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Abstract—Recent developments of computing systems allow
humans to participate not only as service consumers but also as
service providers. The interweaving of human-based computing
into machine-based computing systems becomes apparent in
smart city settings, where human-based services together with
software-based services and thing-based services (e.g., sensor-as-
a-service) are orchestrated for solving complex problems, leading
to the creation of the so-called Cyber-PhySical-Social Systems
(CPSSs). Monitoring such CPSSs is essential for system planning,
management, and governance. However, due to the diversity
of the involved building blocks, it is challenging to monitor
such systems. In this paper, we present metric models and
the associated Quality of Data (QoD) to elastically monitor the
execution metrics of a centralized coordinated CPSS. We develop
a monitoring framework for capturing and analyzing runtime
metrics occurring on various facets of the coordinated CPSS.
Furthermore, we present the implementation of our monitoring
framework, and showcase monitoring features in a simulated
system using real world infrastructure maintenance scenarios.

Keywords—cyber-physical-social system, service monitoring,
smart city management, event processing

I. INTRODUCTION

Modern computing systems do not only include machines
(e.g., software and things) but also humans as active building
blocks (e.g., [1]), which we refer to as compute units. Although
we have relied on machines (e.g., software-based services with
cognitive capabilities) to solve complex problems, many chal-
lenges (e.g., requiring creativity and intelligence) require hu-
mans working with machines to provide efficient solutions [2].
Moreover, with easier provisioning techniques for human capa-
bilities, we have seen an increasing integration between human
capabilities into existing computing systems to create the so-
called Cyber-Physical-Social Systems (CPSSs) [3].

Such CPSS can be seen in Internet of Things (IoT) and
Cloud computing adopted for vital applications in smart cities
(e.g., [4]), where Cloud services can be leveraged to process
data from IoT systems with rather limited capabilities (e.g.,
with respect to storage, processing, and energy). Furthermore,
by utilizing services virtualization (e.g., [5]), these IoT Cloud
services can be fused with human-based services, hence en-
abling the orchestration of capabilities of humans, software,
and things for solving a complex problem.

Monitoring and analyzing metrics for CPSSs in such a
smart city setting are inevitable steps for effective smart urban
services management and governance. Monitoring and analysis
tools provide insights to plan, manage, and adapt the systems to
fulfill quality requirements. However, the diversity of involved
units in CPSSs introduces challenges for monitoring such
systems. Existing monitoring systems traditionally deal with
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homogeneous units, for example, infrastructure/platform mon-
itoring systems (e.g., [6]), software-based services monitoring
systems (e.g., [7]), and IoT monitoring systems (e.g., [8]). To
the best of our knowledge, currently no monitoring system
exists that deals with thing-based, software-based, and human-
based compute units in an integrated manner.

Moreover, different types of compute units have different
lifecycles, which require different measurement techniques,
monitoring cycles and events. Different unit types may also
have similar metrics, but different semantics interpretation,
which needs to be correlated. Furthermore, monitoring CPSSs
require us to interface the underlying diverse resources as well
as the application platforms. Our work presented in this paper
tackles to above-mentioned issues. Our goal is to provide a
generic monitoring framework for CPSSs, which captures and
processes metrics from diverse compute units, e.g., sensors,
actuators, gateways, software services, and human-based com-
pute units. Our framework provides a necessary foundation
for optimizing smart services. For characterizing behaviors of
units in various CPSSs, we propose a metric model to handle
metrics with different semantics. Furthermore, we introduce a
framework for consolidating different underlying monitoring
interfaces.

The salient contributions of our work are as follows:

a) We propose metric models that are necessary to understand
and monitor various facets of CPSSs.

b) We bring into effect the notion of Quality of Data (QoD) for
monitoring data enabling effective monitoring in CPSSs.

c) We propose a framework and implement a prototype of a
monitoring system for coordinated CPSSs.

Furthermore, we evaluate our framework by exemplifying our
model on a real-world scenario in smart city infrastructure
maintenance and conduct experiments for monitoring such
system in a simulated environment.

The rest of this paper is organized as follows: Section II
discusses the background, the motivation, and related work.
In Section III we present our proposed models that describes
CPSS metrics, and the concept of Quality of Data (QoD)
for CPSS monitoring. Section IV presents our approach to
consolidate various monitoring sources and discusses our pro-
posed monitoring framework. Section V presents our prototype
implementation and discusses some experiments based on real-
world scenarios to exemplify our approach. Finally, we con-
clude our paper and outline some future work in Section VI.

