
Service-Oriented Architectures and Mobile Services

Ivar Jørstad1, Schahram Dustdar2 and Do van Thanh3

1 Norwegian University of Science and Technology, Dept. of Telematics, O.S. Bragstads
plass 2E, N-7491 Trondheim, Norway

ivar@ongx.org
2 Vienna University of Technology, Distributed Systems Group (DSG), Information

Systems Institute A-1040 Wien, Argentinierstrasse 8/184-1, Austria
dustdar@infosys.tuwien.ac.at

http://www.infosys.tuwien.ac.at/Staff/sd/
3 Telenor R&D, Snarøyveien 30 N-1331 Fornebu, Norway

thanh-van.do@telenor.com http://www.item.ntnu.no/~thanhvan

Abstract. Service-Oriented architectures and Service-Oriented Computing are
the most recent approaches aiming at facilitating the design and development of
applications on distributed systems. The primary goal of this paper is to
investigate how the construction of mobile services can benefit from the
Service-Oriented paradigm. The paper provides an elucidation of the Service-
Oriented architecture. A general discussion of equivalence between service
components is then undertaken, in order to enable an analysis of Service-
Oriented architectures for mobile services. The paper proceeds with a mapping
of existing mobile services on Service-Oriented architectures. The requirements
of mobile services, which must be taken into consideration in the Service-
Oriented architecture, are identified from a generic model of mobile services. A
Service-Oriented architecture supporting mobile services is proposed.

1 Introduction

Lately, Service-Oriented Computing (SOC) [1] and Service-Oriented Architectures
(SOA) [2] have gained a lot of momentum in software engineering. SOC and SOA
are not completely new concepts; other distributed computing technologies like
OMG’s CORBA [3] and Microsoft’s DCOM [4] have been based around similar
principles. SOA and SOC are merely extensions of the existing concepts and new
technologies, like XML Web Services, are being used to realize platform independent
distributed systems.

Software engineering has moved from redundant reimplementation of similar
code, through static reuse of code-segments, function-oriented programming, object-
oriented programming and component-based software development. Eventually, it
has ended to the concepts of distributed systems based on SOC and SOA. From
developing static and tightly coupled monolithic systems, software engineering and
systems development has moved to dynamic, flexible and loosely coupled platform
independent distributed systems.

The provisioning and consumption of services in a Service-Oriented architecture is
actually done in the same way as most everyday services. Services are published
(through proper marketing) and consumed more or less as discrete units
independently of other services. For example, the car washing service can be
executed independently of the hair dressing service.

In a SOA, services are the primary building blocks, in contrast to earlier paradigms
where the building blocks have been functions, objects or software components.
Alone, or combined with others services, these building blocks can provide services
to consumers. Services are an extension of the concept of components in component-
based software engineering, and a service must fulfill a set of additional requirements
to accommodate a SOA. Systems based on Service-Oriented architectures are flexible
(primarily due to their loose coupling), and this can allow a composite service to
dynamically change its internal structure (composition and distribution).

The Service-Oriented architecture appears to be an ideal paradigm for mobile
services. However, it is currently focused only on enterprise and business services.
One of the goals of this paper is to verify the feasibility of using Service Oriented in
the design and implementation of mobile services. The paper starts with an overview
of Service Oriented architectures. A brief study of current mobile services
architectures presented earlier in [5] is then given. This paper is based on the
composition and distribution principles as well as service continuity and service
personalisation concepts published in [6][7][8][9]. A mapping of existing mobile
services on Service-Oriented architectures will then be done. The requirements of
mobile services, which must be taken into consideration in the Service-Oriented
architecture, are identified from a generic model of mobile services. A Service-
Oriented architecture supporting mobile services is finally derived.

2 Service-Oriented Architectures (SOA)

According to [10], a Service-Oriented architecture is a collection of services which
communicate with each other. The question is how this is different from earlier
concepts of distributed computing. With the SOA definitions of a service provided
above, it is not clear how a service is different from an application. And if a service is
not different from an application, a service logic component or a program, then it
might seem like the term Service-Oriented architecture is just another new word
describing the well-known concepts of distributed systems and distributed computing.

