TU

Technical University of Vienna

Dynamic I nstrumentation, Information Systems Insttute
Performance Monitoringand ~ 7™ 9sems ©ow
Analysisof Grid Scientific

Wor kflows

Hong-Linh Truong, Thomas Fahringer

and Schahram Dustdar

truong@par.univie.ac.at
Thomas.Fahringer @uibk.ac.at
dustdar @infosys.tuwien.ac.at

TUV-1841-2004-22 November 25, 2004

While existing work concentrates on developing QoS models of business
workflows and Web services, few tools have been developed to support
the monitoring and performance analysis of scientific workflows in Grids.
This paper describes novel Grid services for dynamic instrumentation of
Grid-based applications, performance monitoring and analysis of Grid
scientific workflows. We describe a Grid service to support dynamic in-
strumentation of Grid applications. The dynamic instrumentation service
provides a widely accessible interface for other services and users to con-
duct the dynamic instrumentation of Grid applications during the runtime.
We introduce a Grid performance analysis service for Grid scientific work-
flows. The analysis service utilizes various types of data including wor kflow
graphs, monitoring data of resources, execution status of activities, and
performance measurements obtained from the dynamic instrumentation of
invoked applications, and provides a rich set of functionalities and fea-
tures to support the online monitoring and performance analysis of scien-
tific workflows. We store workflows and their relevant information includ-
ing performance metrics, devise techniquesto compare the performance of
constructs of different workflows, and support multi-workflow analysis.

Keywords: dynamic instrumentation, Grid computing, Grid service,
scientific workflows, performance monitoring and analysis

Argentinierstr. 8/184-1
A-1040 Vienna, Austria
phone: +43 1 58801-18402

(©2004, Distributed Systems Group, Technical University of Vienna fax: +43 158801-18491
URL: http://www.infosys.tuwien.ac.at/

Dynamic Instrumentation, Performance Monitoring and
Analysis of Grid Scientific Workflows

Hong-Linh Truong* (truong@par.univie.ac.at)
Institute for Software Science, University of Vienna
Nordbergstrasse 15/C/8, A-1090 Vienna, Austria

Thomas Fahringer (thomas.fahringer@uibk.ac.at)
Institute for Computer Science, University of Innsbruck
Technikerstrasse 13, A-6020 Innsbruck, Austria

Schahram Dustdar (dustdar@infosys.tuwien.ac.at)
Information Systems Institute, Vienna University of Technology
Argentinierstrasse 8/184-1, A-1040 Wien, Austria

Abstract. While existing work concentrates on developing QoS models of busi-
ness workflows and Web services, few tools have been developed to support the
monitoring and performance analysis of scientific workflows in Grids.

This paper describes novel Grid services for dynamic instrumentation of Grid-
based applications, performance monitoring and analysis of Grid scientific workflows.
We describe a Grid service to support dynamic instrumentation of Grid applications.
The dynamic instrumentation service provides a widely accessible interface for other
services and users to conduct the dynamic instrumentation of Grid applications dur-
ing the runtime. We introduce a Grid performance analysis service for Grid scientific
workflows. The analysis service utilizes various types of data including workflow
graphs, monitoring data of resources, execution status of activities, and performance
measurements obtained from the dynamic instrumentation of invoked applications,
and provides a rich set of functionalities and features to support the online monitor-
ing and performance analysis of scientific workflows. We store workflows and their
relevant information including performance metrics, devise techniques to compare
the performance of constructs of different workflows, and support multi-workflow
analysis.

Keywords: dynamic instrumentation, Grid computing, Grid service, scientific
workflows, performance monitoring and analysis

1. Introduction

Recently, increased interest can be witnessed in exploiting the poten-
tial of the Grid for scientific workflows. Scientific workflows [27], in
contrast to production and administrative business workflows, are nor-
mally more flexible, often not completely defined before they start. On
computational Grids [11], the most common Grid type, scientists usu-
ally try to harness and utilize available resources in Grids for conduct-

* Corresponding author

';ﬁ © 2004 Kluwer Academic Publishers. Printed in the Netherlands.

truong-jogc.tex; 25/11/2004; 15:19; p.1

2

ing experiments. As the Grid is diverse, dynamic and inter-organizational,
it comes out that even with a particular scientific experiment, there is
a need of having a set of different workflows because (i) one work-
flow mostly fits to only a particular configuration of the underlying
Grid systems, and (ii) the available resources allocated for a scientific
experiment and their configuration in the Grid are changed each ex-
ecution. This requirement is a challenge to the workflow composition
and workflow scheduler because normally they focus on composing and
constructing a particular workflow with respect to available resources,
and on mapping that workflow into the available resources. It is also a
challenge to the performance monitoring and analysis of the workflows
because very often clients of the performance analysis service (e.g.
users, scheduling systems) want to compare the performance of different
workflow constructs with respect to the resources allocated in order to
determine which workflow construct should be best matched to which
topology of the underlying Grid. Even though numerous tools have
been developed for constructing and executing scientific workflows in
the Grid, such as [19, 29, 8], there is a lack of tools that support the per-
formance monitoring and analysis of such flexible scientific workflows in
the Grid. Most existing work concentrates on developing QoS (Quality
of Service) models of business workflows and Web services [18, 7, 25, 2],
however, few tools have been developed to support scientists to monitor
and analyze the performance of their workflows in the Grid.

Because of the dynamics of the Grid, the performance monitoring
and analysis of workflow-based applications (WFAs) has to be carried
out in online manner. On the one hand, as a workflow (WF) is executed
spanning on distributed organizations in the Grid, in monitoring and
analyzing the performance of the workflow, we need to collect and
process a variety of types of data relevant to the performance of the
WFs, for example execution status of WFs from workflow management
systems (WfMS), monitoring data of resources on which WF activities
are executed, performance measurements of code regions of invoked
applications of workflow activities. These relevant data are not only
provided by many sources but they are also diverse and distributed.
The performance monitoring and analysis service therefore needs the
support from the monitoring middleware in order to obtain, gather,
and utilize that diverse data in a unified way. On the other hand, to
fully understand the performance of a workflow, we need monitoring
and performance data of the workflow that are measured at many levels
of detail, such as at the whole-workflow, activity and code region level.

While execution status of workflows and monitoring data of re-
sources may be obtained from W{MS and infrastructure monitoring,
respectively, the current situation is that the user has to manually

truong-jogc.tex; 25/11/2004; 15:19; p.2

3

instrument his code in order to obtain performance measurements of
code regions of workflow activities, which are executed on multiple Grid
sites, because existing instrumentation systems are only appropriate for
a single Grid site (within a single organization). While the Grid toolkit
provides core services for job submission and resource discovery, similar
Grid services for instrumenting Grid application do not exist.

In most cases, the instrumentation of Grid workflows must be carried
out manually by the end user. Consider the diversity and dynamics of
the Grid. On the one hand, if the user wants to instrument his code,
the user has to know in advance the Grids he submits jobs to, and
has to select the right instrumentation tool for each Grid site. As a
result, the user has to do a daunting task, if not impossible, in order
to instrument his code. Moreover, the selected instrumentation tool
may not work with the monitoring middleware deployed in the selected
Grid site. On the other hand, instrumentation techniques are typically
bound to specific languages and systems. Therefore, it is possible that
we need many different instrumentation systems just for instrumenting
an application executed on the Grid. More importantly, workflows tend
to be composed from deployed components whose source code is not
available. Without the instrumentation of code regions of workflow
activities themselves, we are only able to monitor at the level of ac-
tivity, thus significantly reducing the ability to detect and correlate
performance problems.

