
COPAL-ML: A Macro Language for Rapid Development of
Context-Aware Applications in Wireless Sensor Networks

Sanjin Sehic
Distributed Systems Group

Information Systems Institute
Vienna University of

Technology
Argentinierstrasse 8/184-1

A-1040 Vienna, Austria
ssehic@infosys.tuwien.ac.at

Fei Li
Distributed Systems Group

Information Systems Institute
Vienna University of

Technology
Argentinierstrasse 8/184-1

A-1040 Vienna, Austria
fei@infosys.tuwien.ac.at

Schahram Dustdar
Distributed Systems Group

Information Systems Institute
Vienna University of

Technology
Argentinierstrasse 8/184-1

A-1040 Vienna, Austria
dustdar@infosys.tuwien.ac.at

ABSTRACT
Application development on wireless sensor networks is be-
coming more and more challenging due to increasing com-
plexity of applications and lack of dedicated programming
models. Developers should concentrate on the application
logic, while network designers should ensure the network
and sensor performance. However, in reality, these two roles
often overlap because the architectural and programming
abstraction between the network and application is missing.
Research on middleware and language that bridges these two
abstraction levels is still in a preliminary stage.

This paper proposes a macro language based on our previ-
ous work COPAL (COntext Provisioning for ALl). COPAL
is a runtime context provisioning middleware that, via a
loosely-coupled and composable architecture, ensures con-
text information from wireless sensor networks and other
sources can be processed for the needs of context-aware ap-
plications. COPAL-ML is a macro language that extends
Java programming language and is tailored for the applica-
tion development using COPAL. Its main task is to reduce
development efforts, hide the inherent complexity of COPAL
API, and separate concerns of the context-aware application
from underlining wireless sensor network.

Categories and Subject Descriptors
D.3.2 [Language classification]: Specialized application
languages

General Terms
Languages

Keywords
Sensor networks, context-awareness, macro language

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE ’11, May 21–28, 2011, Waikiki, Honolulu, HI, USA
Copyright 2011 ACM 978-1-4503-0583-9/11/05 ...$10.00.

1. INTRODUCTION
Wireless sensor networks (WSNs) provide a very rich set

of information, but current approaches to access and process
this information in applications are tedious and require sig-
nificant implementation efforts. The challenges of develop-
ment process in wireless sensor networks can be summarized
as a code-and-fix process without any consideration for the
maintenance and reuse, and a “good” programming abstrac-
tion for wireless sensor networks is currently missing[7].

In context-aware systems, context information is gener-
ated by heterogeneous and lower-level devices, which are
unaware of the application requirements and information
models. Wireless sensor networks enable dense sensing of
the environment and provide multitude of information that
can be used to observe the physical world. Additionally,
they can provide contextual information about their own
state: like power consumption, battery status, quality of
sensed data, etc. Therefore, context-aware systems can pro-
vide good programming abstraction to build and manage
applications in wireless sensor networks. The goal is to pro-
vide sufficient information for services to make decisions and
adapt themselves to changing environment.

Context provisioning refers to the approach of gathering,
transferring and processing context in order to raise context-
awareness in applications[5]. We distinguish three general
types of components in a context provisioning system: pub-
lishers, processors, and listeners. Publishers are components
that sense the environment and report their findings and lis-
teners react based on this stimuli. Processors are situated
between the publishers and listeners and they process the
stimuli and can infer information about the environment.

In this paper, we will present COPAL Macro Language
(COPAL-ML) for rapid development of context-aware appli-
cations. COPAL (COntext Provisioning for ALl)1 is a run-
time middleware for the context provisioning and is part of
the smart homes middleware developed in SM4ALL project2.
COPAL-ML extends Java programming language with few
additional keywords. Keywords significantly decrease the
code size needed to implement context provisioning compo-
nents in COPAL and completely hide the dependency on
COPAL API. Most importantly, components in the system
act autonomously. Thus, change of one of the components

1http://www.infosys.tuwien.ac.at/m2projects/
sm4all/copal/
2http://www.sm4all-project.eu

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SESENA’11, May 22, 2011, Waikiki, Honolulu, HI, USA
Copyright 2011 ACM 978-1-4503-0583-9/11/05 ...$10.00

1

does not require change of others, which ensuring easy main-
tenance and high code reuse.