However, the key here is that a service should be self-contained. This means that it
can always provide the same functionality, independently of other services.
Distributed systems have previously been tightly interconnected, i.e., they have been
subject to tight coupling. If one component failed, the entire service provided by the
distributed system would fail. Also, previously distributed systems would be closed.
Their interfaces were internal, not exposed and only known by the developers of the
systems.

There are basically three functions that must be supported in a service-oriented
architecture:

1. Describe and Publish service
2. Discover a service
3. Consume/interact with a service

The basic target requirements of a service-oriented architecture are:

Loose coupling – As in traditional object-oriented and component-based software
engineering, one goal is to strive to have high cohesion and low coupling among
classes and components. Loos coupling in a Service-Oriented architecture means that
one piece of realizing software should be able to provide a service, independently of
other software components. For example, a Web Service should be self-contained,
and be able to provide whatever service it was intended to, without strong
dependencies to other components. However, this does not restrict the Web Service
from utilizing other Web Services. Loose coupling is a very important concept as it
allows late binding between service consumers and the service realization. As will be
discussed in a later section, this is particularly important for nomadic users.

Well-defined interfaces – The interfaces towards the service realization should be
well-defined. In XML Web Services, this is done by specifying the interfaces in the
Web Services Description Language (WSDL). By having well-defined interfaces, it is
easy to develop new software that can access the service components.

Services in SOA are software components that have published interfaces, and these
interfaces should be platform and language-independent. XML Web Services consist
of technologies which allow development of platform independent software
components, and are thus enabling technologies for SOA.

Stateless and autonomous service design – The standards that create a foundation for
SOA (i.e., XML Web services standards) do not require stateful operation of services
(each method invocation should be independent of previous method invocations).
Nevertheless, services are self-contained and required to maintain their own state.
According to [11], services should not require information to be kept between two
requests. Services should not be dependent on the state or context of other services.
For example, if two subsequent requests are performed to retrieve two pieces of
information about the same user, both requests should include all information that is
needed to decide how to retrieve this information, e.g. the complete SSN, and should
not rely on programmatic artifacts like a session key.

However, for several reasons it will in many cases be necessary that some service
components share state information. This will in particular be true about the
communication between an end-user and a service, to simplify usage of services.

Discovery and service binding are also concepts of SOA. Consumers should be
able to dynamically discover services. With regards to XML Web Services, this is
enabled by UDDI.

3 Mobile Services

Let’s first consider voice telephony in GSM [12] to see how it allows users to roam
(i.e., user movement). Mobile services in GSM consist of components both located on
the mobile device and in the network. Figure 1 shows the simplified architecture of
mobile telephony service and the Short-Message Service (SMS). The Mobile Station
(MS), or mobile phone, consists of two computing devices; the Mobile Equipment
(ME), which is the phone itself and the Subscriber Identity Module (SIM), which is a
Smart Card. For mobile telephony, the service components located on the Mobile
Equipment and the SIM interact with the components on the Mobile services
Switching Center (MSC), Home Location Register (HLR) and Visitor Location
Register (VLR). While a mobile phone is allocated to a unique HLR, it is
communicating with different MSCs and VLRs according to its location.

Figure 1 illustrates how the system allows a user to move between two service
providers (two operator networks). The user physically moves, and thus needs to
access another network which is reachable in the new location. For voice telephony in
GSM, the user device now accesses a new radio network through different Base
Transceiver Stations (BTS), controlled by other Base Station Controllers (BSC) and a
different Mobile services Switching Center (MSC2). The user and device is also
registered in another Visitor Location Register (VLR2). However, it still
communicates with the Home Location Register (HLR) of the original network.

For the Short Message Service (SMS), all traffic goes through the Short Message
Service Center (SMS-C) in the home network.