II. BACKGROUND, MOTIVATION, AND RELATED WORK

A. Background
In this work, a Cyber-Physical-Social System (CPSS) is

a system comprising of three intertwining subsystems: (i) the
human-based systems, i.e., the social system containing human
actors and their interconnected devices/agents and/or social
platforms providing human-based services, (ii) the software-
based systems, i.e., the cyber world providing software-based
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services including the underlying infrastructures and platforms,
either on-premise or in the Cloud, and (iii) the thing-based sys-
tems, i.e., the physical world that includes sensors, actuators,
gateways and the underlying infrastructures at the edge.

Technologies used in CPSSs have evolved from the tra-
ditional Cyber-Physical Systems (CPSs) [3], which consist of
smart embedded systems interconnected to the cyber world.
Recent developments of CPS intensively include human actors
in a socially connected world, hence showing the advent of
Cyber-Physical-Social Systems (CPSSs). A representative use-
case of such CPSSs for smart cities can be seen in participatory
sensing platforms [9], where citizens are involved for sensing
and collecting data for various domains, such as urban plan-
ning, e.g., [1], and environmental monitoring, e.g., [4].

The emergence of such mixed human-machine settings
can also be seen from different directions. In typical Process-
Aware Information Systems (PAISs), the construct of human-
based tasks are used to integrate human-based and software-
based services into processes, e.g., [10]. In the cloud, we have
also seen various sources of human-based compute units such
as crowdsourcing marketplaces, and social networks being
utilized as active compute units, e.g., [2]. The unification
of human-based computing technology and Cloud technology
has been carried out using various approaches, such as by
abstracting human as a programmable unit, e.g., [11], or by
utilizing crowdsourcing APIs, e.g., as in [12]. Furthermore,
technologies integrating sensors and actuators into processes,
e.g., [13], enable the orchestration of thing-tasks together with
software-tasks and human-tasks.

We employ the notion of Cyber-Physical-Social System
(CPSS) to approach these diverse systems to make more homo-
geneous abstractions and conceptualize similar characteristics
of these systems so that we are able to develop a general
monitoring techniques for these systems.

B. Architecture of Centralized Orchestration of CPSSs
We focus on a class of CPSSs employing a centralistic

approach, i.e., systems that have a role of orchestrators to
control and manage tasks distribution and execution. Such a
class can be found in coordinated CPSs and coordinated IoT
Cloud systems, as well as in PAIS with human-based and/or
thing-based tasks. Furthermore, we envisage CPSSs as systems
virtualizing the capability of humans, software, and things, as
services [5]. As shown in Fig. 1, in such a service-oriented
architecture, an orchestrator coordinates the assignment and
distribution of software-, human-, and thing-based tasks to the
available and suitable services.

While the system is running, IoT gateways send sensor
data from the things through a sensor data bus (e.g., a mes-
saging bus using CoAP, MQTT, or XMPP) to software-based
services, or to human-based services utilizing a human-friendly
dashboard shown by a UI agent. In a typical scenario, during
the execution of the tasks, a human- or software-based service
may decide to make adjustments on the thing-based systems
(e.g., sensor update rates). Such adjustment requests can then
be translated (e.g., by an orchestrator) into thing-based tasks
and sent to the corresponding machine.

Our monitoring framework proposed in this paper operates
on events and metrics captured from all CPSS subsystems
through the underlying monitoring tools. Some of such moni-
toring tools are discussed in Section II-D.
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Fig. 1: An Architectural View of orchestrated CPSSs

C. Motivation
Let us consider a scenario in a smart city setting where

facilities’ maintenance is conducted pro-actively by predicting
a possible facility breakdown. For this infrastructure mainte-
nance scenario to work, sensors are installed to monitor facil-
ities. These sensors capture events occurring on the facilities,
which are then streamed to a cloud-based data processing
center. Software-based data analytic services are configured
on the data processing center to analyze the event streams.
When the software-based analyzers detect a suspicious event,
the event is escalated to a group of human experts who analyze
the event further. In the case of the occurrence of an actual
incident, an incident ticket is created. In some cases, the human
experts may also decide to reconfigure the IoT-subsystem, e.g.,
changing sensor data rate, deploying more sensors, etc.

Our goal is to provide a monitoring tool for such systems,
which is a crucial element for smart services development in
cities. Monitoring such complex CPSSs deals with a multitude
of problems. Our work is motivated by the following problems:

Problem 1: Each subsystem in a CPSS brings along various
metrics, which have corresponding metrics from other sub-
systems albeit having different definitions. For example, we
could define the availability, utilization, and cost metrics for
humans; however, their interpretation and measurement differ
from the corresponding metrics for software- and thing-based
systems. To enable system-wide monitoring, we need models
and methods to relate the corresponding metrics and bring
them together as a unified metric. In Section III-A2, we employ
different classes of metric measurement to address this issue.

