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Abstract—The Internet of Things (IoT) is expected to constitute

a significant portion of the Internet in the future, both in

terms of traffic, and market share. For it to achieve its full

potential, innovative solutions are necessary to address several

open challenges. In this context we discuss Network Neutrality,

which states that all traffic in the Internet must be treated

equally, i.e., without traffic differentiation (TD). Unfair traffic

management may result in a non-competitive market, affecting

selectively the quality of experience of different IoT applica-

tions. This scenario might hinder innovation, threatening IoT

success. Monitoring TD on the IoT is thus important for a more

competitive market. In this paper, we first study the impact of

TD on common IoT traffic patterns, such as periodic updates

and real-time notifications. We present simulation results, and

discuss which types of IoT applications are most affected by

TD. We then discuss a solution for monitoring TD on IoT. The

solution takes advantage of the IoT to address several open

challenges of TD detection. For instance, the large amount of

devices results in a prolific environment for making TD-related

measurements. The solution can thus employ machine learning

for continuously monitoring TD as the numerous IoT devices

and applications communicate.

1. Introduction

The Internet of Things (IoT) is becoming increasingly
present in modern life. It consists of a combination of
numerous connected devices, sensors and actuators, that
gather huge amounts of data and provide different services.
Estimates show there will be about 212 billion IoT devices
by 2020, and about 45% of Internet traffic will be related
to IoT by 2022 [1]. These estimates indicate that IoT will
constitute a significant portion of the Internet in the future,
both in terms of traffic, and market share. The rapidly growth
of IoT will most certainly have a high economic impact
in several areas, providing device manufacturers, Internet
Service Providers (ISPs), and application developers with
new opportunities in the market [1].

There are currently several research projects covering
key aspects of IoT [1], such as architectures, availability,
reliability, mobility, performance, management, scalability,
interoperability, security, and privacy. Innovation is thus
essential in order to address the large set of challenges

presented by the IoT. New devices, protocols, platforms,
and cloud services are examples of different aspects that
still need innovative solutions if the IoT is to achieve its
full potential, contributing to quality of life and economy
growth.

However, innovation, and thus the success of IoT, may
be hindered by unfair traffic management practices from
ISPs [2]. In this context we discuss Network Neutrality
(NN), which is the principle by which all traffic on the
Internet must be treated equally. According to NN, an ISP
cannot slow down, prioritize or block any specific type of
traffic, regardless of its origin, destination and/or content,
i.e., traffic differentiation (TD) practices are not allowed [3].
TD may impact selectively the quality of experience (QoE)
of different IoT applications, resulting in a non-competitive
market, since a difference in QoE may determine the success
or failure of a device or application over competitors [4],
[5]. For instance, if IoT sensors from one manufacturer
have their traffic prioritized, the potential lower loss rates
experienced by these sensors might cause much less packet
retransmissions. This scenario could result in lower energy
consumption, giving the manufacturer a competitive advan-
tage.

On a non-neutral Internet, new innovative devices, ap-
plications, or services from small companies may not be
able to compete with more established products from larger
companies [6]. For instance, device manufacturers and ap-
plication developers may be compelled to pay extra fees
for ISPs in order to have their IoT applications and devices
run efficiently or at least on par with competitors [7]. Fur-
thermore, ISPs may employ TD to prioritize traffic from/to
specific partner cloud vendors, making their IoT services
and platforms more attractive. ISPs may also prioritize their
own IoT-related services in order to obtain competitive
advantages. Checking for these behaviors in the IoT is
thus important to ensure that innovative solutions emerge,
addressing the several open challenges and providing a more
diverse set of services in the future.

NN has been globally debated for more than a decade,
leading several governments to create regulations forbid-
ding ISPs to employ TD [8]. However, regulations alone
cannot guarantee ISPs compliance. Moreover, transparency
on traffic management practices might contribute to a more
competitive market [2]. Therefore, regardless of regulations,
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monitoring TD on the IoT is important for ensuring a level
playing field for the development of new protocols, devices,
and applications.

