
A View Based Survey on Web
services Registries

Schahram Dustdar and Martin Treiber
dustdar@infosys.tuwien.ac.at
e9426464@student.tuwien.ac.at

TUV-1841-2004-19 July 9, 2004

Technical University of Vienna
Information Systems Institute
Distributed Systems Group

Web services registries are a cornerstone for the emerging service-oriented
architecture and constitute a critical resource for Web services. Based on a
case study we systematically illustrate and evaluate current registries and
compare different approaches regarding their architectures and data mod-
els in the context of two views: the human and machine (service) based
views. The human view on Web services registry architectures is illustrated
with the help of a case study. The machine view on Web services registry
architectures is illustrated from a software-service point of view. The data
model of Web services registries is described in detail from a machine based
view. The corresponding human view is described from an abstract level.
Finally, the Web services publishing and discovery are compared from a
human and a machine based view.

Keywords: Web services registries, Service-oriented Architecture, UDDI

c©2004, Distributed Systems Group, Technical University of Vienna

Argentinierstr. 8/184-1
A-1040 Vienna, Austria
phone: +43 1 58801-18402
fax: +43 1 58801-18491
URL: http://www.infosys.tuwien.ac.at/

A View Based Survey on Web services Registries

Schahram Dustdar, Martin Treiber

Distributed Systems Group, Vienna University of Technology
 {dustdar@infosys.tuwien.ac.at | e9426464@student.tuwien.ac.at}

Abstract. Web services registries are a cornerstone for the emerging service-oriented
architecture and constitute a critical resource for Web services. Based on a case study
we systematically illustrate and evaluate current registries and compare different
approaches regarding their architectures and data models in the context of two views:
the human and machine (service) based views. The human view on Web services
registry architectures is illustrated with the help of a case study. The machine view on
Web services registry architectures is illustrated from a software-service point of
view. The data model of Web services registries is described in detail from a machine
based view. The corresponding human view is described from an abstract level.
Finally, the Web services publishing and discovery are compared from a human and a
machine based view.

Keywords: Web services registries, Service-oriented Architecture, UDDI

1 Introduction

Web services are a new paradigm for distributed computing and are designed to
enable different software systems to communicate directly with each other regardless
of language or platform over the Internet. According to the W3C, Web services [2]
are defined as follows: “A Web service is a software system designed to support
interoperable machine-to-machine interaction over a network. It has an interface
described in a machine-processable format (specifically WSDL). Other systems
interact with the Web service in a manner prescribed by its description using SOAP-
messages, typically using HTTP with an XML serialization in conjunction with other
Web-related standards.” As the definition implies, Web services offer standard means
for the interoperability between different distributed software systems over the
Internet. The Web services paradigm allows different software systems to operate in a
loosely coupled way by the help of Web services brokers, respectively Web services
registries. The current Web services architecture (Figure 1) consists of three different
entities: Web services provider, Web services requestor/client, and Web services
registry.

The Web services provider provides Web services descriptions and publishes them
using a Web services broker respectively a Web services registry. The services
requestor wants to fulfil a certain task with the help of one or more Web service(s). In
order to locate Web services, the Web services requestor contacts a services broker in
order to search for Web services. When an adequate Web services is found the Web

 2

services requestor uses the information of the Web services broker to invoke the Web
services. The services broker (registry) stores information describing Web services
provided by Web services providers in a registry (repository). The Web services
registry allows users to search for Web services and to publish Web services
descriptions.

Fig. 1. Conceptual overview of Web services

This paper provides a survey of different approaches of Web services registries in
both the human and the Web services context (in the rest of the paper refered to as
view) regarding two dimensions: Architecture, and Data Model. The architecture
describes the conceptual structure of a Web services registry in the Web services
context. The data model describes the type of data and the data structure implemented
by a Web services registry.

The reminder of the paper is organized as follows: Section 2 presents requirements
of Web services registries and introduces the two views on Web services registries.
Section 3 introduces a case study which is used throughout the paper to compare and
discuss the different approaches of Web services registries regarding their data
models. Section 4 gives an overview on different architectures of Web services
registries, illustrates each architectural style with an example, and compares these
approaches. Section 5 presents different Web services registry data models and
compares the models. Section 6 illustrates how the Web services discovery is done in
the different approaches to Web services registries. Section 7 presents the different
Web services publishing mechanisms of the different Web services registry
approaches. Section 8 concludes the paper.

2 Requirements for Web services Registries

We analyze Web services requirements based on their architectural style and their
data model. The different architectural styles of Web services registries match
different requirements, for example scalability, fault tolerance or maintainability,
whereby each style has its own strength and weaknesses.

 3

Another difference between Web services registries concerns the type of
information stored in a Web services registry. Data about Web services can vary from
basic information about a service, such as name, service classification, information
about the provider, etc. to complex coordination information such as message
exchange patterns, collaboration protocols or other structured information about web
service capabilities.

To access stored data, a Web service offers an interface for the publishing and
another interface for the discovery of Web services. The interfaces also differ between
registry implementations. The requirements of Web services interfaces are closely
related to requirements regarding the data model, since the Web services registry
interface reflects the underlying data model. These differences also emphasize
different requirements depending on the nature of the client of a Web services
registry. A human Web services registry client has different requirements than, for
example, an autonomous Web services registry client such as an agent.

This leads to an initial classification into “formal” and “informal” requirements
regarding the information provided by the Web services registry. Formal requirements
concern machine based Web services registry clients like agents or other Web
services and result from the view on the Web services registry. In general, machine
based clients need well structured data for the processing of Web services registry
entries. Humans can deal with this type of information as well but do not depend at
highly structured data.

The different views on Web services registries are depicted in Figure 2. The
human view can be considered as more flexible, since humans are capable to work
with (formally) structured data as well, when the amount of data is not too large. Note
that Quality of Service (QoS) requirements are available in both the human and the
Web services views.

Fig. 2. Views on Web services registries

 4

2.1 Human View on Web services Registries

A human needs "human-readable" information about Web services. This kind of
information is usually unstructured text (from a Web services view) that gives
information about what a Web service generally does and information about the Web
services provider, which can include name, address, and other additional information.

The provided information has no constraints regarding the type, the length of
information and is rather informal. The Web services description may also provide
related information about a Web services like introductionary texts about the Web
services in a business context in the Web services description. With this
(unstructured) information, a human is usually capable of selecting a Web service
among the query results that fits the requirements of the human Web services
requestor. To enable a better understanding about the Web services, categorization
information can be included. From a human view, categorization information can be
both, structured information in form of reference systems or informal descriptions, for
example, a text containing a general business description, such as "Business activities
range from the provision of stunt team equipment to expertise on physics and law".

Another important requirement regards Quality of services (QoS). The term
"Quality of Service" is used to describe non-functional requirements. While it is
possible to quantify some of the QoS attributes (see Table 1) other remain rather
vague. These fuzzy QoS requirements can be context dependent and can be seen as
guidelines. Consider for example a company which might rather use a Web service A
from a company C, even if a competitor B offers a superior Web service D (lower
cost, etc.), which provides the same features, due to company politics. One rationale
for such a policy might be that company C is the standard Web services provider for
several years, and company B is a direct market competitor). Thus, in this case, the
selection of a Web services provider depends not on quantifiable attributes such as
cost, performance, etc. but is based on some QoS attributes.

QoS Attribute Description

Reliability Defines the degree to which a Web services is capable
maintaining the service at a given service quality.

Performance Defines the latency and throughput of a Web services
Availability Defines the probability of an successful Web services

invocation
Security Defines the level of security necessary to access a Web

services
Cost Defines the cost per usage of a Web services
Standards Defines the used standards
Integrity Defines the level of correctness regarding the execution of

Web services transactions

Table 1. List of quantifiable Quality of Service attributes

An important aspect, but beyond the scope of this paper, is the human user interface
for Web services registries. At first glance it may seem trivial, but there are numerous

 5

details which make the design of a human Web services interface a complex task.
These details include for example skills like typewriting, the cultural background (e.g.
common symbols), and graphic design rules.

