
Systematic Design of Web Service Transactions

Benjamin A. Schmit and Schahram Dustdar

Vienna University of Technology, Information Systems Institute,
Distributed Systems Group, Vienna, Austria, Europe

{benjamin, dustdar}@infosys.tuwien.ac.at

Abstract. The development of composite Web services is still not as
simple as the original vision indicated. Currently, the designer of a com-
posite service needs to consider many different design aspects at once.
In this paper, we propose a modeling methodology based on UML which
separates between the four concerns of structure, transactions, workflow,
and security, each of which can be modeled by different experts. We have
developed a proof-of-concept tool that is able to extract information from
the model and transform it into a computer-readable format.

1 Introduction

Web services have become more and more commonplace during the last few
years. An idea that has been associated with them from the start is that of
composition: Web services should be located at run-time and assembled semi-
automatically to provide more complex services. This goal, however, still involves
some unsolved research questions, among others in the field of distributed long-
running transactions.

An important aspect of Web service composition is that the designer or main-
tainer of a composite service until now had to be an expert in several fields. We
have identified a need for knowledge about Web service structure (which ser-
vices are used by which composite services), transactional issues, security issues,
and about the workflow of the composite service. We therefore propose to split
composite Web service design into these four views. Four largely independent
models can then be created by different experts, with connections between them
only where it is necessary.

Minor updates to a composite service are also facilitated by our approach
since only a subset of the design diagrams need to be changed. Software tools
can further help the programmer by automating transformations from design
diagrams to (preliminary) code. Therefore, we have based our methodlogy on
the Unified Modeling Language (UML), which is already supported by most
design tools.

The methodology has not yet been fully completed, but the models developed
with it can already be used profitably. As a proof of concept, we have devel-
oped a transformation tool based on the widely used Eclipse platform which
extracts transaction information from the model. The output conforms to the

C. Bussler and M.-C. Shan (Eds.): TES 2005, LNCS 3811, pp. 23–33, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

24 B.A. Schmit and S. Dustdar

WS-Coordination specification and could easily be incorporated into a Web ser-
vice platform implementing this specification.

Section 2 introduces a composite Web service case study that will be used to
illustrate our work. Section 3 presents the elements of our UML metamodel and
applies this metamodel to the case study. Section 4 presents our modeling tool
and shows how it can extract information from the model created from our case
study. Section 5 presents related work, and Section 6 concludes the paper.

2 Case Study

In this section, we will introduce a case study which we will refer to throughout
the paper. Instead of using the traditional composite Web service example of a
travel reservation system, we refer to our case study first introduced in [1], which
describes the production of a movie in terms of Web services. Modeling such a
comprehensive example with Web services may involve unprecedented design
decisions as well as unexpected outcomes. It should lead to a more realistic
estimate of the benefits of our methodology.

1

1

Crew

+ getCrewMemberList():CrewMemberList
+ getEquipmentList():EquipmentList
+ getTeamList():TeamList

Equipment

+ getEquipmentDescription():String
+ getEquipmentName():String

ExternalExpertContract

− contractDomain:String

Team

+ getTeamMemberList():CrewMemberList

*1

*

1

*

*

Person

− name:String
− address:String
− contactAddress:String

+ getServiceList():ServiceList
+ addService(service):String
+ removeService(service):String

Director

+ getExternalExpertList():ExternalExpertList
+ getCrewList():CrewList
+ hireExternalExpert(externalExpert, domain)
+ hireCrew(crew, from:Date, until:Date)

ExternalExpert CrewMember

Production

1

*

− taskName:String

+ addProductionTask(task)
+ getCrewList():CrewList

+ moveCrews(crewList, from:Location, to:Location)

ProductionTask

* *

Location

− address:String

− from:Date
− until:Date

+ getLocationDescription():String

*

1

1

1

*

*

*

*

**

*

1

*

1

CrewContract

− validFrom:Date
− validUntil:Date

− name:String
− serviceDescription:String

+ getServiceDescription():String
+ getServiceEquipment():EquipmentList
+ getServiceName():String
+ getServiceDomain():String

Service

+ getContractDescription():String

Contract

Fig. 1. Film production case study

Figure 1 shows an overview on the case study. Because of the space limitation,
we will concentrate on how the director of the movie hires film crews for the
production of the film and external experts who assist him with their expertise
(depicted in grey in Figure 1). Both processes need to be handled within a
transaction scope.

Systematic Design of Web Service Transactions 25

In our example, experts and crews provide Web services which may be looked
up via a Web services registry. A software architect in the director’s office com-
poses these services into a new service, which is then used by the director.