We argue that the instrumentation service should be a core service
of a Grid. This approach gives many advantages. Firstly, an instrumen-
tation service is bound to a specific Grid site, which normally consists
of homogeneous computational resources that share a common secu-
rity domain, and exchange data internally through a local network.
Thus, the instrumentation service can be better developed and can
efficiently exploit features on that site. Since instrumentation services
are autonomous, they are better to be coupled with the supportive
monitoring middleware. Secondly, as an instrumentation system is a
service, the user does not need to worry about how to select a suited
instrumentation system. Instead, he just discovers the service and uses
it. Each Grid site may provide an instrumentation service that allows
the user or the high level tools to control the instrumentation. To this
end, the instrumentation service hides all the low-level details of the
instrumentation process while the client of the instrumentation service
just simply specifies its requests. To follow this idea, the instrumenta-
tion service must support widely accessible interfaces, e.g., Grid/Web
service operations, and protocols, e.g., APART SIR and MIR [26]. Nev-
ertheless, with such generic Grid instrumentation service, we have to
accept some losses, e.g., instrumentation of arbitrary code regions.

truong-jogc.tex; 25/11/2004; 15:19; p.3

In previous work, we have developed a middleware which supports
services to access and utilize a variety types of performance data in a
single system named SCALEA-G [32]. In this paper, we firstly present
a Grid service to support the dynamic instrumentation of Grid appli-
cations. The Grid dynamic instrumentation service provides a widely
accessible interface to other services/users to control the instrumen-
tation process. The instrumentation service leverages an XML-based
Standardized Intermediate Representation for Binary Code (SIRBC)
for describing the program structure of executable, and an instrumen-
tation request language (IRL) for specifying code regions of which
performance metrics should be determined and controlling the instru-
mentation process. Secondly, we introduce a Grid service for online
monitoring and performance analysis of scientific workflows on the
Grid. In order to provide detailed performance states and problems
of a workflow, the service collects resources monitoring data from Grid
infrastructure monitoring, workflow execution status from the work-
flow control and invocation services, and performance measurements
obtained through the dynamic instrumentation service. It then con-
ducts the online analysis of these data along with the workflow graph.
Relevant data to workflows including workflow graphs and performance
data are stored. We then develop novel techniques to support multi-
workflow analysis. Refinement constructs of workflows can be specified,
and performance of refinement constructs of different workflows can
be compared and evaluated for multiple experiments. The work de-
scribed in this paper has been implemented based on the SCALEA-G
framework [32].

The rest of this paper is organized as follows: Section 2 discusses
instrumentation techniques for the Grid. Section 3 describes the dy-
namic instrumentation service for Grid applications. Section 4 details
techniques used to implement incremental online profiling. Performance
analysis for WFs is presented in Section 5. We illustrate experiments
in Section 6. Section 7 discusses the related work. We summarize the
paper and outline the future work in Section 8.

2. Instrumentation Techniques for the Grid

One of the central elements of the performance analysis of Grid appli-
cations is how performance data is measured and collected. Firstly, we
have to study different instrumentation mechanisms to efficiently mea-
sure different types of performance data. Source code instrumentation
provides a simple and efficient way for collecting measurement data,
however, it requires the availability of all the source files. The instru-

truong-jogc.tex; 25/11/2004; 15:19; p.4

5

mented sources have to be compiled and linked with instrumentation
libraries for specific the target machines. That is a time consuming
effort because each time the application executes the resources allo-
cated may be different, not to mention the allocated resources may
not be known in advance. Moreover, instrumentation and measurement
metrics could not be changed during the runtime of the application. Dy-
namic instrumentation is complex but well-suited for measuring volatile
and long-running applications, and for applications whose source code
is not available. The WFA is normally dynamically composed from
deployed applications whose source code is not available for instru-
mentation. The dynamic instrumentation would be an alternative for
solving the problems arisen from the selection of instrumentation and
measurement system and the compilation of instrumented code fitted
to the allocated resources.

We believe that instrumentation for the Grid should employ both
methods. We can instrument sources of WF control and invocation
service in order to gather execution status of WFs because execu-
tion status information is normally simple and small. However, for
instrumentation of Grid applications, we believe that dynamic instru-
mentation would be more suitable. While source code instrumentation
for Grid applications is widely supported, e.g. in [4, 14], dynamic instru-
mentation in Grids has not got much attention, even though dynamic
instrumentation has a long history in clustering and parallel computing
[21, 9]. Secondly, we have to carefully select the granularity of the mea-
surement for Grid applications, namely profiling or tracing mechanism.
Many tools support tracing of Grid applications, e.g. [23, 14]. However,
as Grid performance monitoring and analysis must be carried out in
online manner, tracing is not suited because it generates a huge volume
of trace data which has been transfered on the fly to analysis compo-
nents. On the other hand, traditional profiling is not suited for online
monitoring and analysis because profiling data can only be obtained
at the end of the execution of applications. Therefore, incremental
mechanisms, for example profiling data is updated or requested and
retrieved incrementally at runtime, would be more suitable.

3. Grid Dynamic Instrumentation Service

Figure 1 presents the architecture of our dynamic instrumentation ser-
vice for Grids. There are four main components residing in different
locations that involve in the instrumentation process: Instrumentation
Requester (IR), Instrumentation Mediator (IM), Mutator Service (MS)
and Instrumentation Forwarding Service (IFS). The IR controls the

truong-jogc.tex; 25/11/2004; 15:19; p.5

Run with user identity . Run with service identity -

nstrumentation :
Requester H
7

\ Consume

Service
Instrumentation
Mediator

requester site

service site

Sensor Manager
Service

Data Query and
Subscription

Instrumentation Data
Forwarding Receiving and

Service Publishing /

Run with user identity X
. - - Appli
Run with service identity, Mma,tm pplication
<=2\ Service Sensor

create process running -+ ‘
under user identity omputational node

Figure 1. Architecture of the Grid service of dynamic instrumentation.

instrumentation process. The MS, executed on the computation node
where the application processes execute, is responsible for performing
the dynamic instrumentation of application processes. It attaches the
application processes and inserts application sensors into the applica-
tion processes. In the middle of the IR and the MS are the IM and IFS
which bridge and aggregate requests and responses between the IR and
the MS. IM and IFS are needed because the IR cannot always directly
communicate with the MS, e.g. due to the firewall. Moreover, IR works
at a high-level at which it considers the execution of an application
as a whole. Therefore, IR may conduct the instrumentation spanning
multiple Grid sites. However, MS works at the lower level at which its
objects are application processes. As a result, IM and IFS are used to
transfer and aggregate requests and responses between the high-level
view and the low-level one. An IFS instance is responsible for forward-
ing requests to multiple MSs executed on computational nodes. The
above architecture is a service-oriented model based on two languages.
The first language named SIRBC (Standardized Intermediate Repre-
sentation for Binary Code) allows the instrumentor (MS) to describe
instrumented applications in a neutral representation and to provide
that representation to IR; SIRBC is an implementation of simplified
SIR [26]. The second language named IRL (Instrumentation Request
Language) allows IR to define what portions of an application should
be instrumented and what performance metrics should be collected.
Both SIRBC and IRL are XML-based. Details of SIRBC and IRL can
be found in [32].