The paper is organized in the following way: Section 2 pro-
vides a short introduction to COPAL and its components.
Section 3 describes a scenario to better understand the log-
ical relationship between the COPAL components. In Sec-
tion 4, we present the macro language to develop the COPAL
components. The related work is surveyed and compared in
Section 5. Finally, Section 6 concludes the paper with future
work.

2. COPAL
COPAL is situated between communication layer of a

wireless sensor network and a context-aware application that
is interested in sensory data from the wireless sensor net-
work. Its main requirement is to hide complexity of access-
ing sensory devices from the application and provide a sim-
ple interface for applications to retrieve information about
the environment. Additionally, it provides a way for appli-
cations to define a processing step. It splits the implemen-
tation task into three steps that are independent from each
other: publishing, processing, and listening the environmen-
tal information.

The wireless sensor network can consist of many hetero-
geneous sensory devices. Each sensory device provides its
sensory data in its specific format. COPAL enforces de-
velopers to create a common data model for each type of
sensory data. Each type is defined with a unique Context-
Type. In it, we specify which information is contained in
each published sensory data. It is the first task for develop-
ers to define a common data model that is meaningful for
their context-aware application. For example, sensory data
for the current temperature can contain information about
when a measurement was made, where it was made, how
many degrees and in which unit the measurement is. When-
ever a change of this information occurs or after some pe-
riod of time, if change is continuously happening, we publish
new sensory data with updated information called Contex-
tEvent.

To alleviate the discrepancy between data model provided
by a sensory device and data model used by COPAL, a
component that bridges these two environments is required.
This component is called Publisher. Its task is to access
a sensory device and retrieve information from it, and to
translate information received from the sensory device into
an event understood by COPAL.

The second step in publishing an event in COPAL is pro-
cessing. It can consist of zero or more substeps before the
event is consumed by the context-aware application. The
task of processing events is done by Processors which are
used:

• to add, modify or remove attributes in events,

• to filter out malformed or low quality events,

• to translate events from one format to another (e.g.
calculate temperature in Fahrenheit from temperature
in Celsius),

• and to aggregate events (e.g. aggregating power con-
sumption of each appliance in a house).

Each processor specifies which Actions it can perform on an
input event and what the result of this action is. The result

can be the unchanged input event, a new event or nothing in
which case the input event is discarded. In COPAL, an event
holds all actions that need to be executed on it. COPAL will
dynamically find processors that can perform these actions
and send the event to them for processing. Finally, the event
is considered fully processed and ready to be consumed by
the context-aware application when all specified actions have
been executed.

Processing is the key concept by which a wide range of op-
erations can be carried out and it provides a solution to build
adaptive and customizable processes using common patterns
inspired by the work on complex event processing[6]. Pro-
cessing patterns define the abstract relationships between
input and output events of a processor in COPAL. They
can help with designing and composing processors to con-
struct complex context provisioning schemes. Five patterns
are summarized in Li et al.[5], namely Filter, Aggregation,
Differentiation, Enrichment and Peeling.

After processing, events reach the context-aware applica-
tion that reacts to this change. Context-aware applications
register themselves to receive particular events. First, they
specify which event types they are interested in. For exam-
ple, an application that turns on air-conditioning depending
on user preferences is interested in different information from
an application that turns on light whenever a person enters
a room. Additionally, context-aware applications may also
specify criteria that are evaluated on received events. This
allows further separation of events that are interesting from
ones that are not. For example, an application that turns
on air-conditioning when it is too cold can specify its inter-
est in temperature events that are less than 10 ◦C. Classes
that receive fully processed events are called Listeners. In
COPAL, each listener is registered to one or more Queries.
In a query, we specify which events should be caught and
optional criteria that is evaluated on them. All registered
listeners are asynchronously invoked by the query whenever
an event of specified type passes defined criteria.

The relationship between components in COPAL is illus-
trated in Figure 1.

attribute1

attribute2

ContextType
ContextEvent

*

Publisher

*

*

Action

publish

*

Processor

1

*

process

criteria

Query

*

*

catch

Listener
**

invoke

Figure 1: COPAL components

3. SCENARIO
This scenario (Figure 2) is meant to illustrate logical re-

lationship between components in COPAL. In the scenario
we examine different sensory information and define a pro-
cessing phase that infers additional information about the
environment.