Some solutions for detecting TD on the Internet have
been published in the last decade in the scientific literature
[9], [10], [11], [12], [13], [14], [15], [16], [17]. These
solutions are based on network measurements and statistical
inference. However, several issues arise when employing
these solutions on IoT. For instance, they focus on traditional
Internet traffic, the so-called Human-Type Communication
(HTC), and thus might not be effective for detecting TD of
IoT traffic. Furthermore, limitations present on IoT devices
may turn unfeasible the use of these solutions.

In this paper, we first study how TD may impact IoT
traffic. We discuss how TD may be implemented by ISPs
to discriminate IoT devices, applications, and services. We
then present common traffic patterns generated by IoT appli-
cations and how they might be affected by TD. Simulation
results of each traffic pattern under different TD scenarios
are then presented. We then discuss a solution for monitor-
ing TD on IoT. This proposal takes advantage of the IoT
infrastructure to address several open challenges identified
in the current state of the art. It is based on continuous
passive measurements and machine learning [18]. The main
idea is to passively monitor IoT traffic, in order to establish
the “default network performance” of different IoT traffic
patterns. If the perceived performance of the traffic from
an IoT device or application differs from this baseline, TD
may have occurred. To the best of our knowledge, there is
currently no solution for monitoring the presence of TD on
IoT.

The rest of this paper is organized as follows. In Section
2 we discuss how ISPs may discriminate traffic on the IoT.
Traffic patterns generated by IoT applications and how TD
may impact these patterns are then described in Section
3. We describe our simulations and discuss the results in
Section 4. We then discuss a solution for monitoring TD on
IoT in Section 5. Related work is presented in Section 6.
We conclude the paper in Section 7.

2. Traffic Differentiation on IoT

Traffic differentiation (TD) is a discriminatory traffic
management practice, in which some types of traffic are
treated differently than others. An ISP may implement this
by prioritizing or slowing down specific types of traffic
traversing its network. To identify these different types,
traffic may be classified based on its characteristics [19],
[20], such as origin/destination address, destination port,
application protocol, flow behavior, or even the whole pay-
load (deep packet inspection). Traffic is then treated differ-
ently based on the classification, through several possible
mechanisms. Traffic shaping [21] and traffic policing [22]
are common traffic management mechanisms which may be
used to implement TD. We further describe these mecha-
nisms in Section 4, when the TD scenarios employed in our
simulations are presented.

IoT devices usually generate small amounts of traffic
[23], but the aggregate traffic from billions of such devices
may motivate ISPs to throttle IoT traffic and/or charge for
prioritization in the future. TD may take place at different
levels of the IoT architecture, affecting different components
as they interact with each other. These components connect
to the Internet through several different access networks.
Therefore, in this work we make no distinction between
wired and wireless networks, since TD may be employed
on both, equally affecting IoT traffic.

An IoT system is a combination of connected compo-
nents with different capabilities and purposes, from low-
capacity sensors to high-performance cloud servers. In gen-
eral, a plethora of sensing devices generate raw data, which
is sent to the Cloud for processing and storage. Cloud
services may also send data to the edge devices, such as
commands and notifications. IoT platforms are often im-
plemented as middleware [24] coordinating the interaction
between the heterogeneous edge devices and cloud services.
There could also be IoT gateways which aggregate data from
several sensing devices, intermediating the communication
between them and IoT platforms or other cloud services.

Figure 1 shows a common IoT architecture and shows
where TD may take place. Any traffic that traverses the
Internet is subject to TD: from/to edge devices or gateways,
from/to IoT platforms, as well as from/to cloud services.
An ISP may differentiate traffic involving specific device
manufacturers (e.g., a brand of sensors or vehicles), ap-
plications (e.g., domain-specific or proprietary protocols),
or origin/destinations (e.g., premium clients, cloud vendors,
IoT platforms).

3. IoT Traffic Patterns and the Impact of TD

Data traffic in the IoT is mostly comprised of the so-
called Machine-Type Communication (MTC) [1] – also
known as Machine-to-machine (M2M) communication.
MTC is characterized by the communication of several
devices among each other without the need of human inter-
action, as opposed to Human-type communication (HTC).
In the IoT, sensing devices, gateways, middleware, and
cloud services communicate autonomously with each other.
Human interaction is also present, such as command inputs
(e.g., smart home), or during critical situations (e.g., deci-
sion making, security alarms).