2.2 Web services View on Web services registries

A machine based Web services client who queries a Web services registry for Web
services depends on well structured information for the rating of other Web services.
In contrast to human Web services registry clients, the Web services requestor needs
explicit meta-information about the Web services when searching for Web services.
This meta-information is of paramount importance when it comes to Web services
comparison. Web services must be rated against another Web services to obtain an
ordered query result. From a Web services view, informal descriptions are not
sufficient for this kind of rating. As Figure 2 implies, the meta-information can be
structured in several ways, for example, by using ontology data or other formal Web
services description languages. Ontological data allows to categorize Web services
and to provide a Web services requestor with similar Web services on request.
Therefore, it is possible to implement automated dynamic selection policies for
autonomous Web services selection. Another possibility is to establish a metric by the
use of QoS attributes. Quantifiable QoS attributes allow to compare Web services and
enable machine based Web services requestors to select the best fitting Web services
according to their requirements.

3 Managing a film crew - a Case study

The case study presented in this section serves as a motivation for the view based
comparison of the Web services registries. The example illustrates the different views
on Web services registries in a concrete rather than in an abstract manner. Managing
a film crew is a very complex task. There are many different types of film teams, for
example, the stuntmen crew, the makeup artists, etc, which offer particular services.
Some of these teams work together in a loosely coupled way providing their expertise
on demand, while other teams depend on services provided by other teams and work
together throughout a longer period of time. External experts offer expertise on
several topics, for example physics, law, health etc. These experts are needed to make
a movie reality. For example, computer scientists are needed when an actor acts as a
computer expert in a movie.

A film director must be able to coordinate all these different teams and experts at
different times and locations. At the same time, the film director must keep the costs
as low as possible since film budgets are usually very tightly calculated. As the film
director is responsible for the budget he/she has an interest in all cost-causing details
of the film-making to guarantee that the film budget is not overdrawn and the movie
is completed in time. To ensure the smooth and timely film-making, inter-team
management is of paramount importance. The film director must enable the teams to
communicate with each other in an efficient way to provide their services. Thus, the
coordination of interdependent film teams is very critical for the timely completion of

 6

the movie. The different phases of the film project provide additional constraints
regarding the arrangement of the film teams. During each phase a flexible
configuration and composition of the different film teams is necessary. For example,
when shooting an action scene the actors need stunt doubles for certain tasks (car
crashes, jumps from buildings, etc.). Figure 3 shows an UML class diagram
illustrating our case study:

Fig. 3. UML class diagram film working example

A film production is directed by one or more directors. Each film production consists
of several sub tasks which in turn may consist of other sub tasks. Director, external
expert, and crew member are all persons with particular capabilities which are
provided as services. For example, a stunt man is capable of car stunts, while another
stunt man is a specialist for martial arts. Film crews are hired by the director for a
certain time. External experts are also hired by the director for their expertise on a
particular topic. A film crew consists of one or more film crew members. Every film
crew member adds its own services to the film crew. A film crew can provide film
crew services which are more than the sum of the capabilities of every single crew
member. For example, a car chase can be provided by a film crew rather than by a
single person. Each film crew provides the equipment needed for the making of the
movie. A film needs one or more film crews. Each film crew is assigned to a film
production task by the location where the film crew is needed. For example a camera
crew provides specialized camera equipment for the shooting of film scenes under
water. Services require equipment for their realization.

 7

4 Web services registry Architectures

Web services can be classified by their architectural style. The architectural style of
Web services defines how a Web services registry is actually implemented. The im-
plementation of Web services influences the message interaction schema between
Web services registry, Web services provider, and Web services requestor. Generally,
Web services registries can be classified with regard to their architecture: (a) Centra-
lized, (b) Federated, or (c) Decentralized.

Each of these different architectural styles provides certain strengths and weak-
nesses regarding scalability, fault-tolerance, administrative overhead, complexity, and
performance. Using our case study a human organization analogy to the particular
Web services registry architecture is presented in the following sections. The human
analogy shows the human view on the illustrated Web services registry Architecture.
The Web services view is not explicitly stated, since the description of the directory
architecture is already the technical respectively the machine view.

4.1 Centralized Architecture

In a centralized approach a single entity contains all Web services registry entries,
referred to as Web services registry (Web services broker). Each Web services
provider uses the central Web services registry for the publishing of its service
descriptions. The Web services broker stores registry information in a central "well
known" registry. Services requestors contact the service broker in order to obtain
information about Web services. This model follows a traditional client/server
approach where the Web services registry acts as server, the Web services provider as
content producing client and the Web services requestor as an information seeking
client. The publishing of a Web services involves the following four steps:

1. A Web services provider contacts the Web services registry and registers a services
2. A Web services requestor searches the Web services registry and obtains informa-

tion about a Web services
3. The Web services requestor contacts the Web services Provider and obtains de-

tailed information, necessary for the binding of the Web services
4. The Web services requestor invokes the Web services

The human analogy to a centralized Web services architecture is as follows. In our
case study the film director class plays the role of the Web services registry. The film
director possesses all information for the shooting of the movie and is the central
coordinator of the movie. Whenever needed, the film director must be contacted. For
example, when a stunt team needs make up artists the film director provides the stunt
team with the necessary information about the make up artists and allows the stunt
team to coordinate their activities with the make up artists.

The SELF-SERV project [4] is an example for using a centralized UDDI [1, 6, 7]
based registry (Figure 4). The Services Manager component consists of three
modules, namely the Services Discovery Engine [3], the Services Editor and the
Services Deployer.

 8

The Services Discovery Engine manages the registration and the location of
services. The Services Discovery Engine is implemented in Java using UDDI, WSDL
[19] and SOAP [18] technology. Before a service is registered in the UDDI registry, it
must generate a WSDL Description and deploy the description at a public location,
identified by an URI. The publishing is completed by sending a SOAP message with
the Web services information to the services Discovery Engine that stores the data
into the UDDI registry and makes it available in the services pool for later discovery
by Web services requestors.

Fig. 4. SELF-SERV and UDDI

When applying our case study to SELF-SERV, each person (film director, external
expert, and film crew member) publishes the service descriptions in the UDDI
registry. SELF-SERV organizes the published services in service communities,
composite services, and elementary services. For example the stuntmen community
acts as container for services provided by stunt men crews. The stuntmen community
provides descriptions of the associated services without referring to the actual stunt
men service provider. This enables a director to dynamically select a service from the
stuntmen pool. Film crews provide composite services that consist of elementary film
crew member services. The director has the opportunity to set up composite Web
services for related tasks, for instance to coordinate the stunt men with the external
expert on physics.

4.2 Federated Architecture

The federated approach distributes Web services registration information among
different entities in a peer to peer fashion. Dedicated nodes of the network often
referenced as super peers or peer registries, store Web services registry data. This
approach, sometimes called a hybrid peer to peer network, unifies aspects of
centralized and decentralized Web services registries.

 9

The registry peers provides transparent registry access through several gateways,
respectively registry peers. In this mode both, the Web services provider and Web
services requestor, act as in a centralized Web services environment since the
distributed nature of the Web services registry is not visible for the Web services
provider and Web services requestor. The process of registering and discovery of
Web services is similar to the approach taken in a centralized architecture. The only
difference lies in the communication overhead between registry peers when a search
is performed which includes several distributed registries. The registry peers can also
provide semi-transparent registry access. A Web services requestor is enabled either
to make the choice between a local search in the registry of the Web services registry
peer or a global search involving every registry peer of the network. The semi-
transparent approach allows for specialized registries. Each Web services registry
peer provides a registry which is specialized at a certain type of Web services. A Web
services provider can publish a Web services in a specialized Web services registry
using meta-information of the Web services registry peer about the type of Web
services that are stored in the Web services registry of the peer. Form a human point
of view, the federated Web services registry architecture resembles a workgroup
organization. Each workgroup consists of a group of people which are lead by a group
manager.

In our case study several film directors manage their groups in an autonomous
way. Each film director is responsible for a certain area of the film-making. For
example, a film director manages the stunt teams, while another film director
manages the special effect crews. When, for example, a stunt team needs the
assistance of the special effect team, it contacts the stunt team director. The stunt team
director asks the special effect team director who is able to provide the needed
expertise to the stunt team. [14] introduces the concept of service-syndications, where
related business form groups of interest with their own UDDI peer registries that
operate in a decentralized fashion. These so called super peers store a sub directory of
a UDDI business registry where every syndication peer publishes its service
description (Figure 5).