Problem 2: Metrics from different subsystems of a CPSS,
although having related definitions, may have different qual-
ities, e.g., with respect to the data rate and accuracy. Fur-
thermore, different monitoring clients may require different
quality of monitoring data. For example, a human-based client
may prefer non-intrusive data (e.g., low data rate), while a
software-based client may require much more frequent data. In
Section III-B, we bring along some of the concepts of Quality-
of-Data and apply them in the context of CPSS monitoring.

Problem 3: A CPSS involve diverse underlying technolo-
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gies, e.g., with respect to the compute units types and their
communication, which have to be taken into account by
the monitoring system. We propose an agent-based multi-tier
approach to deal with such heterogeneity, shown in Section IV.

D. Related Work
a) Monitoring Framework: Many techniques and tools

for machine-based computing units have been developed for
monitoring on various layers [14]. Monitoring tools on tra-
ditional distributed systems, i.e., grids and clusters, e.g., [6],
have been extended to cope with the Cloud characteristics [14].
Unlike the machine-based counterpart, there are not so many
works carried out for monitoring the execution of human-
based computing. The focus of existing research in this area is
to develop quality improving techniques, which are typically
domain-specific [15]. In PAIS with human tasks support, some
tools, e.g., [16], are provided to monitor human tasks and
their execution states, and to allow administrators to perform
manual actions when necessary. However, still there is a lack
of generic tools for online monitoring of various aspects of
a collective of human-based compute units and human tasks
executions. We leave this issue for future work. We position
these machine-based and human-based monitoring tools as the
underlying interfaces for capturing events and metrics to be
used in system-wide CPSS monitoring.

b) Characterizing CPSS: Metrics in software-based
systems, including the underlying infrastructures, have been
extensively studied, e.g., in [17]. Although much less studied,
metrics for people as computing units have also been proposed,
e.g., in [15]. In thing-based systems, many works center around
streams of metrics produced by the sensors (e.g., temperatures,
locations, etc.). However, not many papers have been published
to define the metrics which represent the qualities of the system
itself. Some papers, e.g., [18], propose metrics for improving
the quality of the thing-based systems.

Quality of Data (QoD) plays a crucial role, especially in
systems such as CPSSs, where electronic data are ubiquitous.
The majority of authors in the domain of QoD typically
consider QoD from a basic set of quality dimensions: accuracy,
completeness, consistency, and timeliness [19]. In our work,
we apply the accuracy and timeliness (data rate and freshness)
dimensions of QoD to enable more efficient data delivery in
CPSS monitoring.

The notion of composable metrics have also been proposed,
e.g., in [20]. These works focus on composable metrics in
homogeneous system. Our work presented here deals with
correlating and composing metrics from thing-based, software-
based, and human-based systems.

III. METRICS AND QUALITY OF DATA

A monitoring system centers around metrics, which need
to be captured, analyzed, and delivered to the clients. Existing
metric constructs in monitoring systems need to be extended
in order to engage with the dynamics of CPSSs. Furthermore,
the concept of Quality of Data (QoD) can be leveraged to
deal with the problem of different metrics qualities, as well as
different monitoring requirements in CPSSs. In this section,
we discuss various metric suitable for CPSSs, how to measure
them, and the application of QoDs in CPSS monitoring.

A. Metrics
1) Useful Metrics for CPSSs: Metrics of a CPSS may

contain aggregation of metrics from machine-based units (i.e.,

from the thing-based, and software-based systems) and human-
based units. Metrics traditionally found for machine-based
units may have the equivalent for human-based units with
similar meaning. In Table I we show several metrics and
some possible definitions of the metrics for machine-based
and human-based units as well as the aggregation definition
for CPSS, where u is a unit and t is a task. Other definitions
may also be employed according to the problem domain.

