
Web Services Interaction
Mining

Schahram Dustdar, Robert Gombotz
and Karim Baı̈na
dustdar@infosys.tuwien.ac.at
e9906767@student.tuwien.ac.at
baina@ensias.ma

TUV-1841-2004-16 September 6, 2004

Technical University of Vienna
Information Systems Institute
Distributed Systems Group

As Web services play a more and more important role in information tech-
nology, service-oriented systems can also be expected to grow larger in
complexity. Such large systems demand for tools that allow for analyz-
ing and monitoring of service-oriented systems in use. Our work attempts
to apply data mining and process mining to Web services and their inter-
actions in order to provide a means to analyze interactions between Web
service consumer and provider. Firstly, we clarify the term of Web Ser-
vices Interaction Mining (WSIM) and present three levels of abstraction
on which WSIM could be performed: Web service operations, interactions
and workflows. Then we outline some of the problems Web Services Inter-
action Mining (WSIM) could solve. Thirdly, we evaluate how WSIM could
be done on these three levels and present a specification for Web service
log records. We also discuss how these log records could be obtained using
existing tools. We conclude the paper with suggestions on how to develop
Web services which can be mined on all three levels of abstraction.

Keywords: Web service interactions, Web service logging, Web service
mining

c©2004, Distributed Systems Group, Technical University of Vienna

Argentinierstr. 8/184-1
A-1040 Vienna, Austria
phone: +43 1 58801-18402
fax: +43 1 58801-18491
URL: http://www.infosys.tuwien.ac.at/

Web Services Interaction Mining

Schahram Dustdar 1, Robert Gombotz 1, Karim Baïna 2

1 Distributed Systems Group, Vienna University of Technology, Austria,
 {dustdar@infosys.tuwien.ac.at, e9906767@student.tuwien.ac.at}

2 ENSIAS, Université Mohammed V - Souissi, B.P. 713 Agdal Rabat, Morocco,
baina@ensias.ma

Abstract. As Web services play a more and more important role in information
technology, service-oriented systems can also be expected to grow larger in
complexity. Such large systems demand for tools that allow for analyzing and
monitoring of service-oriented systems in use. Our work attempts to apply data
mining and process mining to Web services and their interactions in order to provide
a means to analyze interactions between Web service consumer and provider. Firstly,
we clarify the term of Web Services Interaction Mining (WSIM) and present three
levels of abstraction on which WSIM could be performed: Web service operations,
interactions and workflows. Then we outline some of the problems Web Services
Interaction Mining (WSIM) could solve. Thirdly, we evaluate how WSIM could be
done on these three levels and present a specification for Web service log records. We
also discuss how these log records could be obtained using existing tools. We
conclude the paper with suggestions on how to develop Web services which can be
mined on all three levels of abstraction.

Keywords: Web service interactions, Web service logging, Web service mining

1 Introduction

Currently much research effort is going into the development of Web service
technologies. The development of Web services (WS) themselves has already
changed our view on system and application integration. It seems that we might have
found a standard and widely accepted means of integrating formerly independent
systems across the Internet. In the not so distant future, we might be looking at
systems or applications that integrate and make use of numerous single Web services
provided by just as many different suppliers. However, with the essential building
block, the actual function/method call, now at hand, other challenges are faced. We
begin this paper with a brief definition of key terms.

One of the challenges of making Web services more usable to both providers and
customers is the coordination of interactions between WS. Consider a Web service
that allows its users to order a product. It provides the operations requestQuote-
quantity), orderProduct(quantity) and makePayment(quantity). It is
obvious that a client application should always invoke these operations in a certain

 2

sequence. The availability of the product in a given quantity should be verified before
the actual order is placed and a payment should not be made before the ordering
process has been completed successfully. Interactions of this kind are also called
conversations. In a more complex scenario a Web service might not allow only a
single possible conversation but rather a set of them. Therefore, a WS should have
means of describing all allowable conversations a requestor may have with it. One
attempt to standardize these descriptions is the Web Service Conversation Language
(WSCL) [1].

The Business Process Execution Language (BPEL) deals with Web service compo-
sition and attempts to solve the problem of composing a number of Web services into
business processes. The idea is to describe the aggregation of stand-alone Web
services into a (larger-scale) workflow in BPEL, an XML-compliant standard, and to
have a BPEL engine monitor the correct execution of the process. Although still
emerging, BPEL appears to become a widely accepted standard for Web Service
Orchestration, also because it is backed by many industry leaders. There are already
many implementations of the BPEL specification. A BPEL engine should not only
allow to define workflows using Business Process Execution Language, but also to
monitor the execution of that workflow. It does so by logging activities, providing a
(graphical) representation of the workflow and the state of execution of an instance of
that workflow as well as informing the human user of possible exceptions or
undesired or unexpected behavior in the business processes execution. Web services
Interaction Mining (WSIM) can be seen as an extension to the BPEL approach, as our
contribution is to allow also for the mining and monitoring of WS provided by a third
party. A BPEL engine only allows the monitoring of WS that the user has ownership
of.

Another essential term in WSIM is mining. Basically, mining describes the process
of discovering knowledge in large amounts of data. An example we like to give when
describing the goals of data mining is that of a supermarket chain “logging” all
purchases made by its customers. After some time, the manager wants to increase
sales by trying to identify which products are often bought in combination. The
store’s database can then be searched for patterns in customers’ buying behavior, i.e.,
the data is mined for such patterns. Through mining, management might learn that its
customers often buy a bottle of red wine and dinner candles in one visit to the store.
Trying to optimize sales, the management could react by placing candles and red wine
in shelves next to each other or even by offering – and, of course, advertising - a
“romantic candle light dinner package” consisting of the two.

To go further, mining is also used to identify more complex patterns. Workflow
mining or process mining describes the attempt to find workflow patterns in a given
set of log data. Consider a number of entities or agents, each performing a single,
independent task. The sum of these tasks might be a workflow or business process.
Consider also that every entity involved in the process provides event-based data,
which is logged. An event occurs, when an activity is started and when it is
completed. In a simple case, the data provided should consist of the identifier of the
activity that is being performed, the event type, which can be “start” or “completed”,
and a time stamp. After a sufficient amount of log data has been collected one can
mine this logging information for patterns and thereby find that e.g. an activity A is
always performed before activity B. Activity B in turn is always performed before

 3

activity C, and sometimes, but not always before D. Activities B and D are also
always completed before the execution of C starts. From this information one could
derive the simple workflow model shown in Figure 1.

Figure 1. Simple workflow model

In more complex workflows the logged information about events must be slightly

richer, but the above example should suffice for describing the idea behind process
mining. An overview of research in the field of process mining is given in [2]. An
algorithm for mining exact models of concurrent workflows as well as an
implementation of that algorithm is presented in [3].