The super peer manages the communication between different peers and is
responsible for the joining and leaving of peers of service syndications. The key
concept of the service syndication is the event notification, which allows peers to
operate in an independent way. Each peer can register itself for certain occurrences of
events. The registry peer informs the registered peer when it obtains a matching
subscription from another peer. This enables peers to form their own so called peer
acquaintance group (PAG). Each PAG consists of peers having the same interests,
where each peer knows every member of the PAG. The members of the PAG
cooperate by propagating Web services requests to peers within their own PAG
without the help of the super or registry peer.

 10

Fig. 5. Web services Syndication overview

In our case study, a service syndication maps to a community of different service
providers. For example, the stuntmen service syndication offers services related to
stuntmen. External experts can be grouped into an expert syndication. Each super peer
of the service syndication group can be considered as sub director for the respective
area. The METEOR-S [12] project implements a distributed registry structure. The
system architecture consists of four layers (Figure 6). The Data Layer is responsible
for the Web services registry. Each peer provides its own local registry in based on
UDDI. The Semantic Specifications Layer enables the use of semantic enriched
metadata. Semantic metadata is used on the Data Layer and the Operator services
Layer with the help of ontologies. On the Data Layer a specialized ontology, the
registry Ontology maps each registry to a certain domain. This enables registries to be
grouped according their domain.

Fig. 6. METEOR architecture

The Communication Layer provides the means for communication between peers the
different peers. METEOR support four different types of peers: gateway, operator,
auxiliary, and client peer. Each operator peer controls a local registry and provides
operator services. The operator peer provides advanced Web services discovery
mechanisms based on ontological information.

Data Layer

Communications Layer

S
e
m

a
n

ti
c

S
p

e
ci

fi
ca

ti
o

n
s

Registries

Registry Operator Services

Ontologies

Operator Services Layer

P2P Environment

 11

Figure 7 provides an overview on the METEOR communication layers. The gateway
peer (GWP) manages the access to the peer to peer network for new registry
operations. The GWP is a central entity in the peer to peer network which plays the
role of an entry point for registries when joining the MWSDI. The gateway peer also
informs the other peers of the network as soon as updates of the registries ontologies
are necessary. The operator services layer provides value added service like the
semantic discovery of Web services. The operator service layer allows client peers to
communicate with the registries and abstracts users from the semantic details of the
Data Layer.

Fig. 7. METEOR communication layer overview

Because of the gateway peer, METEOR can be classified as an hybrid peer to peer
network. The gateway peer may act as single point of failure, but METEOR is also
capable of operation without the gateway peer. When the gateway peer fails, not all
features of the Communication Layer are available, for example, it is not possible for
new registries to join the network.

Now we apply our case study on the METEOR-S architecture. The film production
itself is considered as the peer to peer network. The director is mapped onto the
Gateway peer and is responsible for the joining (hiring) of different film crews. Once
the film crews are members of the peer network they operate in a rather independent
way. When, for example, a stuntmen crew wants to offer services and provides
ontological data, it must contact the director first. The director informs the other peers
of the new ontology and joins the stuntmen crew to the network. Crew interrelated
service coordination is carried out by the different crews themselves. They need to
coordinate their activities among each other without the involvement of the director.
The director just gives instructions and additional information (for example a time

Peer 1* Peer 2* Peer N*Peer K*

Peer X+

Peer Y+

GWP

Client Peer

Registry 1 Registry 2 Registry K Registry N

…… ……

 12

frame in which the tasks have to be completed) and is informed about the completion
if the tasks.

4.3 Decentralized Architecture

A decentralized approach implements a pure peer to peer architecture. From a
functional point of view, each service provider has a local registry and acts as service
provider and as service registry (broker) at the same time. The different roles are
carried out by the same provider. Web services registry entries exist only as long as
the Web services provider is part of the peer to peer network. As soon the Web
services provider leaves the network, the registry entry is not valid anymore, since the
Web services registry entry is not available any more. This implies a dynamic registry
structure where the lifespan of a registry entry is limited by the connection time to a
peer network. In contrast to the other Web services architectures the services
publishing/discovery, and invocation requires three steps:

1. The Web services provider connects to a peer to peer network
2. The Web services requestor searches the peer to peer network for a Web services
3. The Web services requestor invokes the Web services

The distributed concept of registries applied to our case study, leads to a flat
organization where no hierarchy exists. A director is like every other member of the
film team. When a film crew needs the expertise of another film crew, it sends a (kind
of) broadcast message to the film crews. On receiving a request, each film crew
checks, if the request can be fulfilled or not. When a request can be met, the film crew
contacts the requesting film crew and their activities can be coordinated. [24] presents
a peer to peer registry architecture based on distributed hash tables. Web services
registry information is distributed over a peer to peer network using an indexing
system that is based on the CHORD [32] data lookup protocol. In this system, Web
services are indexed using those keywords that describe the given Web services. Each
data element is associated with a sequence of keywords that define a mapping into a
multidimensional keyword space. The n-dimensional keyword space is mapped to 1-
dimensional index space which is mapped onto an overlay network of peers. When a
node joins the network it must know at least one node already in the network. The
joining sends a join message which is routed across the network and is then inserted
into the network structure.

The modeling of our case study on this architecture leads to a flat hierarchy. Each
member of the network provides information about the service offerings itself. The
film director and the different film crews are connected in a peer network. The
director contacts different peers directly when a service is needed. The same holds
true for each member of the film crew. When for example a stuntmen crew needs the
expertise of external experts, it contacts the expert directly without the involvement of
the director. Thus the responsibility is divided in equal shares among the film crew
members. The most important aspect is the independent inter team coordination of
their activities

 13

4.4 Summary on the Architectural Styles

The human and machine views on Web services registry architectures overlap. There
is no notable difference in the view, when comparing the Web services registry
architectures. The concept of architectures can be applied directly to human
organizational structures. A central registry offers simplified administration, since
there is a single entity which has to be administrated. Furthermore there are no
coordination or replication activities between different Web services registries, which
add administrative overhead. At the same time this benefit is also the main drawback.
A centralized Web services registry acts as a single point of failure. When the central
Web services fails, it is not possible for clients to search or to register a Web services.
Another problem is the limited scalability of centralized Web services registries. As
the number of registry entries grows, the time for the discovery of Web services
increases and also the potential hits increase since it is likely that many Web services
offers a certain service. To solve the problem of limited scalability and fault tolerance,
a replication schema can be implemented, where several servers offer a replicated
registry. The replication of Web services registries weakens the main benefits of a
centralized Web services registry, since replication needs administrative overhead to
manage replicated registries at different locations. The federation of registries offers a
more scaleable solution, where a peer to peer network of registry peers maintains the
registry entries. The load of Web services registries can be distributed among several
peers leading to increased performance when the Web services registry grows.

Another possibility is the specialization of registry peers. Registry peers can
specialize on certain types of Web services. Therefore, it is possible for registries to
act as market places where related businesses publish their Web services.
Furthermore, it allows a registry to be smaller and more efficient regarding search
times, compared to a centralized approach. Along with the specialization comes the
possibility to adapt the implemented data model for specialized registries in a flexible
manner. A specialized registry could offer additional registry information for Web
services like quality of service information.

Federated registries are more fault tolerant because the failure of a registry peer
only affects a part of the network. To ensure better fault tolerance, different registry
peers can hold replicas of other registry peers, since the amount of data is less,
compared to a central registry. Compared with a central approach, a federated registry
has more message overhead. Global search queries need to be forwarded from registry
peer to registry peer in order to carry out a global search operation. This leads to more
messages in the network since the search query must be sent to all registry peers and
afterwards query results from all registry peers must be sent back to the query
originator from throughout the network.

The fully decentralized registry provides the best fault tolerance, because the
failure of a peer does not affect any other peer, because each peer acts as a registry
node itself. Another benefit is the location transparent registry, due to the fully
decentralized registry structure. A Web services provider needs no knowledge about a
central registry or registry peers. It suffices to know an arbitrary peer of the network
to be able to publish a Web services.