2

Ambience EnergySaver

Therometer

power
Sum

power
Cost

Pow(Wh) Pow(Wh)

SumPow(Wh)

Prc($)

T(°C)L(cd)

Cost($)

Luminance Meter 1

...
Meter n Price

SumPow(Wh)

Figure 2: Scenario

Frida lives in a smart-home equipped with a set of sen-
sors, control devices and a context-aware service platform.
The basic requirement of context-aware services is to keep a
comfortable ambience for Frida. This requirement needs en-
vironmental luminance and temperature to decide suitable
lighting and settings for air-conditioner respectively.

Furthermore, Frida is a part of an experimental deploy-
ment of smart meters that implements a brand new pat-
tern of power service and encourages residential energy sav-
ing. Smart meters provide Frida with the current power
consumption and are deployed together with a price indica-
tor that receives real-time price information from the power
market. Frida has a context-aware service platform and she
wants to reduce her power consumption while keeping her
home environment comfortable.

From the perspective of COPAL, we have four Context-
Types: temperature, luminance, power consumption and
price information from power market, and four Publishers of
this information: thermostat, luminance sensor, smart me-
ters and market price indicator. The processing part can
consist of two Processors: overall power aggregator and cost
calculator. The overall power aggregator receives the current
power consumption of all appliances and returns the current
overall power consumption in the house. The cost calcula-
tor receives the current overall power consumption and price
information and returns the current power cost. Finally, we
have two Listeners in the system: a service that keeps com-
fortable ambience in the house and an energy saving service.
The ambience service is interested in the current tempera-
ture and luminance. The energy saving service is interested
in the current overall power consumption and its cost.

4. COPAL MACRO LANGUAGE
This section will describe COPAL Macro Language by

implementing parts of the preceding scenario.
In general, a macro language extends a host language by

defining additional patterns that expand into constructs of
the host language. It is mostly used to define templates
for parts of code that follow same pattern and are tedious
and error-prone to write. The main advantage of macro lan-
guages is that it minimizes code size and reduces possibility
to make mistakes.

COPAL-ML works by providing additional macro key-
words in Java programming language to define Context-

Types, Publishers, Processors and Listeners that expand
into standard Java classes. Developers benefit from using
macro keywords based on familiar language instead of learn-
ing a new programming language. Furthermore, main ad-
vantages of COPAL-ML for developers, comparing it to CO-
PAL API, are:

• that it hides the complexity of using COPAL from de-
velopers and allows them to quickly start with the im-
plementation of a context-aware application,

• and reduces size of code needed to implement compo-
nents in the application.

Code examples in following sections are highlighted as
follows: standard Java keywords will be in bold font and
COPAL-ML keywords will be in bold font and underlined
to emphasize the additional non-standard keywords. Figure
3 shows the relationship between entities defined in COPAL-
ML and COPAL components.

4.1 ContextTypes
The first step in developing a context-aware application

is to define ContextType that are retrieved from a wireless
sensor network. Each ContextType consists of one or more
attributes that carry information. For example, Context-
Type that contains just basic information about the current
temperature in a room can be defined as follows:

public event Temperature {
attribute St r ing room ;
attribute i n t degree s ; // Ce l s i u s

}

In this code example, we defined a ContextType called
Temperature that contains two attributes: room and de-
grees. The room attribute is of type String and the degrees
attribute of type integer.

Event defined with COPAL-ML is compiled into a Java
class with the same name and a XML Schema file, because
each ContextEvent in COPAL must be valid XML docu-
ment. This transformation between Java instance and the
XML document is done automatically in the compiled code.
The compiled Java class extends ContextEvent and defines
its own ContextType.

4.2 Publishers
When we define publishers, we specify which Context-

Types is this publisher allowed to publish. Afterwards, we
define methods in which we can publish ContextEvents us-
ing the publish method. Methods in publishers do not have
to publish any event or they can publish one or more events
in each invocation. They are defined as standard Java meth-
ods.

public publisher Thermostat of Temperature {
public void pub l i sh (Device dev i c e) {

St r ing source = dev i ce . getName () ;
Temperature t = new Temperature (source) ;
// s e t Temperature a t t r i b u t e s us ing
// Device proxy ob j e c t
pub l i sh (t) ;

}
}

This example defines a publisher called Thermostat that
is allowed to publish ContextEvents of type Temperature.
In it, we define an additional method called publish that

3

CostCalc

defines

is a

Thermostat Temperature

definesis a

is a

publishes

Ambience
is a

creates

ContextTypeContextEvent
*

Publisher

*

*

Action

publish

*

Processor

1

*

process

Query

*

*

catch

Listener
**

invoke

Figure 3: Relationship between entities in COPAL-ML and COPAL components

requires a Device argument from which it generates a new
Temperature instance. We can use an instance of this pub-
lisher to periodically publish information about the current
temperature by invoking the publish method.