1.1 Fundamentals of Web Services Interaction Mining

We make use of the developments in the fields of data mining and process mining
and apply them to Web services. We believe that this can be a vital contribution to the
world of Web services in general as well as to future suppliers and users of Web
services. We currently develop our Web Services Interaction Mining approach with
regards to three levels of abstraction that represent three complementary Web services
“views”. Figure 2 depicts a stack of views on Web services. As one goes from the top
to the bottom, the level of abstraction falls and we are looking at things in higher
detail.

Figure 2. Levels of Abstraction

On the Web service Operation level, we want to examine only one single Web

service and its internal behavior. We will not concern ourselves with a Web service’s
interactions with other Web services or applications, but rather focus on its
functionality as if it were alone in the world. Furthermore, the focus might even be on
just one operation of the Web service. However, we also want to examine the Web

Web service Workflows

Web service Interactions

Web service OperationsK
n

o
w

le
d

g
e

D
is

co
ve

ry

 4

service as a whole. Relating this to mining, a given log output of the Web service
shall be analyzed to gain information about its behavior.

On the Web services Interaction level, we again direct our attention to one Web
service, but also want to take into account its “direct neighbors”. The term “direct
neighbors” refers to other Web services that the examined WS interacts with. Such
interactions may be explicit, i.e. defined in a Web Service Composition language, or
implicit, i.e. calls to other WS from within the Web service’s implementation.
Explicit interactions are also said to be declarative, implicit interactions are also
called programmatic. On this level we again want to mine log data for further
information about the Web service’s interactions with others. This information could
reveal interesting facts about a Web service’s interaction partners, such as critical
dependencies.

The highest level of abstraction is the Web service Workflow level. As the name
suggests, the focus now is on large-scale interactions and collaborations of Web
services which together form an entire workflow. Technically, the number of Web
services in a workflow is unlimited. On this level, we want to examine the execution
of the entire process. Here we will be able to benefit from the results and findings of
researchers in the field of process mining.

Even though our current focus is on mining, it must be stressed that once a mining
effort is completed (with respect to its primary goals of building a model of a
process), it should be continued and serve the purpose of monitoring. Therefore,
future log data should constantly be analyzed and compared to the model established
in the initial mining process. One might find exceptions in future behavior of the
examined system, or – in an even more undesirable case – find that the initial model
was built on false assumptions, possibly because of insufficient log data.

The remainder of this paper is structured as follows. In Section 2, we present a
motivating case study which we will refer to throughout this paper. In Section 3, we
present our approaches to WSIM in detail. In Section 4, we discuss possible
implementations of these approaches. Section 5 presents some related work before we
conclude with Section 6.

2 A Case Study – Managing a film crew

In this Section we present a real-life analogy to a service-oriented system. It is
supposed to serve as an example that we can refer to throughout this paper in order to
present our arguments more clearly to the reader.
 Consider the process of creating a motion picture. This task involves the
participation and cooperation of a large number of people, such as actors, camera
crews, make-up artists, stuntmen, etc. Many of these people can be considered
members of stand-alone teams or crews, e.g., the stunt crew or the make-up artists
crew. Above all stands the director who manages all teams and actors to be in the
right place at the right time.

The aggregation of individuals into teams allows the director to abstract from the
complexity he is faced with. If he needs the stunt crew to be available to shoot a

 5

certain scene, he will contact the head of the stunt crew, explain to him/her the details
of the task and can then rely on all stunt crew members to do their job as desired.

Consider also, that the above mentioned crews may very well be long-term teams,
who work together for much longer than what is the time span of the creation of a
particular film. They participate in various movie projects over time.

Drawing analogies from the above described real-life situation to a service-
oriented system is pretty straightforward. The individual, stand-alone, long-lived
teams can be seen as Web services. For example, the “Stunt People Service” might
provide operations such as negotiateCooperation(), performMartialArts-
Stunt(), performCarCrashStunt() and performWildAnimalStunt(). These
services are somewhat independent from the actual project they are currently used by.
Of course, every scene in a film is unique, but the general service of performCar-
CrashStunt() is provided independently of the particular movie.

Critics might say that the above real-life example is not a perfect analogy to how
Web services work and that only an interface is provided which allows a client to
request people who will then perform the stunt. We argue, however, that this detail is
insignificant to the point we want to make. Imagine, a director only passing a detailed
description of the desired stunt act to the stunt crew (i.e., a SOAP message) and the
crew returning a video tape holding the completed scene. In this case, the stunt crew
can serve as a perfect metaphor of a Web service.

The creation of a film is a workflow, or business process, within the service-
oriented system. It combines the functionalities of numerous Web services in a
somewhat loosely-coupled way. The director (producers) is the owner of the
workflow, yet not the owner of each involved crew. The cooperation between the
workflow owners and the crews is based on contract agreements, as it can (and
probably will) be the case between the provider of a Web service and its clients.

The entire service-oriented environment can be either a large film studio, that
itself employs make-up and stunt teams and provides them to its directors as “Web”
services. Thinking in larger and more loosely-coupled terms, the service-oriented
environment could also be the ecosystem of Hollywood. Within the Hollywood
environment, numerous Web services are deployed and can be called by anyone who
wants to make use of the functionality they provide. A producer, who plans to
perform the business process of making a movie, may contact these Web services,
lead negotiations, decide on which services actually fit his purpose, make contracts
with the services and then trigger the execution of his workflow.

 6

Figure 3. Making a film in a service-oriented system

Figure 3 depicts the scenario we presented as a case study. The rectangular box
represents the service-oriented environment. The circles are single, stand-alone Web
services. Note, that many services exist more than once. This is definitely the case in
the motion picture industry – there are a number of stunt crews offering their services
in the Hollywood area. However, each of them might provide slightly different,
maybe even unique services. It is up to the requestor to decide which service provider
can fulfill his needs best. The line represents the workflow which combines the
functionalities of a number of services into a higher-level task of making a film. To be
precise, the line only connects the Web services that are part of the workflow. The
actual process will be a complex series of calls to the respective services which can
happen sequentially, concurrently or in loops. Obviously, the camera crew will be
needed throughout the entire duration of the filming, the make-up artists are needed
usually in the mornings, but also during and between the taking of scenes and the
stunt crew could be necessary only during a certain phase in the process. The schedule
of the project shows when and where services are needed and can be seen as a
detailed specification of an instance of a workflow.

We have now presented a motivating case study which we will refer to throughout
the remainder of this paper. We described the making of a motion picture as an
analogy to a workflow in a service-oriented system.