The distributed Web services registry approach provides the largest flexibility,
because it can evolve into any other registry architecture. It is possible to set up a

 14

federated structure where related businesses can publish their Web services in a
clustered way. Another possibility is to build a single Web services registry service
which acts as central Web services registry within the peer to peer network. Another
benefit of distributed registries is the way they handle dynamic registry entries. A
Web services can dynamically join and leave a peer network without any
administrative overhead. There is no need to contact a central entity when a Web
services is being published or removed from the network. Due to the dynamic nature
of the distributed registry it is not possible to ensure that a registry entry exists over a
certain time. In contrast, the centralized and decentralized registry solutions can
guarantee the existence of Web services registry entries as long as the registries are
operational. A drawback of a distributed solution is the amount of messages that
circulate through the network when a search query is executed. Potentially the entire
network is searched for the requested Web services. Frequent search queries can lead
to a degeneration of the response time when searching for a Web services since the
network bandwidth is consumed by the search messages. Table 2 summarizes the
features of the three different approaches.

 Centralized Federative Decentralized

Scalability Low High High
Fault-tolerance None Yes Yes
Extensibility No Medium High
Registry location
transparence

No No Yes

Administration Simple Medium Simple
Dynamic registry
Entries

No No Yes

Flexibility Low Low High
Message Overhead Low Medium High
Specialized
registries

No Yes Yes

Reliable registry
Entries

Yes Yes No

Table 2. Overview of registry features

5 Web services Registries Data Models

Web services registries implement different data models to store registry information.
Persisted data differ from simple informal Web services descriptions and formal
ontological structured information. The following section describes UDDI, ebXML,
WSDA, and WSIL regarding their data model and compares the different approaches
from a Web services view. We use our case study throughout the section to illustrate
the differences between the data models. Finally, we present a description of the

 15

human view of the data models and an analysis how the human requirements are met
by the different data models.

5.1 UDDI

UDDI (Universal Description, Discovery and Integration) is a standard which is part
of the Web services architecture. UDDI contains a framework for both, the
specification of Web services and the specification of businesses. UDDI uses standard
technologies (SOAP, XML [25], HTTP [21], TCP/IP) and is set on top of an
interoperating stack. UDDI focuses mainly on the discovery of services. Web services
descriptions are not part of the UDDI specification. Service descriptions like WSDL
can be referenced by UDDI registry entries using tModels [23].

5.1.1 UDDI Data Model

The UDDI data model [6] is a hierarchically-structured data model. It provides a "top-
down" approach, where information about a Web services is divided into several
categories and each category offers more detailed information about the registered
Web services. Each entity in the data model is identified by a unique universal
identifier (UUID). Generally, the UDDI data model can be divided into three main
categories:

• White pages
• Yellow pages
• Green pages

White pages provide general information about a Web services provider, for example
business name, business description, contact information, address or phone numbers.
Yellow pages provide classification data for either the company or the offered Web
services. For example, this data may include industry, product, or geographic codes
based on standard taxonomies. Green pages provide technical information about a
Web services. This type of information includes a pointer to an external specification
and an address for invoking the web service. These three categories are modeled into
five in five distinct data structures:

• businessEntity
• businessservice
• bindingTemplate
• tModel
• publisherAssertion

To illustrate the function of the different data structures, each of the data structures is
associated with a part of our case study. Note, that UDDI provides no direct

 16

information about the collaboration of the different member of the movie making
process.

The businessEntity encapsulates information about a business or an entity that
publishes information about Web services offerings. BusinessEntities include infor-
mation about their name, description, services offered, and contact information. In
addition to basic business information, a businessEntity can contain elements with
additional information about business identifiers and business categories. Business
identifiers can be arbitrary unique business identifiers and are stored in an identifier
bag. Business classifications are stored in category bags. UDDI offers three built in
global classification schemes, based on following standards:

• The North American Industry Classification System (NAICS) taxonomy
• The Universal Standard Products and services Code System (UNSPSC) taxonomy
• The International Organization for Standardization Geographic taxonomy (ISO

3166)

The following example illustrates a businessEnity structure for our case study (section
2) with name, contact, identifier and category information on the film director:

<businessEntity businessKey="A687FG00-56NM-EFT1-3456-098765432124">
 <name>Martins Movie Director services</name>
 <description xml:lang="en">
 The MMDS offers a variety of Web services for the management of
movies. The services include the selection of different film crews,
like stuntmen, makeup artists and all other film related personal.
 </description>
<contacts>
 <contact useType="US general">
 <personName> Martin Marty</personName>
 <phone>1 800 CALL MMDS</phone>
 <email useType="">office@mmds.org</email>
 <address>
 <addressLine>MMDS</addressLine>
 <addressLine>1000 Bollywood Avenue</addressLine>
 <addressLine>Bombay 1000</addressLine>
 </address>
 </contact>
</contacts>
<identifierBag>
<keyedReference tModelKey="uuid:8609c81e-ee1f-4d5a-b202-3eb13ad01823"
keyName="D-U-N-S" keyValue="01-234-345667" />
 </identifierBag>
<categoryBag>
 <keyedReference tModelKey="UUID:DB77450D-9FA8-45D4-A7BC-
04411D14E384" keyName="Movie services" keyValue="123456"/>
</categoryBag>
</businessEntity>

The businessservice describes services offerings in a more detailed way. Every
businessEntity offers one or more services, which are grouped together in the
businessservice structure. The published information is similar to those of the
businessEntity, including information about service name, service description, a
unique service identifier and bindingTemplates related to a businessservice. The

 17

bindingTemplate acts as a container for technical information of services. This
element contains information that is needed for the communication with a given
service, including unique identifier, the access point of the service (for example an
URL) and references to tModels. The example below shows a businessservice
element including a bindingTemplate element and tMoldelInstanceDetail element
using our case study. The example provides an additional description and an URL
which specifies a SOAP binding for the hiring of film crews by a film director:

<businessservice serviceKey="d5921160-3e16-11d5-98bf-002035229c64"
businessKey=" A687FG00-56NM-EFT1-3456-098765432124">
 <name>MMDS film crew Management</name>
 <description xml:lang="en">Hiring of film crew provided by
MMDS</description>

<bindingTemplates>
 <bindingTemplate serviceKey="d5921160-3e16-11d5-98bf-

002035229c64"
 bindingKey="d594a970-3e16-11d5-98bf-002035229c64">
 <description xml:lang="en">
 SOAP binding for the hiring of film crews
 </description>
 <accessPoint URLType="http">
 http://www.mmds.org:8080/hire
 </accessPoint>
 <tModelInstanceDetails>
 <tModelInstanceInfo tModelKey="uuid:0e727db0-3e14-11d5-98bf-

002035229c64" />
 </tModelInstanceDetails>
 </bindingTemplate>
</bindingTemplates>

</businessservice>

The main use of the tModel structure is to represent arbitrary technical details of a
service. The tModel element provides pointers to external technical documents. In
fact, every link to external information is represented by tModels, for example, the
identifierBag uses a tModel to point to a previously registered tModel instance,
representing a business identification system. The example shows a tModel element
pointing to a URL that contains a WDSL specification of the hire film crew method of
our case study. Additional information about the type of the specification is
encapsulated in the <categoryBag> Tag.

<tModel tModelKey=" uuid:0e727db0-3e14-11d5-98bf-002035229c64">
 <name>uddi-org:inquiry</name>
 <description xml:lang="en"> WSDL Document for the hire film crew

API </description>
 <overviewDoc>
 <description xml:lang="en">
 This tModel defines the API calls for hiring a film crew
 </description>
 <overviewURL>
 http://www.mmds.org/wsdl/hire.wsdl
 </overviewURL>
 </overviewDoc>
 <categoryBag>
 <keyedReference tModelKey="uuid:C1ACF26D-9672-4404-9D70-

39B756E62AB4"

 18

 keyName="types"
 keyValue="specification"/>
 <keyedReference tModelKey="uuid:C1ACF26D-9672-4404-9D70-

39B756E62AB4"
 keyName="types"
 keyValue="xmlSpec"/>
 <keyedReference tModelKey="uuid:C1ACF26D-9672-4404-9D70-

39B756E62AB4"
 keyName="types"
 keyValue="soapSpec"/>
 <keyedReference tModelKey="uuid:C1ACF26D-9672-4404-9D70-

39B756E62AB4"
 keyName="types"
 keyValue="wsdlSpec"/>
 </categoryBag>
</tModel>

The publisherAssertion element models information about different related
businesses. The example illustrates a parent-child relation between two businesses,
which are both identified by their UUID.