The MS is a Grid service which is implemented based on gSOAP, a
C++ Web Service toolkit with GSI-plugin [13]. Figure 2 shows interac-
tions between IR, MI, IFS, and MS instances when conducting requests
for instrumenting an application. At the requester side, the IR specifies
requests and passes these requests to IM. Based on the requests, the IM

truong-jogc.tex; 25/11/2004; 15:19; p.6

5
(%]

send IRL requests to MS
-Parse IRL
- Insert application
return IRL response sensors

Invoke IM with IRL requests

send IRL requests to IFS

return IRL response

return IRL response

|
»
d
I
|
|
[
|
|
[
|
L
b
[
[

- ———— e = = =

'
i
I
I
[}
I
I
)
)
I
L
r
!

Figure 2. Steps in conducting a request for instrumentation.

locates existing IF'Ss which can forward the requests to MSs executed on
the same computational nodes of application processes; if no such IFSs
exist, IM makes a request of creating new IFS instances. IM then sends
IRL requests to IFSs. When an IFS receives a request, it will search
MS instances which can fulfill the request. If there is no MS instance
for instrumenting application processes of a user in a computational
node, IFS makes a request of creating new a MS instance for the user
on that node. IFS will send the requests to MSs which in turn forward
the requests to corresponding MSs. The MS will parse the IRL request
and then perform the instrumentation of application processes. The
MS inserts application sensors into application processes. The dynamic
instrumentation techniques are facilitated by Dyninst [6]. The applica-
tion sensors perform the monitoring and measurement of application
processes. Performance measurements will be sent to Sensor Manager
Service (SM), which is a part of the supportive monitoring middleware,
or be collected through MS.

The MS provides the application structure to the requester in SIRBC
format. Based on SIRBC, the IR can decide which code regions should
be instrumented. With the high-level encapsulation and highly inter-
operability, interfaced through service operations, IRL and SIRBC, the
dynamic instrumentation service is widely accessible to other services.

3.1. SERVICE INTERFACE

The implementation of MS is based on the factory model. The MS
consists of a Mutator Factory (MF) and Mutator Instance (MI). A MF
is a persistent service deployed in each computational node. The MF
provides a main operation named createMutatorInstance for creating
MIs when requested. The MI is responsible for attaching application
processes and instrumenting these processes.

Information about MF is published to the supportive monitoring
middleware. When IRF receives an instrumentation request, it finds

truong-jogc.tex; 25/11/2004; 15:19; p.7

8

MIs on corresponding computational nodes which can instrument ap-
plication processes of the calling user. If no such a MI exists, the IFS
calls the MF on the corresponding node to create a new MI. When a MI
running, it connects to a SM, notifies its existence to the SM and waits
for control from requesters. MI provides the following main operations:

— performIRL: to process IRL requests. The MI will react with ap-
propriate functions such as attaching the application process, in-
strumenting and deinstrumenting, or detaching the application
process.

— getProfilingData: to return profiling data collected to the re-
quester.

— destroyInstance: to end the execution of this instance. When this
operation is called the MI frees resources it occupies, and finishes
its execution.

In addition, MF and MI provide two auxiliary operations: ping op-
eration to support ping service, and getUserProcess to obtain user
processes executed on a computational node.

3.2. PRACTICAL ISSUES IN BUILDING SIR AND INSTRUMENTING
APPLICATIONS

When processing different binary codes compiled by different compilers,
we observed that depending on specific compilers and architectures,
SIR for an executable is quite different from that of the other. It
contains many internal functions that the user may not want to instru-
ment. SIR however is designed for C/C++/Fortran/Java sources, thus,
it does not define filters that can be used to exclude these irrelevant
information when building the SIR from applications. We extend IRL
to allow the IR specifying filters into getsir requests. Filters including
code region names that the instrumentation service should exclude, and
the function scope in which the instrumentation service should limit its
traversal.

Due to the dependence of executable structures on the compilers
and platforms, the SIR of different processes of the same program may
be different when the program is compiled and executed on different
platforms. Thus, a SIR is associated with a process, not with a program.
In some cases, the same code region has different identifiers in different
SIRs. Therefore, when using identifiers to specify selected code regions,
the IR has to process each SIR of a process individually. Consider
a large number of processes, it is a time-consuming task for IR, if
IR wants to instrument a code region in all processes. To avoid that,

truong-jogc.tex; 25/11/2004; 15:19; p.8

9

we can specify only the code region name and the program unit in
instrumentation requests. The instrumentation service will instrument
all functions which have that name within a given program unit.

3.3. SECURITY MODEL

The security in the dynamic instrumentation service is based on GSI
[33] facilities provided by Globus Toolkit (GT) [12]. As shown in Figure
1, the security model employs both transport and message level secu-
rity, using delegation, authentication/authorization, and run-as mech-
anism [1]. Except MS uses transport level security, the interactions
among the rest components are based on message level security. Mes-
sage level security employs GSI secure conversation mechanism [1].

IR and IM run with the security identity of the user. IFS service
methods are set to run with the security identity of the client. When
IM requests an IFS service to create an instance, the instance will be
run with the security identity of the user. MF runs with the service
identity in a none-privilege account. However, if MF is deployed to be
used by multiple users, it must be able to create its instances running
in the account of calling users. The MI created by MF upon on requests
of IFS will be run as user identity. MF uses a grid-map file to authorize
its requesters. As MI executes with the security identity of the user,
it has permission to attach user application processes, and is able to
perform the dynamic instrumentation. Delegation is performed from
IM to IFS to MI.

In push mode, application sensors send measurements to SM. When
subscribing and/or querying data provided by application sensors, data
requester’s identity will be recorded. Similarly, before application sensor
instances start sending data to the SM, the SM obtains the security
identity of the requester who executed the application. Both sources of
information will be used for authorizing the requester in receiving data
from application sensors. In pull model, performance measurements col-
lected by applications sensors will be returned to the requester by MI.
MI uses self-authorization mechanism to check the requester. Requests
for obtaining performance measurements sent by IR will be delegated
from IM to IFS to MI. As a result, only the owner can be able to access
performance data.

4. Incrementally Updating Profiling Data
Traditionally, profiling is performed offline with performance measure-

ments are summarized and available for being analyzed when the appli-
cation finishes. Thus, this approach is not suited for online profiling as

truong-jogc.tex; 25/11/2004; 15:19; p.9

10

we have complete summary measurements only when the application
finishes. Online profiling requires measurement data to be collected
and analyzed during runtime of the application. But if summary data
is sent back to the analysis component at the instant the measurement
data is updated, a huge volume data will be sent over the network. As a
result, the impact of the monitoring on the execution of the application
is high.

We develop a mechanism to support online and incrementally up-
dating profiling data. That is, instead of always updating consecutive
measurements of code regions, the monitoring delivers measurement
data to the analysis component incrementally. The monitoring system
returns only the most-updated measurement in maximum pre-defined
time or upon on a request. To profile a code region r we put a sensor,
composed by a start probe and a stop probe, as follows:

sis_start(PB;)

T

sis_stop(PB,)
where PB, is information used to determine the code region;PB, is
associated with a record storing measurement data of code region r.
When an activation of r finishes, its measurement data will be updated
into the record. Each process keeps a profiling data of all instrumented
code regions.

The analysis component can obtain the profiling data through pull
or push mode. In pull mode, profiling data is stored in shared memory.
The analysis component calls the getProfilingData operation of MI
in order to obtain the requested profiling data.

In push mode, the most recent updated measurements of n code
regions are stored into a flush buffer size n, buf,. Performance mea-
surements are incrementally sent to Data Receiving and Publishing
(DRP) component of SM (see Figure 1). Figure 3 presents the algo-
rithm used to send measurement data to the monitoring middleware.
In addition, every ¢ seconds since the last time the buffer is flushed to
DRP, the buffer will be flushed if it is not empty. With this algorithm,
performance measurements of n last executed code regions are flushed
to DRP incrementally in maximum ¢ second. As a result, we ensure
that the requester receives the newly-updated profiling measurement
of a code region no longer that ¢ since the measurement is updated.