3 Approaches to Web Services Interaction Mining

In this Section we present our approaches on how the idea of Web Services
Interaction Mining could be put into practice. First, we elaborate on the three levels of

 7

abstraction we have identified in Section 1 along with references to the case study
given in Section 2.

The lowest level of abstraction, or the most detailed view on a Web service, is the
Web service Operation level. Here we focus on a single Web service’s internal
functionality or even only a single operation which is part of a Web service. Consider
the case study of a film crew that was given in Section 2. When examining a film
crew on the operation level, we direct our attention to one and only one crew (or Web
service), e.g., a group of makeup artists. The crew offers a number of services (or
operations). We assume there is one person who manages the crew and arranges
contracts with outside clients. In a WS that could be an operation called
negotiateCooperation() which should always be called by clients in order to
initiate a cooperation. Another operation might be requestMakupArtists() which
delivers a number of makeup artists who actually put make-up on actors. Other
operations could be requestHairDressers(), requestHorrorMakupArtists()
and maybe requestChildrenMakupArtists(). Together, these operations form
the Web service MakeupService.

We now move up one layer in our stack of views on Web services: the Web
services Interaction level. The focus is on one Web service and its interactions with
other WS, or as we called them in Section 1, its direct neighbors. These are all Web
services, which the focused WS interacts with. Such interactions occur in various
ways.

There are four basic types (patterns) of WS interactions. They are one-way,
request-response, solicit-response and notification. One-way and notification
operations involve only one message that is sent between the interacting Web
services. The requestor sends a message to the provided WS and does not expect a
response. From the message sender’s point of view such an interaction is considered
to be of type one-way. From the message receiver’s point of view it is considered a
notification operation. Therefore, whether a transaction type is one-way or
notification depends on the perspective, i.e., which WS the focus is on. If WS A calls
WS B in a one-way manner, we say that WS A has knowledge of WS B, but not vice
versa. An interaction of that type might be accomplished with a simple Logging WS
within a service-oriented system that only waits to receive messages which contain
logging information from other WS. Therefore, WS B is known to others, yet, it has
no means of contacting them in return. Again, a service definitely has knowledge of a
WS it sends messages to, but does not have to know about those who it receives
messages from.

 The two remaining types of interactions, request-response and solicit-response,
involve the exchange of two messages between the interacting entities. A message is
sent by the initiator of the interaction and the called service replies with a response
message. Just as in the above cases, the two types of interactions vary only by who is
the initiator of the interaction. When a service provides a two-way interaction to the
outside passively, we call the operation request-response. If the situation is reversed,
meaning that the service itself initiates a call to another WS and expects a response,
the interaction is called solicit-response. A WS A needs to have knowledge of a WS B
it wants to make operation calls to. In the other case of WS A only providing
operations to the outside, it does not need to know about WS making calls to it.

 8

Going back to our WS MakeupService and assuming this is the WS we want to
analyze on the WS Interaction level, the four different kinds of interactions could be
the following:

If the crew decides to lay off one of its employees, it might send a report to an
agency stating it has fired person X. The crew does not expect a reply from that
agency; it simply interacts with it in a one-way manner. In a different case, the crew
might periodically receive magazines and product samples from a “Beauty Products
Promotion”-WS. This is an example of a notification interaction. In this scenario, the
make-up artists may or may not have knowledge of the service they are receiving
notifications from. They could have subscribed to be notified of certain news or they
could just be receiving them without having ever asked for them.

The ways in which a crew of make-up artists can interact with others in a two-way
manner could be the following. The basic services the crew offers to its clients are
examples of request-response interactions. The operations can be called from outside
the service and a response will be given back to the requesting entity. An example of
a solicit-response interaction is the crew calling a “Supplier”-Web service to order
and receive beauty products which are needed on the set. Here again, the crew must
have some means of contacting the Supplier-service and therefore must have
knowledge of it. In other cases, the film crew may not know about other services it is
used by. The crew might at any given time be contacted by a producer it has never
heard of, who calls the operation negotiateCooperation() on the crew. If the
crew is unavailable during the requested time, it replies in the negative and might not
even keep a record of it. If we think again of Web services in a service-oriented
system it will depend highly on the purpose of the Web service whether it has a
persistent store of all calls to it or not. A company providing a WS “Get today’s funny
cartoon” would probably not log the calls to it. A “more important” WS within a
company’s information system which allows callers to query a database might very
well decide to log all calls to it, both successful and unsuccessful. However, from a
mining point of view, we have to request for all calls to be logged in order to be able
to discover all entities interacting with a given WS. A more formal description of the
four basic types of interactions is given in Section 3.2.

Having discussed the four basic types of interactions between WS with respect to
the role they play in WSIM, we must also take a look at another categorization that
can be applied to collaborations of WS. We can categorize interactions by whether
they are declarative or programmatic. As we mentioned in the introduction of this
paper, WS can be orchestrated using BPEL to declare the collaborations. A BPEL
engine then guards the execution of these collaborations. Since BPEL is used to
describe an entire workflow comprised of numerous WS, it somewhat exceeds the
level of abstraction of the Web services Interactions level. We want to focus on one
Web service and its direct neighbors. Therefore, we are not (yet) concerned with
large-scale workflows but rather a small part of it.

We now take the last step up the stack of views and deal with mining for entire
business processes, or workflows. On this level we might be looking at numerous Web
services which in one way or another collaborate in the execution of a larger-scale
task, i.e. a business process. Referring to our case study, we now look at the
production of a whole movie. The completed motion picture is the result of inputs of
numerous groups. These groups, or crews, can be seen as Web services; the making of

 9

a movie is a business process. Since it is only a matter of time until the relatively new
technology of WS will be used to perform more and more complex tasks and WS will
be combined into entire workflows, the management of these workflows will be a
major concern in the future. Our approach to provide mining of Web services on a
workflow level can, therefore, be an important contribution to the field.

In the following subsections we go into further detail. Specifically, we will take a
look at each level of abstraction. For each level, we present a - normative - format of
log entries, or a log specification, as well as simple examples of log records. By
normative we mean log formats the way we would like them to be. The focus is not
yet on how to keep these logs or on who should provide them. This issue will be
discussed in the next Section thereafter.