MS

SIM

ME

BTS

BTS

BTS
BSC

BSC

MSC1

HLR1

PSTN

VLR2

VLR1

SMS_C

BTS

BTS

BTS
BSC

BSC

MSC2

MS

SIM

ME

<<moves>>

Home Network

Foreign Network

MS

SIM

ME

BTS

BTS

BTS
BSC

BSC

MSC1

HLR1

PSTN

VLR2

VLR1

SMS_C

BTS

BTS

BTS
BSC

BSC

MSC2

MS

SIM

ME

<<moves>>

Home Network

Foreign Network

Figure 1: A user moves from one service provider to another in GSM

As shown in Figure 1, as the mobile phone moves, the components on the ME and
the SIM will switch from interacting with MSC1 and VLR1 to interacting with MSC2
and VLR2. The functionality and interfaces of the components are standardised, but
the instances, for examples MSC1 and MSC2, can be built by different
manufacturers.
For the Short-message service the service components on the ME and the SIM always
collaborate with the unique service component in the SMS-C (Short Message Service

Center) with the primary service provider (home network), no matter where in the
world the mobile phone is.

For services in GSM it is possible to summarize as follows:

1. The composite service (GSM voice telephony) is realised by service
components partly on a user device and partly in the network

2. The same composite service can be realised by different service components
(different instances) for different users and different devices

3. The same service can be realised by service components developed by
different manufacturers (different implementations) and located in different
service provider locations

4. The composite service in GSM changes its internal composition to
accommodate user movements

These observations will be used to illustrate how mobile services can be mapped into
a service-oriented architecture.

4 Mobile Services and SOA

In a SOA, a mobile service is equivalent to an application realized by combining
several SOA services. As seen in the previous section, a mobile service is composed
of several standardized components, which can be interconnected at runtime to
accommodate user movements.

However, mobile services pose additional requirements to the service architecture,
which are not necessarily supported by service architectures for other services like
enterprise and business services. For example, mobile services should tackle several
types of movements:

- Movement of users between devices
- Movement of devices across networks
- Movement of services across domains

The current focus of SOA is mostly on enterprise and business services, while mobile
services are not yet considered.

a. GSM and SOA

The GSM voice telecommunication service is realized by several interconnected
components as seen in Figure 1. These components communicate with each other
over standardized interfaces. GSM is not based on a Service-Oriented architecture,
but it still shares some characteristics with SOA. The system is modularized into
components (HLR, VLR, MSC etc.), which have their own specialized tasks (similar
to services in a SOA). These components have well-defined interfaces which are used
to access their functionality, and the specifications of these interfaces are open and

published through ETSI/3GPP. Thus, service providers can build a system with
components from several different vendors, because they should be compatible. This
allows users to move between service providers and still receive the same service
offering.

b. Future Mobile Services and SOA

As in GSM, future mobile services will depend on the possibility to dynamically
select appropriate service instances, based on the current location of the user. This
could be as in GSM, discrete service instances, or it could be composite service
instances. The current location of the user will be defined by a combination of the
geographical location, current device, current network and possibly some domains:

Lgeo = GeographicalLocation(user)
D = Device(user)
N = Network(D)
DO = Domain(user, N, D)

Location(user) = Lgeo ∩ D ∩ N ∩ DO

In contrast, with SOA the service environment is generally assumed to be one
ubiquitous environment, i.e., the Internet. The notion of Location defined above is
therefore not relevant for such services. Nomadic users, however, move across
boundaries of these service environments (Locations), and access to services should
be possible regardless of such movements.

Traditional mobile services (voice telecommunication and SMS) are personalized
services; the identity of the user is strongly connected to the service, and personal
adaptations can be performed (e.g. forwarding, answering machine etc.). One
requirement of future mobile services is that personalization should also be possible.
When a service is personalized, changes done to the service should always follow the
user. For this to happen, the requirement for service continuity must also be fulfilled.
These two requirements are therefore in one way strongly interconnected, and they
will both depend on the composition of the services.

A generic mobile service can be said to contain some specific service components
which are required to render the service; these are the components that supports the
mobile characteristics of the service.

To see how a SOA can be adapted to support future mobile services and their
specific requirements, it is therefore necessary to look at the architecture of a generic
mobile service, i.e. what components it has and how are they interconnected. The
internal composition of a generic mobile service is illustrated in Figure 2. The
components are as follows:

MobileService – The overall representation of the service, consists of one or several
service logic components. A Graphical User Interface (GUI) is one of these, exposing
the service to the user. This component is most often a composite service, or an
application in SOA terminology.

ServiceLogic – This is a piece of executable code, e.g. a program, or more precisely a
service in SOA terminology.