3 The UML Metamodel

We will now introduce a uniform methodology for Web services modeling based
on the Unified Modeling Language (UML, [2]). An overview on this methodology
has first been presented in [3].

A D

E

C

B

Structural Diagram

Workflow Diagram

Security Diagram

Start End

BusinessActivity

Properties: ...

AtomicTransaction

WS

Transactional Diagram

Fig. 2. A Design methodology for Web services

Figure 2 depicts the design idea. It is based on the paradigm of separation
of concerns. The four concerns identified so far are structural, transactional,
security, and workflow issues. (The order is different in the figure because we
focus on the transactional diagram.) Each concern can be modeled by an inde-
pendent expert, and the Object Constraint Language (OCL; part of the UML
specification) is used to establish references between the diagrams.

As we have demonstrated in [3], using separate diagrams for separate de-
sign aspects makes the model easier to read, and different experts can work
on the design simultaneously. The obvious drawback of this separation, the
higher complexity of the methodology, is kept as small as possible by using
OCL references between the different layers. We believe that workflow and
transaction aspects belong to separate layers because this eases later correc-
tions (e.g., adjusting transaction quality of service parameters). On the other
hand, a part of the workflow diagram may be referenced e.g. as a compensation
handler.

26 B.A. Schmit and S. Dustdar

Failure Success

Query next
expert

Get Offer

Evaluate best
offer

Choose Expert

Hire Expert
[else, failure]

next[experts left]

final

hire

fallback

[failure]

Hire External Expert

Get Crew

Locate crew
according to
requirements

Hire Crew

[failure, crews left]

retry

hire

Hire Crew

ok

Hire

Start

start

fail

[failure]
fail

[failure]

fail

[failure, no crews left]

ok

Fig. 3. Example structural diagram

3.1 The Structural Diagram

For the structural diagram, we have chosen a UML statechart diagram. The
Unified Modeling Language [2] has been chosen because it is widely used for
modeling software and fits our purposes. We chose a statechart diagram (instead
of adding a new diagram type that might more closely describe Web service
structure) because existing tools already support this diagram type. Since we
have not yet specified the workflow diagram, some workflow details are still
included in the structural diagram.

The semantics that have been added to the diagram for Web services modeling
(guards and threads maintain their existing semantics) are shown in Table 1.

Figure 3 shows a structural diagram of our example. Elements (transitions)
from this diagram will be referenced in the transactional diagram.

Table 1. Added semantics for the structural diagram

Start element. Processing of the composite Web service
starts here.

End element. Processing of the composite Web service
terminates here. Annotations may be either Success or
Failure, which indicate whether the composite service ter-
minates normally or abnormally at that point.

Transition. Indicates that another task of a Web service
is handled next, or that the Web service is started (from
the start element) or terminated (to the end element).

Task
Description

Composite Task Task. Composite tasks contain inner elements (tasks,
transitions). Instead, non-composite tasks may contain
a description (not intended to be processed).

Systematic Design of Web Service Transactions 27

3.2 The Transactional Diagram

The transactional view is formed by a UML class diagram. Again, we have cho-
sen an existing UML diagram type so that existing UML tools do not need to
be modified for processing the transactional diagram. We have used OCL refer-
ences to identify the locations within the structural diagram where transactions
are started, committed, or aborted. A UML profile describes the additional con-
straints for the transactional diagram.

In the diagram, a transaction is depicted as a UML class, i.e., as a box with
three compartments. The first compartment contains the name of the transaction,
a stereotype describing the transactional semantics, and tagged values that de-
scribe quality of service attributes. The second compartment names the partici-
pating Web services (the keyword dynamic indicates that the Web service is to be
located at run-time, a process which is not covered by this paper). The third com-
partment holds the references to the start and end of the transaction, as well as
invocations to other Web services (starting points for other transactions). Finally,
the inheritance relationship is used to model subtransactions. Table 2 defines the
keywords used within the UML profile for the transactional diagram.

