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Abstract—Stream processing applications have emerged as a
popular way for implementing high-volume data processing tasks.
In contrast to traditional data processing models that persist
data to databases and then execute queries on the stored data,
stream processing applications continuously execute complex
queries on incoming data to produce timely results in reaction
to events observed in the processed data. To cope with the
request load, components of a stream processing application are
usually distributed across multiple machines. In this context,
performance monitoring and testing are naturally important for
stakeholders to understand as well as analyze the runtime char-
acteristics of deployed applications to identify issues and inform
decisions. Existing approaches for monitoring the performance of
distributed systems, however, do not provide sufficient support
for targeted monitoring of stream processing applications, and
require changes to the application code to enable the integration
of application-specific monitoring data.

In this paper we present MOSAIC, a service oriented frame-
work that allows for in-depth analysis of stream processing
applications by non-intrusively adding functionality for acquiring
and publishing performance measurements at runtime, to the
application. Furthermore, MOSAIC provides a flexible mech-
anism for integrating different stream processing frameworks,
which can be used for executing and monitoring applications
independent from a specific operator model. Additionally, our
framework provides an extensible approach for gathering and
analyzing measurement data. In order to evaluate our solution,
we developed a scenario application, which we used for testing
and monitoring its performance on different stream processing
engines.

I. INTRODUCTION

Modern information systems need to process an ever-
increasing volume of data from various sources while pro-
viding timely responses to requests from stakeholders. Tradi-
tionally, such systems persist incoming data in a database and
then execute queries on the stored data to perform required
analyses and produce desired results, but are increasingly
incapable of coping with the sheer volume of data to process,
often making it infeasible to even store all incoming raw
data [1]. The requirement for timely responses to complex
queries over continuous streams of high-volume data led to the
emergence of stream processing systems that do not rely on
traditional data processing models. Stream processing systems
are designed to continuously process and analyze incoming
data streams to produce results in reaction to events observed in
the incoming data, as opposed to separately triggered requests
to analyze previously stored data.

Due to their intrinsic requirements, performance testing
and monitoring [2] of stream processing applications are

inherently important for stakeholders to assess and understand
the status and runtime characteristics of deployed applications.
Since the capabilities of single machines are insufficient for
providing the necessary processing power for handling these
huge amounts of data, stream processing applications have
to scale computations across multiple machines and face the
challenge of becoming inherently distributed [3]. In addition to
several design and management challenges, this also leads to
increased complexity when dealing with performance testing
and monitoring. Especially for applications where monitoring
was not considered initially, gathering meaningful measure-
ments is challenging.

While there is a host of existing monitoring systems for
gathering performance data about applications [4], [5], [6]
and their runtime infrastructure [7], [8], to the best of our
knowledge, there is no solution that specifically targets stream
processing applications and their structure in a way that allows
for detailed examination and comparison of their runtime
characteristics, independent of the used stream processing
framework. Furthermore, emitting data to monitoring systems
usually requires code changes in applications that specifically
target the used monitoring system.

In this paper, we introduce MOSAIC, a service oriented
framework for monitoring the runtime performance of dis-
tributed stream processing applications, independent from a
particular operator model (e.g., query, graph, or API). In
addition, we present an approach that allows adding monitor-
ing functionality to existing JVM-based applications, without
changing the applications’ code or requiring recompilation.
MOSAIC allows for the integration of different stream pro-
cessing engines for executing and monitoring applications, and
provides a flexible mechanism for gathering and analyzing
performance measurements based on a generic domain model.
We illustrate the feasibility of our approach by monitoring and
analyzing the performance of a representative stream process-
ing application deployed on two different stream processing
engines.

The remainder of this paper is structured as follows: In
Section II we further motivate our work and outline the specific
problem and requirements in the context of our work in the
smart city domain. In Section III we introduce the MOSAIC
framework and accompanying toolset to address the identified
problems. We provide a detailed evaluation of framework
characteristics and capabilities in Section IV, discuss relevant
related research in Section V, followed by a conclusion and
an outlook on future research in Section VI.
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II. MOTIVATION

The rapid adoption of the smart city paradigm combined
with the extensive growth of today’s metropolises have led
to a significant increase of monitoring and control system
deployments [9]. These system penetrate all vital areas of
today’s cities, including building monitoring and management,
traffic control, as well as energy management systems via
smart meters. Naturally, these system rely on stream processing
applications that allow to rapidly process and react to relevant
events that occur in associated, large-volume data sources.
Performance, availability, and reliability of these systems has
become a critical factor in the operation of modern city
infrastructures.