ServiceState – These are state variables and other internal data used by a service logic
component (e.g. register values). These have no equivalent in the common SOA
terminology, but are assumed an integrated part of a service.

ServiceContent – These are other data that are used in conjunction with a service, e.g.
documents, but which are not part of the state of the service logic component.
Common SOA terminology does not include such a component.

ServiceContentMetaData – These are meta-information used together with
ServiceContent. They can be data which provide additional value to the service
content. Take an internet browser as an example; the ServiceContent are Web pages
and the bookmark list is part of the ServiceContentMetaData. Common SOA
terminology does not include an equivalent concept.

ServiceProfiles – These are profiles (UserServiceProfile and DeviceServiceProfile)
containing information about how the service should behave towards specific users
and devices. Common SOA terminology does not include this concept.

The KeyStateVariables component will be explained later.

Figure 2: The composition of a generic mobile service

In summary, the support for service continuity and personalization in mobile services
is dependent on the availability of instances (of the same or similar implementations)
of the ServiceLogic component (considered in the next subsection) and the access to
the specific ServiceState, the specific ServiceContent and the specific ServiceProfile.

c. Service Equivalence

As mentioned in the introduction, it could be possible to substitute one service for
another, if they can be proven to be similar enough. In turn, this can be used to
accommodate movements of a user and to realize mobile services.

Any movement might result in the original (composite) service no longer being
available, e.g. because one of the discrete services is out of reach from the new
location (see Figure 3). S1 and S2 represent composite services used directly by the
user. S3 and S4 are discrete service components, used by S1 to offer the composite
service. When the user moves to a new service environment, the composite service is
offered through S2. However, this service has only access to S4; S3 is no longer
accessible. A possible solution is to access S5, which provide a service similar to S3.

An analogy to GSM is that it would not be possible to send an SMS from the
foreign network (Service Environment B), because the new network can not
communicate with the home network and is thus not able to send messages through
the SMS-C (S3) in the home network of the user.

S1 S2

S3 S4

Service Environment A
Service Environment B

S5

<<moves>>

S1S1 S2S2

S3S3 S4S4

Service Environment A
Service Environment B

S5S5

<<moves>>

Figure 3: Composite services in different service environments

To allow various movements, it might be necessary to dynamically change the service
architecture, e.g. by switching from one service provider to another or to switch
between similar service components provided by the current service provider.

The goal of a SOA that supports mobile services will be to enable this type of
functionality for generic services. The SOA must allow discrete, and possibly
composite, services to be substituted by other instances and implementations. To be
able to do this, a set of definitions and a framework for describing similarities of
services is required, i.e. how can two service components be compared. The steps
required in such a process are:

1. Discover candidate service components
2. Compare candidates with current component; do any of the candidates cover

satisfactorily amounts of the functionality provided by the current
component?

3. Switch between the components; i.e., realize the connection between the
components

The first two steps pose the biggest challenges, while the third is simply a matter of
changing a service identifier (e.g. a URI). The discovery step requires semantic
searching capabilities (as approached by the Semantic Web[13][14][15] and
OWL[16]/OWL-S[17]), while the description “satisfactorily amounts” must be
formalized so that the entire process described above can be automatically performed
by computers.

Semantic Equivalence

To be able to decide if two implementations are semantic equivalent, it is necessary to
have a common vocabulary describing service concepts. This is where ontologies
come into play, like those built on OWL and OWL-S. It will be necessary to define
ontologies for each service domain, since service domains typically are quite different
(e.g. hotels and gas stations provide services that are fundamentally different).
However, it is clear that semantic equivalence of two services S1 and S2 is determined
by:
1. Semantic equivalence of the service concept – what is the overall benefit offered
by this service?

2. Semantic equivalence of the interfaces (e.g. semantics of methods and of
parameters within these methods) used to access this service (what is it the user
provides and what is it he receives in return, not talking about implementation details
like data types but rather about concepts).
Semantic equivalence is not formally treated in this paper, but it is assumed that the
semantic equivalence of S1 and S2 is defined by an equivalence relation:

 S1 SE S2

This statement says that S1 is semantically equivalent to S2.

