� (8)

ProcessingTime�C� �
n

∑
k�1

ProcessingTime�aik� (9)

Now, let Cg and Ch be WF constructs of a workflow-
based application; Cg and Ch may be identical construct
but be executed on different resources at different times.
Speedup factor of Cg over Ch, SpeedupFactor�Cg�Ch�, is
defined by

SpeedupFactor�Cg�Ch� �
ProcessingTime�Cg�

ProcessingTime�Ch�
(10)

3.5. Metrics at Workflow Level

Table 6 presents performance metrics of interest at WF
level.

Let Pi �� ai1�ai2� � � � �ain � be a critical path from start-
ing node to the ending node of a WF G. The elapsed
time of G, ElapsedTime�G�, and the processing time of
G, ProcessingTime�G�, are defined based on Equation 8
and 9, respectively. Speedup factor of WF G over WF H,
SpeedupFactor�G�H�, is defined by



Category Metric Name Description
Execution time ElapsedTime The latency from the time the workflow construct starts until the time the

workflow construct finishes.
ProcessingTime The actually portion of elapsed time that the workflow construct spends on

processing.
Counter RedundantActivity Number of activity instances whose processing results are not utilized. This

happens in a discriminator construct.
Ratio MeanElapsedTime Average elapsed time per activity of the workflow construct.

PathSelectionRatio Percent of the selection of a path at a choice construct.
Load balancing LoadIm Load imbalance between activity instances of a fork-join construct.
Scalability SpeedupFactor Speedup factor.

SlowdownFactor Slowdown factor.
Resource RedundantProcessing Time spent to process some work but finally the work is not utilized.

Table 5. Performance metrics at workflow construct level.

Category Metric Name Description
Execution time ElapsedTime The latency from the time the workflow starts until the time the workflow fin-

ishes.
ProcessingTime The actually portion of elapsed time that the workflow spends on processing.
ParTime The portion of processing time that workflow activies executed in parallel.
SeqTime The portion of processing time that workflow activities executed in sequential

manner.
Ratio QueuingRatio Mean queuing time per elapsed time.

MeanProcessingTime Mean processing time per activity.
MeanQueuingTime Mean queuing time per activity.
ResUtilization Time that a resource spends on processing work per elapsed time of the work-

flow.
Correlation NAPerRes Number of activities executed on a resource.

ProcInRes The period of time that a resource spends on processing work.
LoadImRes Load imbalance between processing time of resources.

Table 6. Performance metrics at workflow level.

SpeedupFactor�G�H� �
ProcessingTime�G�

ProcessingTime�H�
(11)

Let ProcInRes�Ri� be the processing time consumed
by resource Ri. Load imbalance at resource Ri,
LoadImRes�Ri� is defined by

LoadImRes�Ri� � ProcInRes�Ri��
∑n

i�1�ProcInRes�Ri��

n
(12)

3.6. Metric Ontology

Performance metrics introduced above are described in
an ontology named WfMetricOnto. A metric is described
by class WfMetric. Figure 5 presents the concept WfMetric.
WfMetric has five properties: hasMetricName specifies the
metric name. Property hasSynonym specifies other names

WfMetric

String

hasMetricName hasUnit inLevel hasDescription

List

hasSynonym

Figure 5. Description of a WF performance metric.

of the performance metric. Property hasUnit specifies the
measurement unit of the metric. Property inLevel specifies
the level with which the metric is associated. Property has-
Description explains the performance metric.

4. Ontology for Performance Data of Work-
flows

We develop an ontology named WfPerfOnto for de-
scribing performance data of workflows; WfPerfOnto is



Workflow

WorkflowConstruct

hasWorkflowConstruct

PerfMetric

hasPerfMetric

hasWorkflowConstruct

Activity

hasActivity

ActivityInstance

hasActivityInstance

hasPerfMetric

hasInstance

hasPerfMetric

ofActivity

ExecutionGraph

hasExecutionGraph

Dependency

isObjectOf

Resource

isExecutedOn

InvokedApplication

hasInvokedApplication

hasPerfMetricActivityState

hasActivityState

ActivityEvent

hasActivityEvent

hasSubject

hasPerfMetric

EventAttribute

hasEventAttr

SIR

representsBy

DRG

hasDRG

Event

hasEvent

hasPerfMetric

RegionSummary

hasRegionSummary hasEventAttr

hasChildRS

hasPerfMetric

ProcessingUnit

inProcessingUnit

Figure 6. Ontology for describing performance data of workflows.

based on OWL [11]. This section just outlines main classes
and properties of WfPerfOnto shown in Figure 6.