MTC traffic is usually comprised of short and sparse
transmissions of small packets [25]. It may be real-time or
not, with varying intervals between transmissions. HTC, on
the other hand, is characterized by a continuous flow of
large packets. In access networks, MTC generates traffic
that is predominantly in the upload direction (from sensing
devices to the Cloud), while HTC generates traffic that is
mostly in the download direction (from the Cloud to end-
users devices). Examples of HTC traffic include instant
messaging, VoIP, video/audio streaming, web pages, and file
sharing. We present below, in Subsection 3.1, common IoT
traffic patterns. We then discuss, in Subsection 3.2, how TD
might impact the different traffic patterns.
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Figure 1. TD on a common IoT architecture.

3.1. IoT Traffic Patterns

Three common MTC traffic patterns have been recently
identified [25]: Periodic Update (PU), Event-Driven (ED),
and Payload Exchange (PE). According to the authors, these
patterns are those observed in the majority of M2M applica-
tions. IoT applications are often comprised of a combination
of these patterns. For instance, a river monitoring system
periodically sends measurements regarding the water level
of rivers to a central server (PU). If the water level surpasses
a certain threshold, a flood alarm may be issued (ED).
In order to deal with this event, pictures may be sent to
the server, or a data stream may be initiated to update
the measurements in real-time (PE). The system may also
operate dams for controlling the water level by sending
commands to actuator devices (ED). These three patterns
are described below.
Periodic Update (PU): The PU pattern consists in period-
ically sending update reports to a central entity. Traffic is
generated at a regular interval (e.g., each second), usually
comprised of small packets of constant size. An example
of this pattern is river monitoring, presented above. Other
examples include smart meters reading, and remote health
monitoring.
Event-Driven (ED): In this pattern, traffic is sporadic, gen-
erated only when an event occurs. An event may be detected
by sensing devices (e.g., when a threshold is exceeded), or
may be issued by servers (e.g., a human inputs commands).
Data size may vary depending on the application and the
amount of information of each event. This type of traffic
is usually real-time, specially when the events refer to
situations that must be acted upon quickly. An example of
this traffic pattern is the generation of a security alarm in a
surveillance system when something suspicious is detected.
Other examples include health emergencies, disaster alerts,
and notification of new routes.
Payload Exchange (PE): The PE pattern corresponds to the
transfer of larger amounts of data. It usually takes place after
an event is notified, furthermore after the event has occurred
more data is required to be deal with the situation. For
instance, in the security alarm example presented above for
the ED pattern, it is possible to start a video streaming from
surveillance cameras to better assess the situation and act

accordingly. Another example is firmware upgrading. After
receiving the notification that a new firmware version is
available, the corresponding devices may start downloading
the new version. This pattern may be real-time or not,
depending on the corresponding event.

3.2. Impact of TD

Each IoT traffic pattern is sensitive to different network
performance metrics. In this work, we consider three met-
rics that might impact QoE on IoT [5]: end-to-end delay,
loss rate and throughput. We analyze below how these
performance metrics may affect each pattern, as well as
how TD could benefit a prioritized application/device over
competitors.
Impact on PU: In the PU pattern, large delays might be
misinterpreted by the system as inactivity or faulty behavior.
For instance, an IoT device may periodically send informa-
tion regarding its status (e.g., uptime, battery level) through
the Internet to an IoT platform. If this periodical report is
largely delayed, specially if delays are perceived repeatedly,
the system may wrongly assume that the device is inactive
or faulty. Furthermore, high loss rates may significantly
increase the amount of data transmitted over long periods
of time due to the retransmissions. Throughput, however,
may not be an important performance metric for this traffic
pattern, since the data rate is small. In conclusion, TD
may turn a prioritized device less likely to be considered
inactive or faulty by the system, and smaller loss rates may
result in lower energy consumption than competitors (less
retransmissions).
Impact on ED: It is important that the real-time notifica-
tions from this pattern arrive within the required time limits.
ED traffic is thus sensitive to end-to-end delay. Packet loss
might also affect this pattern, since retransmissions increase
the end-to-end delay. Throughput, as with the PU pattern,
may not be important since the amount of ED traffic is small,
in most cases. For instance, let us consider the following
scenario. A person driving a smart car is making use of
a guidance application, which should present to the user
the fastest route to the desired destination. The smart car
is connected to the Internet, enabling such application to
constantly check for better routes. If an accident in the
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current route occurs, it may cause a traffic jam, significantly
affecting the driving time until the destination. In such a
situation, the smart car might receive a notification about
the accident, causing the driving guidance application to
provide a new and faster route to the user. If this notification
gets delayed, it might arrive after the user has reached the
traffic jam, and from this point it may be impossible to
take a detour. Therefore, TD might result in better response
times upon the occurrence of events for prioritized devices
and applications. In the scenario described above, if cars
from a given manufacturer have priority over others, they
will perceive smaller delays that may cause a significantly
difference in the QoE perceived by users, and this in turn
may affect consumer decisions when buying a new car.
Impact on PE: PE traffic is similar to HTC traffic, since
it consists of a continuous transfer of larger amounts of
data. Throughput is thus relevant, while end-to-end delay is
not as important as with the ED pattern. Packet loss may
impact throughput, since less data is transferred in the same
amount of time. A prioritized application may experience
a higher throughput. This may result in an overall better
QoE, specially when there is human interaction (video/audio
streaming).