3.1 The Web service Operations level

On the Web service operations level we are concerned with a single Web service’s
internal behavior and its operations. We do not yet consider interactions with other
WS. Take, for example, the make-up artists crew of Section 2. As stated before, the
Web service provides the operations negotiateCooperation(), requestMake-
upStaff(), requestHorrorMakeupStaff() and requestHairDressers().
Recall also that all activities performed by the crew are recorded, i.e. they are logged.
A possible log kept by the operation requestHairDressers() of the “Make-
upService“ might therefore be :

Start – Ben – doingHair – 2003:02:03:06:45
Start – Lisa – doingHair – 2003:02:03:06:53
Complete – Ben – doingHair – 2003:02:03:07:33
Start – Ben – doingHair – 2003:02:03:08:02
Complete – Laura – preparingWig – 2003:02:03:15:57

Listing 1. Log-information of requestHairDressers() in LOG-requestHairDressers.txt

Each entry in the above listing example consists of an event type specifying whether
the record marks the start or the completion of an activity and identifier of the person
performing the task (may be omitted if that information is irrelevant), a name of the
activity, e.g. doingHair, and a timestamp. The information is stored in a file called
“LOG-requestHairDressers.txt”. Similar log-files exist for other operations. A formal
model of a log entry is depicted in Figure 4.

On the provided data we can now perform data mining, which could reveal
interesting information, such as extent of utilization of an operation or an individual
person, idle-times of an operation, or bottlenecks within the operation. It is also
possible that even within an operation a small workflow is executed. If so, workflow
mining could be applied to the data in order to extract a model of the performed
workflow.

We also assume there is a log-file provided by the operation negotiate-
Cooperation(), which holds entries like the following:

Start – acceptOffer – customer05 – 2003:01:02:15:45
Complete – acceptOffer – customer05 – 2003:01:02:15:46
Complete – evaluateOffer – customer09 – 2003:01:07:10:23

 10

Start – rejectOffer – customer09 – 2003:01:07:14:03
Start – executeCooperation – customer05 – 2003:01:28:06:00
Complete – executeCooperation – customer05 – 2003:07:27:18:00

Listing 2. Log-information of negotiateCooperation() in

LOG-negotiateCooperation.txt

In the above example, we clearly deal with a workflow within an operation. Note that
in this example we added an identifier to the log record that specifies which workflow
instance the respective activity belongs to, e.g. customer09. This additional
information is needed in order to be able to distinguish between workflow instances
which should all follow a certain workflow model. The workflow model can then be
discovered by examining all workflow instances and building a model which
describes all these instances. This would be an example of process mining within an
operation of a WS. However, data mining can also be applied to the above log. This
could reveal information about a certain client being a very valuable customer or
another one often posting offers that have to be rejected.

Figure 4. Class diagram of an operation log entry

To raise the level of abstraction, we now analyze the Web service as a whole. To do

so, we may use all information provided by the operations in their respective log files.
If we expect workflows to exist within the WS but across operations, we could apply
process mining to the WS’ logs. To do so, we would first generate a new log file
“LOG.temp-xyz-MakeupService.txt”. Into that file, we would merge informa-
tion included in the original log files. For example, in the information provided by the
operation negotiateCooperation() we would look for the activity

 11

executeCooperation and then find the log-entries marking the start and the
completion of executeCooperation with respect to a certain workflow instance,
e.g., customer05. These entries could provide us with the information of when the
task was started and when it ended through the included timestamps. After that, we
would go through the logs of the other operations and extract all entries that were
made within the given time span of the task. These records are extended by adding the
identifier of the operation they were recorded by. The resulting log file would include
all activities performed by any operation within a given task. This log could then be
processed and mined for possible workflows.

An alternative approach would be to process the individual log files, e.g., “LOG-
requestHairDressers.txt”, first and use the extracted information when mining
for larger scale workflows. For example, “LOG-requestHairDressers.txt” is
first processed in a way such that for every activity the earliest start-record and the
latest complete-record for every day are looked up. The timestamps of these records
are used to generate new, higher-level log entries of the kind [Start | Complete] –
activity – timestamp. Using these new log records, it might be discovered that a given
activity within the operation is always performed before another activity. This is
another example of doing workflow mining on a given activity. The resulting
temporary logs of the individual operations could then be used to further analyze the
Web service as a whole. The advantage of processing individual logs into temporary
higher-level (or higher abstraction) logs is that the amount of data on even higher
levels of abstraction can be dramatically reduced and therefore be analyzed in a
smaller amount of time. Also, information in low level log records might be not
needed, possibly even disturbing on higher levels of abstraction because the focus is
on different aspects of the Web service’s functionality and behavior. Note, though,
that an occurrence of e.g. the operation requestHairDressers() in a higher level
workflow model can always be replaced by the workflow model of that operation
itself, which was discovered when the operation was mined on a lower level of
abstraction. Therefore, a user is able to “browse” within the resulting high-level
workflow model and view elements of that model on lower levels of abstraction.

We have now presented examples of how mining can be applied on the operations
level. The approaches include techniques of both data and process mining. The
strength of our suggestions is the variable level of abstraction when mining a Web
service. However, a clear limitation of our approach is the obvious ad-hoc-ness of
mining efforts on the Operational level. The questions mining can answer about a WS
are highly dependent on the specific implementation and functionality of that WS. A
more general and widely applicable solution is yet to be found.

3.2 The Web Service Interactions level

On the Web services interactions level, we focus on a single Web service and its
relationships to its direct neighbors, i.e., other WS that the examined WS interacts
with. Other than on the operations level, our attention now is directed primarily on
these interactions rather than on functional aspects of the WS.

There are two ways in which interactions between WS can be implemented. They
can be either declarative or programmatic. Declarative interactions are described in a

 12

specific (possibly standardized) language, such as BPEL, and then executed by a WS
orchestration engine. Web Service Composition may also be accomplished using
declarative transactions. From a mining point of view, declarative transactions are
somewhat easy to discover, given they are declared in a standardized language that
can be analyzed by a mining engine. The mining engine may traverse the deployment
descriptor for entries concerning a certain examined WS.

The other possibility of implementing an interaction between WS is inside the
program code, i.e., the transaction is programmatic. Interactions of this kind can only
be discovered by a mining engine if they are logged carefully and completely. In
order to be able to also distinguish between the four basic types of transactions we
suggest a standardized format for log entries. We want an entry to consist of an
identifier that marks the entry as an interaction so as to distinguish it from “regular”
entries like those shown in the previous subsection. We refer to this identifier as int.
The next portion of the log entry should be one of a set of standardized identifiers that
shows details of what type of interaction it is. Furthermore, an activity, an identifier of
the other participating WS, and a timestamp are needed. A log entry made by the
MakeupService could therefore be “int – oneWay – reportLayoff –

someAgencyWS – 2003:05:22:10:00”. Note, that the entries concerning inter-
actions do not require an extra log-file. The entries can be identified based on their
structure which differs from that of other entries. The fact that the log entry is made
into the files used in the previous subsection also gives us additional information
about where within a WS, i.e., in which operation, an interaction with another WS
takes place.