Publisher defined in COPAL-ML is compiled into a Java
class with the same name that extends BasePublisher de-
fined in COPAL. BasePublisher defines the publish method
that provides publishing of ContextEvents and implements
ContextPublisher interface required by COPAL for all pub-
lishers.

4.3 Listeners
In listeners, we define methods that have a ContextEvent

as an argument. A method in listener will be invoked when-
ever an event of same ContextType as the argument is pub-
lished and fully processed. An additional criteria can be de-
fined with when modifier that is appended to the method’s
declaration. The and, or and not logical operations, beside
equality, inequality and comparison operations, can be used
to define the criteria. By omitting the criteria, all events of
specified type are caught.

public l istener Ambience {
private App l i c a t i onCont ro l l e r c o n t r o l l e r ;
private AirCondit ion ing ac ;

public void updateGUI (Temperature t) {
c o n t r o l l e r . updateGUI (t) ;

}
public void turnOnHeating (Temperature t)

when degree s < 10 {
ac . turnOn (t . getRoom () , 23 /∗ degree s ∗/) ;

}
}

In this code example, we defined a listener called Ambi-
ence that contains two listening methods: updateGUI and
turnOnHeating. The updateGUI method is invoked when-
ever a Temperature event is published because it has no ad-
ditional when modifier. The turnOnHeating method is in-
voked only when published Temperature event is less than
10 ◦C.

Listener defined in COPAL-ML is compiled into a Java
class with the same name that implements ContextListener
interface required by COPAL for all listeners. Additionally,
the compiled Java class creates necessary Queries and reg-
isters itself with them, so it can receive ContextEvents that
are dispatched to listening methods.

4.4 Processors
Processors define methods that also require a Contex-

tEvent as an argument. Whenever an event of same Con-
textType as the argument is published, the method is in-
voked. The result of processing method can be void, an
event of same type or an event of different type. Each of
these results cause different behaviour with respect to how
COPAL will further process the result.

• If result of the method is void, COPAL will just send
the input event for further processing.

• If the result of the method is of the same type as
the input event, then only the resulting event will be
published. Consequently, by returning null from the
method, the input event is discarded. This allows im-
plementation of methods that can filter out their input
events.

• If the result of the method is of different type from
the input event, then both the input and the resulting
event are published.

If there are multiple processors with methods that have ar-
guments of the same type, then all these methods will be
invoked in an undefined order whenever an event of that
type is published. This provides us with solution to divide
independent tasks among multiple processors that will be
executed during runtime.

public processor CostCalcu lator {
Pr ice p r i c e ;
SumPower power ;

public Cost updateCost (Pr i ce p r i c e) {
Cost c = getCost (this . p r i c e , p r i ce , power) ;
this . p r i c e = p r i c e ;
return c ;

}
public Cost updateCost (SumPower power) {

Cost c = getCost (this . power , power , p r i c e) ;
this . power = power ;
return r e s u l t ;

}
}

This example defines a processor called CostCalculator
that has one overloaded processing method called update-
Cost. This method is invoked whenever an event of type
Price or Power is published. The result of the method is an

4

event of type Cost. As previously mentioned, both the input
event and newly generated Cost event will be subsequently
published and further processed before they are caught by
interested listeners.

Processor defined in COPAL-ML is compiled into a Java
class with the same name that extends BaseProcessor de-
fined in COPAL. BaseProcessor implements ContextProces-
sor interface required by COPAL for all processors and does
necessary steps to register itself with COPAL. The compiled
Java class also defines Actions in each input ContextType,
so the Processor will be invoked whenever a ContextEvent
of any input type is published.

4.4.1 Processing Patterns
As previously mentioned, processors and processing pat-

terns provide us with a solution to compose a complex pro-
cessing schema for sensory data. In this section, we will
show how to implement the processing patterns using the
processor construct.