Syntactic Equivalence

The difference between syntactically identical and syntactically equivalent should
be interpreted as follows:

• Two services can be stated as syntactically equivalent without knowing

the internal structure of them; if the external interfaces are the same, they
are syntactically equivalent.

• To state that two services are syntactically identical (which means either
the same instance or two instances of the same implementation), it is
necessary to also compare their internal structure; if both the internal
structure and the external interfaces are the same the two service
components are syntactically identical.

If one service is syntactically compatible with another, it shares some of the

functionality of the other. Consider two services S1 and S2, it is possible to define the
following relations between the two services:

Equivalent – S1 E S2
Identical – S1 I S2
Compatible – S1 C S2

Based on these observations, it is possible to define service equivalence, service
identicalness and service compatibility:

Equivalence: A service S1 is equivalent with a service S2 when they are semantic
and syntactic equivalent. This relation is an equivalence relation (transitive, reflexive
and symmetric).

Identicalness: A service S1 is identical to a service S2 when they are syntactically
identical (which implies semantic equivalence). This relation is an equivalence
relation (transitive, reflexive and symmetric).

Compatibility: A service component S1 is compatible with a service component S2,

S1 C S2, when they are semantic equivalent and S1 have subsets of functions and
interfaces that are equivalent with S2. This relation is transitive, reflexive and anti-
symmetric.

Corollary 1: Two identical services are equivalent.
Corollary 2: Two equivalent services are compatible.
Corollary 3: Two identical services are compatible.

The next challenge is then to determine the semantic and syntactic properties of two
services, in order to be able to compare them according to the definitions above. Also,
it will be necessary to compare both discrete and composite services according to the
defined relations.

d. Service Continuity and SOA
The major components enabling service continuity in mobile services are service
logic and service state (see Figure 2). Appropriate service logic must be discovered
when the user moves into a new service environment (Location), and service state
from the previous service environment should be transferred to the new service logic
instance, at least when seamless service continuity is required [9]. The important
mechanisms to allow service continuity are thus:

- Service discovery
- State transfer

Service discovery is dependent on a realization of logic handling and employing the
service equivalence relations defined in Section 4c. This includes both semantic and
syntactic discovery.
It is necessary to define ontologies that describe the service concepts in all service
domains that should be used to provide mobile services. These ontologies should be
course-grained, but it is also necessary that they are universally agreed upon by all
mobile service providers. In GSM, this is not necessary because only a restricted set
of agreed upon services are provided. Thus, when a user moves from one provider to
another, it is taken for granted that if the user device can communicate using GSM
protocols, he is going to access the GSM voice telephony service and the SMS
service.

For a service environment based on SOA, where all communications of an
unlimited number of services is performed over SOAP, this is not possible; nothing
can be assumed about the required service.

After semantic discovery has resulted in some candidate services, a service with an
appropriate interface must be selected, if possible. An appropriate interface is defined
by having the correct semantics as well as syntax. Thereafter, it might be possible to
negotiate non-functional requirements like Quality-of-Service (QoS), to further select
the better service instance.

When an appropriate service instance has been located, it will often be necessary
to transfer some of the state information from the previous service instance. Such
state transfer will be dependent on standardized interfaces in all services that should
support service continuity and that are capable of possessing a state. If the two
instances are from the same implementation, this could only be a matter of serializing,
transferring and de-serializing the state. If the instances are from different
implementations, it is much more complicated, if not impossible. It might be
necessary to decide if the result from the service discovery process (appropriate
service) is more important than keeping the service state (supporting only non-
seamless service continuity [9]).

To enable instances of different implementations to be able to exchange states, it
will be necessary to define a set of variables that are a sub-set of the global state of a
service. For example, one such variable from an Internet browser could be the field
containing the current URL (the current web-page is part of the global service state).
This variable could then be transferred to the new instance of a different
implementation through a standardized interface. It is thus necessary to identify a set
of key state variables of all services that should be mobile. This should be done on a
per service concept basis. This means that a mobile service should instantiate a
service concept (defined in an ontology) and this service concept should contain a set
of key state variables which are defined as a sub-ontology for this service concept.