We have already implemented the push mode and currently are
implementing the pull mode. In pull mode, application sensors are
designed to store measurements in shared memory whereas those in
push mode store measurements into internal buffers and push these
measurements through the network. We are currently investigating to
develop our application sensors so that they store collected data into

truong-jogc.tex; 25/11/2004; 15:19; p.10

11

procedure sis_start(PB,))

begin
start the measurement of r.
if (it is first execution of r) then
send PB, to DRP component of SM.
end if

end
procedure sis_stop(PB,))

begin

stop the measurement of r.

update performance measurements in PB,.

if (PB, is not in buf,) then
add PB, into buf,.

else
update PB, in buf,.

end if

if (bufy, is full) then
flush whole buf,, to DRP.
reset bu fy,.

end if

end

Figure 3. Updating profiling data to DRP.

shared memory. The task to support pushing or pulling profiling data
will be done by MI. Also the getProfilingData operation will support
requests based on MIR [26].

5. Performance Monitoring and Analysis of Grid
Workflow-based Applications

Performance monitoring and analysis of Grid WFs should address two
subproblems:

— inter-activity performance monitoring and analysis: to mon-
itor and analyze the interactions between activities, the impact of
an activity on the performance of the whole workflow or of the
workflow construct that the activity participates in. To solve this

truong-jogc.tex; 25/11/2004; 15:19; p.11

12

Event
Processing

Analysis
Control

Workflow

e

SCALEA-G
Middleware

Invocation and
W

Control

Workflow
Applications

Ms {71s AL

Compute Resource

Instrumentation
and Monitoring »(MS oo MS Go
Control Compute Resource Compute Resource
Grid Performance MS oo
Analysis Service Compute Resource

MS: Monitoring Service, IS: Instrumentation Service, Al: Activity Instance

Figure 4. Model of monitoring and performance analysis of workflow-based appli-
cation.

subproblem, the tool has to operate on the level of the overall
workflow, and the whole resources on which the workflow activities
are executed.

— intra-activity performance monitoring and analysis: to mon-
itor and analyze the performance of the invoked application of
the individual activity. Solving this subproblem, the tool has to
operate on the level of the individual activity and the resource on
which the activity is executed.

Figure 4 presents the architecture of the Grid monitoring and per-
formance analysis service for WFs. The WF is submitted to the Work-
flow Invocation and Control (WIC) service which locates resources
and executes the WF. Events containing execution status of activ-
ities, such as queuing, processing, and information about resources
on which the activities execute will be sent to the monitoring tool.
The Event Processing processes these events and the Analysis Con-
trol decides which activities should be instrumented, monitored and
analyzed. Based on information of a selected activity instance and its
consumed resource, the Analysis Control requests the Instrumentation
and Monitoring Control to perform the instrumentation and monitor-
ing. Monitoring and measurement data obtained are then analyzed.
Based on the result of the analysis, the Analysis Control can decide
what to do in the next step.

This architecture uses the SCALEA-G middleware as its supportive
monitoring middleware. Various types of performance data are pub-
lished to, stored in and retrieved from SCALEA-G.

truong-jogc.tex; 25/11/2004; 15:19; p.12

13
5.1. SUPPORTING WORKFLOW COMPUTING PARADIGM

Currently we focus on the workflow modeled as a DAG (Direct Acyclic
Graph) because DAG is widely used in modeling scientific workflows. A
WF is modeled as a DAG of which a node represents an activity (task)
and an edge between two nodes represents the dependency between the
two activities. The invoked application of an activity instance may be
executed on a single or on multiple resources. Meanwhile, we focus on
activities whose invoked applications are application executables (e.g.
MPI program).

(=~

«dpe2E5E

(b) (c)
Figure 5. Multiple workflows of an workflow-based application: (a) sequence work-
flow, (b) fork-join workflow, and (c) fork-join structured block of activities.

(a)

We particularly concentrate on analyzing (i) fork-join model and
(ii) multi-workflow of an application. Figure 5(b) presents the fork-join
model of workflow activities in which an activity is followed by a parallel
invocation of n activities. This model is typical in many WFs. There
are several interesting metrics that can be obtained from this model,
such as load imbalance, slowdown factor, and synchronization delay at
the synchronization point. These metrics help to uncover the impact
of slower activities to the overall performance of the whole structure.
We also focus on fork-join structures that contain structured block of
activities. A structured block can have only one entry point to the block
and one exit point from the block, and it cannot be interleaved. For
example, Figure 5(c) presents structured blocks of activities.

A workflow-based application (WFA) can have different versions,
each represented by a WF. For example, Figure 5 presents an applica-

truong-jogc.tex; 25/11/2004; 15:19; p.13

14

tion with 3 different WF's, each may be selected for executing on specific
underlying resources. When developing a WFA, we normally start with
a graph describing the WF. The WFA is gradually developed in a
sequence of refinement steps that creates a better version or an adapted
version fitted to a particular underlying Grid system. This refinement
can be done automatically by workflow construction tools or manually
by the WF developers. In a refinement step, a subgraph may be replaced
by a subgraph of activities, resulting in a set of different constructs of
the WF. For example, the activity al in Figure 5(a) is replaced by
set of activities {al(1),al(2),--,al(n)} in Figure 5(b). (Also we can
consider set of activities {al(1),al(2),---,al(n)} is reduced to al.)
We call such refinement replace refinement. Differently in conventional
systems, whose resources and topologies are fixed, in Grids a WF can
yield the best result in one particular run but not in the next run
because the Grid may be different from run after run. The concept of
the best solution is now associated with a particular run. Moreover,
since the underlying system changed from experiment to experiment
a single WF may not be enough. As a result, different solutions for a
WFA, even all of them are just used to conduct a specific problem,
may equally be important. The key question is which WF construct
is best for a given collection of resources. Therefore, multi-workflow
analysis, the analysis and comparison of the performance of different
WF constructs, ranging from the whole WF to a specific construct (e.g.
a fork-join subgraph), is an important feature.

We focus on the case in which a subgraph of a DAG is replaced by a
another subgraph in the refined DAG. This pattern occurs frequently
when developing WFs of an application for different underlying topolo-
gies. Let G and H be DAG of workflow W F, and W F},, respectively, of
an WFA. G and H represent different versions of the WFA. H is said
to be a refinement of G if H can be derived by replacing a subgraph
SG of G by a subgraph SH of H. The replacement is controlled by the
following constraints:

— Every edge (a,b) € G, a ¢ SG, b € SG is replaced by an edge
(a,c) € H, Ve € SH satisfies no d € H such that (d,c) € SH.

— Everyedge (b,a) € G,a ¢ SG,b € SG isreplaced by an (¢,a) € H,
Ve € SH satisfies no d € H such that (¢,d) € SH.

SH is said to be a replaced refinement graph of SG. Note that SG and
SH may not be a DAG nor a connected graph. For example, consider
the cases of Figure 5(a) and Figure 5(b). Subgraph SG = {al} is
replaced by subgraph SH = {al(1),al(2),---,al(n)}; both are not
DAG, the first is trivial graph and the latter is not a connected graph.

truong-jogc.tex; 25/11/2004; 15:19; p.14

15

Figure 6. Discrete process model for the execution of an activity. O represents a
state, O represents an event.