However, the enormous scale combined with the distributed
and heterogeneous nature of the deployed stream processing
applications poses significant challenges for monitoring mech-
anisms. Due to the wide variety of available stream processing
frameworks and used processing models, finding the right
framework for any given task and objectively assessing the
resulting application are not trivial. In order to enable a holistic
approach to monitor such applications, we argue that the
following requirements must be met:

• Distributed Operation: A monitoring mechanism must
be able to handle the inherent distributed nature of
modern stream processing applications. Since single ma-
chines cannot provide the necessary processing power for
running such applications, computations must be scaled
across a distributed infrastructure. Apart from the over-
head of managing and provisioning these infrastructures,
also monitoring gets more complex as performance mea-
surements of multiple resources have to be considered and
appropriately handled.

• Non-Intrusiveness: A monitoring mechanism should allow
to extend the set of measured metrics beyond tradi-
tional performance monitoring, in order to provide an in-
depth look into relevant application characteristics with-
out requiring code-level changes, or having to rebuild
the stream processing application itself. Furthermore, it
should also be possible to acquire measurement data from
applications, where monitoring was not considered from
the beginning.

• Model Independence: A monitoring mechanism should
provide means to monitor applications independent from
a particular processing model or execution environment,
in order to enable an integrated and holistic monitoring
concept. Current stream processing frameworks employ
various models to define application logic (e.g., queries
based on domain-specific languages (DSLs), operator
graphs, or programming APIs), which should be sup-
ported by the monitoring framework without requiring
changes to the application code.

To provide accurate performance monitoring, a solution
that respects the requirements defined above should also allow
for the analysis of application performance behavior, which
comprises the following steps: (i) Acquisition: the process
of measuring performance data, (ii) Publication: the process
of publishing acquired data, (iii) Management: the process of
managing and storing collected data, and (iv) Analysis: the
process of extracting information from monitoring data.

III. APPROACH

In order to address the previously defined requirements, we
present MOSAIC, a framework for non-intrusive monitoring of
stream processing applications. The overall architecture of our
approach is depicted in Figure 1 and consists of the following
components: (i) a Stream Processing Environment, (ii) MO-
SAIC Base, and (iii) MOSAIC, a cloud-based middleware
framework. In the following, we discuss these components
in more detail, and present the overall approach of weaving,
deploying, and monitoring stream processing applications.

A. Stream Processing Environments

Usually stream processing applications consist of various
processing steps, such as validation, transformation, aggrega-
tion, and analysis [1]. Such applications are used to process
data in order to extract or create information. Since stream pro-
cessing applications have to deal with an ever-growing amount
of data, the actual processing work is then distributed across
multiple worker resources. In order to manage this distributed
processing more efficiently, stream processing applications are
deployed and executed on top of stream processing engines
that provide seamless provisioning of worker nodes.

To allow our framework to monitor stream processing
applications that are executed on top of stream processing
engines, we focus on frameworks deployed on the Java Virtual
Machine (JVM), such as Apache Spark [10] and Apache
Storm [11], [12]. We facilitate aspect-oriented programming
(AOP) to weave components of our framework into the actual
stream processing application in order to add the necessary
monitoring functionality without requiring changes to the
underlying application.

Next, to represent a stream processing application and
associate respective monitoring data, we introduce a domain
model that consists of the following elements. The central
element is a Node. A node is a representation of a worker
performing a specific task in a distributed stream processing
application. In order to identify the node, it has a nodeId. In
addition, a nodePurpose attribute describes what the node is
actually doing. This approach allows grouping nodes according
to their functionality, but also supports distinguishing single
nodes. For example, consider an aggregation operation that is
intense in computation, and the application requires multiple
instances for this specific operation. In such cases, several
nodes that share a common purpose are executed, but have
different identifiers. Monitoring information that is associ-
ated with nodes is commonly referred to as Measurement,
where we distinguish between RuntimePerformance and
JvmProfile. RuntimePerformance represents runtime mea-
surements and allows monitoring the runtime of one or several
operation steps. Furthermore, since an operation can consist
of multiple steps, we introduced a sequence attribute that
connects these records. The JvmProfile is used to monitor
resource statistics of the underlying JVM.

B. MOSAIC Base

In order to allow for detailed and application-specific
monitoring, we split our framework in two parts. One part,
the actual monitoring and analysis framework (MOSAIC) is
deployed in the cloud. The other part (MOSAIC Base) is
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Fig. 1: Framework – Overview

depicted on the left-hand side in Figure 1 and contains the
application-specific components that need to be integrated into
the application in order to acquire the required monitoring
information.