The result of the mining efforts on the Web services Interactions level should be
an interaction graph for each WS and its direct neighbors. The graph should contain
information about what type of interaction links the WS to a specific neighbor and
from where in the WS the call is coming from. From the activity-part of the above
described log-entry we can also derive a name for the interaction as is common in
many modeling languages. Note, that a WS might have more than one interaction
with a direct neighbor.

Log specification

In order to be able to mine for programmatic interactions between WS we need

those interactions to be logged. The four basic types of interactions between Web
services are one-way, request-response, solicit-response and notification. The log
entries that are made by a WS should reflect these different kinds of interactions so
they can be recognized and displayed appropriately. We have established a minimal,
but sufficient set of log records that each corresponds to a different type of
interaction. We start out with the case of two-way operations.

Two way operations are either of type request-response or solicit-response. The
only difference between request-response and solicit-response is the perspective from
which we look at the operation. Therefore, we can use the same type of log entry for
both of them. During the mining it can be determined out of context which type of
operation we are looking at.

 13

Figure 5. Two-way interaction

Figure 5 depicts a two-way (synchronous) interaction between WS A and WS B.

From WS A’s point of view the operation is solicit-response. WS B, however, is
providing a request-response operation to WS A. This detail is insignificant to our
logging specification and only becomes important once we mine the logs for
interactions. At that point, it will depend on which WS we focus on whether the
interaction is identified as request-response or solicit-response.

As we stated before, log entries concerning interactions must contain the
following information: an identifier marking it as an interaction entry, an identifier of
whether the interaction is one-way (asynchronous) or two-way (synchronous), an
identifier of where within the interaction we are, an identifier concerning the
interaction partner, an identifier of the activity that is being performed, and a
timestamp. The identifier marking the type of log entry could be simply “int”, which
is short for interaction. The following identifier can be “sync”, stating that the
interaction is two-way, or synchronous. The next identifier should mark the “state” of
the interaction and can be one of the following: “sendRequest” indicates that the
interaction was just initiated; “receiveRequest” (logged by the second entity involved)
states that the request was received. That second entity would then declare it has
replied by logging “sendResponse”. Finally, the initiator of the interaction would log
“receiveResponse”. The next identifier should indicate the interaction partner. The
initiator, WS A, would therefore log the target endpoint of WS B it makes a call to.
WS B would log an identifier of WS A who is the requestor. The next part of the log
entry would be an identifier of the activity that is being performed. The last part of the
log entry is a timestamp.

With respect to the interaction between WS A and WS B (Figure 5) the log entries
would look as follows. Recall that each of the Web services upholds its own
(multiple) log files. The log entries are given in chronological order.

Just before making the actual call WS A would log the following entry:

int – sync – sendRequest – <WS B target endpoint> – <activity

x> – timestamp

WS B would receive the call in form of a SOAP-message and create the following log
entry in its log file:

int – sync – receiveRequest – <WS A identifier> – <activity
y> – timestamp

After finishing performing the request WS B would send back a SOAP-message and
create another log entry:

 14

int – sync – sendResponse – <WS A identifier> – <activity y>
– timestamp

Finally, WS A would receive the response and make another entry to its log file:

int – sync – receiveResponse – <WS B target endpoint> -
<activity x> - timestamp

The log files now hold complete information about the interaction between WS A

and WS B. Using the starting identifier int entries concerning interactions can easily
be found in the log –files. The marker sync tells us we are dealing with a two-way
operation. Upon the next part, e.g., sendRequest, we can determine whether the
operation is request-response or solicit-response. The next identifier is used to match
the interacting partners together. The activity description allows us to further describe
the interaction. The above log entries are sufficient to mine for two-way interactions.

We now get to one-way, (possibly asynchronous two-way), interactions as shown
in Figure 6.

Figure 6. Asynchronous interaction

Note, that in figure 6 the bottom arrow is drawn using a dotted line. That is

because it may or may not exist in an interaction between two Web services. The top
arrow symbolizes the initial call from WS A to WS B, a one-way interaction.
Depending solely on the quality and semantics of the operation that is called in WS B,
a response may or may not be expected by WS A. If no response is necessary, the
interaction is simply one-way from WS A’s point of view, or notification from WS
B’s perspective. If on the other hand a response is expected, we are dealing with an
asynchronous two-way interaction. These different cases need to be reflected in the
log entries concerning these interactions.

We begin with the case of an asynchronous two-way interaction, implemented by
performing two individual one-way operations. In the above figure that means the
interaction does consist of both arrows, each symbolizing one message being sent.
The log entries for an asynchronous interaction differ only slightly from those
corresponding to synchronous two-way interactions. Again, the log entries are listed
in a chronological order.

When making the initial call WS A would log that step:

int – async – sendRequest – <WS B target endpoint> –
<activity x> - timestamp

WS B receives the call and logs:

 15

int - async – receiveRequest – <WS A identifier> – <activity
y> – timestamp

When sending back the response WS B would create another log entry of the
following format:

int – async – sendResponse – <WS A identifier> – <activity y>

– timestamp

As soon as it has received the response WS A would finally record:

 int – async – receiveResponse – <WS B target endpoint> –

<activity x> – timestamp

These log entries are similar to those of a synchronous interaction. They only

differ in the identifier for the kind of interaction which is now async. However, during
the mining process asynchronous interactions may be harder to identify. Synchronous
interactions are terminated within one step of their initiation, because the execution of
the requesting process halts until a reply is received. That means that the
sendRequest-log entry will be followed by the receiveResponse-entry. Asynchronous
interactions, however may take much longer to process. Also, the sendRequest-entry
will typically be found in a different operation’s log file than the receiveResponse-
entry. That is because the response is delivered to the requesting WS A by an
operation call by WS B. Therefore, when mining for interactions we will first create
an intermediary log file for a whole WS by combining the original logs kept by each
operation.

The second case of one-way operations is the one where no response is expected
by the initiator of the interactions. Recall the example we gave of the film crew
reporting to an agency the layoff of one of its employees. Referring to Figure 6 the
bottom arrow would be omitted in a one-way operation. Such operations are called
one-way (from WS A’s perspective in Figure 6) or notification (from WS B’s point of
view. The format of a log entry concerning that specific interaction should be as
follows:

When initiating the interaction WS A would log:

int – oneWay – <WS B target endpoint> – activity – timestamp

When receiving the call WS B would create the following entry in its log file:

int – notification – <WS A identifier> – activity – timestamp

A formal depiction of interaction log entries is given in Figure 7. The fact that the

interaction is logged twice, i.e. by both WS might seem redundant at first. However, it
is the only way to be able to discover the interaction from both WS perspectives when
mining their logs. If, e.g., only the initiating WS were to log the interaction, there
would be no way to find out about the interaction when mining the other Web
service’s log. Therefore, both participating entities need to keep record of the

 16

interaction. The initiator marks the entry as oneWay, the notified WS keeps a
notification record. Another reason why also the notified party in a one-way
transaction needs to uphold a record is the possible unavailability of the initiator’s log
record. That is the case of the initiating WS is owned by a third party. Our mining
engine should also discover such cases and display a Web service’s dependency on a
third party WS.