Generally, we assume that there are n components of a subgraph SG.
Each component is either a DAG or a trivial graph. Comparing the
performance of different constructs of a WFA can help to match a
WF to selected resources. This paper does not concentrate on the
determination of refinement graphs in workflows. Rather, we assume
that the user or workflow construction tools provide such information
to us.

In this paper, we denote (a;,a;) as the dependency between ac-
tivity a; and a;; a; must be finished before the execution of a;. Let
G = (N,E) be given, and select an arbitrary activity a;. We de-
note pred(a;) and succ(a;) as sets of the immediate predecessors and
successors, respectively, of a;.

5.2. AcCTIVITIES EXECUTION MODEL

Each invoked application of an activity instance may be executed on
different resources allocated by the WIC. We use discrete process model
[28] to represent the execution of an activity a. Let P(a) be a discrete
process modeling the execution of activity a (hence, we call P(a) the
execution status graph of an activity). A P(a) is a directed, acyclic,
bipartite graph (S, F, A), in which S is a set of nodes called states, E
is a set of nodes called events, and A is a set of ordered pairs of nodes
called arcs. Simply put, an agent (e.g. WIC, activity instance) causes
an event (e.g. submit) that changes the activity state (e.g. from queuing
to processing), which in turn influences the occurrence and outcome of
the future events (e.g. active, failed). Figure 6 presents an example of
a discrete process modeling the execution of an activity.

Each state s of an activity a is determined by two events: lead-
ing event e;, and ending event e; such that e;,e; € E, s € S, and
(i,), (s,ej) € A of P(a). To denote an event name of P(a) we use
ename(a). Table 5.2 presents an example of a few event names used
to describe activity events. We use t(e) to refer to the timestamp of
an event e and t,,, to denote the timestamp at which the analysis
is conducted. Because the monitoring and analysis is conducted at
runtime, it is possible that an activity a is on a state s but there is
no such (s,e) € A of P(a). When analyzing such state s, we use tpow
as a timestamp to determine the time spent on state s. We use — to
denote the happened before relation between events.

truong-jogc.tex; 25/11/2004; 15:19; p.15

16

Table I. Example of event names.

Event Name Description

active the activity instance has been started to process its work.
completed the execution of the activity instance has completed.
failed the execution of the activity instance has been stopped before

its normal completion.

submitted the activity has been submitted to the scheduling system.

The monitoring system collects states and events of each activity in-
stance, and builds the execution status graph of that activity instance.
Currently, to get execution status of activities from WIC we manually
instrument the WIC because WIC does not provide interface for the
monitoring tool to obtain that information.

5.3. INTER-ACTIVITY AND INTRA-ACTIVITY PERFORMANCE
METRICS

Performance measurements for a Grid WF are collected at two levels:
activity and whole-application level. Based on monitoring data, per-
formance measurements and WF graphs, the performance of WF is
analyzed.

5.3.1. Activity Level

At activity level, several performance metrics that characterize an ac-
tivity are provided. We capture performance metrics of the activity,
for example, its execution status, performance measurements of code
regions (e.g., wallclock time, hardware metrics), etc. Firstly, we dynam-
ically instrument code regions of the invoked application of the activity.
We collect performance metrics such as wallclock time, CPU time,
hardware counters of instrumented code regions. Performance metrics
of code regions are incrementally provided to the user during the execu-
tion of the workflow. Based on these metrics, various exploratory data
analysis techniques can be employed, e.g. load imbalance, metric ratio.
We extend our overhead analysis for parallel programs [31] to WFAs.
For each activity, we analyze activity overhead. Activity overhead con-
tains various types of overhead, e.g., communication, synchronization,
that occur in an activity instance.

Secondly, we focus on analyzing response-time of activities. Activity
response time corresponds to the time an activity takes to be finished.
The response time consists of waiting time and processing time. Waiting
time can be queuing time, suspending/resuming time. For each activity

truong-jogc.tex; 25/11/2004; 15:19; p.16

17

a, its execution status graph, P(a), is used as the input for analyzing
activity response time. Moreover, we analyze synchronization delay
between activities. Let consider a dependency between two activities
(a;,a;) where a; € pred(aj). Va; € pred(a;), when ecompieted(ai) —
€submitted(a;), the synchronization delay from a; to aj, Tsq(as, a;), is
defined as

Tsd(ah aj) = t(esubmitted(aj)) - t(ecompleted(ai)) (1)

If at the time of the analysis esypmitted(a;) has not occurred, Tsq(ai, aj)
is computed as

Tsd(aia aj) = tnow — t(ecompleted(ai)) (2)

Each activity a; associates with a set of the synchronization delays.
From that set, we compute maximum, average and minimum synchro-
nization delay at a;. Note that synchronization delay can be analyzed
for any activity which is dependent on other activities. This metric is
particularly useful for analyzing synchronization points in a workflow.

5.3.2. Whole-application level

We analyze performance metrics that characterize the interaction and
the performance impact among activities. Interactions between two
activities can be file exchanges, remote method invocations or service
calls. There are various metrics of interest such as average response
time, waiting time, queuing time and synchronization delay of ac-
tivities, load imbalance, computation to communication ratio, service
requests per activities, activity usage, and success rate of activity invo-
cation. Correlation metrics, such as number of activities per resource,
resource utilization, etc., are also important.

We combine WF graph, execution status information and perfor-
mance data to analyze load imbalance for fork-join model. Let ag be the
activity at the fork point. Va;,i = 1 : n,a; € succ(ap), load imbalance
Tji(a;,) in state s is computed as

_ Eznzl T(aia S)

Thi(ai,s) = T(ai,s) -

(3)
We also apply load imbalance analysis to a set of selected activities.
In a workflow, there could be several activities whose functions are
the same, e.g. mProject activities in Figure 7, but are not in fork-join
model. Load imbalance analysis is useful technique to reveal how the
work distribution is conducted.

Depending on the workflow, through the instrumentation of invoked
applications of activities, performance measurements of interactions

truong-jogc.tex; 25/11/2004; 15:19; p.17

18

among activities e.g. the invoked application of activity a; calls a func-
tion of the invoked application of activity a;, may be collected and
analyzed.

5.4. MULTI-WORKFLOW ANALYSIS

We analyze slowdown factor for fork-join model. Slowdown factor, sf,
is defined as
mazi, (Tn(ai))
(4)
Ty (ai)

where T}, (a;) is the processing time of activity a; in fork-join version
with n activities and 77 (a;) is the execution time of activity a; in the
version of single activity. We also extend the slowdown factor analysis
to fork-join structures that contain structured block of activities. In
this case, T),(a;) will be the execution time of a structured block of
activities in a version with n blocks.

For different replaced refinement graphs of WFs of the same WFA,
we compute speedup factor between them. Let SG be a subgraph of
workflow W F, of a WFA; SG has n, components. Let P; =< a;1, a2, - -, ain >
be a critical path from starting node to the ending node of the com-
ponent ¢, C;, of SG. The processing time of SG, T,,(SG), is defined
as

sf =

TCP(SG) = maw?il(Tcp(Ci))aTcp(Ci) = ZT(aik) (5)
k=1

where T'(a;;) is the processing time of activity a;,. Now, let SH be
the replaced refinement graph of SG, SG and SH are subgraphs of
workflow W F; and W F},, respectively, of a WFA. Speedup factor sp of
SG over SH is defined as follows:

TcP(SG)

Ty (SH) (6)

sp =
The same technique is used when comparing the speedup factor be-
tween two workflow WF, and W F,.