4. Simulation Results

In this section we describe several experiments executed
with simulation to evaluate the impact of TD on different
IoT traffic patterns. We simulate each pattern under three
different TD scenarios, totaling 9 simulations. We employed
the OMNeT++ [26] simulation framework for implementing
and executing these simulations. The duration of each sim-
ulation was 1800 seconds, which was set empirically. We
observed no significant difference in the results when we
executed experiments that took longer than that to complete.

Figure 2 shows an overview of the experiments executed.
In each simulation, there are three different sets of traffic
sources: cross-traffic, high priority, and low priority. All the
traffic ingressing at the network goes through a classifier,
which identifies the priority of the traffic (as high or low).
A TD mechanism is then employed based on the classi-
fication. Each of the three TD scenarios corresponds to a
TD mechanism employed. The traffic is then routed to the
destination through a single router. The links between the
traffic sources and the network have maximum rate of 10
Mbps and a propagation delay of 10 ms, the same delay of
the links between the host running the TD mechanism and
the router, and between the router and the destinations. The
total propagation delay is thus 30 ms, and the maximum
output rate of the network is 10 Mbps.

All the traffic generated by the traffic sources traverses
the same path in the network, competing thus for the same
network resources. However, traffic from one of the sources
(called high priority) is prioritized over others (low priority
and cross-traffic). The goal is to check how this prioritization
affects the end-to-end performance. We implement this pri-
oritization by reserving a small ratio (1%) of the maximum
rate (10 Mbps) of the output link to the high priority traffic,

i.e., the high priority traffic has at least 100 Kbps of the
bandwidth guaranteed.

The high priority and low priority traffic sources gen-
erate traffic corresponding to the three IoT traffic patterns
described previously in Section 3: Periodic Update (PU),
Event-Driven (ED), and Payload Exchange (PE). Cross-
traffic simulates background Internet traffic generated by
sources other than IoT devices and applications.

The rest of this section is organized as follows. We
describe how cross-traffic is generated in our simulations
in Subsection 4.1. Then, we describe how we implemented
the three IoT traffic patterns in Subsection 4.2. The TD
scenarios are described in Subsection 4.3. We present the
results in Subsection 4.4, and a discussion in Subsection
4.5.

4.1. Cross-traffic

In our simulations, cross-traffic is generated according
to the HTC pattern, since IoT traffic competes with HTC
for network resources in the Internet [23]. Therefore, cross-
traffic was implemented by generating several continuous
flows of packets of variable size and rate. We employed the
UDP transport protocol, since it allows better control of the
amount of traffic introduced in the network (no congestion
control, ACKs, retransmissions, etc.). Each different flow
consists of packets with random sizes ranging from 250 to
1000 bytes. Packets are sent at random intervals ranging
from 8 to 12 ms, resulting in an average sending rate of
500 Kbps.

In order to evaluate how IoT traffic patterns fare under
different conditions of cross-traffic and congestion, cross-
traffic is generated in 4 different levels during the 1800
seconds of each simulation. In the first 100 seconds, there is
no cross-traffic. From seconds 100 to 500 of the simulation,
the cross-traffic rate increases gradually (as new flows are
started) up to 10 Mbps. At 1300s the cross-traffic increases
by 500 Kbps, and that is repeated at 1600s. Figure 3 shows
the cross-traffic sending rate during the 1800 seconds of
each simulation.