Workflow describes the workflow (WF). A WF has WF
constructs (represented by hasWorkflowConstruct prop-
erty), WF graph, etc. A WF construct is described by Work-
flowConstruct. Each WF construct has activities (hasActiv-
ity), activity instances (hasActivityInstance), WF construct
graph, sub WF constructs, etc.

Activity describes an activity of a WF. ActivityInstance
describes an activity instance. Each ActivityInstance, exe-
cuted on Resources, has an execution graph described by
class ExecutionGraph. Execution graph consists of Ac-
tivityState and ActivityEvent describing activity state and
event, respectively. The dependency (control or data) be-
tween two activity instances is described by Dependency.
An ActivityInstance is an object or a subject of a depen-
dency; the object depends on the subject. Activity instances
have invoked applications (hasInvokedApplication).

InvokedApplication describes an invoked application of
an activity. Each InvokedApplication is associated with a
SIR [13], which represents the structure of the application,
with a DRG, which represents the dynamic code region call
graph [17], and with events occurred inside the application.

The dynamic code region call graph, described by DRG,
consists of region summaries, each stores summary perfor-
mance measurements of an instrumented code region in
a processing unit. A processing unit, described by Pro-
cessingUnit, indicates the context in which the code re-
gion is executed; the context contains information about

the activity identifier, computational node, process iden-
tifier and thread identifier. A region summary, described
by RegionSummary has performance metrics (hasPerfMet-
ric) and sub region summaries (hasChildRS). PerfMetric
describes a performance metric, each metric has a name
and value. The metric name is in WFMetricOnto. Event
describes an event record. Event happens at a time and has
event attributes (hasEventAttr). EventAttribute describes
an attribute of an event that has an attribute name and value.

Performance metrics of Workflow, WorkflowConstruct,
Activity, Dependency, ActivityInstance, InvokedApplica-
tion, and RegionSummary are determined through hasPerf-
Metric property.

5. Utilizing WfPerfOnto for Performance
Analysis of Grid Workflows

5.1. Describing Performance Data

A performance analysis tool can use WfPerfOnto to de-
scribe performance data of a workflow. For example, when
a client of the performance analysis service requests perfor-
mance results of a workflow, the client can specify the re-
quests based on WfPerfOnto (e.g., by using RDQL [10]).
The service can use WfPerfOnto to express performance
metrics of the workflow. As performance results are de-
scribed in a well-defined ontology, the client will easily
understand and utilize the performance results.

Figure 7 presents an example of a workflow named



ForkJoin2

Seq1ForkJoin2Seq2ForkJoin2

Seq

tRawImage1

mImgtbl11

mProject11

tProjectedImage1

mImgtbl2

tRawImage2

mImgtbl12

mProject12

tProjectedImage2

mAdd

tUncorrectedMosaic

Figure 7. Example
of a workflow named
Montage.

Montage

ForkJoin2

hasWorkflowConstruct

Seq

hasWorkflowConstruct

Seq1ForkJoin2

hasWorkflowConstruct

Seq2ForkJoin2

hasWorkflowConstruct

metric0

hasPerfMetric

mImgtbl2

hasActivityInstance

mAdd

hasActivityInstance

tUncorrectedMosaic

hasActivityInstance

ProcessingTime

hasMetricName

937.513

hasMetricValue

metric1

hasPerfMetric

dependency1

isObjectOf

dependency2

isObjectOf

ElapsedTime

hasMetricName

14.608

hasMetricValue

metric4

SynDelay 

hasMetricName

63.059

hasMetricValue

metric5

 SynDelay

hasMetricName

0.0010

hasMetricValue

hasPerfMetric

tProjectedImage1

hasSubject hasPerfMetric

tProjectedImage2

hasSubject

Figure 8. Part of WfPerfOnto for workflow Montage.

Montage. Dependencies between activities are control
dependencies. Figure 8 represents part of the perfor-
mance data of Montage described in WfPerfOnto. The
performance experiment is executed on two resources.
At the top-level, the workflow consists of two work-
flow constructs, a fork-join construct named ForkJoin2
and a sequence construct named Seq. The fork-join
construct can be considered as two sequence constructs
named Seq1ForkJoin2 and Seq2ForkJoin2. Activ-
ity mImgtbl2 has two dependencies. Figure 8 presents
some interesting performance metrics associated with
mImgtbl2 such as ElapsedTime and SynDelay.