In order to support multi-workflow analysis of WF's, we collect and
store different DAGs, subgraphs of the WFA, performance data and
machine information into an experiment repository powered by Post-
greSQL. Each graph is stored with its associated performance metrics;
a graph can be DAG of the WF or a subgraph. We use a table to
represent refinement relationship between subgraphs. Currently, for
each experiment, the user can select subgraphs, specifying refinement
relation between two subgraphs of two WFs. The analysis service uses
data in the experiment repository to conduct multi-workflow analysis.

truong-jogc.tex; 25/11/2004; 15:19; p.18

19

(a) (b) (c)

Figure 7. Experimental workflows of the Montage application: (a) workflow exe-
cuted on single resource, (b) workflow executed on two resources, and (c) workflow
executed on n resources

tUncorrectedMosaic

6. Experiments

We have implemented prototypes of Grid services for dynamic instru-
mentation and performance analysis of Grid WFs. WIC in our experi-
ment is currently implemented based on JavaCog [20]. JGraph [16] and
JFreeChart [15] are used to visualize workflow DAGs and performance
results, respectively. In this section, we illustrate the usefulness of our
service by presenting experiments of different workflows of the Montage
application in the Austrian Grid [3].

Montage [22] is a software for generating astronomical image mosaics
with background modeling and rectification capabilities. Based on the
Montage tutorial, we develop a set of WFs, each generating a mosaic
from 10 images without applying any background matching. Figure 7
presents experimental workflows of the Montage application. In Figure
7(a), the activity tRawImage and tUncorrectedMosaic are used to
transfer raw images from user site to computing site and resulting
mosaics from computing site to user site, respectively. mProject is used
to reproject input images to a common spatial scale. mAdd is used to
coadd the reprojected images. mImgtbl is used to build image table
which is accessed by mProject and mAdd.

In workflows executed on multiple resources, we have several sub-
graphs tRawImage — mImgtbll — mProjectl — tProjectedImage,
each subgraph is executed on a resource. The tProjectedImage ac-
tivity is used to transfer projected images produced by mProject to

truong-jogc.tex; 25/11/2004; 15:19; p.19

20

- SCALEA-G: Execution Status of Activities |1
Wrkllow Woiklow Expesimints Analysis
| 1 Active Activities
A B0 Ravamaget
mA) F—
i ® mimabi1
bl « mProjectil
iajsctadimage? i1z
e ® o mProjctz
y e [] L] IPrORCtIma
. o P opechedimag
mPraject1] o ® mimgbL
mimpill | o mAdd
i ". Wncorrectudie
Hanimagel | o

Figure 8. Monitoring execution status of a Montage workflow executed on 2
resources.

the site on which mAdd is executed. When executed on n resources,
the subgraph mImgtbl2 — mAdd — tUncorrected M osaic is allocated
on one of that n resources. When executed on Grid resources using
the same NFS (Network File System), the task mProject can work on
fork-join fashion.

We conduct experiments on sites named LINZ (Linz University),
UIBK (University of Innsbruck), AURORA6 (University of Vienna)
and VCPC (University of Vienna) of the Austrian Grid. The user re-
sides in VCPC and the workflow invocation and control service (WIC)
submits invoked applications of workflow activities to VCPC, LINZ,
UIBK, AURORAG6. Most machines in experiments are non dedicated
ones.

6.1. MONITORING EXECUTION STATUS OF ACTIVITIES

Before a WF is submitted to WIC, the performance monitoring and
analysis service subscribes notifications of workflow executions to the
SCALEA-G middleware. When the WF is executed, events containing
execution status (e.g. submitted, active, ..) of activities are reported
back to the monitoring and analysis service. Figure 8 shows the Eze-
cution Status display which monitors the execution status of activities.
The left window shows one of Montage workflows. The right window
displays execution status of activities of that workflow. We also can ex-
amine execution time of states during the runtime. For example, Figure
9 presents the execution time of states of the experiment presented in
Figure 8.

truong-jogc.tex; 25/11/2004; 15:19; p.20

21

[l eocenangicompsted] [g cte)

Figure 9. Execution time of states of Montage workflow executed on 2 resources.

Actve Acitas

CET Crrr

=T vt T
i

sipanets i nction u_maii)
“appicatenhiamas mPToject-iagpbc abosames OebURCHECKAINIDENS_DRDUICHECK)
«§6bD 1B JuhobD) checkiddrihunchon u_thackHad
“pETROMEIgE M DETRO) e Termlaetan:aon,u_tesdTemeiate)
D TPTOH | <AactiD 1
“MEpeSTR

b=
& CYweadstfonctonu_weilpa)
- [LS BeunaBIINICAU_LIPIMECINGE

<EEdaIEIN URE"TAN" hamés"ra T Emol” 0=
<metrics WTIME matcs

oI B T kT B b0

Figure 10. GUI used to control the instrumentation of activity instances of a
workflow.

6.2. DYNAMIC INSTRUMENTATION

When an activity is executed, its status is shown in the Execution Sta-
tus diagram. The user then can start to instrument activity instances.
Figure 10 depicts the GUI used to control the dynamic instrumentation
of activity instances. On the top-left window, the user can choose an
activity. For each compute node on which the selected activity instance
executed, running processes can be examined by invoking GetUserPro-
cesses operation, as shown in the top-right window of Figure 10. For
a given process of the invoked application of an activity instance, the
detailed SIR can be obtained by clicking GetSIR button, e.g. SIR of
invoked application of activity mProject1 is visualized in the bottom-
right window in Figure 10. In the bottom-left window is an IRL request
used to instrument selected code regions in the main unit with a metric
wtime (wallclock time).

truong-jogc.tex; 25/11/2004; 15:19; p.21

22

[©nline Application Data
@ [Experimant Montage
@ [mProject12
¢ [hafner.dps.uibk ac.at
©] Process 7924
@ [JThread 0
[y Region 41:pizwes(0:0:0]
[Region 44 cormputeGyariapi:
[Region 34:wies2pix[0:0:0]
D Region 33:corverCoordinates
[Region 32:pix2wes{0:0:0]
@ O mProject1
© [olpererdps.uibk.ac.at
@ [Process 10393
@ [JThread 0
[y Region 32:pbcwics[:0:0]
[y Region 33:converCoordinates |
[y Region 34:wies2pi[0:0:0]
[y Region 41:pix2wes{0:0:0] 1
[y Region 44:computeGveriap(i |

! Medric Narme | It etric Value
“|nsubs | 0
Ancalls I 3,368,877

AL recast CPU Usag|
hafner.dps.uibk.ac.at:8060

1.00

| 1410 145830 |

| 1410145700
| 14010 145730
| 140 145030

Figure 11. Performance analysis of workflow activities.

6.3. PERFORMANCE ANALYSIS

When an invoked application of an activity instance is instrumented,
the measurement data collected is analyzed by the performance analy-
sis component. The performance analysis component retrieves profiling
data through data subscription or query. Figure 11 presents the per-
formance analysis GUI when analyzing a Montage workflow executed
on two resources in UIBK. The left-pane shows the DAG of the WF.
The middle-pane shows the dynamic code region call graph (DRG)
of invoked applications of activities. We can examine the profiling
data of instrumented code region on the fly. The user can examine
the whole DRG of the application, or DRG of an activity instance
(by choosing the activity in the DAG). By clicking on a code re-
gion, detailed performance metrics will be displayed in the right-pane.
Depending on the invoked application, source code information may
be available, thus code regions can be associated with their sources.
We can examine historical profiling data of a code region, for exam-
ple window Historical Data shows the execution time of code region
computeOverlap executed on hafner.dps.uibk.ac.at. The user also
can monitor resources on which activities are executed. For example,
the window Forecast CPU Usage shows the forecasted CPU usage of
hafner.dps.uibk.ac.at.