<publisherAssertion>

<fromKey>0e727db0-3e14-11d5-98bf-002035229c64</fromKey>
<toKey>0e727db0-3e14-11d5-98bf-002035229c64</toKey>
<keyedReference tModelKey=" uuid:C1ACF26D-9672-4404-9D70-

39B756E62AB4" keyName="MMDS International" keyValue="parent-
child"/>
</publisherAssertion>

5.2 ebXML

The ebXML (electronic business XML) standard [10] defines a framework that aims
to allow different businesses to find each other and to conduct business activities.
ebXML specifies several interrelated components for business activities and provides
a central registry or repository for storing information. In detail the ebXML
architecture consists of the following components:

• Business Process Models [26]
• Messaging services [31]
• Collaborative Protocol Profiles (CPP) [27]
• Collaboration Protocol Agreement (CPA) [28]
• Registry and Repository [9, 11]

Business Process Models describes the way businesses conduct their business
processes. The CPP provides general business information like name, contact, etc.
Additional technical information like interface description and message requirements
are also specified by CPPs. The CPA provides a negotiation between business
partners for business activities. The CPA includes data about agreed service
requirements upon all participating business partners. The Messaging services specify
a communication-protocol agnostic method for the exchange of business messages.

 19

The ebXML registry acts as a database for data regarding business to business
communication. It follows a similar concept like UDDI registries, but is broader in
scope. An ebXML registry is capable of storing arbitrary data, for example, XML
schema and documents, process descriptions, Web services, ebXML CPP, ebXML
CPA, context descriptions, and UML models or information about parties or even
software components. The ebXML registry architecture follows a centralized
approach. Businesses publish their Web services descriptions in a well known
registry, which can be browsed by clients. The ebXML registry offers two separate
interfaces [9]:

• LifeCycleManager Interface
• QueryManager Interface

The Lifecycle Management interface is a sub-service of the registry service. It
provides the functionality required by clients to manage the lifecycle of repository
items (e.g. XML documents required for ebXML business processes). The Lifecycle
Manager controls the status and changes of objects during their existence in a registry.
The LifecycleManager handles the submission of objects, the classification schemes
of object and the removal of obsolete objects from the registry. The QueryManager
interface enables clients the discovery of Web services. It provides the functionality
required by clients to locate Web services. The QueryManager interface consists of
two parts allowing search with SQL expressions and Filter expressions respectively.

5.2.1 ebXML registry Data Model

The ebXML registry data model provides metadata about registry items and is
organized into 17 classes. This data model is capable to store arbitrary objects,
making use of a build in extension mechanism. Furthermore, the ebXML data model
offers a classification mechanism and allows related registry entries to be organized in
packages. In detail, the ebXML data model is organized as follows: The class
Association defines the relationship between a registry entry and other objects
providing binary relations between objects. Associations also provide an important
structural element within the ebXML registry. They provide the mean to structure the
content of an ebXML registry in a hierarchical fashion. The Auditable event class is
needed to generate an audit trail for the registry entry. This structure enables to
protocol tracking content associated with registered users. The Classification class
categorizes registry entries. This class provides the basic means for classification
systems based on industries or markets. The Classification node class defines a branch
in the tree structure for the classification system. The class External identifier
provides a mean to identify a registered item with external keys, for example UCC
code. The class External link provides a way for an object to reference Internet
resources outside the registry. This may include for example a schema data with an
URN that refers to another schema. The class Organization defines the submitting
organization for the registry entry. It is possible to store references to the parent
organization of the submitting organization. The class Package allows for grouping
registry entries together for managing the group. The class Slot provides a dynamic
way to add arbitrary attributes to registry entries on base of name/value pairs. This

 20

enables extensibility within the ebXML registry data model. The following example
shows our case study from section 2 applied to the ebXML data model. It implements
a service description and points to a WSDL description of the hire method of the
director.

<service id="MMDS Inc">

 <Name>
 <LocalizedString lang="en_US" value = "Martins Movie Director

services"/>
 </Name>
<Description>
 <LocalizedString lang="en_US" value = "The MMDS offers a variety

of Web services for the management of movies. The services include the
selection of different film crews, like stuntmen, makeup artists and
all other film related personal."/>

 </Description>
<Slot name = 'HTTP or SOAP'>
<ValueList>
<Value>SOAP</Value>
</ValueList>
</Slot>
 <serviceBinding accessURI="http://www.mmms.org/hire ">
 <SpecificationLink

specificationObject="wsdlForhirefilmcrewDescription ">
 <UsageDescription>
 <LocalizedString lang="en_US" value = "WSDL Document for the

hire film crew API"/>
 </UsageDescription>
 </SpecificationLink>
 </serviceBinding>
 </service>
<ExtrinsicObject id="wsdlForhirefilmcrewDescription"

mimeType="text/xml">
 <Name>
 <LocalizedString lang="en_US" value="WSDL Document for the hire

film crew API"/>
 </Name>
</ExtrinsicObject>

5.3 WSDA

The Web services Discovery Architecture [8] provides a Web services discovery layer
on top of a grid based architecture. The discovery layer defines four interfaces along
with a tuple based universal data model which enables to store arbitrary content. The
interfaces in WSDA are:

• Presenter
• Consumer
• MinQuery
• XQuery

The Presenter interface enables the retrieval of service descriptions by use of
HTTP(S) Get requests. The Consumer interface provides the possibility to publish

 21

content to a consumer, for example, a registry service. The MinQuery interface
provides basic query support using “select-all style” queries. It provides clients with
tuples in their original input format, that is, each tuple is presented in the same way as
it was published before. The XQuery interface provides XQuery support. The XQuery
interface allows clients more expressive search queries than the MinQuery interface.
For example, it is possible to specify path expressions for hierarchical navigation.
Each peer in the Web services Discovery Architecture can implement a subset the
specified interfaces, depending on the role of the peer. A registry peer may implement
all four interfaces, while a peer that only publishes data implements just the Presenter
interface. The registry model follows one of three approaches:

• The Pull registry
• The Push registry
• A Hybrid registry

In the Pull registry approach, a content provider publishes a content link. The registry
pulls the content using the content link into the registry. As soon as a content provider
changes, it notifies the registry. The registry can then decide if and when the new
content is pulled into the registry. In the Push registry approach, a content provider
pushes both, the content link and the content into the registry. Every modification of
content leads to a push of the current content to the registry. The hybrid approach
implements a pull as well as a push registry at the same time.

5.3.1 WSDA Data Model

The WSDA data model specifies a unified data model based on tuples. Each tuple can
be viewed as container for arbitrary data with the following data fields:

• Link
• Type
• Context
• Timestamps
• Metadata
• Content

The Link is an HTTP(S) URL and points to the content provided by the content
provider. The Type describes the kind of content that is being published. The Context
describes the reason why content is published or how it should be used. The
Timestamps TS1, TS2, TS3, and TC provide information about modification time of a
tuple and the validity of the tuple content. The Metadata element offers additional
information. An example for metadata is a Web services Inspection Language (WSIL)
document. The content itself can be of arbitrary nature. The retrieval is done by use of
the link specified in the Link attribute. The registry entries are maintained by soft
state data container to support dynamic changing of registry entries. Each data tuple
possesses four timestamps which contain information about the modification time and
the lifespan of the tuple. After publishing a tuple into the tuple space, a tuple is valid

 22

for a certain time. When the publisher of the tuple refreshes the lease timely the tuple
stays in the tuple space otherwise it is removed. A registry in the WSDA architecture
is merely an indexing service. Each registry entry points to the external description of
the Web service. Our case study in section 2 is applied as follows. Using the content
portion of the tuple a WSDL document is embedded. The director provides a WSDL
document with the description of the hire method.

<tuple link="http://www.mmds.org/hire" type="WDSL" ctx="parent"
TS1="10" TC="15" TS2="20" TS3="30">
<content>
<message name="hirecrew">
 <part name="filmcrew" type="xs:string"/>
</message>

<portType name="hirefilmcrewservices">
 <operation name="hirefilmcrew">
 <input message="hirecrew"/>
 </operation>
</portType>

<binding type="hirefilmcrewservices" name="hs1">
<soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http" />
 <operation>
 <soap:operation
 soapAction="http://www.mmds.org/hire"/>
 <input>
 <soap:body use="literal"/>
 </input>
 <output>
 <soap:body use="literal"/>
 </output>
 </operation>
</binding>
</content>
<metadata> <owner name="http://www.mmds.org"/> </metadata>
</tuple>

5.4 WSIL

The Web services Inspection Language [13], is complementary to the registry
approaches considered so far. WSIL is a distributed metadata model for web service
information. It assumes no restrictions of the published content. The WSIL provides a
method for aggregating different types of web service descriptions in a single
document. WSIL serves two purposes: First, it defines an XML format for listing
references to existing service descriptions. Second, it defines a set of conventions so
that it possible to locate WS-Inspection documents.