Figure 7. Class diagram of an interaction log entry

Example of WSIM on the Interactions level

In this subsection, we give an example that will further clarify our mining

approach on the Web services Interaction level. We present example log records and
the resulting interaction graph, which is the output of mining on the Interactions level.

 17

Figure 8: Example interaction graph

Figure 8 depicts an interaction graph for Web service A, i.e., the result of mining

on the Web services Interactions level with the focus on Web service A. It contains
one example of each of the four basic types of interactions between WS. The
interactions are numbered from one to four, to which we refer to when we present the
corresponding log entries in the following. For simplicity, the timestamps only show a
time, while the date is omitted. Imagine the entries were all made on the same date.

WS A interacts with the LogService in a one-way manner. The interaction is
marked with (1) in the interaction graph. WS A’s log file would contain an entry such
as

int – oneWay – LogService – log – 7:03

Consequently, the LogService’s logs would contain an entry

int – notification – WS A – loggingRecord – 7:04

Note, that for the interaction graph in Figure 8 we only used the entry in WS A’s

log. WS A recorded the performed activity by the identifier log which is also depicted
in the graph as a more detailed description of the arrow symbolizing the interaction.
We could have added the LogService’s activity, i.e., loggingRecord on the other end
of the arrow, but we see that as a detail that is insignificant since the focus is on WS
A.

The one-way interaction is depicted as a unidirectional, lined arrow pointing from
the initiator to the called WS. The interaction between WS A and WS B is of type
solicit-response. It is marked with (2) in Figure 8. The log entries are

int – sync – sendRequest – WS B - query – 8:01
int – sync – receiveResponse – WS B – query – 8:04

in WS A’s logs and

int – sync – receiveRequest – WS A – inform – 8:02
int - sync – sendResponse – WS A – inform – 8:03

 18

in WS B’s log files. The interaction is depicted as two line arrows going in opposite
directions indicating the direction the messages are passed. Both arrows show the
activity that is being performed on the respective interacting partner’s side, i.e., query
and inform.

The interaction of WS A with WS C is of type request-response, i.e. the interaction
is initiated by WS C. It is marked with (3) in Figure 8. These are the corresponding
log entries, starting with those in WS A’s logs.

int – async – receiveRequest – WS C – returnStatus – 9:02
int – async – sendResponse – WS C – returnStatus – 9:03

int - async – sendRequest – WS A – requestStatus – 9:01
int – async – receiveResponse – WS A – requestStatus – 9:04

The fact that WS A is only a “passive” participant in the interaction is emphasized

by drawing both the interaction and the other WS using a dotted line. Other than that,
the visualization is similar to the previous case. Two arrows symbolize the messages
that are passed between the WS. The interactions are further described by the terms
requestStatus and returnStatus which refer to the activity-part of the log entries.

Finally, WS A interacts with WS D in a notification manner, i.e., WS D sends an
unanswered message to WS A. The interaction is marked number 4 in the interaction
graph. The log entries are

int - notification – WS D – update – 10:02

on WS A’s side and

int - oneWay – WS A – sendUpdate – 10:01

Note, that again the box symbolizing WS D and the arrow symbolizing the

interaction are drawn using dotted lines to emphasize WS A’s passive role in the
interaction. Also, only WS A’s role in the interaction is visualized, i.e., update. This
example can be used to clarify the need for log entries on both sides even in one-way
interactions. Imagine, WS D were not in our ownership and we would have no means
of accessing its logs. In that case, the log entry in our own WS A would be sufficient
to discover that an interaction has happened.

3.3 The Web Service Workflows level

On the highest level of abstraction, the workflow level, an entire workflow, or
business process, comprised of a number of Web services is to be examined. The
result of the mining effort on this level is a model of an entire workflow.

The mining on the workflow level is a stand-alone procedure, i.e. the logs need to
be mined specifically for workflows. At first glance, one might think a workflow
model could be constructed by simply combining the interaction graphs of the
previous Section into a workflow model. Unfortunately, it is not that simple.

 19

The interaction graphs built through WSIM on the Interaction level do not contain
any information on workflows. They display all interactions of a WS, no matter what
workflow they belong to. Consider our case study, for example. A camera crew might
interact with a stunt crew when involved in a workflow called makeFilm. However,
during another workflow, e.g., makeNatureDocumentary, there are no interactions
with a stunt crew, but rather with a team of nature experts, who assist the camera crew
in selecting the appropriate equipment. The WS “Nature Experts” might inform the
camera crew that frogs are amphibians, i.e., they live on the land and in the water.
The camera crew would then know that regular as well as water proof cameras need
to be used during the production of a documentary on frogs. This example shows that
some interactions are part of a given workflow, others are not. This has important
implications on WSIM, for it shows the requirement of workflow information when
WSIM should be performed on a workflow level.

Log specification

On the workflow level, we want to apply process mining to a service-oriented
system. To do that, our log specifications need to be extended. In order for workflow
mining to be possible, log entries need to include workflow information, i.e., a
process-ID and an instance-ID. The process-ID specifies the workflow, or business
process that is currently being executed. With respect to our case study, the business
process might be called makeFilm, hence all log entries would include the starting
identifier makeFilm. The instance-ID refers to one single execution of the business
process. During mining this is needed to compare multiple instances of a workflow to
each other and find a workflow model that best describes all those instances. In our
case study an instance could be “Lord of the Rings part 1” or “The Village”. The last
extension to the log specification is therefore to add

<process-ID> - <instance-ID> -

to the beginning of every log entry.

Example of WSIM on the workflow level

We now present possible results of WSIM on the Workflow level. We will not present
the reader with complete sets of log records belonging to a workflow. Remember, a
workflow may involve the execution of a very large number of activities performed
by many different entities, i.e., Web services. Therefore, we prefer to show the output
of WSIM on the workflow level for two different workflows. The examples shown
should raise awareness of the challenges that are faced during process mining and
further emphasize the importance of workflow information in a Web service’s logs.