4.2. IoT Traffic Patterns

We implemented the different traffic patterns based on
the MTC traffic model proposed in [25], and according to the
IoT traffic characterization presented in [27]. Each pattern
differs in terms of several parameters: the number of traffic
sources, packet size, total data size, sending rate, and the
interval between transmissions.

The PU pattern consists of sending a constant sized
packet (500 bytes) every 5 seconds, employing the TCP
protocol. In the experiments we employed 50 high priority
sources and 50 low priority sources. Figure 4 shows the
sending rate of the aggregate PU traffic of each priority
class during the simulations.

The ED pattern consists of sending short bursts at ran-
dom times. The number of packets of a burst is selected
randomly and varies from 1 to 900 packets, each packet
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Figure 2. Simulation: the main modules.
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Figure 3. Cross-traffic sending rate.
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Figure 4. PU pattern sending rate.

size ranges from 800 to 1200 bytes. This pattern represents
the notification of an event from sensing devices to a cloud
server, or vice versa. In our simulations, we employed 50
high priority sources and 50 low priority sources generating
ED traffic. Each source generates an event at a random time
instant. Figure 5 shows the sending rate of the aggregate ED
traffic of each priority class during our simulations.

We implemented the PE pattern as continuous flows of
UDP traffic, similar to the HTC traffic employed as cross-
traffic. We employed 30 sources of each priority, thus a total
of 60 sources generate PE traffic. Since this pattern usually
takes place after the notification of an event, we start PE
transfers in the same way as the ED pattern, i.e., each source
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Figure 5. ED pattern sending rate.
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Figure 6. PE pattern sending rate.

initiates a transfer at a random time instant. Each transfer
size varies randomly from 4 to 8 MB. Figure 6 shows the
sending rate of the aggregate PE traffic of each priority class
in the simulations.

4.3. TD scenarios

We implemented three different TD scenarios, namely
Neutral, Shaping, and Policing. The Neutral scenario em-
ploys no TD. The Shaping scenario is based on traffic
shaping [21], while the Policing scenario is based on traffic
policing [22].
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In the Neutral scenario, no TD is performed, thus all
traffic is treated equally. A single packet queue is employed.
Packets are dequeued and forwarded in the order they arrive,
i.e., according to the First In, First Out (FIFO) policy. The
queue has maximum size equal to 100. When the queue is
full, all arriving packets are dropped, employing the Drop-

tail (DT) approach.

In the Shaping scenario, the reserved rate (100 Kbps)
is enforced by queuing high priority packets in a separate
queue and forwarding them first. Two DT queues are em-
ployed, one for each priority. All high priority packets that
fall under the reserved rate are queued in the high priority
queue. High priority packets that exceed this rate are queued
together with the rest of the traffic, in the low priority queue.
Packets from the high priority queue are always forwarded
first. Both DT queues have maximum size equal to 100.

In the Policing scenario, a single DT queue with max-
imum size of 100 is employed. Low priority packets that
exceed the maximum output rate of the network (10 Mbps)
are dropped. High priority packets exceeding the reserved
rate are reclassified as low priority, thus becoming subject
to the same dropping conditions as the low priority packets.

4.4. Results

We present below the results for each traffic pattern,
under the different TD scenarios. We focus on the most
relevant metrics for each pattern, which were discussed in
Section 3.

4.4.1. PU results. As discussed previously, packet loss in
the PU pattern may result in a significant increase in the
amount of data transmitted over long periods of time. We
then evaluated then the number of Retransmission Timeouts
(RTOs), computed exactly as the TCP protocol does. Figure
7 shows the Cumulative Distribution Function (CDF) of the
number of RTOs, for each priority class and under each TD
scenario. Each CDF corresponds to the portion of the time
during which the corresponding number of RTOs occurred.

In the Neutral scenario (Figure 7a), the CDFs for both
priorities were very similar. 15092 high priority packets and
15086 low priority packets were sent. High priority traffic
suffered 2418 RTOs in total, while the low priority traffic
suffered 2429 RTOs.