Although WfPerfOnto does not describe (dynamic)
monitoring data of resources on which invoked applications
of a workflow are executed, from information described in
WfPerfOnto, e.g., activity events and resource identifiers,
we can obtain (dynamic) monitoring data of resources from
infrastructure monitoring services. Thus, we can analyze
the performance and dependability of both workflows and
resources at the same time.

5.2. Content Language for Analysis Agents

We use WfPerfOnto as a content language for dis-
tributed agents to share information when they are con-
ducting the performance analysis of workflows in the Grid.
In our distributed analysis framework, analysis agents are
organized into societies. Each society has a major agent
which coordinates the job of agents in its community. Ma-
jor agents communicate and exchange information each
others. Performance analysis requests and performance
data exchanged are described by WfPerfOnto. Given an
analysis request from the client, agents will collaborate to
conduct the performance analysis.

Figure 9 presents an example of how agents exchange
requests when collaboratively conducting an analysis task.
Figure 10 presents an example of a RDQL request for per-
formance analysis. A client sends the request to the major
M1 of society S1. From the ActivityID, Project1, M1
knows that the request can be processed by the major M3
of society S3 and routes the the task. When M3 receives the
request it sends the request to agent A3 because M3 knows
that A3 can analyze activity Project1. A3 conducts
the analysis and returns results to major M3 which in turn
sends the results to the client. To fulfill a request, an analy-
sis agent may invoke other agents. For example, when A3
has only execution status of activity Project1, but in or-
der to compute synchronization delay (metric SynDelay),
it needs execution status of all activities which Project1
depends on, therefore, this agent may send other requests
to B3 get execution status of other activities.

6. Related Work

Many techniques have been introduced to study qual-
ity of service and performance models of workflows, e.g.
[8, 4, 7]. However, most existing work concentrates on
business workflows and Web services processes while our
work targets to scientific workflow executed in Grids which
are more diverse, dynamic, and inter-organizational. Per-
formance metrics in [8, 4] are associated with activity level.
Our study considers performance metrics in many levels of
detail such as code regions, and workflow constructs.

Existing tools supporting performance analysis of work-
flows, e.g., [12] have some common performance metrics
with our metrics. However, our study covers a large set of
performance metrics ranging from workflow level to code
region level. [16] discusses the role of an ontology of QoS



Figure 9. Agents process an analysis request.

SELECT ?instance
WHERE (?instance wfperfonto:ofActivity ?activity)

(?activity wfperfonto:hasActivityID ‘‘Project1’’)
(?instance wfperfonto:hasPerfMetric ?m)
(?m wfperfonto:hasMetricName ‘‘SynDelay’’)

USING wfperfonto FOR <http://dps.uibk.ac.at/wfperfonto#>

Figure 10. RDQL query used to request synchronization delay of activity Project1.

metrics for management Web Services. However, there is a
lack of such an ontology for Grid workflows.

Recently, there is a growing effort on mining the work-
flow [19, 6, 5]. Workflow activities are traced and log in-
formation is used to discover the workflow model. Events
logged, however, are only at activity level. Workflow min-
ing focuses on discovery workflow model from tracing data
where our study is to discuss important performance met-
rics of workflows and methods to describe performance
data of workflows. Workflow event logs can be used to
analyze performance metrics proposed by our study.

7. Conclusion and Future Work

The performance and dependability of Grid workflows
must be characterized by well-defined performance met-

rics. This paper presents a novel study of performance met-
rics of Grid workflows. Performance metrics are associated
with multiple levels of abstraction, ranging from a code re-
gion to the whole workflow. We have presented an ontol-
ogy for describing performance data of Grid workflows.

We are currently reevaluating and enhancing the ontol-
ogy for describing performance data of Grid workflows.
Also we are extending the set of performance metrics. We
are working on a prototype of a distributed analysis frame-
work in which distributed analysis agents use WfPerfOnto
based requests to exchange analysis tasks when conducting
the performance analysis of Grid workflows.