• Filter

By returning null when a condition fails, we can fil-
ter out input events from being further processed and
eventually reaching listeners.

public processor F i l t e r {
public Luminance f i l t e r (Luminance l) {

i f (l . getDataQual ity () >= FINE) {
return l ;

} else {
return null ;

}
}

}

• Aggregation

By saving all previously published events, we can ag-
gregate them and publish an aggregated event when-
ever a new input event is received.

public processor OverallPower {
Map<Str ing , Power> powers ;

public SumPower onPower (Power p) {
powers . put (p . getSourceID () , p) ;
return sum(powers . va lue s ()) ;

}
}

• Differentiation

By creating multiple methods that have same input
event type but different output event types, we can
create different events from the same input event.

public processor TemperatureCalculator {
public Kelvin toKelv in (Temperature t) {

return c a l cu l a t eKe l v i n (t) ;
}
public Fahrenheit

toFahrenhe i t (Temperature t) {
return c a l c u l a t eFah r eh e i t (t) ;

}
}

• Enrichment

By setting an attribute of an event, we can enrich the
event with new information.

public processor CurrencySetter {
public Pr ice setCurrency (Pr i ce p) {

p . setCurrency (”EUR”) ;
return p ;

}
}

• Peeling

Obviously, by setting an attribute of an event to null,
we can remove information from the event.

public processor ConsumerIDRemover {
public Pr ice removeID (Pr i ce p) {

p . setConsumerID (null) ;
return p ;

}
}

4.5 Evaluation
In this section, we compare implementations of Temper-

ature, Thermostat, Ambience, and CostCalculator compo-
nents in COPAL-ML with their counterparts that use CO-
PAL API3. The following table reports the number of files
for each component and the number of lines of code.

Component
Files Lines of code

ML API ML API ∆
Temperature 1 2 6 92 6.52%
Thermostat 1 1 17 54 31.48%
Ambience 1 1 22 104 21.15%
CostCalculator 1 1 57 131 43.51%

For this simple scenario, the code written in COPAL-ML
was 255 lines across 17 files in total and the code that uses
COPAL API was 1477 lines across 24 files, which is more
that five times reduction in code size.

5. RELATED WORK
Applying software engineering approach to develop ap-

plications on wireless sensor networks is still in its early
stage[7]. Some initiatives have been taken to exercise soft-
ware models on wireless sensor networks, such as Activity
Diagram[3] and State Machine[4]. However, the bridge be-
tween models and the actual application execution environ-
ment still remains unsolved. Macro languages, like the CO-
PAL Macro Language, are highly promising in this regard.
Costa et al.[2] propose TeenyLime, a WSN middleware that
provides developers with the high-level abstraction of the
tuple space. Our approach differentiates itself significantly
from TeenyLime. COPAL uses the context provisioning as
the programming abstraction over a wireless sensor network
and adds an additional processing phase into the sense-and-
react paradigm that the both implementations propose. Ad-
ditionally, TeenyLime is coupled with the communication
layer and poses a requirement that it must overhear mes-
sages from neighbouring nodes. Because of this requirement,
TeenyLime inherently can only provide access to information
from neighboring nodes. In contrast, COPAL is agnostic
w.r.t. the communication layer and provides access to envi-
ronmental information from all nodes that are connected to
it through publishers.

3The source code can be downloaded at http://www.
infosys.tuwien.ac.at/m2projects/sm4all/copal/ml/

5

Most of past works on context-aware systems have focused
on system architecture and context models, but few have
studied dedicated programming models for context-aware
applications. Several Java-based programming models have
been proposed to provide operations on context data based
on their underlining middleware architecture. JCAF (Java
Context Awareness Framework)[1] is a set of Java API for
context management based on a layered context manage-
ment system. The lowest layer is Context Sensor and Ac-
tuator Layer that deals with context acquisition by sensors
and actions carried by actuators. The middle layer, Con-
text Service Layer, has the most important API set that
provides federated context services. The Client Layer is on
top of JCAF, and clients are ultimate consumers of con-
text information. Another approach, along the same line,
is Context Toolkit[8] that adopts an idea of widgets from
GUI applications. Widgets are encapsulated components,
which provide access to abstract context information. They
are highly reusable, and the complexity of lower level hard-
ware operations is hidden from application developers. Both
approaches define public API that developers use to build
context-aware applications. Inherent problem with public
API is that once it is published and used by others, it can-
not be easily modified. COPAL-ML takes a different ap-
proach to programming context-aware applications. It uses
keywords to abstract components in context provisioning.
This decouples written code from any API specific for CO-
PAL, and even makes it possible to create another compiler
which generates code that uses different context provisioning
framework instead of COPAL.