In the Shaping scenario (Figure 7b), the high priority
traffic suffered no RTOs. 17341 and 14916 packets were
sent by the high and low priority sources, respectively. A
total of 2626 RTOs were suffered by the low priority traffic.

In the Policing scenario (Figure 7c), the high priority
traffic presented RTOs in only about 10% of the simulation,
while the low priority traffic in about 25%. High priority
traffic consisted of 17133 packets, while the low priority
consisted of 16866 packets. A total of 123 RTOs were suf-
fered by the high priority traffic, and 531 RTOs by the low
priority traffic. In this scenario, there were less RTOs than
in the Neutral scenario, for both priorities. However, even
with this improvement, the Policing scenario introduced a

difference between the priorities, which didn’t exist in the
Neutral scenario.

4.4.2. ED results. The end-to-end delay is an important
metric to evaluate the ED pattern, since it consists of real-
time event notifications. Figure 8 shows the average end-to-
end delay, in milliseconds, experienced by packets from of
each priority class, under each TD scenario.

As the amount of cross-traffic increased, the average
end-to-end delay also increased in a similar way for both
priorities in the Neutral scenario (Figure 8a). In the other
two scenarios (Figures 8b and 8c), however, the average
end-to-end delay increased significantly more for the low
priority traffic.

In the Neutral scenario, 759 low-priority traffic packets
suffered end-to-end delays larger than 1 second, while for
the high priority traffic 1037 packets suffered similar delays.
In the Shaping scenario, 815 low priority traffic packets
had end-to-end delays larger than 1 second, while only 297
high priority packets suffered similar delays. In the Policing
scenario, 475 low priority packets suffered delays larger than
1 second, while 239 high priority packets suffered similar
delays.

4.4.3. PE results. PE traffic consists of transferring larger
amounts of data than the other IoT patterns. Therefore,
as discussed previously, throughput is important, since
faster transfers may result in better QoE. We evaluated the
throughput achieved by traffic of both priority classes under
each TD scenario. At first the reserved rate (100 Kbps) had
no significant impact on the throughput. We thus ran our
simulations again, employing a larger reserved rate for the
high priority traffic. We set the reserved rate to 10% of the
link bandwidth, i.e., 1 Mbps. The goal was to check if a
larger reserved rate would result in a significant difference
in throughput between the two traffic priorities.

Figure 9 shows the throughput for each priority, under
each TD scenario. It is possible to observe that the average
throughput for high priority traffic increased in the Shaping
and Policing scenarios, in comparison with the Neutral sce-
nario. The difference is most noticeable after 1300 seconds
of simulation, when cross-traffic reaches a higher level.

4.5. Discussion

Based on the obtained results, we argue that TD impacts
the ED pattern the most, due to the real-time nature of
this type of traffic. The difference observed on the end-to-
end delay between high and low priorities in non-neutral
scenarios shows that even a small reserved rate (1%) may
be enough to create a significant difference on the QoE
perceived by an end-user, which might result in unfair
competition. We argue that the end-to-end delay may be
a good metric for detecting differentiation of real-time IoT
traffic.

Regarding the PU pattern, TD may have a meaningful
impact depending on the application. In cases where energy
consumption is important, for example, the larger amount of
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Figure 7. CDF of the number of RTOs for the PU pattern.
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Figure 8. Average end-to-end delay for the ED pattern.
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Figure 9. PE pattern throughput.

packet retransmissions may be a concern. The impact on the
PE pattern may also depend on the application. For example,
for real-time streaming an affected throughput may result in
significant QoE degradation.

5. Proposed Solution

Most existing solutions for detecting TD require a large
enough number of vantage points for making their mea-
surements. We argue that IoT naturally solves this issue,
since it readily provides numerous vantage points. However,
when employing existing solutions on IoT, two main issues
arise: (i) those strategies are designed for HTC; and (ii) they
are mostly based on comparing two or more traffic flows
originating from a given source.

As discussed in Section 3, IoT devices and applications
are affected by TD in a way that is different from HTC appli-
cations. Therefore, the most adequate metrics and methods

for TD detection on IoT devices and applications necessarily
vary from those from HTC. Furthermore, IoT devices often
have limited capabilities. Thus it is not feasible to assume
that such devices will be able to issue active probes, or
generate any additional traffic flows. Therefore, the current
state of the art might not be viable for detecting TD on
IoT. In addition to these issues on IoT, we identified other
general open challenges not addressed by current solutions,
described below: dynamic TD practices, ISP evasion, and
solution adoption.