1) Core: The core component is the centerpiece of the
framework. It contains the domain model, the basic runtime
performance measurement functionality, and an abstraction
for transferring as well as storing acquired measurement in-
formation. Additionally, the component provides out-of-the-
box integrations for several stream processing engines. The
core component also offers extension APIs to allow for easy
integration of additional stream processing engines.

2) Aspects: In order to acquire measurement data, we use
aspects respectively advised code that is woven into the target
application, as provided by the AspectJ [13] AOP framework.
The basic approach of obtaining measurement data consist of
the following three steps: First, save the start-timestamp before
the monitored code block. Second, save the end-timestamp
after the monitored code block is finished. Finally, publish the
data. By following the aspect oriented programming principle
this can be done using advices of type Around (an entire
method is wrapped around a pointcut), or Before and After
(two advised methods are invoked) advices. We implemented
two different abstract aspects for measuring runtime perfor-
mance. Additionally, to connect runtime measurements of pro-
cessing steps (i.e., to establish a sequence of measurements),
we need a correlation identifier for a sequence, which must
be passed on from one processing step to the next. Since we
cannot assume that data that is used within an application pro-
vides such a sequence identifier, we add and pass on sequence
identifiers within an application. This approach comprises a
static crosscutting advice to add a sequence identifier to data
objects, and two dynamic crosscutting aspects that create and
pass on sequences.

3) Profiler: The profiler component contains all
classes for monitoring the JVM resources. In addition, the
component provides functionality required for profiling JVM
resources for a particular code block in order to create execu-
tion profiles.

4) Publisher: The publisher groups different built-in
mechanisms for publishing and storing monitoring informa-
tion. Currently, we provide functionality to log and persist
measurement information for files, JDBC, JMX, and log4j.
Data is then distributed via the Java Message Service (JMS).

Since the integration must be as flexible as possible,
aspects that acquire performance measurements are woven into
the target application. These woven aspects use functionality
provided by the core component and publish the measurement
data using the publisher component. Once an aspect is woven
into the target application, the advised code interacts with the
provided functionality of MOSAIC Base when executed.

C. MOSAIC

The enabling framework for monitoring and analyzing
stream processing applications is depicted on the right-hand
side in Figure 1. MOSAIC is a cloud-based framework and
the overall design follows the micro service architecture [14].
This approach enables developing a scalable and evolvable
framework. In addition, it allows the flexible management and
scaling of components, which is important for MOSAIC when
handling stream processing applications deployed at large
scale. In the following, we will introduce the main components
of MOSAIC.

1) Messaging Infrastructure: For handling the multitude of
monitoring information, MOSAIC uses a distributed messag-
ing fabric that minimizes unnecessary network traffic com-
pared to a centralized message bus. Additionally, it allows
components of the system to freely choose the most suitable
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(e.g., closest) connection point. For transmitting and con-
suming data, MOSAIC uses a publish/subscribe mechanism,
where producing components publish data in the messaging
infrastructure to a specific routing key, which represents the
application’s unique id. Consuming components of MOSAIC,
which are mostly analyzer components, consume data by sub-
scribing to the according routing key. This approach provides a
flexible and easily extendable mechanism to handle monitoring
information.

2) Repositories: In order to manage registered stream
processing applications, developed aspects for acquiring mea-
surement data, and monitoring data, MOSAIC provides several
repositories.

• Application repository. To allow our framework to mon-
itor stream processing applications, operators of such
applications need to register them via the provided User
API. During the registration process operators upload the
application as a jar package, add the required runtime
configuration, and finally state the intended execution
environment (i.e., stream processing engine). Next, based
on the stated execution environment, operators can define
which monitoring information they are interested in and
state the required granularity. For example, operators can
define if they are just interested in runtime performance of
the application, or also additional JVM-specific profiles.
All this application-specific information is managed and
stored in the application repository.

• Aspect repository. The framework provides abstract as-
pects that can be used by defining concrete pointcuts.
These abstract aspects can be extended to integrate ar-
bitrary execution environments that are used for running
stream processing applications. In addition to abstract
aspects, MOSAIC also provides built-in integrations for
Apache Spark Streaming [10] and Apache Storm [11].
Any additional or new aspects developed and registered
by an operator are stored and managed in the aspect
repository.

• Engine repository. In order to allow our framework
to deploy stream processing applications on their in-
tended stream processing engine, we need engine-specific
drivers. As for aspects, we define an abstract driver that
can be extended to integrate additional, currently not
supported, execution environments. The built-in drivers
and additional drivers are stored and managed in the
engine repository.

• Measurement repository. Since our framework does not
only allow monitoring of stream processing applications,
but also analyzing gathered measurement data, MOSAIC
provides a measurement repository for persisting gathered
monitoring information.