References

[1] Interview Tom Gruber. AIS SIGSEMIS Bulletin 1(3), Oc-



tober 2004. http://www.sigsemis.org/.
[2] W. M. P. Van Der Aalst, A. H. M. Ter Hofstede, B. Kie-

puszewski, and A. P. Barros. Workflow patterns. Distrib.
Parallel Databases, 14(1):5–51, 2003.

[3] Junwei Cao, Stephen A. Jarvis, Subhash Saini, and Gra-
ham R. Nudd. Gridflow: Workflow management for grid
computing. In Proceedings of the 3st International Sympo-
sium on Cluster Computing and the Grid, page 198. IEEE
Computer Society, 2003.

[4] Jorge Cardoso, Amit P. Sheth, and John Miller. Workflow
quality of service. In Proceedings of the IFIP TC5/WG5.12
International Conference on Enterprise Integration and
Modeling Technique, pages 303–311. Kluwer, B.V., 2003.

[5] S. Dustdar, T. Hoffmann, and W.M.P. van der Aalst. Min-
ing of ad-hoc Business Processes with TeamLog. Technical
Report TUV-1841-2004-07, Technical University Vienna.

[6] Walid Gaaloul, Sami Bhiri, and Claude Godart. Discovering
workflow transactional behavior from event-based log. In
CoopIS/DOA/ODBASE (1), pages 3–18, 2004.

[7] Michael C. Jaeger, Gregor Rojec-Goldmann, and Gero
Mühl. Qos aggregation for service composition using work-
flow patterns. In Proceedings of the 8th International En-
terprise Distributed Object Computing Conference (EDOC
2004), pages 149–159, Monterey, California, USA, Septem-
ber 2004. IEEE CS Press.

[8] Kwang-Hoon Kim and Clarence A. Ellis. Performance ana-
lytic models and analyses for workflow architectures. Infor-
mation Systems Frontiers, 3(3):339–355, 2001.

[9] Sriram Krishnan, Patrick Wagstrom, and Gregor von
Laszewski. GSFL : A Workflow Framework for Grid Ser-
vices. Technical Report, Argonne National Laboratory,
9700 S. Cass Avenue, Argonne, IL 60439, U.S.A., July
2002.

[10] RDQL: RDF Data Query Language.
http://www.hpl.hp.com/semweb/rdql.htm.

[11] OWL Web Ontology Language Reference.
http://www.w3.org/tr/owl-ref/.

[12] Bastin Tony Roy Savarimuthu, Maryam Purvis, and Martin
Fleurke. Monitoring and controlling of a multi-agent based
workflow system. In Proceedings of the second workshop
on Australasian information security, Data Mining and Web
Intelligence, and Software Internationalisation, pages 127–
132. Australian Computer Society, Inc., 2004.

[13] Clovis Seragiotto, Hong-Linh Truong, Thomas Fahringer,
Bernd Mohr, Michael Gerndt, and Tianchao Li. Standard-
ized Intermediate Representation for Fortran, Java, C and
C++ Programs. Technical Report AURORATR2004-18, In-
stitute for Software Science, University of Vienna, October
2004.

[14] John F. Sowa. Knowledge Representation: logical, philo-
sophical, and compuational foundations. Brooks/Cole, Pa-
cific Grove, CA, 2000.

[15] The Condor Team. Dagman (directed acyclic graph man-
ager). http://www.cs.wisc.edu/condor/dagman/.

[16] Vladimir Tosic, Babak Esfandiari, Bernard Pagurek, and
Kruti Patel. On requirements for ontologies in management
of web services. In Revised Papers from the International

Workshop on Web Services, E-Business, and the Semantic
Web, pages 237–247. Springer-Verlag, 2002.

[17] Hong-Linh Truong and Thomas Fahringer. SCALEA: A
Performance Analysis Tool for Parallel Programs. Concur-
rency and Computation: Practice and Experience, 15(11-
12):1001–1025, 2003.

[18] Hong-Linh Truong and Thomas Fahringer. Performance
Analysis, Data Sharing and Tools Integration in Grids: New
Approach based on Ontology. In Proceedings of Interna-
tional Conference on Computational Science (ICCS 2004),
LNCS 3038, pages 424 – 431, Krakow, Poland, Jun 7-9
2004. Springer-Verlag.

[19] Wil van der Aalst, Ton Weijters, and Laura Maruster. Work-
flow mining: Discovering process models from event logs.
IEEE Transactions on Knowledge and Data Engineering,
16(9):1128–1142, 2004.