2) Metric Measurement: To capture the dynamics of a
CPSS, we define four classes of metrics, namely raw metrics,
composite metrics, state metrics, and correlation metrics. The
first two classes of metrics are commonly found in monitoring
system, e.g., [20], [21]. However, due to the diversity of
CPSSs, we introduce the state metrics and correlation metrics.

a) Raw metrics: are metrics that capture information
from the underlying resources. These metrics can be collected
using different means depending on the underlying monitors.
For example, typical raw metrics from a cloud service can be
obtained using an exposed API. Generally, raw metrics can be
obtained in two manners, by pulling periodically, or by us-
ing a publish-subscribe approach. In human-based computing
platforms, some raw metrics may be directly provided by the
platform (e.g., human-based unit acceptance rate and location).
However, some other raw metrics may not be so straightfor-
ward to obtain but can be inferred from the events generated
by the platform. For example, to obtain an assignment count
metrics for each human-based unit, a monitoring agent can
subscribe to task assignment events, and count the number of
assignments for each unit.

b) Composite metrics: can be defined using an arith-
metic expression, an aggregate function, or a custom composite
function of other metrics. For example, the utilization of a
thing-based system containing a set of sensors can be measured
by aggregating the number of sensors actively sending streams
of data in a particular time frame, e.g., using moving average
aggregation on a sliding window.

c) State metrics: define measurements related to the
state transitions during runtime. In typical human-task and
process-based systems, we often deal with the underlying
monitoring tools that are capable of capturing events repre-
senting transitions from one runtime state to another, e.g., [16].
We use state metrics for capturing metrics related to the
state transitions, such as how many times a compute unit
enters a particular state, how long a compute unit stays in
a state for a particular time window, and so on. Consider,
for example, a human-based task running on a process-based
system [10]. On a particular process instance, the human-based
task may be transient from one state to another, e.g., created,
assigned, running, paused, and finished states. Using a finite-
state automata model, we can then define some primitives
for a given entity e and state s, e.g., time(e, s), count(e, s),
duration(e, s), which define the last timestamp e enters s,
the number of times e enters s, and the total duration of e
staying in s respectively. We can also extend these primitives
to perform the measurement on a particular time window, e.g.,
the last 24 hours.

d) Correlation metrics: allow computing together met-
rics with different semantics from different sources. We sup-
port this type of metrics to tackle the problem of combining
together metrics from diverse compute units. To correlate
diverse metrics we need to specify three things: the sources of
metrics or events that we want to correlate, the normalization
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Metrics Machine-based
Definitions

Human-based
Definitions

CPSS Aggregation Description

Util(u) CPUUsage(u)
Active(u)

MAXACTIVE

∑
∀u∈U Util(u)

|U|

Util(u) = utilization of unit u,
Active(u) = the total duration of active time in
the past 24 hours of unit u,
MAXACTIVE = threshold for maximum active time
per human unit,
U = the set of units in the CPSS

RT (t, u) FT (t, u)− AT (t, u) FT (t, u)− AT (t, u) max
∀u∈U

FT (t, u)− min
∀u∈U

AT (t, u)
RT (t, u) = response time for task t by unit u,
FT = finish time,
AT = assignment time

Cost(t, u) CostT (u) · RT (t, u) CostA(t, u)
∑

∀u∈U Cost(t, u)
Cost(t, u) = cost for executing task t by unit u,
CostT = cost per time unit,
CostA = cost per task assignment

TABLE I: Metric Examples

function that should be applied so that the source metrics
have uniform semantics before we combine them together,
and the aggregation function to calculate the value of the new
correlated metric.

3) Complex Metric Samples: To demonstrate these metric
classes, consider how we can measure the utilization metrics
of the system for the sensor data collection and analytic in
infrastructure maintenance scenario discussed in Section II-C.
For example, on the thing-based and software-based systems,
the utilization of sensor i, SensorUtil(i), and the utilization of
machine j running a data analytic service, MachineUtil(j),
can be obtained using raw metrics, typically using a certain
API exposed by the platform.

However, for human-based systems, the utilization mea-
surement can be more complicated. First of all, we have to
define what utilization means for human-based compute units.
In the case of humans, there is no notion of CPU usage
as traditionally found for software-based systems. Without
loss of generality, let us, for example, define the utilization
of a human-based compute unit as the time the unit spent
for executing all assigned tasks in a given time window w.
Hence, using the state metrics, we can the measure the uti-
lization of human-based compute unit k as HumanUtil(k) =
duration(k,Running, w).

Often we need to monitor system-wide correlated metrics
instead of metrics for a particular unit. For example, it can
be necessary to see the overall average utilization from all
the three subsystems. Or we can monitor the top-k units
with the highest utilization, regardless they are thing-based,
software-based, or human-based units, in order to identify bot-
tlenecks. To obtain such metrics, we need to combine together
SensorUtil, MachineUtil, and HumanUtil metrics, and
resolve any semantics differences among them. This is where
our correlation metric model becomes practical. Firstly, we
could normalize the HumanUtil metric so that it has the same
value range and it has an acceptable similar meaning compared
to the SensorUtil and MachineUtil metrics. One reasonable
normalization of the human utilization against the machine
utilization is to set a maximum threshold of working time that
a human-based unit may work in the past 24 hours, that is
HumanUtil′(k) = duration(k,Running, 24hours)/MAX.
This definition surely is not the sole definition of human
utilization, different definitions may be applied according to

B. Quality of Data
Collecting and processing monitoring data on large scale

systems such as an IoT Cloud system introduces an inherent
problem, that is, a huge number of monitoring data lead to
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Fig. 2: Quality of Data in CPSS Monitoring

high network utilization and heavy data processing. On the
contrary, the human-based computing counterpart is typically
running in a much slower pace due to longer life-cycles, e.g.,
assignments to a single human unit may take place in the order
of minutes, hours, or even days.