Figure 12(a) presents the response time and synchronization delay
analysis for activity mImgtbl2 when the Montage workflow, presented in
Figure 7(c), is executed on 5 machines, 3 of AURORAG6 and 2 of LINZ.

truong-jogc.tex; 25/11/2004; 15:19; p.22

23

-~ |SCALEA-G: Response Timeand | | [SCALFA-G: Load Imbalance]
(=] mrglbi2 Processing Time (3}
[} Respenss time: 11.402(s @ 60 W0 160 200 260 300 MO 400 450 600 SBO 000 OG0 TOO TS0

[y Wailting time 1.154() Py
[y Prociszing a0 24815 ajnsti]

@ [Delay synehronization mP
[y tPmjectediirage - =mirglbl?: 0 0020(5) - :"‘?
[tPnjictodireage - ~rdrglhl?. 4 782(5) % i

[} tProjectadimages-=mimgtbl2: 522 0811 mP
[} tProjectadimage - =mimgtblZ: 130.474(2) sjastid

[Prolectedimaped-» mimgibl 2: 516.554(2) mpr
ajestis

(b)

(a)

Figure 12. Analysis of Montage executed on 5 machines: (a) response time and
synchronization delay of mImgtbl, and (b) load imbalance of mProject.

The synchronization delays from tProjectedImage3, 4, 5 to tImgtbl2 are
very high. This causes by the high load imbalance between mProject
instances, as shown in Figure 12(b). The load imbalance is not due to
the inequality of work distribution between mProject activities, but
due to the differences in processing capability of resources in the Grid.
The two machines in LINZ can process significantly faster than the
rest machines in AURORAG6. This detection indicates the workflow
composition system and scheduling system do not take into account
the processing capability of resources when constructing activities and
distributing them on Grids.

Throughout the workflow development procedure, a subgraph named
mProjectedImage which includes t RawImage — mImgtbll — mProjectl
in single resource version is replaced by subgraphs of tRawImage —
mlImgtbll — mProjectl — tProjectedImage in a multi-resource ver-
sion. These subgraphs basically provide projected images to the mAdd
activity, therefore, we consider they are equivalent in terms of QoS (to
the user point of view); they are replaced refinement graphs. We collect
and store performance of these subgraphs in different experiments. Fig-
ure 13 shows the speedup factor for the subgraph mProjectedImage of
Montage workflows executed on several experiments. The execution of
mProjectedImage of the workflow executed on single resource in LINZ
is faster than that of its refinement graph executed on two resources (in
AURORAG, or UIBK). However, the execution of mProjectedImage of
workflow executed on 5 resources, 3 of AURORAG6 and 2 of LINZ, is just
very slightly faster than that executed on 5 resources of AURORAG.
The reason is that the slower activities executed on AURORAG6 re-
sources have a significant impact on the overall execution of the whole
mProjectedImage as presented on Figure 12(b).

truong-jogc.tex; 25/11/2004; 15:19; p.23

24

_i SCALEA-G: Speedup factor IE \J|

Spesdup

mPiojecte mPiojecte mPiojecte mProjecte mPiojecte mPiojecte mProjecte mPojecte
dimage-Se dimage-Se dimage-Se dimage-Fa dimage-Fa dimage-Fa dimage-Fa dimage-Fa
qAURORA q.LINZ, 1 QGRS 1 2,AUROR 2,UIBK, 2 5 AURCR 5. AURCR 5 AUROR
6.1 Hode Node Hode A5, 2 Nodes AB-LINZ, 5 £5-UIBK, 5 46,5
Nodes Modes Modes Modes

Subaraph

Figure 13. Speedup factor for subgraph ProjectedImage of Montage workflows.

7. Related Work

Several tools support performance analysis for Grid applications such as
GRM [4], OCM-G [5]. Our tool differs from these tools in many aspects.
Firstly, our tool is OGSA-based service. Secondly, we support dynamic
instrumentation of Grid workflow-based application. GRM, for exam-
ple, supports only manual instrumentation while OMG-G combines
source code instrumentation with a mechanism to dynamically enable
instrumentation probes. Existing tools supporting dynamic instrumen-
tation, e.g., Paradyn [30], DPCL [9], are not designed to work with the
Grid. Nor do these tools provide enough accessible and interoperable
interface that our Grid dynamic instrumentation service introduces.
Monitoring of workflows is an indispensable part of any WfMS.
Therefore it has been discussed for many years. Many techniques have
been introduced to study quality of service and performance model
of workflows, e.g. [18, 7], and to support monitoring and analysis of
the execution of the workflow on distributed systems, e.g., in [25, 2].
We share them, in generally, many ideas and concepts with respect
to performance metrics and monitoring techniques of the workflow
in distributed systems. However, most existing work concentrates on
business workflows and Web services processes while our work targets
to scientific workflow executed in Grids which are more diverse and
dynamic, and inter-organizational. We support dynamic instrumen-
tation of activity instances, monitoring and performance analysis of
workflows based on not only execution status but also performance
measurements obtained by instrumenting the invoked application, and
resource monitoring data. The performance monitoring and analysis is
not limited to activity level, but covers also code regions of invoked
applications. Moreover, we support multi-workflow analysis.

truong-jogc.tex; 25/11/2004; 15:19; p.24

25

Most effort on supporting the scientist to develop Grid workflow-
based applications is focused on workflow language, workflow construc-
tion and execution systems, but not concentrated on monitoring and
performance analysis of the Grid WFs. P-GRADE [17] is one of few
tools that supports tracing of workflow applications. Instrumentation
probes are automatically generated from the graphical representation
of the application. It however limits to MPI and PVM applications. Our
Grid workflow monitoring and performance analysis service combines
online monitoring execution of activities with online profiling analysis.
The support of dynamic instrumentation does not limit to MPT or PVM
applications.

8. Conclusion and Future Work

The dynamics and diversity of the Grid requires a dynamic and flexible
mechanism in conducting the performance analysis of Grid applica-
tions. This paper presents a dynamic approach to the performance
instrumentation, monitoring, and analysis of Grid workflows. We have
introduced a novel Grid service to support dynamic instrumentation
of workflow-based applications. We have presented a Grid performance
analysis service that can be used to monitor and analyze the perfor-
mance of scientific workflows in the Grid on the fly. The Grid per-
formance analysis service, which combines dynamic instrumentation,
activity execution monitoring, and performance analysis of workflows
in a single system, has significantly extended support to the user to
monitor and analyze their applications. Moreover, we store workflows
and their relevant performance metrics. We develop techniques for
comparing the performance of subgraphs of workflows, and support
multi-workflow analysis. We are currently working towards the full
implementation of our prototype, and are in the process to integrate
the prototype into the ASKALON toolset [10].

In the current implementation, we manually instrument WIC in
order to get the execution status of activities. To avoid that, we can
extend workflow specification language with directives specifying mon-
itoring conditions. These directives will be translated into code used
to publish events containing execution status of activities into the
monitoring middleware. WIC can provide well-defined interfaces for
the monitoring service to access execution status of activities.