In our previous work[5], we have developed a domain-
specific language that is able to generate code skeletons for
COPAL components. The macro language proposed in this
paper extends the idea of designing a dedicated language
to provide the programming abstraction on top of COPAL.
COPAL-ML improves our previous DSL in several aspects.
It employs Java grammar by extending its keywords set,
thus the programming on it can be learned quickly. Fur-
thermore, the embedding of Java code is seamless in the
macro language. Finally, the DSL generator focuses heavily
on the deployment of COPAL components, while COPAL-
ML is intended to provide focus on implementing them.

6. CONCLUSION AND FUTURE WORK
This paper introduced COPAL Macro Language in order

to help developers with creating context-aware applications.
It is based on COPAL middleware, which hides the complex-
ity of a wireless sensor network and provides programming
abstraction for the context provisioning. It is centered on
defining a common data model in an application using con-
text types. Furthermore, it separates publishers of sensory
data from listeners and adds an additional processing phase
between them. COPAL-ML helps with rapid development
of components in COPAL by decreasing code size and re-
moving burden for developers to learn COPAL API. The
language offers a deliberate abstraction over COPAL mid-
dleware, thus, developers can focus on describing key com-
ponents and context provisioning logic by using keywords
and concise grammar of COPAL-ML, while retaining the
possibility to implement functionality of each component.

We plan to further improve COPAL-ML in several as-
pects. At first, we plan to improve the developer’s control
over the processing phase. This will inherently make the

language more complex, but it will also enable a more fine-
grained, runtime control over how an event is processed.
Further more, we will move COPAL-ML from the compile-
time phase into the runtime phase of COPAL. This will en-
able a dynamic redeployment of components and an incre-
mental development without a need to restart an applica-
tion and lose its current context. Finally, we will combine
COPAL-ML and COPAL-DSL into one coherent develop-
ment tool where COPAL-ML will describe the logic of com-
ponents and COPAL-DSL their deployment.

7. ACKNOWLEDGMENTS
This work is supported by:

• EU FP7 STREP Project SM4ALL (Smart hoMes for
ALL) under Grant No. 224332,

• Pacific Control Systems LLC, Techno Park, Sheikh Za-
yed Road, Dubai, United Arab Emirates.

8. REFERENCES
[1] J. E. Bardram. The java context awareness framework

(JCAF) – a service infrastructure and programming
framework for Context-Aware applications. In
Pervasive Computing, pages 98–115. 2005.

[2] P. Costa, L. Mottola, A. L. Murphy, and G. P. Picco.
Programming wireless sensor networks with the
teenylime middleware. In Proceedings of the
ACM/IFIP/USENIX 2007 International Conference on
Middleware, Middleware ’07, pages 429–449, New York,
NY, USA, 2007. Springer-Verlag New York, Inc.

[3] G. Fuchs and R. German. UML2 activity diagram
based programming of wireless sensor networks. In
Proceedings of the 2010 ICSE Workshop on Software
Engineering for Sensor Network Applications, pages
8–13. ACM, 2010.

[4] N. Glombitza, D. Pfisterer, and S. Fischer. Using state
machines for a model driven development of web
service-based sensor network applications. In
Proceedings of the 2010 ICSE Workshop on Software
Engineering for Sensor Network Applications, pages
2–7. ACM, 2010.

[5] F. Li, S. Sehic, and S. Dustdar. Copal: An adaptive
approach to context provisioning. In Wireless and
Mobile Computing, Networking and Communications
(WiMob), 2010 IEEE 6th International Conference,
pages 286–293, October 2010.

[6] D. Luckham. The power of events: An introduction to
complex event processing in distributed enterprise
systems. Rule Representation, Interchange and
Reasoning on the Web, pages 3–3, 2008.

[7] G. P. Picco. Software engineering and wireless sensor
networks: happy marriage or consensual divorce? In
Proceedings of the 2010 ICSE Workshop on Software
Engineering for Sensor Network Applications, SESENA
’10, pages 1–1, New York, NY, USA, 2010. ACM. ACM
ID: 1809113.

[8] D. Salber, A. K. Dey, and G. D. Abowd. The context
toolkit: aiding the development of context-enabled
applications. In Proceedings of the SIGCHI conference
on Human factors in computing systems: the CHI is
the limit, pages 434–441, Pittsburgh, Pennsylvania,
United States, 1999. ACM.

6