In Figure 4 two ontologies are illustrated. The first is an ontology of service
concepts (MobileServicesOntology). The second is an ontology of service variables
(MobileServicesVariableOntology). A service concept will, if it supports state
transfer, include a set of key state variables (KeyStateVariableConcept) taken from
the variables ontology. The variables ontology also includes variables used by
interfaces in service implementations (InterfaceVariableConcept). These are however
not directly connected to the service concept, because it could be possible that two

different implementations of the same service concept have slightly different
interfaces (compatible services).

Figure 4: Two ontologies to support mobile services

e. Personalization and SOA

Personalization of services requires that users can receive the same, possibly adapted,
service at all times. This implies that service continuity should be kept to a maximum,
but there are other additional requirements also. The major components allowing
personalization of mobile services are the service profiles and the service content.
Service profiles allow users to specify individual service behavior and look-and-feel
(personalization information) and to add their own details (personal information) to a
service. Service content is data consumed or produced by the user through service
usage. These data also contribute to individualizing services, since user documents
are very often individual.

It is thus necessary to add support for this type of information in a SOA that
should support mobile services. There are basically two mechanisms to achieve this.
First, a similar approach to the state transfer mechanism in the previous section could
be applied. But since profiles and content are not as tightly coupled to service logic as
the service state, it seems more beneficial and in accordance with the SOA strategy to
instead expose service profiles and service content as services on their own.
Approaches to making profiles ubiquitously available as services have been
investigated earlier in [18].

An approach to exposing service content as a service in itself is therefore required,
as depicted in Figure 5 and Figure 6. In Figure 5, each of service components (S1 to
S3) in the SOA has access to some component specific content (C1 to C2). However,
one service component can usually not access the content of another (as indicated by
the question mark).

In Figure 6, all service components can access the content originally belonging to
service component S2, because this content is exposed as a service on its own in the
service-oriented architecture.

S1 S2 S3

C1 C2 C3

SOA scope

Personalization scope

? ?

S1S1 S2S2 S3S3

C1C1 C2C2 C3C3

SOA scope

Personalization scope

? ?

Figure 5: SOA without personalization support

S1 S2 S3

C1

C2

C3

S(C2)

Personalization enabled SOA

S1S1 S2S2 S3S3

C1C1

C2C2

C3C3

S(C2)

Personalization enabled SOA

Figure 6: Exposing content as a service on its own

f. A SOA-based Mobile Services Architecture

A SOA-based mobile services architecture builds on, and extends, the basic SOA
with several conceptualizations, components and mechanisms:

1. An ontology for describing mobile services concepts
2. An ontology for describing key state variables
3. An ontology for describing interface variables
4. A mobility controller component that can handle state transfer and

coordinate the overall mobile service; needs to implement the service
equivalence logic defined by relations earlier in this paper

5. A mobility controller stub in each composite service which can coordinate
actions towards the mobility controller

6. Standardized interfaces for state transfer (between mobility controller stub
and mobility controller)

7. Exposing service profiles as autonomous, self-contained services
8. Exposing service content as autonomous, self-contained services

Figure 7 displays a new view of a SOA that supports mobile services. Since all major
components of a mobile service are exposed as services on their own, the only visible
component added is the mobility controller. A service consumer locates an adequate
service by using the find method towards a service directory. Service usage can then
be initiated through the invoke method. If there is some change in location, or other
circumstances require that a service component is interchanged with another, service

usage can be temporary stopped by using the suspend method, which is relayed to the
mobility controller. This suspend action can be used to transfer the current state (or
Key State Variables) for temporary storage in the mobility controller.

Service Consumer

register

find

invoke

Service Directory

Service

Mobility Controller

suspend

suspend

resume find

Service Consumer

register

find

invoke

Service Directory

Service

Mobility Controller

suspend

suspend

resume find

Figure 7: A simplified view of a SOA with support for mobile services

The service consumer can then resume the service usage (e.g. in a new location) by
contacting the mobility controller, which will locate an adequate service component
by looking in the service directory. Not displayed in the figure is the re-initiation of
service usage with a possibly new implementation of a service component using the
previously stored state (or Key State Variables).