We apply the concept of Quality of Data (QoD) [19]
allowing monitoring clients to specify monitoring requirements
as a trade-off of quality and costs. Such QoD-aware monitoring
solves the above-mentioned problems in two ways: (i) it allows
the monitoring clients/providers to request/produce monitoring
data on a lower quality level to reduce costs, and (ii) it al-
lows interweaving monitoring requests on different subsystems
having different QoD into similar QoD, hence it becomes
reasonable to correlate metrics from those subsystems. We
discuss the interpretation of QoD in the context of CPSS
monitoring and some use-cases of such QoD as follows.

1) QoD Interpretation for CPSS Monitoring: We focus on
three QoD measures, namely accuracy, freshness, and data
rate (or rate for short) as defined in the following paragraphs
and illustrated in Fig.2.

a) Data Rate: The data rate of a monitoring data,
Rate(d), represents the frequency on which a monitoring agent
should report the data. Many techniques can be used to obtain
data on a particular time point, e.g., to use last actual retained
data or to use moving average values. When the real data has a
lower data rate, the monitoring agent may perform techniques,
such as interpolation, estimating the data in-between.

b) Accuracy: The accuracy of monitoring data is de-
rived from the difference between the true value with the value
last reported to the client, i.e., given a data, d, the accuracy of
the data is defined as Acr(d) = |v(d′)− v(d)|, where v(d) is
the actual value of d and v(d′) is its last reported value.

c) Freshness: The freshness of monitoring data defines
the timing skew between the true timestamp of the data and
the timestamp when the data is reported, i.e., it defines as
Frs(d) = t(d′)− t(d), where t(d) is the actual timestamp of
d and t(d′) is the report timestamp.

More formally, given a QoD requirement, Q =
(RR, RA, RF ), where RR is a data rate requirement, RA is
an accuracy requirement, and RF is a freshness requirement,
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the monitoring tool must deliver a set of reported data I from
the actual set of data J , that fulfils the following constraints:

∀d′ ∈ I, ∀d ∈ J , t(d′i−1) < t(dj) ≤ t(d′i) =⇒(
t(d′i)− t(d′i−1) ≤ RR ∧
|v(d′i)− v(dj)| ≤ RA ∧
t(d′i)− t(dj) ≤ RF

)
, (1)

where t(d) is the time when the data d is sent, and v(d) is the
value of the data d.

2) QoD-aware Monitoring Usages: The usages of QoD-
aware monitoring can be seen from two perspectives. First,
from the perspective of a monitoring provider, QoD-aware
monitoring helps increasing efficiency on resource usage, e.g.,
data bandwidth. Second, it allows a monitoring client to define
more precisely the quality of data they need.

Consider, for example, a human client who wants to
monitor system utilization, but he does not want the moni-
toring reports to be intrusive. Hence, he may want to request
utilization data for one hour intervals. However, he does not
want to miss rapid changes on the system utilization. Hence,
he puts in a data quality requirement that the accuracy of the
data he received should not be more than 0.10 points. In this
case, the monitoring system delivers the data on (maximum)
an hourly rate, but also makes sure that the last reported data
does not differ more than 0.10 points from the real value.

3) QoD-Aware Data Delivery: Based on QoD require-
ments, a monitoring provider may provide a QoD-aware data
delivery by optimizing monitoring resources while still ful-
filling the constraints as described in Eq. 1. There are many
ways to achieve such QoD-aware data delivery. We present
an example of such QoD-aware data delivery algorithm (see
Algorithm 1), which minimizes the number of messages (i.e.,
the number of sent monitoring data), while still honouring
the QoD requirements. This algorithm defers the sending of
data, retain it, and calculate the right time to send the data
according to the data rate, RR, accuracy, RA, and freshness,
RF , requirements. Here, the RECEIVE function is executed
when a monitoring consumer (see Section IV) receives data,
and the SEND function sends data to the subscriber.