Each web service provides a WSIL file at a specified location. WSIL can be
regarded as business cards containing arbitrary information, for example, HTTP links
to ontology documents, WSDL documents, etc. The example below illustrates a
WSIL document containing links to the hire API of our case study and UDDI
identifier for detailed information about the hire services.

 23

<inspection
targetNamespace="http://schemas.xmlsoap.org/ws/2001/10/inspection/"

xmlns:wsiluddi="http://schemas.xmlsoap.org/ws/2001/10/inspection/uddi/
"

 xmlns="http://schemas.xmlsoap.org/ws/2001/10/inspection/">
 <link referencedNamespace="urn:uddi-org:api">
 <wsiluddi:businessDescription location=
 "http://www.mmds.org/hire ">
 <wsiluddi:businessKey>3BF0ACC0-BC28-11D5-A432-0004AC49CC1E<
 /wsiluddi:businessKey>
 <wsiluddi:discoveryURL useType="businessEntity">
 http://www.mmds.org/uddi?businessKey=
 3BF0ACC0-BC28-11D5-A432-0004AC49CC1E
 </wsiluddi:discoveryURL>
 </wsiluddi:businessDescription>
 </link>
 <service>
 <name>MMDS Inc</name>
 <description referencedNamespace="urn:uddi-org:api">
 <wsiluddi:serviceDescription location=
 "http://www.mmds.org/hire">
 <wsiluddi:serviceKey>52946BB0-BC28-11D5-A432-0004AC49CC1E<
 /wsiluddi:serviceKey>
 <wsiluddi:discoveryURL useType="businessEntity">
 http://www.mmds.org/uddi?businessKey=
 3BF0ACC0-BC28-11D5-A432-0004AC49CC1E
 </wsiluddi:discoveryURL>
 </wsiluddi:serviceDescription>
 </description>
 </service>
</inspection>

5.5 Human View on Web services Data Models

From a human point of view, all presented Web services data models share large
similarities regarding the human requirements, respectively the human view. Each
presented data model is human readable and allows meaningful (from a human point
of view) annotations or comments to the data structures. These descriptions allow
humans to gain a better understanding of the underlying data structure. One thing
missing in all approaches is a “direct” semantic approach. None of the approaches
provides an implicit meaning or context information. Take for example the WSDL
description of the hire method. The document is human readable but it does not state
the context where the method is going to be used. Additionally, it only provides a
syntax definition but no semantic description of the meaning of the method. It relies
on “meaningful” names of ports and methods. The same description is meaningless
for a human when using arbitrary combinations as method identifier and port names
although the service description falls into the same category.

 24

6 Publishing of Web services

The publishing of Web services is closely related to the underlying data structure.
Each data structure (UDDI, ebXMl, and WSDA) defines what kind of data is being
published. This section illustrates the different approaches for the publishing of Web
services taken by UDDI, ebXMl, and WSDA from a technical point of view.

6.1 Publishing of Web services in UDDI

The UDDI publisher API provides the interface for the publishing and management of
web services. It provides functions for the addition of new web services as well as
functions for the adaptation of existing web services using save_XX API calls. The
example below shows how to register our case study by creating a new businessEntity
with name, description, and contact information:

<save_business>
<businessEntity businessKey="">
 <name> Martins Movie Managing services </name>
 <description xml:lang="en">
 The triple M S offer a variety of Web services for the

management of movies. The services include the selection of different
film crews, like stuntmen, makeup artists and so on.

 </description>
 <contacts>
 <contact useType="US general">
 <personName>Martin Marty</personName>
 <phone>1 800 CALL MMMS</phone>
 <email useType="">office@mmms.org</email>
 <address>
 <addressLine>MMMS</addressLine>
 <addressLine>1000 Bollywood Avenue</addressLine>
 <addressLine>Bombay 1000</addressLine>
 </address>
 </contact>
 </contacts>
</businessEntity>
<save_business>

6.2 Publishing of Web services in ebXML

To register Web services, a Web services provider must contact the Lifecycle
Manager and provide the information about the Web services to register. The
registration of Web services [20] does not affect every part of the ebXML registry
data structure. To register a Web services, it is necessary to prevent data for the
following classes in the ebXML registry:

• services
• serviceBinding
• SpecificationLink

 25

The publishing of our case study from section 2 in an ebXML registry can be
accomplished as shown in the example below. The actual Web services description
holds an external WSDL document, which can be retrieved using the specified access
URI that it is referenced by.

<SubmitObjectsRequest>
 <LeafregistryObjectList>
<service id="MMDS Inc">
 <Name>
 <LocalizedString lang="en_US" value = "Martins Movie Management

services"/>
 </Name>
 <Description>
 <LocalizedString lang="en_US" value = "This Web service will

accept purchase orders for MMMS Corporation. It will validate the
contents of each purchase order, and, if valid, will process the
purchase order and automatically generate an Invoice."/>

 </Description>
 <serviceBinding

accessURI="http://www.mmms.org/getservicesDescription">
 <SpecificationLink

specificationObject="wsdlForgetservicesDescription ">
 <UsageDescription>
 <LocalizedString lang="en_US" value = "This is the WSDL

document that describes the getservicesDescription Web services"/>
 </UsageDescription>
 </SpecificationLink>
 </serviceBinding>
 </service>
 <ExtrinsicObject id="wsdlForPurchaseOrder" mimeType="text/xml">
 <Name>
 <LocalizedString lang="en_US" value = "The WSDL document for

the MMMS getservicesDescription web service"/>
 </Name>
 </ExtrinsicObject>
 </LeafregistryObjectList>
</SubmitObjectsRequest>

6.3 Publishing of Web services in WSDA

The publishing of Web services in WSDA is executed by the consumer interface. This
interface provides a publish method using a tupleset as input. A tupleset contains
several tuples, each tuple identified by a unique key that consist of the pair content
link and context. The example below shows a tupleset example for the publishing of
the hire service of the director. Note that the example makes use of SWDSL, a
simplified variant of WSDL, proposed in [8]:

<tupleset>
<tuple link="http:// www.mmds.org/hire" type="service" ctx="parent"
TS1="10" TC="15" TS2="20" TS3="30">
<content>
<service>
<interface type="http://www.mmds.org/Presenter-1.0">

 26

<operation>
<name>XML hirefilmcrew(filmcrew filmcrew)</name>
<bind:http verb="GET" URL="https://www.mmds.org/hire"/>
</operation>
</interface>
<interface type = "http://www.mmds.org/XQuery-1.0">
<operation>
<name> XML query(XQuery query)</name>
<bind:http URL="http://www.mmds.org/"/>
</operation>
</interface>
</service>
</content>
<metadata> <owner name="http://www.mmds.org"/> </metadata>
</tupleset>

6.4 Human View on Web services Publishing

The human view on Web services publishing depends on the abstraction level taken
on Web services. On a programming level technical details are of importance, leading
to a concrete rather than abstract view on Web services publishing. Method
descriptions, often on a syntactical level, are the main issue. Set directly on top of the
programming level, Web services can be considered as components with several
methods. Components are a more abstract concept and are used for example by
system designers. On a management level, the Web services themselves are of
interest. Structural details, like for example the component structure of a Web
services or syntactical details of methods, are not important. The main issue is the
capability of a Web services. The management level focuses on abstract descriptions
of Web services.

7 Discovery of Web services

The following section shows the discovery of Web services using the provided
discovery mechanisms of UDDI, ebXML, and WSDA. At the end of the section, a
summary compares the human requirements for Web services discovery and the
approaches taken by UDDI, ebXML, and WSDA.