 20

Figure 9. Workflow model "makeFilm"

Figure 9 shows the possible output of WSIM on the workflow level when mining for
the workflow makeFilm. The top circle indicates the initialization of the workflow. At
first, the WS “Director” is called. The WS then has one of three options. It may make
a call to the WS “Cut & Edit Crew” or it may terminate the workflow (indicated by
the circle marked X). The third option is to shoot another scene for the film,
represented by the branch on the very left. The making of a scene starts by a call to
the WS “Stunt Crew”, or to the WS “Actor”, or to both. After that, there is always an
interaction with first the Makeup Artists Crew and then the Camera Crew. When the
branch of the workflow is finished, the control flow goes back to the Director. The
above example is, of course, strongly simplified – the creation of a motion picture
involves many more entities (WS). A general model of the making of a movie would
be more complex. However, the presented example is sufficient to provide an idea
about WSIM on the Workflow level.

In order to show the large scope of WSIM on the Workflow level, we provide
another example workflow. Figure 10 is a graphic representation of the workflow
makeDocumentary. Note, that some of the WS which are part of the workflow
makeFilm are also involved in making a documentary, e.g., the WS Director, the
Camera Crew and the Cut & Edit Crew. However, there are also other WS which play
no role in the making of a film, e.g., the WS “Historian”.

These two example workflows show nicely, how loosely-coupled Web services can
be. There are basically no limitations as to how many workflows a single WS might
be part of. The examples also emphasize the need for workflow information in log
records if WSIM should be performed on a workflow level. Without the identifiers we
discussed in the previous subsection, i.e., process-ID and instance-ID, a log entry is
practically worthless to workflow mining. Therefore, WSIM on the workflow level is
only possible if sufficient workflow data is available.

 21

In this Section we have presented log specifications and example log records which
would make WSIM possible. In Section 4 we will discuss how these logs could be
obtained by a WSIM implementation

Figure 10. Workflow model "makeDocumentary"

4 WSIM Implementation Architecture

In the previous Sections the basic concepts of WSIM have been presented. In this
Section we focus on discussing implementation aspects. Figure 11 details WSIM
components and their coordination as follows:

(a) Starting from Web services execution, events are gathered into logs;

(b) To keep these logs, created by different log monitors (see later),
homogeneous, and usable within a mining process, these logs are wrapped
into a common 1st order logic format, compliant with UML class diagrams
shown in figures 4 and 7;

(c) Mining rules are applied on resulted 1st order Log events to discover Web

service interaction patterns. We use a Prolog-based presentation for log
events, and mining rules using the XProlog system 6];

 22

(d) Since interaction patterns are discovered, the Web service designer will have
a look on the developed web service to restructure or redesign his Web
service interactions.

Figure 11. WSIM Components Overview

Concerning the creation of the log event entries, which is a critical phase within

our WSIM approach, the question that arises is where to get the necessary log
information from. Let us first take a look at the situation we face before we begin with
WSIM.

Figure 12. Interaction between WS

Figure 12 gives a more detailed look on an interaction between two WS. It also

contains the involved entities, i.e., the Web services, the WS containers that manage
the WS, the hosts the WS containers are running on, and the SOAP message that is
being exchanged between the Web services. One of our core assumptions is therefore
that the WS we want to mine use SOAP (over HTTP) to communicate, or interact.

We now want to find a way to make WSIM possible, i.e., to ensure the availability
of log records as we described them in the previous Section. Basically, there are two
possible situations WSIM might be confronted with. Option (1) is that a set of WS
were designed with the intention to make them “minable”, or “fit for WSIM”. This
means that the desired log records could be provided by the WS itself. Therefore, the
Web service’s program code would contain additional statements that deal with the
logging of activities and interactions. From WSIM’s point of view, this is clearly the
desired situation, as it guarantees the availability of logs that conform to our
specification. The available information would therefore be complete and sufficient to
perform WSIM on all three levels of abstraction. However, there are two main

log events
in ad-hoc

format

log events
as Prolog

facts

(a) gathering log
events

(b) 1 st order logic
wrapping

(c) 1 st order logic
mining rules

Web
services

execution

mined
interaction

patterns

(d) Web service
reengineering

 23

downsides to this assumption. For one, the logging of events by the WS would require
additional development effort. Although this additional effort could be kept relatively
small if an appropriate API were available, it can not be expected that all WS
developers will have WSIM in mind during the design and development phase of their
service-oriented systems. The second weakness of the assumption that WS are “built
for WSIM” is that WS developed prior to the appearance of WSIM would not be
“minable”.

This describes exactly the second kind of situation one might face before starting
Web Service Interaction Mining. Option (2) is that a collection of WS that have not
been developed to be ready for WSIM. In this case we need to find other ways of
creating the log files. However, it turns out that with the tools available today it will
be impossible to keep log records that fulfill our log specifications on all levels.
However, a partial compliance with our specifications might be reached.

As we have stated before, WSIM on the Operation level can be closely tied to the
Web service’s internal structure and functionality. Therefore, it is not subject to
standardization and strongly depends on the developer’s goals and needs. For
example, data mining might be applied to the WS’ output data if operational data is
logged in e.g., a database. Without any logging that is done “from the inside” of the
WS, WSIM on the Operation level is not possible.

Log records that allow WSIM on the Web services Interaction level may be
acquired using tools which are already available. Since all interactions between WS
happen through the exchange of SOAP message, it would be possible to intercept
those messages and extract the information needed. The extracted information can be
used to build logs that partially conform to our log specification on the Web services
level. A SOAP messages contains both an identifier of the Web service provider (the
receiver of the message) and an identifier of the Web service consumer (the sender of
the message). Using the target endpoint specified as the receiver of the message, the
WSDL file of the Web service can be retrieved to find out what type of operation is
being invoked. Using this information a log entry of the following format can be
created:

int – [type of operation] – ID requestor – ID provider –

[name of operation] – timestamp

Note, that when using this technique an interaction is only logged once as opposed

to logging it on the side of each interaction partner as we demanded in the previous
Section. However, from the above information the log entries for each interaction
partner can be easily generated. If the type of operation in the above example were
e.g., oneWay (from the requestor’s point of view) the corresponding log entry on the
provider’s side would be notification. What is missing from our log specification is an
identifier of the activity. Therefore, the name of the invoked operation will need to
serve as the identifier of the activity. If an operation’s name is semantically
meaningful, this approach is justified.

There are tools available which can be used to intercept SOAP messages. The
Apache Software Foundation provides a TCP Tunnel/Monitor tool as part of the
Apache SOAP package [7]. This tool, intended mainly for debugging purposes, can
be used to tunnel SOAP traffic to a remote host. The tunneled traffic, i.e. the SOAP

 24

messages are then displayed in a simple graphical user interface (GUI). The
technology used by this tool could be extended to log SOAP message content in the
way we described earlier.