Dynamic TD occurs, for instance, when an ISP employs
TD on some specific periods of the day, or when the ISP
constantly changes the TD mechanisms over time. Detecting
this type of behavior is still an open challenge. Continuously
monitoring the presence of TD is a possible direction to
address this challenge.

Most existing solutions generate their own traffic in
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order to make measurements and infer TD. However, the
artificial traffic generated by such solutions might be identi-
fied by ISPs [28], which could then evade the TD inference,
by prioritizing the measurement traffic, for example.

In order to achieve meaningful results, some solutions
require that a large number of end-users report measure-
ments for several different applications, and from multiple
vantage points. Therefore, it is important to create incentives
which may increase the adoption of the solution by a large
number of users. Another challenge is to allow any arbitrary
application to monitor how its traffic is performing com-
pared to others, without having to implement TD detection
on its own. This would enable not only end-users, but also
applications and services to benefit from TD inference and
to contribute to increase its accuracy. Taking advantage
of pre-existent infrastructures and/or real traffic monitored
passively also allows measurements to be made without the
need to control a large number of end-hosts or rely on a
large number of end-users.

Our goal is to create a TD detection solution for IoT
that addresses all the challenges above. In a previous work
[2], we proposed a model for continuously monitoring TD in
distributed systems. This model takes advantage of the tech-
nologies and infrastructure of current and future distributed
systems. The idea is to continuously monitor the commu-
nication of a plethora of devices (e.g. using crowdsensing),
checking the presence of TD in real-time. Measurements
are passively obtained as devices communicate, and if the
presence of TD is detected, active measurements or other
actions may be performed – in a hybrid active/passive
approach.

However, we identified four key challenges for imple-
menting our model on IoT: (i) determining which metrics
to employ for traffic from different IoT devices and appli-
cations; (ii) determining which sets of measurements are
comparable to each other; (iii) determining how to infer the
presence of TD on IoT based on the obtained measurements;
and (iv) determining how to continuously monitor TD on
IoT in real-time.

We discuss strategies to build effective strategies for
online TD monitoring in the IoT, based on continuous
passive measurements and Machine Learning (ML) [18].
We argue that ML provides powerful tools for addressing
the key challenges presented above. The main idea is to
passively monitor IoT traffic, in order to establish the “de-
fault network performance” of different IoT traffic patterns.
If the perceived performance of the traffic from an IoT
device or application differs from this baseline, TD may
have occurred. Our proposal is based thus on a ML classifier,
or ensemble of classifiers, that receives a set of metrics
corresponding to an IoT communication, and outputs the
class of such set: neutral or non-neutral. We envision a TD
detection service, which can be used by any IoT platform
or cloud service.

The rest of this section is organized as follows. Sub-
section 5.1 gives an overview of the TD detection solution.
Subsection 5.2 describes the four key challenges and how
our proposal address them.

5.1. TD Detection Service

Figure 10 shows our proposed TD detection solution
applied to the same IoT architecture presented previously
in Figure 1. The IoT platform collects measurements and
confounds related both to edge devices and cloud services.
These measurements are continuously fed to the TD detec-
tion service, which infers whether TD is going on or not.
Any other service should be able to employ the TD detection
services and obtain the results. The more data is fed to the
TD detection service, the more accurate it becomes, since
measurements from different sources may be aggregated and
used to process new inputs.

Measurements might be, for example, the loss rate ex-
perienced when receiving data from an IoT device, or the
delay between a request from a device and its response.
Furthermore, confounds might be, for example, the geo-
graphic location of the edge device, to which network it
is connected, time of the day, or traffic characteristics, such
as sending rate and packets size, which might help identify
the traffic pattern, as discussed in Section 3.

5.2. Key Challenges

The first key challenge refers to the metrics and mea-
surements to be employed. Current solutions for detecting
TD employ only a few metrics, such as loss rate, delay,
and throughput. They make active or passive measurements
of the traffic from different applications, and/or generate an
artificial baseline traffic. However, IoT devices and applica-
tions follow different patterns of traffic, which may not be
evaluated using the same metrics. Furthermore, TD affects
IoT traffic in ways that are different from HTC. Large-scale
IoT traffic characterization must be done to identify the most
adequate metrics and methods for evaluating IoT traffic.