3) Application Manager: The application manager is re-
sponsible for handling registered stream processing applica-
tions and associated information in the application repository.
Furthermore, during the application registration process, the
manager takes care of verifying that the provided information
and application package are valid, and if a suitable engine-
driver is available. If an engine-driver is available, this driver
is then associated with the application and will be used for
subsequent deployment. If no suitable engine-driver is present,
the operator will be notified and is then required to provide

a driver via the user API. Furthermore, to keep track of
deployed applications and associated monitoring information,
the application manager handles the state of applications.

4) Aspect Manager: Since we want to create and acquire
a broad variety of measurement data, MOSAIC needs to
provide suitable aspects. To handle these aspects efficiently
the aspect manager is used. As already described, MOSAIC
provides built-in aspects and allows operators to add their
custom-developed aspects by extending the abstract aspects.
In addition to aspects, the manager is also responsible for
handling and creating configuration files that define pointcuts
for concrete aspects. Based on this configuration the Weaver
component then weaves the aspect code at the defined places in
the application to provide the expected monitoring information.

5) Weaver: To provide a flexible and extensible weaving
component that allows using different aspect-oriented pro-
gramming frameworks, we define a weaver interface and
provide a concrete implementation that relies on AspectJ [13].
Based on AspectJ, we decided to use load-time weaving by
facilitating the Java agent provided by AspectJ. This approach
allows us to include the Java agent as an argument during
application startup and add a configuration file to the classpath.
The Java agent is then responsible for weaving the aspects at
application load-time. This weaving option itself causes com-
paratively little overhead [15], since an advice, once weaved,
behaves like a usual method call. However, this weaving
approach increases the time needed for starting the application,
which is acceptable since we consider long running stream
processing applications.

6) Scheduler: The scheduler component is responsible
for deploying the stream processing application, the required
functionality for weaving, and MOSAIC Base on the actual
execution environment. In order to deploy an application
and start the monitoring process, the scheduler contacts the
application manager and receives the application package and
the corresponding information, stating the intended execution
environment and required monitoring information. Based on
this information, the aspect manager is contacted, which
provides the tailored MOSAIC Base containing the required
aspects and configurations. Next, the weaver provides the
specific functionality that is needed for weaving MOSAIC
Base in the application. Finally, the correct engine driver is
loaded and the complete package is deployed on the stream
processing environment, where the application is started. Dur-
ing startup the weaving process is triggered, which integrates
the monitoring-specific code into the application. Once the
application is successfully deployed, the scheduler notifies the
application manager that the application is running.

7) Measurement Handler: To handle published monitoring
information, the measurement handler is used. Based on the
currently registered and running applications, the handler starts
application-specific data handlers that consume the published
data and store them in the measurement repository. This
approach allows for flexible and efficient management of
measurements.

8) Analyzer: In addition to collecting application-specific
performance measurements, we also want to analyze this data
to obtain actionable insights. Therefore, we provide an abstract
analyzer and corresponding implementations that, based on
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our domain model, allows analyzing metrics like runtime per
processing step, overall runtime of a sequence of processing
steps, and the latency between processing steps.

D. Weaving and Monitoring Approach

Since we cannot show a complete list of provided moni-
toring capabilities of our framework due to space constraints,
we will focus on one specific example and explain how the
overall process, from scheduling an application to receiving
monitoring data, works.

For this example, we want to measure the runtime of
a processing step in an Apache Storm stream processing
application. Listing 1 shows a stub for measuring the runtime
performance, where an around advice is used. An abstract
pointcut, which has to be defined when using this abstract
aspect is used for advising the monitoring code. The advice
continues the execution at the given join point and measures
invocation time.

@Aspect
public abstract class

AbstractRuntimePerformanceAspect {
@Pointcut
public abstract void scope();

@Around("scope() && this(jpo)")
public Object around(ProceedingJoinPoint

pjp, Object jpo) throws Throwable {
...

}
}

Listing 1: Abstract Runtime Performance Aspect

To use this abstract aspect we now specify that we want
to measure the runtime of a processing step (a bolt) in
our Apache Storm application. According to this definition,
MOSAIC creates a configuration file that defines the pointcut
for the aspect, as shown in Listing 2. The concrete-aspect
element defines an aspect and a new name for the aspect.
Furthermore, the extends attribute defines the abstract aspect.
The expected pointcuts of the abstract aspect are set using the
pointcut element.