Figure 4 shows an example of a transactional diagram. The three main
transactions corresponding to the first two levels of states in Figure 3 are easily
derived from the structural diagram. The start and termination transitions are
indicated by OCL references, in the outermost transaction these are Start.start,
HireCrew.ok, ChooseExpert.fail, GetCrew.fail, and HireCrew.fail. They

<<BusinessActivity>>
HireExpertTransaction

{compensation=true,
timeout=3d,
compensationTimeout=7d}

expert: dynamic

<<constructor>>
Start.start
<<destructor>>
HireExpert.ok
ChooseExpert.fail

<<BusinessActivity>>
HireCrewTransaction

{compensation=true,
timeout=3d,
compensationTimeout=7d}

crew: dynamic
getCrew: CrewService

<<constructor>>
HireExpert.ok
<<destructor>>
HireCrew.ok
GetCrew.fail
HireCrew.fail
<<invocation>>
locateCrew

<<constructor>>
HireCrewTransaction.locateCrew
<<destructor>>
GetCrew.hire
GetCrew.fail

LocateCrewTransaction
<<AtomicTransaction>>

{compensation=true,
timeout=10m}

{compensation=false,

<<BusinessActivity>>
HireTransaction

timeout=14d}

expert: HireExternalExpert
crew: HireCrew

<<constructor>>
Start.start
<<destructor>>
HireCrew.ok
ChooseExpert.fail
GetCrew.fail
HireCrew.fail

Fig. 4. Example transactional diagram

28 B.A. Schmit and S. Dustdar

Table 2. Keywords in the transaction profile

Keyword UML Scope Description
Invocation Class Stereotype A Web service invocation running without

a transactional scope, i.e. no transaction.
AtomicTransaction Class Stereotype An ACID transaction, as defined in [4].
BusinessActivity Class Stereotype A long-running, non-ACID transaction, as

defined in [5].
compensation Class Tagged Value Flag that specifies whether the transac-

tion as a whole can be compensated.
timeout Class Tagged Value Maximum time interval that the transac-

tion can be active before it is rolled back.
compensationTimeout Class Tagged Value Maximum time interval measured from

the start of a transaction that a commit-
ted transaction can be compensated.

dynamic Attribute Type Indicates that a Web service is to be
bound at run-time.

constructor Method Stereotype Starting point for the transaction.
destructor Method Stereotype Termination point for the transaction.
invocation Method Stereotype Starting point for a subtransaction which

is not depicted in the structural diagram.

correspond to the arrows entering and leaving the Hire state in the structural
diagram.

Our example, however, also contains a fourth transaction that is used for
finding film crews that may later be contacted to participate in the current
production. Instead of referencing the structural diagram, the starting point of
the LocateCrewTransaction lies within the HireCrewTransaction, i.e. within the
transactional diagram itself. In the HireCrewTransaction, this starting point is
described as a method stereotyped invocation.

3.3 Security and Workflow Issues

Since security aspects should be considered as early as possible, we propose the
inclusion of security parameters (e.g., which Web service calls/transactions need
to be encrypted or signed) in the design phase. We do not have developed a
diagram for security yet. We intend to use OCL for references to entities in both
the structural and the transactional design diagram, but this is still subject to
future work.

The workflow diagram will offer a high-level view on the composite Web ser-
vice. This design view will cover issues that cannot be addressed by the struc-
tural and transactional diagram alone, e.g. some of the challenges introduced in
[3]. This diagram will reference elements of the structural and the transactional
view.

Systematic Design of Web Service Transactions 29

4 Tool Support

In order to show the usefulness of our design approach, we have implemented
a proof-of-concept tool that works on the transactional design diagram. It has
been built on the Eclipse platform [6] extended by the IBM Rational Software
Architect tool suite [7].

4.1 Architecture

Eclipse is a highly modular integrated development environment for Java which
also offers basic support for the Unified Modeling Language (UML, [8]) through
the Eclipse Modeling Framework (EMF, [9]).

The IBM Rational Software Architect extends this platform, among other
things, by adding a visual editor for creating and maintaining UML models.
Transformations allow the developer to automatically transform the model into
a code skeleton and synchronize changes in design and code. Transformations
for creating Java, EJB, and C++ code are included.

We have written an extension to this platform which adds a new trans-
formation method to the modeler. It extracts the transactions from a UML
class diagram following the specification of our transactional diagram. The out-
put currently consists of a coordination context for use in WS-Coordination,
WS-AtomicTransaction, and WS-BusinessActivity [10, 4, 5], however, it can eas-
ily be adapted to confirm to other transaction specifications.

Fig. 5. The transformation plugin

30 B.A. Schmit and S. Dustdar

4.2 Application to the Case Study

Figure 5 shows the transactional diagram on which the transformation is invoked
in the so-called modeling perspective. The modeling perspective consists of four
windows:

The model explorer (top left) shows a tree view of the elements within the
project. In the example, we see the model with two diagrams and the Transaction
Profile which defines the stereotypes used in the transactional diagram. The
outline window (bottom left) shows a bird-eye view on the current diagram.