7.1 Discovery of Web services in UDDI

The UDDI inquiry API specifies the functions for the discovery of web services. The
find_XX API calls provide an overview of registration data based on a variety of
search criteria. The easiest way to query a UDDI registry is by keyword based search
for a business name. The example shows how to search a UDDI registry for our case
study using the name as the search criteria:

<uddi:find_business generic="2.0" maxRows="10">
 <uddi:name>MMMS Inc</uddi:name>

 27

</uddi:find_business>

Other ways to query a UDDI registry are the use of categorization elements
(categoryBag), or the use of identification elements (indentifierBag):

<find_business xmlns = "urn:uddi-org:api_v3"
xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance">
<findQualifiers>
<findQualifier>
uddi:uddi.org:findQualifier:approximateMatch
</findQualifier>
</findQualifiers>
<identifierBag>
<keyedReference
keyValue = "%"
tModelKey = "uddi:ubr.uddi.org:identifier:dnb.com:D-U-N-S"/>
</identifierBag>
</find_business>

The hierarchical data model of the UDDI registry is reflected in the way information
is obtained from a UDDI registry. Because each entity in the UDDI data model is
identified by an UUID, it is possible to search for registry entries by use of their
UUID. If the key of a registered service is known ahead, then its is possible to obtain
information directly by the use of the get_XX API calls. The example searches for
detailed information about a business with the help of the UUID:

<uddi:get_serviceDetail generic="2.0">
 <uddi:serviceKey>860eca90-c16d-11d5-85ad-

801eef208714</uddi:serviceKey>
</uddi:get_serviceDetail>

7.2 Discovery of Web services in ebXML

The ebXML QueryManager interface provides all necessary methods for the
interaction with an ebXML registry. The QueryManager implements two kinds of
query mechanisms:

• Filter Query
• SQL Query

The Filter Query mechanism supports a XML based query syntax that specifies a set
of filter classes. Each filter specifies requirements for the successful matching of
registry entries. The Filter Query interface supports a XML syntax that allows the
definition of a set of class filters. The set of class filters is matched against the registry
entries. The example above shows a Filer Query example where all registry entries
from film businesses in Austria are retrieved:

<registryEntryQuery>
<registryEntryFilter>
status EQUAL "Approved"
</registryEntryFilter>

 28

<HasClassificationBranch>
<ClassificationNodeFilter>
id STARTSWITH "urn:ebxml:cs:industry" AND
path EQUAL "Industry/filmbusiness"
</ClassificationNodeFilter>
 <ClassificationNodeFilter>id STARTSWITH "urn:ebxml:cs:geography"

AND path EQUAL "Geography/Europe/Austria"
</ClassificationNodeFilter>
</HasClassificationBranch>
</registryEntryQuery>

The SQL Query interface supports a basic subset of the SQL SELECT statement as
described by the SQL-92 standard [30]. Following a relational data model, instances
of classes from the ebXML data model can be mapped to tables with columns
according to their attributes. The following example shows a simple SELECT
statement, where all instances of the registryObject (respectively their IDs) having the
string “MMDS” in their name and the string “movie director” in the description, are
being retrieved:

SELECT r.id from registryObject r, Name n, Description d where n.value
LIKE '%MMDS%' AND d.value LIKE '%movie director%' AND r.id = n.parent
AND r.id = d.parent

7.3 Discovery of Web services in WSDA

The discovery of Web services is carried out by two interfaces, the MinQuery and the
XQuery interface. The MinQuery interface allows basic query support, where the
complete tupleset is returned (see example). The XQuery interface provides XQuery
support. XQueries allow complex - non trivial - searching for services. When a peer
receives a XQuery request the XQuery expression is evaluated against the content
portion of the data tuple. The following example shows a query that finds all available
hire services provided by directors:

LET $s:=/tupleset/tuple[@type="service"]
 /content/service/interface[@type=”http://www.mmds.org/hire”]
FOR $director IN /tupleset/tuple[content/service/interface/@type=$s
RETURN $director

7.4 Human view on Web services discovery

From a human point of view, the presented discovery mechanisms differ in their
expressive power, their complexity, and their usability. The UDDI registry uses key
lookups with simple qualifiers. Searches in UDDI can be carried out in several ways.
The simplest possibility is a keyword based search. Advanced queries can be
expressed by the use of categorization info. Categorization information can be
referenced with tModels, respectively by their UUIDs. A taxonomy based search in a
UDDI registry needs the tModel UUID of the categorization.
ebXML allows filter based search queries. Filters are a very powerful method to
search in the ebXML registry. Filters support hierarchical searches and allow users to

 29

combine different filter for a hierarchical query. Another possibility is the use of SQL
based search queries. A subset of SQL select statements enables user to construct
queries over several classes respectively tables at once. WSDA offers two interfaces
for the search. The MinQuery interface allows for basic search queries in the way of
select-all expressions. The XQuery interface implements the XQuery language that
allows user to search with the help of complex XQuery expressions. XQuery
expressions are a very powerful method for querying a registry. UDDI, ebXMl, and
WSDA assume at least basic knowledge about the underlying data structure when
searching for registered items. The more a user knows and understands the data
model, the better the search results are. The main problem is a complex data model.
The ebXML data model is rather complex and needs a good understanding of the
structure when performing advanced searches.

7.5 Summary

The four different approaches share the same goal: to support the publishing and
discovery of Web services. The actual implementations - from a central registry with
strong limitations regarding the published content to a fully distributed registry
without any limitations regarding the published content - differ in many ways.

The UDDI and ebXML registry implementations follow a centralized approach
where a central entity manages the registry information. In future, both registry
architectures will implement a distributed architecture as well to overcome scalability
problems. In contrast to UDDI and ebXML, WSDA offers a flexible way to
implement registries - a dedicated peer can store arbitrary registry information or each
peer can publish its own Web services registry service. Complementary to these
approaches, the WSIL offers a simple distributed metadata service, where each
service peer publishes a WSIL document on its own at a "well known" address.

The UDDI approach implements a hierarchical data model. The data model follows
a top down approach, a businessEntity element stores basic business information
along with several nested sub elements for detailed technical information about the
business. registry elements can also point to external resources using tModel elements
and thus accomplishing extensibility. In UDDI, the categoryBag and the
indentifierBag elements allow a simple classification of registry entries, without the
possibility of hierarchal taxonomies.

The ebXML registry implements a data structure with classifications and a
hierarchical classification schema. The ebXML registry assumes no limitations about
the content being stored. The slot element allows to extend the data model using key
name pairs. registry entries can also point to external resources, for example a link to
a WSDL document can be stored in an ebXML registry using the externalLink
element.

Both data models share similarities, for example, when registering a basic Web
services. The main difference between these two data models lies in the way how
registered objects are categorized. ebXML offers a built-in extensible category
schema, while UDDI relies on tModel links to an external classification schema. The
ebXML registry supports collaboration and coordination protocols (CPP, CPA),
UDDI does not offer similar capabilities.

 30

The WSDA implements a tuple based data model. Each tuple contains several
attributes and can contain arbitrary content. Actual registry information is stored in
the content part of a tuple, which itself may point to an external registry. WSDA does
not support classification or semantic data directly. Due to the arbitrary data model it
is possible to make use of XQuery expressions that match certain hierarchical criteria,
when it is applied to XML based tuple content.

Compared with ebXML and UDDI, WSDA takes a complementary position.
WSDA does not provide a data model for the actual registry entries; it enables Web
services provider only to publish arbitrary descriptions into the tuple space. Data
tuples can be highly dynamic, their lifespan is determined by several timestamps,
whereas the lifespan in UDDI and ebXML is not limited, because once a Web service
is registered, it stays in the registry as long as the registry is inline or the Web services
provider deletes the Web services registry entry.

The WSIL acts as container for arbitrary web service descriptions or registry
entries. This approach is similar to the approach taken by WSDA, where registry
information can be stored in the content part of a tuple.

The UDDI inquiry API provides several API functions for searching the registry.
The API allows to search in several ways for a business, for example, using keyword
based name queries, or looking for a business using external identifiers.

The search capabilities of ebXML registries are more powerful. The query
interface allows complex search queries with the help of filter expressions or basic
SQL select statements.

The Web services Discovery Architecture follows a distributed approach where
every peer is capable to offer its own service description. registry capabilities can also
be overtaken by a dedicated peer. WSDA offers two query interfaces the XQuery
interface that provides XQuery support and the MinQuery interface that provides
basic selection support for the discovery of web services.

WSIL does not support any direct query interfaces. It is mainly a metadata
container of distributed nature and specifies no discovery interfaces.