<aspectj>
<aspects>

<concrete-aspect name="
BoltRuntimePerformanceAspect" extends="
AbstractRuntimePerformanceAspect">

<pointcut name="scope" expression="
execution(* backtype.storm.topology.
IRichBolt.execute(..))" />

</concrete-aspect>
</aspects>

</aspectj>

Listing 2: aop.xml example

After defining what and how we want to monitor an
application, the framework has to deploy and execute the
application on the intended execution environment. As dis-
cussed above, the scheduler component is responsible for
deploying the application and the additional tailored MOSAIC
Base components, as well as the needed weaving functionality,

on the execution environment. Next, the scheduler starts the
application on the target environment, which triggers the load-
time weaving process using the weaving functionality provided
by our framework. Once MOSAIC Base is weaved into the
target application, the execution is initiated and the application
starts processing data. While processing incoming data, the
monitored processing step of our target application will be
invoked. Since we weaved our framework into the application,
we can monitor the processing step as depicted in Figure 2.

Caller Runtime
Aspect

Target Publisher

call

save start-timestamp

call target

publish measurement

save end-timestamp

Fig. 2: Monitoring of a Processing Step with a Runtime Aspect

As illustrated in Figure 2 before the actual processing step
(target) of our application is called, the runtime aspect is
invoked, which saves the start-timestamp and then executes the
actual processing step. When the processing step is finished,
the runtime aspect saves the stop-timestamp, and publishes
the measurement using the publisher provided by MOSAIC
Base. The measurement is then consumed on the cloud-based
framework, stored in a repository, and can then be further
analyzed.

IV. EVALUATION

To evaluate our approach we chose a representative sce-
nario and implemented it on top of two stream processing
engines. Next, we created a test setup in the cloud using several
virtual machine (VM) instances for hosting our framework, as
well as the stream processing engines.

In the remainder of this section we give an overview of
the chosen scenario and the developed applications, discuss
the concrete evaluation setup, present different evaluation
scenarios, and analyze the gathered results.

A. Scenario

To illustrate the feasibility of the MOSAIC approach,
we will use a modified version of the well-known Traveling
salesman problem (TSP) [16] as a scenario application. A TSP
graph G is a complete weighted undirected graph specified
by a pair (N, d), where N is a set of nodes and d is a
function that translates the distance between two nodes in a
numerical value. d satisfies two conditions: (1.) Symmetry:
d(i, j) = d(j, i), ∀i, j ∈ N . (2.) d(i, j) >= 0, ∀i, j ∈ N . A
path of the TSP graph G is a set of edges that describes a
path containing each node exactly once (i.e., a Hamiltonian
graph). The path distance is the sum of distances of all edges.
The solution for our modified traveling salesman problem is a
path with the minimal possible path distance.
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B. Sample Application

Based on the described TSP scenario we implemented a
stream processing application for both, Apache Spark and
Apache Storm. In order to make the gathered monitoring
results comparable, the implementations are designed to share
the same basic architecture.

The overall architecture of the sample application is split
into five processing steps as shown in Figure 3. In the first step
the input data for the application is created. Processable input
data for our scenario is a random string containing vertices
in a specified format (i.e., x- and y-coordinates in a two-
dimensional space), where before and after each vertex there
can be random characters. For the purpose of this scenario,
we assume that the coordinate data is embedded in a text
document and coordinates must be extracted from the input
data in a separate step. The result of this extraction step is a
list of Node objects with an id to identify the node, as well
as x and y coordinates. In the path creation step, all paths
are created. This step also allows splitting paths into subsets
to subsequently pass them on to multiple workers for parallel
distance calculation. In the last step, the minimal distance of
the received set of paths is calculated. Finally, the summary
step is responsible for summarizing the partial results of the
distance step, which represents the minimal distance of all
paths.

C. Apache Spark Streaming Implementation

Following the aforementioned application architecture, we
implemented the described scenario based on Apache Spark
Streaming. First, we implemented a stream Receiver that
creates data for the application to consume. For all other steps
we implemented Functions, which are used by map or
flat map transformations and one output operation. Figure 4a
shows an overview of our Apache Spark Streaming application.
The Receiver creates data, which is stored in Spark RDD’s
over time. We decided to use a time window so that a RDD
is created in a defined interval, containing all data records
stored in this time interval. The second step, extraction, is
done via a map function, where lists of nodes are extracted
from the input data in a RDD. Paths are created by using a
flat map transformation. Using an identifier, each path list can
be associated to its source node list. The path creation step is
followed by a map transformation, which calculates distances
for each path list and determines the minimal distance. The
summary function determines the absolute minimum distance

for an input string by aggregating all received minimum
distances with the same identifier.