In the main window (top right), a part of the transactional design diagram
can be seen. The class HireTransaction has been selected.

In the bottom right window, properties of the selected transaction can be
seen. Within the EMF, they have been modeled as attributes to the Business-
Activity stereotype of the Transaction Profile UML profile. This helps to keep
the diagram lean (because such attributes are per default not shown in the main
window), but still allows for a simple extraction by our plugin.

Figure 6 shows a simple output XML file the transformation plugin has gen-
erated from a part of our design. Right now, only the transactional model is
considered by the prototype tool, but already its output could be used as a co-
ordination context in a WS-BusinessActivity transaction. Changes in the design
lead to changes in the context, taking some of the load away from the program-
mer of the composite Web service.

Fig. 6. Output of the transformation plugin

Systematic Design of Web Service Transactions 31

4.3 Outlook

In the future, we plan to extend the tool so that it allows more comprehensive
modeling and also considers the structural view. We aim to be able finally to
extract a process description in BPEL [11] and/or a choreography description
in WS-CDL [12] from our model, thereby greatly easing the task of Web ser-
vice composition. Using the information contained in the design diagrams, these
descriptions can be enriched by using various additional Web service related
specifications.

When this work has been completed, we will explore the potential for further
automation through the use of a security and a workflow diagram.

5 Related Work

Several independent (sets of) Web service transaction specifications have been
released: WS-Coordination, WS-AtomicTransaction, and WS-BusinessActivity
[10, 4, 5] have been used for the implementation of our tool. Possible alternatives
would have been WS-CAF ([13], consisting of WS-Context, WS-Coordiation
Framework, and WS-Transaction Management) or BTP [14].

Orriëns, Yang, and Papazoglou [15] divide the process of Web service compo-
sition into four phases: definition, scheduling, construction, and execution. The
design should become more concrete at each step. UML is used as well, however,
the model is founded on the design process and not on separation of concerns.

Dijkman and Dumas [16] also state the need for a multi-viewpoint design
approach for composite Web services. Their paper discusses the views of interface
behavior, provider behavior, choreography, and orchestration and uses Petri nets
for the model itself. Distributed transactions are not mentioned.

Benatallah, Dumas, and Sheng [17] also use statechart diagrams to model
composite Web services. Transactional behavior is mentioned as future work,
but as yet there is no systematic approach for modeling this.

Karastoyanova and Buchmann [18] propose a template technique for Web
services to ease service composition. Templates here are parts of a business
process description that can be used for Web service composition. The concept
may prove useful for transforming our model diagrams into business process
specifications in the future.

Loecher [19] discusses properties of transactions in a distributed middleware
setting. Though the author writes about Enterprise JavaBeans, some of the work
can be applied to Web services as well.

Henkel, Zdravkovic, and Johannesson [20] mention the difference between
technical and business requirements. Their paper proposes a layered architec-
ture that allows to transform the business representation into a more technical
representation. Several aspects of process design are described, among them also
a transactional aspect.

Jablonski, Böhm, and Schulze [21] propose a separation of concern approach
for workflow modeling called workflow aspects. They distinguish between a func-
tional, a behavioral, an informational, an operational, and an organizational as-

32 B.A. Schmit and S. Dustdar

pect. The book surveys workflow modeling and also mentions transaction and
security issues.

Further information about Web service transaction specifications can be found
in [22]. Database transactions are covered by [23], and additional information
about advanced transaction models can be found in [24, 25].

6 Conclusion

In this paper, we have introduced a modeling methodology for composite Web
services based on UML. The methodology is based on the concept of separa-
tion of concern, i.e., several experts can work on different aspects of the design
concurrently. We have defined the structural and the transactional diagram and
outlined our future work on the workflow and security diagrams.

We have shown the usefulness of our approach by implementing a transfor-
mation tool based on the Eclipse platform. This tool extracts transaction infor-
mation from the model and transforms this information into a machine-readable
XML document following the WS-Coordination specification.

The next steps in our research will be the development and formalization of
the workflow and security diagrams. Also, we will expand our transformation
tool towards a more comprehensive view on the model. Hereby, we hope to be
able to automatically generate more complex descriptions, e.g., a BPEL or WS-
CDL description. This automation will help designers to considerably simplify
the development of composite Web services.

References

1. Schmit, B.A., Dustdar, S.: Towards transactional web services. In: Proceedings of
the 1st IEEE International Workshop on Service-oriented Solutions for Cooperative
Organizations (SoS4CO’05), 7th International IEEE Conference on E-Commerce
Technology, Munich, Germany, IEEE (2005) To be published.