IV. DISTRIBUTED MONITORING FRAMEWORK

Our monitoring framework consists mainly of monitoring
agents (or agents for short), which provide events and metrics
for other monitoring agents, as shown in Fig. 3 (here, a metric
is another type of event, in the remainder of this paper we use
them interchangeably). Such a distributed and recursive nature
of the monitoring agents structure allows our framework to
scale according to the scale of the CPSS.

Our framework adopts an event-based approach using the
publish/subscribe pattern. Each agent publishes topics that
contain metric values for other agents. Each agent can either
subscribe to certain topics from other agents, or retrieve
metrics from their own adapters connecting to the underlying
monitoring tools. Eventually, a client application (or a client,
for short) can then consume metrics from one or more agents
and use it in the application logic. Fig. 3 also represents an
example of an agents topology.

In the following subsections we discuss the construct of
monitoring agents and the communication protocol between

Algorithm 1 Algoritm for QoD-Aware Data Delivery

Input:
Q = (RR, RA, RF ) � The QoD requirements

1: function RECEIVE(data)
2: RETAIN(data, MAXRETAINED)
3: if RA is set then
4: if |data− lastSentData| > RA then
5: SEND(data)
6: SCHEDULER.CANCELPREVIOUSWAKER( )
7: return
8: if RF is set then
9: if not dataChanged ∧

10: data �= lastSentData then
11: dataChanged← True
12: nextWakeT ime← now +RF

13: SCHEDULER.CANCELPREVIOUSWAKER( )
14: SCHEDULER.WAKEMEAT(nextWakeT ime)

15: if RR is set then
16: if nextWakeT ime > now +RR then
17: nextWakeT ime← now +RR

18: SCHEDULER.CANCELPREVIOUSWAKER( )
19: SCHEDULER.WAKEMEAT(nextWakeT ime)

20:
21: function WAKE

22: data← ESTIMATEFROMRETAINEDDATA( )
23: SEND(data)
24: if rate is set then
25: nextWakeT ime← now + rate
26: SCHEDULER.WAKEMEAT(nextWakeT ime)

those monitoring agents, as well as some technical considera-
tions for agents’ implementation.

A. Monitoring Agent
A monitoring agent is a software component containing a

monitoring producer (MP), which produces events and metrics
according to the context it monitors. Inputs of a monitoring
agent come from one or more monitoring adapters, which
retrieve events and metrics from the underlying resources or
application monitors, and/or one or more monitoring con-
sumers, which consume events from other agents.
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Fig. 3: Monitoring Framework
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The monitoring adapter (MA) component of an agent,
adapts events and metrics captured from a specific monitoring
tool provided by the application or resource platform. An
MA may retrieve metrics through an underlying protocol
provided by the monitoring tool. For example, the presence
events of a human-based service can be provided using XMPP.
Other publish/subscribe protocols, such as AMQP and MQTT
may also be used for retrieving metrics from software-based
or thing-based systems. Hence, the implementation of MA
is platform-specific, and is beyond the scope of this paper.
Moreover, an agent may also consume metrics provided by
another agent by implementing a monitoring consumer (MC).

Note that the proposed construct of monitoring agents is a
conceptual abstraction. On the practical level, multiple agents
can be implemented either on a single physical node (e.g., an
agent may consume its own metrics to produce more complex
metrics), or on multiple nodes. In the case where agents
are distributed, they need to communicate each others. The
communication protocol between MCs and MPs is discussed
in Section IV-B.

A proposed implementation model of an agent is shown in
the bottom-right inset of Fig. 3. Here, an agent is implemented
using a complex event processor to process event streams
retrieved by an MC. A straightforward raw metric can publish
directly from the incoming event stream. For composite and
correlation metrics, an associated event query can be utilized,
e.g., aggregating an incoming event stream using an aggre-
gate function, or combining multiple event streams using a
composite expression, or normalizing and correlating multiple
event streams. State automata can be employed to listen to state
events from the stream and to produce state-based metrics.
Each of these produced metric streams are then published
by the MP under a specified topic. Proposed models for
implementing QoD are discussed in the following subsection.

B. Protocol and Quality-Aware Delivery
There are currently a multitude of protocols supporting the

publish/subscribe pattern. Our proposed framework focuses on
the abstraction for dealing with monitoring entities involved in
a CPSS. Hence, the realization of such an abstraction may use
available protocols.

A typical implementation of such publish/subscribe pro-
tocols decouples publishers and subscribers by employing
a message broker (or a cluster of brokers), which has the
logic for routing message exchanges between publishers and
subscribers. To the best of our knowledge, currently there
are no protocols that have out-of-the-box support for a dy-
namic message exchange routing which allows one topic to
be delivered to multiple subscribers having different quality
requirements with respect to the data rate, accuracy, or fresh-
ness. However, the implementation of the QoD-aware data
delivery may extend available subscription message format,
when possible; and then use the custom exchange routing to
implement the QoD-aware data delivery algorithm.