The second key challenge refers to the confounds that
must be taken into consideration when comparing different
traffic flows. For instance, traffic flows generated in different
periods of the day, with different patterns, or from different
geographic locations may not be comparable to each other.
Most current solutions compare two or more simultaneous
traffic flows between a same pair of hosts, in an attempt
to avoid several of such confounds. This approach may not
be feasible in a real IoT environment. ML classifiers, on
the other hand, are able to consider several metrics and
other features at once, allowing them to take confounds into
account, i.e., only employing the knowledge resulting from
data comparable to the new sample.

The third key challenge corresponds to the inference
mechanisms, i.e., how to decide, with reasonable confidence
level, if a specific traffic flow was affected by TD or not.
Current solutions are based on statistical inference, compar-
ing two or more measurement distributions. If there was a
significant difference over different sets of measurements,
a relative discrimination between the corresponding traffic
flows is detected. In our proposal, the classifiers detect TD
without the need of two or more traffic flows at once for
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Figure 10. Proposed TD detection service on a common IoT architecture.

comparison. TD inference is achieved by “comparing” met-
rics from only one sample with the previously accumulated
knowledge.

The fourth key challenge refers to the final goal of
our proposal, which is an online TD monitoring for IoT.
The presence of TD and how it affects the traffic may
change over time or depend on network conditions. An
ISP might employ TD only on periods of the day during
which the network is under heavy load, for example, or
change the TD mechanism to employ depending on location.
Existing solutions are not designed to detect such dynamic
behavior, since they usually consist of one-shot analysis,
thus can only detect TD being employed at the time of
their execution. We propose to continuously monitor IoT
communication, employing data stream classification [29]
methods for detecting TD in real-time.

6. Related Work

Some solutions for detecting TD of HTC traffic on the
Internet have been published in the last decade [9], [10],
[11], [12], [13], [14], [15], [16], [17]. These solutions are
based on network measurements and statistical inference,
and focus on HTC traffic. In general, they take measure-
ments from one or several end-hosts, employing different
types of traffic and probes. The measurements obtained are
then analyzed to determine whether there was a significant
difference over different sets of samples. Robust statistical
models are necessary to distinguish between TD and per-
formance variations caused by other phenomena.

There are also works which study the impact of MTC
traffic to cellular networks and how it competes with HTC
for network resources. In [23], the authors perform a large-
scale measurement in a tier-1 cellular network. The goal was
to characterize the MTC traffic and identify its impact on the
network, as well as how it competes with HTC. In [30], the
authors propose a framework for evaluating the performance
of a cellular network when there are both MTC and HTC
traffic. In [31], the authors present the requirements and
challenges introduced by MTC to cellular networks, which
should support both MTC and HTC.

7. Conclusion

Prioritization of traffic from devices or services of spe-
cific manufacturers or providers may result in unfair compe-
tition, hindering innovation and thus the success of IoT. In
this paper, we investigated TD on IoT in the context of NN.
We described common IoT traffic patterns and discussed
how TD may impact those patterns. We presented simulation
results showing how different TD scenarios affected each
traffic pattern. We concluded that even a small reserved
rate may introduce a significant difference between different
traffic priorities. Furthermore, the ED pattern was the most
affected by TD, since it caused a significant difference
on end-to-end delay depending on priority. This difference
might greatly influence the QoE perceived by end-users,
given the real-time nature of the ED pattern. We then discuss
a solution for monitoring TD on IoT, which takes into con-
sideration the specific characteristics of IoT traffic. Previous
solutions are targeted at HTC traffic. The solution is based
on continuous passive measurements and ML classifiers,
taking advantage of the multitude of data made available
by the large amount of IoT devices.

Future work includes further investigating IoT traffic and
how to use this knowledge to build a solution to effectively
detect TD. Creating ML classifiers requires a significant
amount of training data and domain-specific knowledge.
Therefore, a deep understanding of IoT traffic characteris-
tics and requirements, as well as a large-scale IoT traffic
characterization are necessary.
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