5 Conclusion

This paper has addressed the support for mobile services in Service-Oriented
architectures, and in particular the support for service continuity and personalization
in such architectures. To add this support, the equivalence of service components was
discussed, since it might be required to substitute service components for each other,
in order to accommodate various relative movements of entities part of the service
domain (e.g. users, devices and services). The concepts, components and mechanisms
that must be added to a SOA in order to support mobile services were proposed.

References

[1] Papazoglou, M.P. and Georgakopoulos D. (2003). Service-Oriented Computing.
Communications of the ACM, Vol. 46, No. 10, October 2003

[2] Cubera, F. et. al. (2003). The Next Step in Web Services. Communications of the
ACM, Vol. 46, No. 10, October 2003

[3] Object Management Group. (2004). Common Object Request Broker
Architecture: Core Specificaion Version 3.0.3. OMG, March 2004, Available
online: http://www.omg.org/docs/formal/04-03-01.pdf

[4] Horstmann, M. & Kirtland M. (1997). DCOM Architecture. Microsoft Developer
Network (MSDN), July 23, 1997

[5] Jørstad, I., Dustdar, S., van Do, T. (2004). Evolution of Mobile Services: An
analysis of current architectures with prospect to future. 2nd International
Workshop on Ubiquitous Mobile Information and collaboration Systems
(UMICS), co-located with CAiSE 2004, Riga, Latvia, 7-11 June 2004, Springer
LNCS. ISBN: 3-540-24100-0

[6] Jørstad, I., van Do, T., Dustdar, S. (2004). An analysis of service continuity in
mobile services. 2nd International Workshop on Distributed and Mobile
collaboration (DMC), WETICE conference, Modena, Italy, 14-16 June 2004,
IEEE Computer Society Press. ISBN: 0-7695-2183-5

[7] Jørstad, I., Dustdar, S., van Do, T. (2004). Service Continuity and
Personalisation in Future Mobile Services. 10th International IFIP Workshop on
Advances in Fixed and Mobile Networks (EUNICE 2004), Tampere, Finland,
14-16 June 2004. ISBN: 952-15-1187-7

[8] Jørstad, I., van Do, T., Dustdar, S. (2004). Personalisation of Future Mobile
Services. 9th International Conference on Intelligence in service delivery
Networks, Bordeaux, France, 18-21 October 2004.

[9] Jørstad, I., Dustdar, S., van Do, T. (2004). Towards Service Continuity for
Generic Mobile Services. The 2004 IFIP International Conference on Intelligence
in Communication Systems (INTELLCOMM 04), Bangkok, Thailand, 23-26
November 2004. ISBN: 3-540-23893-X

[10] Barry & Associates Inc. Service-oriented Architecture (SOA) Definition. Barry &
Associates Inc. Available online: http://www.service-architecture.com/web-
services/articles/service-oriented_architecture_soa_definition.html

[11] Colan, M. (2004). Service-Oriented Architecture expands the vision of Web
Services. IBM. April 21 2004. Available online: http://www-
106.ibm.com/developerworks/webservices/library/ws-soaintro.html

[12] Heine, G. (1999). GSM Networks: Protocols, Terminology and Implementation.
ISBN 0-8900-6471-7, January 1999

[13] World Wide Web Consortium (W3C). Semantic Web. Available online:
http://www.w3.org/2001/sw/

[14] Lee, T. B. et. al. (2001). The Semantic Web. Scientific American, May 2001
[15] Beckett, D. (editor). (2004). RDF/XML Syntax Specification. World Wide Web

Consortium (W3C), February 10 2004. Available online:
http://www.w3.org/TR/rdf-syntax-grammar/

[16] McGuiness, D. & Harmelen, van F. (editors) (2004). OWL Web Ontology
Language Overview. World Wide Web Consortium (W3C), February 2004.
Available online: http://www.w3.org/TR/owl-features/

[17] Martin, D. (editor) (2004). OWL-S: Semantic Markup for Web Services.
Available online: http://www.daml.org/services/owl-s/1.1/overview/

[18] Hartvigsen, A. M. et. al. (2002). Offering User Profile as an XML Web Service.
Databases and Information Systems II - The Fifth International Baltic conference
on DB and IS, Tallinn, Estonia, June 3-6 2002, Selected Papers, Kluwer
Academic Publishers, ISBN 1-4020-1038-9