The implementation of such QoD-aware data delivery
can be done on two sides, i.e on the broker side or on
the client (agent) side. Implementing QoD-aware delivery on
the broker side is only possible for protocol that supports
custom exchange routing, for example on an AMQP-based
implementation (e.g., RabbitMQ). For a protocol that does not
allow a custom exchange routing, e.g., MQTT, the QoD-aware
delivery implementation is only feasible on the agent side.
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Fig. 4: Monitoring Experiments Setup

In agent-side QoD-aware delivery, the publisher must know
which subscribers are listening to topics with the required
QoD, so that the publisher knows exactly to whom and
when messages should be sent. Hence, the agent-side QoD-
aware delivery breaks one of the original goals of the pub-
lish/subscribe pattern, i.e., the decoupling of publishers and
subscribers. Moreover, the broker-side QoD-aware delivery
puts all the QoD processing logics on the broker, hence
making the implementation of agents simpler. However, the
agent-side QoD-aware delivery allows more optimized metrics
publication, because it allows more granular control on when
a publisher should publish a metric, instead of publishing on
every produced metric values.

V. IMPLEMENTATION AND EXPERIMENTS

We have prototyped our proposed monitoring framework
and integrated the prototype into our platform, Runtime and
Analytics for Hybrid Compute Units (RAHYMS)1. This plat-
form is open-source and implemented using Java and provides
tools for simulating hybrid systems based on the GridSim
toolkit [22]. We employed Esper2 as the complex event pro-
cessors, and the evaluated metrics are translated into Esper
event processing language (EPL). For the QoD processing, we
implemented both, broker-based, and agent-based approaches.

A. Experimental Setup
We setup our experiment based on the smart city in-

frastructure maintenance scenario discussed in Section II-C.
To demonstrate the diversity of the underlying systems we
monitor, we setup experiments employing monitoring data
from a thing-based and software-based system, as well as a
human-based system. We use data from a realistic M2M DaaS
experiment executed using an elastic cloud service framework,
ADVISE [23]. The datasets of this experiment are available
online3. During the execution we injected events that create
incidents, which should be further investigated by human-
based units. Based on a real incident management system, we
simulate the composition and execution of the so-called social
compute unit (SCU), which contains a group of experts that
can be composed and dissolved on-demand [24].

For evaluation purposes, we created adapters for the un-
derlying monitoring tools to retrieve the recorded monitoring
data from the aforementioned setup. We implemented generic
classes of agents, namely state-based agent, correlator agent,
aggregator agent, and client agent as shown in Fig. 4. Together
with a messaging broker, these agents are then incorporated

1https://github.com/tuwiendsg/RAHYMS
2http://esper.codehaus.org
3https://github.com/tuwiendsg/ADVISE/tree/master/data/M2MApp
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(a) Human-Based Units Utilization (average active time in the last 24
hours)
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(b) Software-Based System Utilization (average CPU usages on all
data collection and processing machines)
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(c) Thing-Based System Utilization (the number of active sensors)
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(d) Cyber-Physical-Social System Utilization

Fig. 5: Correlated Utilization Metrics

as grid entities in the GridSim framework. Interested readers
may get more detail information on the implementation and
experiments from the supplemented material online4.

B. Experiments
a) Complex Metrics Experiments: Traditional monitor-

ing systems typically deal with homogenous systems, where
correlating similar metrics with different semantics from dif-
ferent subsystems is difficult. In our first experiment, we
demonstrate the capability of our framework for capturing
complex metrics derived from the correlation of metrics of
different subsystems. Here we use the utilization metrics as
discussed in Section III-A3. The utilization of human-based
units is derived from their active hours during the last 24 hours.
The utilization of the software-based system is obtained from
the CPU usages of the machines running the software-based
services. On the thing-based system, we capture the snapshots
of the numbers of active sensors at any particular time. These
three different metrics are then correlated, i.e., normalized
and combined into one metric stream, so that further unified
operations becomes possible. We then applied stream data
aggregation operation (median and percentiles) to obtain new
aggregated utilization metrics, which represent the behavior of
the overall system.