D. Apache Storm Implementation

As mentioned above, we also implemented the described
scenario according to the architecture description using Apache
Storm as depicted in Figure 4b. For each step described above,
we implemented a Storm-based component. The first step,
data creation, is implemented as a Spout that creates and
emits data to the topology. All other steps are implemented as
Bolts, linked together using Storms shuffle grouping method.
Path bolts are different to other bolts since they might emit
multiple tuples, where each tuple contains a set of paths. Path
lists can be associated with their source, and thus with each
other, by using an identifier.

E. Evaluation Scenarios

In order to gather sufficient monitoring information from
our sample application, we defined two scenarios. In the first
scenario we executed 25 test runs with a break of 1 second
between each run. In the second run, we changed the break
to 10 milliseconds. For each run we generated a random input
string with a size of approximately 17MB. With these two
scenarios we simulate different load patterns for the application
to highlight notable differences.

F. Setup

To create analyzable data, we executed both described im-
plementations based on the defined scenarios. Since the main
focus of our investigation is on the engineering perspective of
how performance can be monitored, and not a performance
analysis itself, we used the following setup in our private
OpenStack [17] cloud.

MOSAIC is deployed on one instance using the
m1.medium flavor (3750MB RAM, 2 VCPUs and 40GB disk
space). For implementing our messaging infrastructure we use
a RabbitMQ [18] cluster consisting of 2 VM nodes using
Ubuntu 14.04 and the m1.small flavor (1920MB Ram, 1
VCPUs and 40GB disk space). Next, for hosting the Apache
Spark Streaming and Apache Storm engine, we created two
separate VM nodes, each using the m2.flavor (5760MB RAM,
3 VCPUs and 40GB disk space). The physical machines
hosting the VMs are connected with regular 1000BASE-T
ethernet links.

G. Results

In this section, we analyze the measurement data gathered
from the test runs. By comparing the results of both imple-
mentations, we illustrate the benefit of our framework. The
common data model for monitoring different stream processing
applications, implemented using different frameworks, allows
for a direct comparison of monitored processing steps. Figure 5
shows an overview of runtime measurements for each process-
ing step of our application. The plotted durations (end time −
start time) are aggregated by node purpose (i.e., processing
step) and node identifier. The node identifier allows to associate
a record with the particular run or implementation (10 ms or
1 second break, and Spark or Storm implementation). The
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different sub-figures show the different processing steps. In
the following, we discuss notable results of the comparison
between the Spark and Storm application.

In Figure 5a we can see the runtime of the first processing
step of our application. By looking at the figure we notice
that measuring the invocation time of the store method of a
Spark Receiver, does not reflect the time consumed for actually
creating, reading or receiving the data. Only the time used
for transferring the data to Spark is measured. This explains
the large gap when comparing Spark and Storm results of the
first step (Creation). Figure 5b, Figure 5c and Figure 5d show
the gathered measurement data for the extraction, duration,
and distance processing steps. We see that the Spark imple-
mentation performs better regarding runtime measurements at
these processing steps, compared to the Storm implementation.
Figure 5e shows the runtime of the last processing step, namely
summary. When comparing the results, we notice a large
difference between Spark and Storm. The explanation for this
gap is as follows: Spark immediately starts the invocation of
output operations for each time slot, even when no data was
received within the period of a time slot. However, when no
data is received, Spark blocks the output operations function
invocation and waits for a considerable amount of time. This
behavior distorts the results for the last processing step, since
for the first few time slots no data has been passed to the output
operation as the path calculations have not been finished. These
records have a considerable impact on the aggregated data.

Considering these results, it might appear that Spark per-
forms significantly better. However, simply looking at runtimes
of single processing steps does not include the time that has
been consumed by the framework or for transferring data from
one processing step to another. Using the injected correlation
identifiers, runtime measurement records of different process-
ing steps can be connected to each other and the time between

the end time of a step and start time of a following step
can be determined. Figure 6 depicts the latency between the
processing steps.

We notice that Spark exhibits significantly higher inter-
step latencies. However, these differences can be explained
by the looking at the different processing models used by
Spark and Storm. First, Spark creates micro batches over
time, which in combination with a window operation means
that after the store method of the Receiver is invoked, it can
take some time until Spark passes the created data record
to the next processing step. Second, since Spark combines
data records in RDDs according to the window operation, the
number of records that are transferred from the receiver to the
first mapping function (processing step) can be considerable
in size. This especially applies to the scenario with a data
creation delay of only 10 milliseconds. In comparison, Storm
emits a tuple as soon as it arrives at its topology. Finally,
Spark and Storm employ different task scheduling models.
Both engines have a fixed number of task executors. However,
Spark reserves task executors for Receivers, which means
that a Receiver is running continuously, whereas functions
are scheduled and executed when a task executor becomes
available. In Storm, Spouts are treated equally to Bolts, which
means that their executions are also paused when there are
no task executors available. For Spark this means that the
extraction step is only executed when a task executor is
available, thus processing steps may be paused. In contrast,
a Receiver is running all the time, which adds an additional
delay between these two processing steps. In the processing
model of Storm, where Spouts are scheduled and paused as
well, the longest running processing step is the bottleneck,
which is the path step in our application. After an extraction
task is executed, it might take some time until a task executor
becomes available for running the path step of the preceded
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(e) Summary