None of the approaches implements a built in QoS schema. QoS attributes can be
referenced by UDDI, ebXML, and WSIL by external QoS descriptions. WSDA
allows to store arbitrary QoS descriptions as tuples, but does not offer direct QoS
support. Table 3 compares the aforementioned approaches:

 UDDI ebXML WSDA WSIL

Registry
Architecture

Centralized/
Decentralized

Centralized/
Decentralized

Centralized/
Decentralized

n.a.

Fault tolerance Low Caching Caching n.a.
Scalability Medium n.a. High n.a.
Complexity Simple High Simple Simple
Platform Various Various Various n.a.
Search
capabilities

Poor Good Rich n.a.

Service
description

No, external Yes No, external Yes

Semantic data/ Possible Yes Possible Possible

 31

Ontologies
Extensibility Low High High High
Test registries Yes Yes No n.a.
Overhead High High Medium Low
Replication of
registries

Yes Yes No n.a.

QoS No No No No
Dynamic registry
Entries

No No Yes n.a.

Table 3. Comparison of registry features

8 Conclusion

From a human view the main problem of current Web services registry technologies
is the lack of human interpretable information. Despite of providing human readable
information in form of tag based documents, the presented information remains rather
formal and abstract. The enrichment with informal inline descriptions and
categorizations eases the understanding but is not sufficient. A possible solution is an
active data model, which shows potential usage of the described Web services based
on examples or working scenarios.

From a machine view, semantic markup languages such as DAML+OIL enrich
registries and provide meaningful information. Ontologies for arbitrary content like
DAML-S [15] provide UDDI registry entries with semantic information. Technically
DAML-S profiles are mapped into UDDI registries with the help of tModels. A
DAML-S matching engine uses ontology based information for search requests to
obtain UDDI keys which are in turn used to retrieve the service descriptions from
UDDI registries.

Another example is EDUTELLA [17] that is built on top of the JXTA P2P
framework and provides a peer to peer system with service descriptions in RDF.
EDUTELLA allows complex query operations based on RDL-QEL, provided on
several levels of complexity.

The METEOR-S system implements specialized ontologies, called registry
ontology. Registry ontologies capture properties of registries. The ontology data is
useful for the discovery of registered services. It is possible to update registry
ontologies with another registries ontology to obtain a combined ontology thus
implementing relationships between services of different registries.

Another approach is taken in [31]. Directory information is enriched by context
aware data which is represented by a Multidimensional OEM graph [32]. This data
structure allows to model different facets under different contexts thus providing a
hierarchical structure.

 32

Acknowledgements

This research was supported in part by a research award for Development Methods for
Dynamic Web services Workflows of the Chamber of Commerce Vienna (Wirtschaftskammer
Wien).

9 References

 [1] Universal Description, Discovery and Integration: UDDI Technical White paper.
 http://www.uddi.org/pubs/Iru_UDDI_Technical_White_Paper.pdf. 2000
 [2] W3C. Web services Architecture W3C Working Draft 8 August 2003.
 http://www.w3.org/TR/2003/WD-ws-arch-20030808/wsa.pdf. 2003
 [3] Quan Z. Sheng, Boualem Benatallah, Yan Q. Zhu, Rayan Stephan, Eileen Oi-Yan Mak.
 Discovering E-services Using UDDI in SELF-SERV. The University of New South
 Wales. 2003
 [4] Boualem Benatallah, Marlon Dumas, Quan Z. Sheng, Anne H.H. Ngu. Declarative
 Composition and Peer-to-Peer Provisioning of Dynamic web services. The University of
 New South Wales, Queensland University of Technology. 2002
 [5] Fabio Casati, Ming-Chien Shan. Dynamic and adaptive composition of e-services.
 Software Technology Lab, Hewlett-Packard Laboratories. 2001
 [6] UDDI Version 2.03 Data Structure Reference. http://uddi.org/pubs/DataStructure_v2.htm.
 2002
 [7] UDDI Version 3.0.1 http://uddi.org/pubs/uddi_v3.htm. 2003
 [8] Wolfgang Hoschek. Peer-to-Peer Grid Databases for web service Discovery. CERN IT
 Division. 2002
 [9] OASIS/ebXML registry services Specification v2.5.
 http://www.oasis-open.org/committees/regrep/documents/2.5/specs/ebrs-2.5.pdf. 2003
[10] OASIS/ebXML Technical Architecture Specification.
 http://www.ebxml.org/specs/ebTA.pdf. 2001
[11] OASIS/ebXML registry Information Model v2.0
 http://www.oasis-open.org/committees/regrep/documents/2.0/specs/ebRIM.pdf . 2001
[12] Kunal Verma, Kaarthik Sivashanmugam, Amit Sheth, Abhijit Patil, Swapna Oundhakar,
 John Miller. METEOR-S WSDI: A Scalable P2P Infrastructure of Registries for Semantic
 Publication and Discovery of Web services. Large Scale Distributed Information Systems
 (LSDIS) Lab Department of Computer Science, University of Georgia. 2003
[13] Keith Ballinger, Peter Brittenham, Ashok Malhotra, William A. Nagy, Stefan Pharies.
 Web services Inspection Language (WS-Inspection) 1.0. IBM, Microsoft. 2001
[14] Mike P. Papazoglou, Bernd J. Krämer, Jian Yang. Leveraging Web-services and Peer-to-
 Peer Networks. INFOLAB - Tilburg University, FernUniversität Hagen. 2003
[15] DAML-S Coalition. DAML-S: Web services Description for the Semantic Web. 2002
[16] Massimo Paolucci, Takahiro Kawamura, Terry R. Payne, Katia Sycara. Importing the
 Semantic Web in UDDI. Carnegie Mellon University. 2002
[17] Wolfgang Nejdl, Boris Wolf, Changtao Qu, Stefan Decker, Michael Sintek, Ambrjörn
 Naeve, Mikael Nilsson, Matthias Palmer, Tore Risch. EDUTELLA: A P2P Networking
 Infrastructure Based on RDF. 2001
[18] W3C. SOAP Version 1.2 Part 0: Primer.
 http://www.w3.org/TR/2003/REC-soap12-part0-20030624/. 2003
[19] W3C. WSDL, Web services Description Language.
 http://www.w3.org/TR/2002/WD-wsdl12-20020709/. 2002
[20] ebXML registering a Web services within a ebXML registry.

 33

 http://www.oasis-open.org/committees/download.php/1636/OASIS-registry%20TC%20-
 %20Registering%20Web%20services%20in%20an%20ebXML%20registry.doc. 2003
[21] Hypertext Transfer Protocol - HTTP/1.1. IETF RFC 2616. UC Irvine, Digital Equipment
 Corporation, MIT. 1999
[22] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, Hari Balakrishnan. Chord:
 A Scalable Peer-to-peer Lookup services for Internet Applications. University of
 California, Berkeley, MIT Laboratory for Computer Science. 2002
[23] Using WSDL in a UDDI registry, Version 2.0
 http://www.oasis-open.org/committees/uddi-spec/doc/tn/uddi-spec-tc-tn-wsdl-v200-
 20030627.htm. 2003
[24] Christina Schmidt, Manish Parashar. A Peer-to-Peer Approach to Web services Discovery.
 Department of Electrical and Computer Engineering, Rutgers University. 2003
[25] W3C. XML Extensible Markup Language. http://www.w3c.org/XML. 2000
[26] Business Process Specification Schema. http://www.ebxml.org/specs/ebBPSS.pdf. 2001
[27] ebXML Collaboration-Protocol Profile and Agreement Specification.
 http://www.oasis-open.org/committees/ebxml-cppa/documents/ebcpp-2.0.pdf. 2002
[30] W3C. XQuery 1.0: An XML Query Language.
 http://www.w3.org/TR/2003/WD-xquery-20031112/. 2003
[31] Christos Doulkeridis, Efstratios Valavanis, and Michalis Vazirgiannis. Towards a Context-
 Aware services Directory. Database Systems Laboratory Department of Informatics
 Athens University of Economics and Business (AUEB) 10434 Athens. 2003
[32] Y. Stavrakas and M. Gergatsoulis. Multidimensional Semistructured Data: Representing
 Context-dependent Information on the Web. In Proc. of the 14th Int. Conf. on Advanced
 Information Systems Engineering (CAISE'02), Toronto, Canada. 2002.