Our performance monitoring and analysis limits to DAG workflow.
Recently, scientific workflows which have structured loops (e.g., do
while structure) are proliferated. Currently, we are investigating to ex-
tend our techniques to cover workflows with structured loops. Another

truong-jogc.tex; 25/11/2004; 15:19; p.25

26

aspect is that while we focus on invoked applications as executable
programs (each activity instance invokes an executable program), there
exist workflows that each activity instance invokes a Web Service oper-
ations (likely written in Java). This type of workflows will require differ-
ent instrumentation mechanism, e.g. dynamic instrumentation of Java
services. Meanwhile, the process of analysis, monitoring and instru-
mentation is controlled by the end-user, but it should be automated.
The issues mentioned above will be addressed in order to support the

performance monitoring and analysis of knowledge workflow Grid in
the framework on 6"FP EU K-WF Grid project [24].

Acknowledgements

This research is supported by the Austrian Science Fund as part of the
Aurora Project under contract SFBF1104.

References

1. http://www-unix.globus.org/toolkit/docs/3.2/core/developer/message_security.html.

2. Andrea F. Abate, Antonio Esposito, Nicola Grieco, and Giancarlo Nota.
Workflow performance evaluation through wpql. In Proceedings of the 14th
international conference on Software engineering and knowledge engineering,
pages 489-495. ACM Press, 2002.

3. AustrianGrid. http://www.austriangrid.at/.

4. Zoltan Balaton, Peter Kacsuk, Norbert Podhorszki, and Ferenc Vajda. From
Cluster Monitoring to Grid Monitoring Based on GRM. In Proceedings. 7th
EuroPar’2001 Parallel Processings, pages 874-881, Manchester, UK, 2001.

5. Bartosz Balis, Marian Bubak, Wlodzimierz Funika, Tomasz Szepieniec, and
Roland Wismiiller. An infrastructure for Grid application monitoring. LNCS,
2474:41 49, 2002.

6. Bryan Buck and Jeffrey K. Hollingsworth. An API for Runtime Code Patch-
ing. The International Journal of High Performance Computing Applications,
14(4):317-329, Winter 2000.

7. Jorge Cardoso, Amit P. Sheth, and John Miller. Workflow quality of service. In
Proceedings of the IFIP TC5/WG5.12 International Conference on Enterprise
Integration and Modeling Technique, pages 303-311. Kluwer, B.V., 2003.

8. Ewa Deelman, James Blythe, Yolanda Gil, Carl Kesselman, Gaurang Mehta,
Karan Vahi, Kent Blackburn, Albert Lazzarini, Adam Arbree, and Scott Ko-
randa. Mapping abstract complex workflows onto grid environments. Journal
of Grid Computing, 1:25-39, 2003.

9. L. DeRose, T. Hoover Jr., and J. Hollingsworth. The dynamic probe class
library: An infrastucture for developing instrumentation for performance tools.
In Proceedings of the 15th International Parallel and Distributed Processing
Symposium (IPDPS-01), pages 66—66, Los Alamitos, CA, April 23-27 2001.
IEEE Computer Society.

truong-jogc.tex; 25/11/2004; 15:19; p.26

10.

11.

12.
13.
14.

15.
16.
17.

18.

19.

20.

21.

22.
23.

24.
25.

26.

27.

28.

29.

27

Thomas Fahringer, Alexandru Jugravu, Sabri Pllana, Radu Prodan, Clovis Ser-
agiotto Junior, and Hong-Linh Truong. ASKALON: A Tool Set for Cluster and
Grid Computing. Concurrency and Computation: Practice and Ezperience,
2004. To appear.

Tan Foster and Carl Kesselman, editors. The Grid: Blueprint for a New
Computing Infrastructure. Morgan Kaufmann, San Francisco, CA, 1999.
Globus Project. http://www.globus.org.

gSOAP: C/C++ Web Services and Clients.
http://www.cs.fsu.edu/“engelen /soap.html.

D. Gunter, B. Tierney, B. Crowley, M. Holding, and J. Lee. Netlogger: A
toolkit for distributed system performance analysis. In Proceedings of the IEEE
Mascots 2000 Conference, August 2000.

JFreeChart. http://www.jfree.org/jfreechart/.

JGraph. http://www.jgraph.com/.

P. Kacsuk, G. Dozsa, J. Kovacs, R. Lovas, N. Podhorszki, Z. Balaton, and
G. Gombas. P-GRADE: a Grid Programming Environment. Journal of Grid
Computing, 1(2):171-197, 2003.

Kwang-Hoon Kim and Clarence A. Ellis. Performance analytic models and
analyses for workflow architectures. Information Systems Frontiers, 3(3):339—
355, 2001.

Sriram Krishnan, Patrick Wagstrom, and Gregor von Laszewski. GSFL : A
Workflow Framework for Grid Services. Technical Report, Argonne National
Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439, U.S.A., July 2002.

G. Laszewski, I. Foster, J. Gawor, and P. Lane. A java commodity grid kit.
Concurrency and Computation: Practice and Ezperience, 13(643-662), 2001.
B. Miller, M. Callaghan, J. Cargille, J. Hollingsworth, R. Irvin, K. Karavanic,
K. Kunchithapadam, and T. Newhall. The Paradyn Parallel Performance
Measurement Tool. IEEE Computer, 28(11):37-46, November 1995.

Montage. http://montage.ipac.caltech.edu.

N. Podhorszki and P. Kacsuk. Monitoring Message Passing Applications in the
Grid with GRM and R-GMA. In Proceedings of EuroPVM/MPI’2003, Venice,
Italy, 2003.

K-WF Grid Project. http://www.kwfgrid.net.

Bastin Tony Roy Savarimuthu, Maryam Purvis, and Martin Fleurke. Monitor-
ing and controlling of a multi-agent based workflow system. In Proceedings of
the second workshop on Australasian information security, Data Mining and
Web Intelligence, and Software Internationalisation, pages 127-132. Australian
Computer Society, Inc., 2004.

Clovis Seragiotto, Hong-Linh Truong, Thomas Fahringer, Michael Gerndt,
Tianchao Li, and Bernd Mohr. Standardized Interfaces for Representing, In-
strumenting and Monitoring Fortran, Java, C and C++ Programs. Submitted
to International Parallel and Distributed Symposium (IPDPS) 2005, October
2004.

Munindar P. Singh and Mladen A. Vouk. Scientific workflows. In Position
paper in Reference Papers of the NSF Workshop on Workflow and Process
Automation in Information Systems: State-of-the-art and Future Directions,
May 1996.

John F. Sowa. Knowledge Representation: logical, philosophical, and compua-
tional foundations. Brooks/Cole, Pacific Grove, CA, 2000.

The Condor Team. Dagman (directed acyclic graph manager).
http://www.cs.wisc.edu/condor/dagman/.

truong-jogc.tex; 25/11/2004; 15:19; p.27

28

30.
31.

32.

33.

Paradyn Parallel Performance Tools. http://www.cs.wisc.edu/paradyn/.
Hong-Linh Truong and Thomas Fahringer. SCALEA: A Performance Analy-
sis Tool for Parallel Programs. Concurrency and Computation: Practice and
Ezperience, 15(11-12):1001-1025, 2003.

Hong-Linh Truong and Thomas Fahringer. SCALEA-G: a Unified Monitoring
and Performance Analysis System for the Grid. Scientific Programming, 2004,
IOS Press. To appear.

Von Welch, Frank Siebenlist, Ian Foster, John Bresnahan, Karl Czajkowski,
Jarek Gawor, Carl Kesselman, Sam Meder, Laura Pearlman, and Steven
Tuecke. Security for Grid Services. In 12th IEEE International Symposium on
High Performance Distributed Computing (HPDC’03), pages 48 57, Seattle,
Washington, June 22 - 24 2003.

truong-jogc.tex; 25/11/2004; 15:19; p.28