2. OMG: The unified modeling language, version 2.0. Specification (2004)
3. Schmit, B.A., Dustdar, S.: Model-driven development of web service transactions.

In: Proceedings of the 2nd GI-Workshop XML for Business Process Management,
11. GI-Fachtagung für Datenbanksysteme in Business, Technologie und Web, Karl-
sruhe, Germany, Gesellschaft für Informatik (2005) To be published.

4. BEA, IBM, Microsoft: Web services atomic transaction (WS-AtomicTransaction).
Specification (2004)

5. BEA, IBM, Microsoft: Web services business activity framework (WS-
BusinessActivity). Specification (2004)

6. Beck, K., Gamma, E.: Contributing to Eclipse. Principles, Patterns, and Plug-Ins.
Addison-Wesley (2003)

7. Lau, C., Yu, C., Fung, J., Popescu, V., McKay, E., Flood, G., Mendel, G., Winch-
ester, J., Walker, P., Deboer, T., Lu, Y.: An Introduction to IBM Rational Appli-
cation Developer: A Guided Tour. IBM Press (2005) To be published.

8. Rumbaugh, J., Jacobson, I., Booch, G.: The Unified Modeling Language Reference
Manual. 2nd edn. Addison-Wesley (2004)

Systematic Design of Web Service Transactions 33

9. Budinsky, F., Steinberg, D., Merks, E., Ellersick, R., Grose, T.J.: Eclipse Modeling
Framework. Addison-Wesley (2003)

10. BEA, IBM, Microsoft: Web services coordination (WS-Coordination). Specification
(2004)

11. BEA, IBM, Microsoft, SAP, Siebel: Business process execution language for web
services (BPEL4WS), version 1.1. Specification (2003) Adopted by OASIS as WS-
BPEL.

12. Oracle, Commerce One, Novell, Choreology, W3C: Web services choreography de-
scription language version 1.0, W3C working draft 17 december 2004. Specification
(2004)

13. Arjuna, Fujitsu, IONA, Oracle, Sun: Web services composite application framework
(WS-CAF). Specification (2003)

14. OASIS: Business transaction protocol, version 1.1.0. Specification (2004)
15. Orriëns, B., Yang, J., Papazoglou, M.P.: Model driven service composition. In:

Proceedings of the First International Conference on Service Oriented Computing.
Volume 2910 of Lecture Notes in Computer Science., Springer-Verlag (2003) 75–90

16. Dijkman, R., Dumas, M.: Service-oriented design: A multi-viewpoint approach.
International Journal of Cooperative Information Systems 13 (2004) 337–368

17. Benatallah, B., Dumas, M., Sheng, Q.Z.: Facilitating the rapid development
and scalable orchestration of composite web services. Distributed and Parallel
Databases 17 (2005) 5–37

18. Karastoyanova, D., Buchmann, A.: Automating the development of web
service compositions using templates. In: Proceedings of the Workshop
“Geschäftsprozessorientierte Architekturen” at Informatik 2004, Gesellschaft für
Informatik (2004)

19. Loecher, S.: A common basis for analyzing transaction service configurations. In:
Proceedings of the Software Engineering and Middleware Workshop 2004. Lecture
Notes in Computer Science, Springer-Verlag (2004) To be published.

20. Henkel, M., Zdravkovic, J., Johannesson, P.: Service-based processes — design for
business and technology. In: Proceedings of the Second International Conference
on Service Oriented Computing. (2004) 21–29

21. Jablonski, S., Böhm, M., Schulze, W.: Workflow-Management: Entwicklung von
Anwendungen und Systemen. Dpunkt Verlag (1997)

22. Papazoglou, M.P.: Web services and business transactions. World Wide Web 6
(2003) 49–91

23. Gray, J., Reuter, A.: Transaction Processing: Concepts and Techniques. Morgan
Kaufmann Series in Data Management Systems. Morgan Kaufmann (1993)

24. Elmagarmid, A.K., ed.: Database Transaction Models for Advanced Applications.
Morgan Kaufmann Series in Data Management Systems. Morgan Kaufmann (1992)

25. Procházka, M.: Advanced Transactions in Component-Based Software Architec-
tures. PhD thesis, Charles University Prague, Faculty of Mathematics and Physics,
Department of Software Engineering (2002)

	Introduction
	Case Study
	The UML Metamodel
	The Structural Diagram
	The Transactional Diagram
	Security and Workflow Issues

	Tool Support
	Architecture
	Application to the Case Study
	Outlook

	Related Work
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