Fig. 5: Duration per processing step
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Fig. 6: Latency between processing steps

extraction result, as the task executors might be busy with
running other queued path tasks. When all task executors are
busy with executing path tasks, no more tuples are emitted by
Spouts, thus there is no increased latency between the Spout
and the Bolt used for extraction.

To also discuss the total runtime of our application, Fig-
ure 7 shows the time between the absolute minimum start time
that has been recorded for the creation processing step and
the absolute maximum end time of the summary processing
step. We notice that the Spark implementation performed better
for the test run with the 10 millisecond delay between data
creation, whereas the Storm implementation was faster for the
test run with the 1 second delay between data creation.

Based on the gathered results, we showed that our approach
enables acquiring performance measurements that reflect the
differences between the discretized stream processing model

of Spark and the continuous operation processing model of
Storm. Whereas the advantages and disadvantages of these
processing models are not the subject of our approach, the
analysis of the gathered results proves the applicability and
purpose of our framework.

V. RELATED WORK

With the advent of big data with ever growing data vol-
umes, it is important that applications that deal with this data
perform well in order to deliver the intended benefit. Therefore,
monitoring of applications is crucial as it enables organizations
to analyze and assess the performance of their applications.
Ganglia [7] is a monitoring framework for distributed systems.
It centrally collects certain metrics, such as CPU usage,
memory as well as process information of nodes in a dis-
tributed system and allows visualizing collected data. Ganglia
is based on a hierarchical design and relies on a multicast-
based protocol. In contrast to our approach, Ganglia is strictly
bound to a defined list of metrics, which for example does
not allow monitoring runtime performance of single process
steps of an application. Imamagic et al. [19] present Nagios, a
open source solution for monitoring network services in order
to detect failures. A service in Nagios can be represented as
a host, a network or a service metric (e.g., process runtime).
Nagios is built as a distributed system consisting of a server
that collects data from sensors by using a plugin. Compared to
our approach that allows collecting and analyzing performance
measurements, Nagios focuses on states, which means that any
performance measurement acquired, must be reduced to a state
by defining thresholds for metrics. Additionally, Nagios does
not provide any mechanism for monitoring applications that do
not measure any performance metrics by default. Di Nitto et
al. [20] propose MODAClouds a platform for monitoring that
automatically improves quality of service attributes of cloud-
based services. The overall approach consists of a monitoring
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Fig. 7: Absolute total duration (max(endtime)−min(starttime))

platform, a self-adaption platform, and an execution platform.
The monitoring platform gathers and analyzes data, collected
by data collectors. Compared to our approach, data collectors
do not create measurement data, but collect data that has
already been created by some other component or application
of the system. Moldovan et al. [21] introduce MELA, an ap-
proach for monitoring and analyzing elastic services deployed
in the cloud. Based on monitored metrics, the authors focus
on determining relationships among performance, cost, and
resource usage of a service. In order to do that, the authors
propose elasticity relationships of elastic services, which are
used for applying analyses techniques. However their approach
is also capable of collecting and analyzing monitoring data of
services respectively applications, the authors rely on data that
is either emitted by the service or the execution environment.
In contrast, our approach allows collecting and analyzing
measurements from applications that do not provide any built-
in monitoring capabilities.

Leitner et al. [4] propose an approach for monitoring
high-level performance metrics of cloud applications based
on complex event processing. The approach is based on a
multi-step event correlation approach, which in combination
with a hierarchy of predefined events, allows specifying and
monitoring application performance metrics. Although the
authors provide a flexible and extensible monitoring approach,
they solely focus on measurement data created by applications
or infrastructure components. Thus, their approach does not
allow to monitor applications that do not provide this feature.
Yuen et al. [22] present a scalable network for monitoring
distributed applications. The network consists of proxies that
collect performance data from applications and then report
this data to distributed monitors in order to aggregate the
data. To reduce the delay caused by the monitoring approach,
the authors introduce a monitoring algorithm called SMon,
which continuously adapts the network in real-time. However,
this work shares similarities with our approach, it focuses
on the actual collection of performance data and does not
provide a mechanism to acquire and analyze the gathered
results. Frischbier et al. [5] discuss ASIA, an approach for
monitoring distributed event-based enterprise systems. ASIA
provides a mechanism for effectively monitoring the state of a
distributed system by dynamically integrating functionality for
monitoring into components of the system at runtime, which
is based on aspect-oriented programming. Even though this
work is similar to our approach, the authors do not provide
a flexible and extensible model for defining measurement
data. Funika et al. [23] introduce a system for monitoring
performance of distributed applications. By using semantic