Another interesting tool available is Mindreef’s SOAPscope 3.0 [8]. The vendor
calls it “a toolkit-independent Web services diagnostic system for examining,
debugging, testing and tuning Web services.” It intercepts SOAP-messages in one of
three ways: through sniffing the network traffic for SOAP-messages, through an
HTTP-proxy, or through port forwarding. It provides logging and the display of
statistics concerning the analyzed messages.

Another possibility to intercept SOAP messages is on the container level. An
example of a Web service container is Apache Tomcat [9]. Since all SOAP messages
are passed to the WS by the container, the container could be extended to provide for
our logging needs. The advantage of this approach would be that messages to and
from every WS deployed in the container could be intercepted, analyzed, and logged.
The resulting log file, containing information about all Web services, could be
preprocessed to comply with our specification.

On the highest level of WSIM, the Workflow level, we face serious difficulties. As
we discussed in the previous Section, mining for workflows requires the availability
of workflow information. However, in traditional Web services there is no means of
obtaining information about which workflow is currently being executed. WSIM on
the workflow level requires additional development effort during design and
implementation time and will therefore be discussed in the following subsection.

 Building WS for WSIM

We conclude this paper with suggestions regarding the design of Web services

with the intention to make them fit for future WSIM. Basically, we recommend that
Web services provide the logs according to our specification of Section 5. We are in
the process of developing an easy to use Java API which facilitates the logging of
events and activities.

On the Operations level, the information to be logged depends highly on the Web
service’s characteristics as well as on the goals and needs of the developer. Therefore,
neither the mining approach nor the data to be logged can be standardized fully.
Extension mechanisms need to be provided.

On the Interaction level, our API will supply methods to log interactions between
Web services. The API should be used appropriately before and after every
programmatic interaction between WS. By doing so, all interactions, even those with
third party owned WS, are recorded and can later be mined.

On the Workflow level we need to find a solution to the problem of how to
exchange and retrieve workflow information between WS. Since any Web service
may be part of multiple workflows, we must find a means for a WS to know what
business process it is currently part of when it creates its log entries. The only way to
do that in a service-oriented system is to include both a process-ID and an instance-ID
into the SOAP messages that are being passed between Web services. SOAP
messages are designed in such a way that they allow including any information into
the message header in a key-value style. A data-item in string-format, e.g.,
“makeFilm” is written into the message header and bound to a certain key, e.g.,

 25

“processID”. The value can then be obtained by the receiver of the message using that
key. In this way the process-ID as well as the instance-ID can be retrieved by any WS
in our system to be included in log entries. To avoid interference with any other data
in the message header, a unique key should be used to put the information in the
header; e.g., we use “process4wsim” and “instance4wsim” in our prototype imple-
mentation.

5 Related work

Valuable research results have been achieved in data mining, process mining, and
web mining. However, the idea of Web service Interaction mining as proposed in this
paper, is yet a new hot research topic. In this Section, we discuss process mining
works that are the most relevant to our area. Process mining is the major issue in
WSIM on the Workflow level. [2] provides an overview of the ideas behind process
mining, or workflow mining. They describe process mining as “a method of distilling
a structured process description from a set of real executions”. Also, the major
challenges in process mining are discussed in detail, which gives the reader a very
good idea of the problems one might be faced with. These challenges are e.g., mining
hidden tasks, mining non-free-choice constructs or loops, dealing with noise and
incompleteness or gathering data from heterogeneous sources. Furthermore, an
overview over different mining algorithms is given as well as a brief description of
the other papers which are part of this special issue on process mining. In [3] a
detailed description of what the input data should look like in order to allow for the
mining of exact workflow models is presented. Some of these specifications are used
in Section 3 of this paper where we present our suggestions of log specifications.
Furthermore, [3] elaborates in detail on a step-by-step description of the workflow
mining process itself. This process includes the pre-processing of workflow logs and
the building of sub-models. The theoretical description of the process is followed by
an example, which improves the reader’s understanding of process mining
significantly. Also, an implementation of the algorithm is presented in the form of an
application named Process Miner. In order to monitor business process quality, [5]
proposes a solution, based on data warehousing and mining techniques for analyzing,
predicting, and preventing the occurrence of exceptions. Other works in process
mining focus on discovering workflow transactional behaviour among workflow instance
through execution log [4].

6 Conclusion and Perspectives

In this paper we have outlined our novel idea of Web Service Interaction Mining
(WSIM). We have identified three levels of abstraction with respect to WSIM: the
operation level, the interaction level and the workflow level. The term mining implies
that available log data should be analyzed to acquire additional knowledge about a
system.

 26

We believe that developing Web services with consideration for WSIM can
significantly improve the manageability of a WS or of an entire service-oriented
system. We especially discussed WSIM on the operations and interactions level. The
information regarding all interaction partners can be vital during e.g., an impact
analysis of changes made to a Web service. In the near future we will therefore direct
our attention to developing an easy-to-use framework that allows for the
implementation of WS which are ready for WSIM.

However, we also want to take into consideration Web services that have already
been deployed. In our future work, we will examine standard logging and maybe
mining tools and test them for their usability in WSIM. Especially on the Web
services interactions level we see some opportunities of mining for Web service
interactions, which were discussed in this paper. WSIM on the workflow level seems
to pose the greatest difficulties. As we have shown, WSIM on the workflow level
does require additional development effort. A workflow-ID and an instance-ID are
needed and can only be available if provided by the WS itself.

7 References

1. G. Alonso, F. Casati, H. Kuno, and V. Machiraju, Web Services Concepts, Architectures
and Applications, Springer-Verlag, 2004.

2. W. M. P. van der Aalst, and A. J. M. M. Weijters, Process mining: a research agenda, in:
Computers in Industry 53, Elsevier B.V., 2003.

3. G. Schimm, Mining exact models of concurrent workflows, in: Computers in Industry 53,
Elsevier B.V., 2003.

4. D. Grigori, F. Casati, U. Dayal, Ming-Chien Shan: Improving Business Process Quality
through Exception Understanding, Prediction, and Prevention. VLDB’2001, Roma, Italy

5. W. Gaaloul, S. Bhiri, and C. Godart, Discovering Workflow Transactional Behavior From
Event-Based Log, CoopIS’2004, Agia Napa, Cyprus, 25-29 Oct. 2004.

6. XProlog, http://www.iro.umontreal.ca/~vaucher/xprolog/
7. The Apache Software Foundation, http://ws.apache.org/soap
8. Mindreef SOAPscope, http://www.mindreef.com/products/overview.html
9. The Apache Software Foundation, http://jakarta.apache.org/tomcat