An XML definition of such correlated utilization metric is
provided in the online supplemented materials. Such a metric
definition is then transformed into EPL and deployed into a
complex event processor. We deploy the metric processors
into our prototype implementation running the aforementioned
infrastructure maintenance scenario and capture the resulted
metrics as shown in Fig. 5. The streams of CPU usage and

4http://dsg.tuwien.ac.at/prototypes/CpssMonitoring/
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(a) CPU Usages without QoD
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(b) CPU Usages with QoD (rate = 12h, accuracy = 10.0)

Fig. 6: Quality of Data (QoD) Experiments

active sensors metrics are fluctuated much rapidly as shown
in Fig. 5b and Fig. 5c, while the active time of human-based
units are more steady (Fig. 5a). We remove the data captured
from the first 24 hours to avoid the effect of incomplete initial
collection of human-based units activities. The outcome of the
correlated utilization metrics shown in Fig. 5d.

b) QoD Experiments: In CPSS monitoring, different
monitoring clients may require different data qualities. In this
experiment, we would like to show the benefits of QoD-aware
data delivery provided by our framework, especially for the
monitoring clients with respect to the intrusiveness of the data.
We deploy two monitoring clients that subscribe for CPU usage
metrics. The first client subscribes without QoD requirements,
while the second one emulates a human-based client, who
wants only to receive updates on every 12 hours, while still
requiring data accuracy of 10 points.

Here we use again a similar setup as in the first experiment,
and apply the algorithm for QoD-aware data delivery shown
in Algorithm 1 on the message broker. The estimation of the
QoD-aware data is using moving average to calculate the data
value on a particular point. As can be seen in Fig. 6, the data
received by the second client is much more sparse then the
first one, as it requests to receive data on every 12 hours basis.
However, on the events where the metric fluctuates very rapidly
(i.e., more than the requested 10 points before the 12 hours
duration dues), the clients receives more data.

c) Comparing Implementations of QoD-aware Data
Delivery: As discussed in Section III-B3, QoD-aware data
delivery can be implemented either on the broker-side or on
the agent-side. In this experiment, we want to compare both
approaches, and study the costs and benefits, especially from
the perspective of monitoring providers. Here we experiment
using similar setup as in Experiment 1, and apply the QoD-
aware data delivery algorithm on either the broker or the agents
and evaluate the results based on the number of messages,
which represent the monitoring overhead for the overall sys-
tem. The messages are counted and classified in two classes,
the published messages (i.e., messages sent out by agents to
the broker), and fan-out messages (i.e., message sent out by
the broker to consumers).

First, we run the experiments using varying number of
clients, i.e., 20, 40, and 60 clients, each with varying QoD
requirements. As shown in Fig. 8, the broker-based quality-
aware delivery is more efficient compared to the agent-based
counterpart with respect to the number of total messages. This
is due to the fact that the number of published messages on
the broker-based quality-aware delivery is constant regardless
the number of clients; while on the agent-based quality-aware
delivery, the published messages are addressed to each clients
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(a) Agent-based Quality-aware Delivery
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(b) Broker-based Quality-aware Delivery

Fig. 7: Number of Messages in Quality-Aware Delivery

Agent-based QoD (total messages)
Broker-based QoD (published messages)

Broker-based QoD (total messages)
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Fig. 8: Number of Messages in Varying Data Rates

with particular QoD requirements.
However, the agent-based quality-aware delivery can be

more efficient than the broker-based one. We setup again the
experiments with 10 clients. We run several set of experiments
with this clients, each set with different data rates require-
ments as shown in Fig. 8. Here we can see that the agent-
based quality-aware delivery is more efficient in low data rate
requirements, because the number of its published messages
becomes lower than the number of published messages in
the broker-based counterparts. The cross points of these two
approaches represent the data rates that are roughly equal to
the mean original data rate (i.e., the data rate of messages sent
out by agents if there is no QoD requirements).

VI. CONCLUSIONS AND FUTURE WORK

In this paper we present our approach for monitoring
Cyber-Physical-Social Systems (CPSSs), which is necessary
for optimizing smart services in complex settings such as smart
cities. We tackle challenges to deal with heterogenous events
and metrics emitted by those diverse subsystems. Moreover, we
use Quality of Data (QoD) to enable more efficient monitoring
of CPSSs according to the consumer’s requirements.

We present our CPSS simulation tool, and implement a
prototype of our monitoring approach. We run monitoring
experiments using monitoring data derived from real world
scenarios. Our experiments demonstrate that our framework is
useful to model and measure complex metrics from a running
CPSS. Furthermore, we show benefits for both monitoring
clients and providers in applying QoD-aware data delivery on
CPSS monitoring.

Our work presented in this paper is part of our ongoing
research on dependable hybrid human-machine computing.
Future works include modeling and measuring various depend-
ability metrics such as availability, performance, and quality
of results in the context of CPSS.
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