information about monitored components allows automated
guidance in order to fine-tune measurements. This can be
used for identifying possible performance flaws faster and
enables reacting on certain events more efficiently. In contrast
to our approach, this work only considers applications that
provide built-in monitoring functionality and additionally does
not allow distributing and collection measurement data. Li
et al. [24] present Sparkbench, a platform specifically built
for evaluating Spark-based stream processing applications.
Although Sparkbench shares similarities with our approach,
it is targeted for Spark and therefore not applicable for other
stream processing platforms.

Next to systems that are specifically built for acquir-
ing monitoring information, most stream processing engines
already provide built-in monitoring functionalities. Apache
Storm [11] provides special bolts to collect and publish met-
rics [25]. In essence the pre-defined metrics are categorized
into system metrics (e.g., memory usage) and topology metrics
(e.g., topology statistics such as tuples emitted per minute). For
adding custom metrics Storm provides an API. However, com-
pared to our approach, the functionality for acquiring custom
metrics would require changes in the application code. Apache
Spark [10] provides performance data of system components
via Metrics [26]. Although Spark provides mechanisms for
publishing measured data to various mediums, the monitoring
capabilities are limited to engine-specific components of Spark.

VI. CONCLUSION

In general, the runtime performance of applications is a
crucial aspect, since applications that can not fulfill their per-
formance requirements do not provide their intended purpose.
Especially in the era of big data with the ever-growing amounts
of data, this is particularly demanding for stream processing
applications. In order to allow this type of applications to
deal with the immense load, they must be scaled to multiple
machines, as single machines can not provide the necessary
processing power. Scaling applications appropriately requires
actionable performance measurements that need to be acquired
by monitoring the application. Monitoring stream processing
applications, however, is a challenging task, due to their
distributed nature. In addition, stream processing applications
often do not provide built-in monitoring functionality that
allows gathering and analyzing their runtime performance.
Furthermore, traditional runtime environments such as stream
processing engines do not allow fine-grained monitoring of de-
ployed applications, but are only capable of providing engine-
specific runtime data, which is not sufficient for analyzing the
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performance of an application appropriately. This calls for a
structured approach that allows non-intrusive monitoring of
stream processing applications in oder to acquire application-
specific runtime performance data. In this paper, we introduce
MOSAIC a cloud-based framework that provides a flexible
approach for adding functionality for acquiring and publishing
of performance measurements, at runtime to stream process-
ing applications. The framework allows integrating different
stream processing engines for deploying and executing appli-
cations, a generic domain model for storing and publishing
measurements, and a mechanism for gathering and analyzing
these measurements. To evaluate our approach, we developed
a representative stream processing application, which we used
for testing and monitoring its performance by using Apache
Spark Streaming respectively Apache Storm as the underlying
stream processing engines. Finally, we discussed the gathered
results and showed that our approach provides actionable
insights on the performance behavior of an application.

In our ongoing work, we plan to extend our framework to
address further challenges. We will integrate additional stream
processing platforms (e.g., [27]) to see possible limitations
and investigate how our approach can be further improved.
Additionally, we plan to integrate more sophisticated statisti-
cal methods and visualization techniques to provide deeper
insights and help drawing better conclusions. Furthermore,
based on the analysis of performance measurements, resource
planning and stochastic models can be derived to evaluate
application behavior under uncertain load. Since many orga-
nizations use monitoring tools (e.g., Ganglia [7], Nagios [19]
and Splunk [28]) for monitoring applications and IT systems,
we plan to provide appropriate interfaces to support these tools
and ease integration with our framework. As the performance
of stream processing applications also depends on the network
performance, we see the necessity to also consider measuring
network performance. This network-specific measurement data
would allow deeper analysis in general and support root-cause
analysis in the case of performance issues. Furthermore, we
will integrate our framework with our overall efforts (e.g., [29],
[30], [31], [32]) in designing, deploying, and managing com-
plex, large-scale applications in the context of Smart City and
IoT [33], to provide a comprehensive tool set for researchers
and practitioners.
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